
Building a Domain-Independent Architecture for Planning, Learning and
Execution. PELEA

César Guzmán
Universidad Politécnica de Valencia

cguzman@dsic.upv.es

Vidal Alcázar
Universidad Carlos III de Madrid

valcazar@inf.uc3m.es

David Prior
Universidad de Granada

dprior@decsai.ugr.es

Eva Onaindı́a
Universidad Politécnica de Valencia

onaindia@dsic.upv.es

Daniel Borrajo
Universidad Carlos III de Madrid

dborrajo@ia.uc3m.es

Juan Fdez-Olivares
Universidad de Granada, Granada

faro@decsai.ugr.es

Introduction
In this work, we present our ongoing effort on building a
domain-independent software platform that integrates basic
capabilities for planning, execution, monitoring, re-planning
and learning. We name it PELEA after Planning, Execu-
tion and LEarning Architecture. The goal is two-fold: first,
to provide software engineers a tool that can be used off-
the-shelf to easily build planning applications, supporting
a rapid prototyping life-cycle; and second to provide plan-
ning practitioners a tool that can be highly configured and
in which new components replacing the ones that are al-
ready integrated can be easily added. Regarding the first
goal, the platform currently includes state-of-the-art compo-
nents for performing a wide range of (meta-)planning tasks,
such as: planning (using several paradigms), controlled ex-
ecution, monitoring of correct plan execution, re-planning
when needed, learning of control knowledge, or low-level
planning. Ultimately the user could use the tool as-is by
giving as input a domain and problem descriptions. Regard-
ing the second goal, it can serve as a benchmark platform
for comparing different techniques under the same condi-
tions. For example, a planning expert might want to try out
a new re-planning technique on a robot simulator without the
need to generate a complete planning-execution-monitoring-
replanning architecture. We are currently interfacing the
platform with known simulators (videogames and robotic
platforms) as well as developing new ones for specific do-
mains (logistics) and even a domain-independent temporal
stochastic simulator. We are using this first prototype to de-
velop some applications, such as a robotic system controlled
by classical planning and a logistics transportation system.

We are building on our combined previous experience
on developing different kinds of applications, ranging from
fire extinction (Fdez-Olivares et al. 2006), logistics (Flórez
et al. 2011), satellites maintenance operations (Rodrı́guez-
Moreno, Borrajo, and Meziat 2004), education (Garrido et
al. In Press), tourism (Castillo et al. 2008), or data min-
ing (Fernández et al. In Press), among many others. In all
these cases, the process of developing the final application
is an “ad-hoc” manual process that requires expertise and
techniques on at least two fronts: domain and problem mod-
eling; and selection and configuration of planning systems,
together with the implementation of execution controllers,
monitoring tools and re-planning techniques, as well as the

optional use of learning components. There has been some
work on the first task based on powerful modeling tools such
as ITSIMPLE (Vaquero et al. 2009). ITSIMPLE allows defin-
ing different kinds of planning models, as well as running
diverse planners to generate solutions. However, it does
not support further execution, monitoring and re-planning of
those plans. We propose in this paper a tool that automates
those steps.

There has also been previous work that defines generic
architectures used for different purposes. Examples can
be found in space and robotics applications with platforms
like Mapgen (Ai-Chang et al. 2004), APSI (Cesta et al.
2009), PRS (Georgeff and Lansky 1987), or IxTeT (Ghal-
lab and Laruelle 1994). Usually these platforms have been
designed for particular planning techniques, as timeline-
based planning (Ai-Chang et al. 2004; Cesta et al. 2009;
Ghallab and Laruelle 1994), hierarchical planning (Fdez-
Olivares et al. 2006), or reactive controllers (Georgeff and
Lansky 1987). The goal of the PELEA project is to build a
component-based architecture able to perform planning, ex-
ecution, monitoring and learning in an integrated way, in the
context of PDDL-based and HTN-based planning and suit-
able for a wide range of planning problems.

Next, we define the architecture and its component mod-
ules. The architecture allows planning engineers to easily
generate new applications that integrate all planning and ex-
ecution capabilities by reusing and modifying the compo-
nents. A second scientific advantage of PELEA is to allow
researchers or practitioners to compare techniques related
to that functionality. We provide a set of tools that imple-
ment different techniques for each module, so that users can
choose among those. The paper describes the on-going work
on this architecture.

Overview of PELEA Architecture
PELEA architecture includes components that allow the
applications to dynamically integrate planning, execution,
monitoring, replanning and learning techniques. In general,
there are two main types of reasoning: high-level (mostly
deliberative) and low-level (mostly reactive). This is com-
mon to most robotics applications and reflects the separa-
tion between a reactive component and a deliberative com-
ponent. However, in our architecture, these are simply two
planning levels. This offers two main advantages: both lev-



problem,domainH,domainL

stateL planL

problem
stateL
domainH
domainL

planL

problem

problem
domainH domainH

problem
planL

planH, domainL

stateH

stateL

planH
info monitor

planH

problem
domainH

knowledge

kn
ow

led
ge

learning
examples

Figure 1: Screenshot of PELEA’s web interface showing the architecture of the system. It shows the execution of a simple
problem in the Driverlog domain.

els can be easily adapted to the requirements of the agent;
and the differentiation allows the agent replanning at either
level, which grants a greater degree of flexibility when re-
covering from failed executions. It would be possible to add
additional levels to allow developers for a more hierarchical
decision process. However, we consider that the sole dis-
tinction between high and low level is enough to tackle most
problems, as has been shown in many robotics applications.
Figure 1 shows a screenshot of PELEA’s web interface and
the current version of the architecture along with the integra-
tion of the modules. Even if we did not provide the explicit
APIs, all modules in the architecture have access to either
the high-level and low-level domain. We will describe in
more detail later on the inputs and outputs of each compo-
nent.

As we can see, PELEA is composed of eight modules that
exchange a set of Knowledge Items (KI) during the reason-
ing and execution steps. The main KIs that we have used are
(the modules also exchange the information related to the
parameters that configure how each module works1):

• stateL: low-level state composed of the sensory informa-
tion

• stateH: high-level state, translated from stateL as an ag-
gregation or a generalization of low level information

1For instance, which planner to execute.

• goals (problem): the set of high-level goals to be achieved
by the architecture

• metrics (problem): the metrics that will be used in the
high-level planning process

• planH: set of high level plans. Each high level plan is a set
of actions resulting from the high-level planning process.
The actions of these plans can also be the goals for the
low-level planner (in case we want the low-level planner
to act as a dynamic translation mechanism for high-level
actions)

• planL: set of low level plans. Each low level plan is again
an set of actions resulting from the low-level planning
process. These actions should be operational, that is di-
rectly executable in the environment

• domainH: definition of actions for high-level planning

• domainL: definition of behaviors (skills) for low-level
planning

• learning examples: to be used by the learning component
to acquire knowledge for future planning episodes, either
in the form of heuristics, domain models, or knowledge
on the problem specification

• heuristics: in different forms (control rules, policies,
cases, macro-actions, etc.) allow the planners to improve
their efficiency in solving future planning episodes



• info monitor: meta knowledge on the plan that helps to
perform the monitoring (as, for instance, the generation
time of a literal)

The PELEA architecture is controlled by a module, called
Top-level control, which coordinates the execution and in-
teraction of the Execution and Monitoring modules. As said
above, PELEA architecture uses a two-level knowledge ap-
proach. The high-level knowledge describes general infor-
mation, actions in terms of its preconditions and effects, and
typically represents an abstraction of the real problem.

The high-level knowledge descriptions are rarely directly
executable, if ever, they must be complemented by the low-
level knowledge, which describes the more basic actions
in the simulated world, and it is typically concerned with
specific rather than general functions, and how they oper-
ate. The low-level knowledge is read from the environment
through the sensors placed in the Execution module. The
environment is either a hardware device, a software appli-
cation, a software simulator, or a user. An example of low-
level knowledge would be “the coordinates of a robot” or
“degrees of motion of a robot arm”. In PELEA, it is not
necessary to work at the two knowledge levels. For in-
stance, one can just work at the high-level, so that convert-
ing knowledge from high-level into low-level with the Low-
ToHigh module or using the Low-level planner module are
not needed. A more detailed description of the operation
of the architecture of PELEA can be seen in (Alcázar et al.
2010). In the following, the life-cycle of the architecture is
described.

Execution Module. The starting point of the architecture
is the Execution module, which is initialized by the Top-
level control, receiving a high-level and low-level domain,
and a problem, composed of an initial state, a set of goals
to achieve, a set of objects, and, optionally, a metric. The
Execution is initialized with the domain and the problem,
which in turn initializes the objects and their positions in the
environment. The Execution keeps only the static part of
the initial state, given that the dynamic part, called stateL
(low-level state), will come from the environment through
the sensors.

Monitoring Module. stateL, the problem and the domain
are sent by the Top-level control to the Monitoring module
to obtain a low-level plan (planL). The actions in planL are
executed one by one by the Execution module (as can be
seen in the Figure 1). As commented above, the modules
LowToHigh and Low-level planner are only used in case the
domain is modeled at the high and low levels. Otherwise,
the Monitoring calls directly the Decision Support to obtain
a high-level plan (planH). On the other hand, the module
Goals&Metric Generation is invoked in case the problem
goals or the metric change dynamically along the plan ex-
ecution. Once the Monitoring module receives the neces-
sary knowledge (state, problem and domain), it starts the
monitoring process. The first step of the plan monitoring
is to check whether the problem goals have already been
achieved (goalsL and goalsH in case we are dealing with
the two processes). If so, the plan execution finishes; other-
wise, the Monitor begins with the first iteration of the plan

monitoring.
Decision Support Module. At the first iteration of the

algorithm, there is no plan to monitor yet, so the Monitoring
calls the Decision Support, which obtains a valid plan that
achieves the goals from the current observed state through
the High-level replanner. This latter module receives a prob-
lem and a high-level domain (domainH), and generates a
high-level plan (planH). planH is sent back to the Decision
Support module, which computes the variables to be moni-
tored and keeps this information in the parameter info mon-
itor. Both planH and info monitor are sent by the Decision
Support to the Monitoring.

Low-level Planner. The Monitoring module, with the
help of the Low-level planner module, generates a set of ex-
ecutable low-level actions (planL), if this is the case. If the
Low-level planner module is not being used, the Monitoring
assumes that the high-level actions in planH are executable,
and they are sent to the Execution module, which executes
the actions one by one. Then, it senses the dynamic part of
the state from the environment. The Monitoring receives the
information from the observed state (stateL) after the exe-
cution of an action, and verifies the information in stateL
against the parameter info monitor. If the values of all the
checked variables are within the value range specified in info
monitor, the Monitoring continues with the plan execution.

Replanning/Plan Repair. Otherwise, if a discrepancy
between the expected and the observed state (stateL) is en-
countered, for instance, in the Figure 1 the Monitoring has
detected a discrepancy in the literal at driver2 s1, which
means that the action walk driver2 has failed in the exe-
cution, the anomaly is reported by the Monitoring module
to the Decision Support, which determines whether the dis-
crepancy is relevant to the plan execution or not. That is,
whether the plan is still valid to achieve the goals from the
current observed state. At this point, the low-level planner
can also be invoked to find the most immediate actions for
a rapid intervention -if reactivity is needed- since this mod-
ule typically stores predefined behaviours or courses of ac-
tions for reaching a situation. In case the Decision Support
finds the anomaly entails a plan failure, and so the plan is
no longer executable, it will take a decision about whether
applying a plan repair, or replanning through the High-level
replanner, thus starting a new iteration of the algorithm. Par-
ticularly, the Decision Support decides by an Anytime Plan-
Adaptation approach (Garrido, Guzman, and Onainda 2010)
whether it is worth repairing the plan, in which case it fixes
planH and makes it executable again, or, it would be better
to replan, in which case it requests a new plan to the High-
level replanner module. In case that the discrepancy is not
relevant to the plan validity, the Decision Support resumes
the execution of planH by sending back the remaining and
the new parameter info monitor to the Monitoring module,
which in turn sends the next action to the Execution.

Whilst no discrepancies are found in the observed state,
the two modules that are continuously interacting are the
Monitoring and the Execution. The Monitoring not only
checks for discrepancies but also if the problem goals
(goalsL and goalsH) are already satisfied in the current state.
In that case, the overall process is finished.



Currently, PELEA integrates, among others, with the
following environments: Physical robot PIONEER 3DX
through Player (robot independent platform for controlling
robots of various kinds); Temporal probabilistic simula-
tor, developed within the project that allows users to de-
fine temporal probabilistic domains, in the spirit of MDP-
Sim (Younes and Littman 2004), for which we also have an
API; Virtual Robot Simulator (VRS2) that is a freeware soft-
ware suite for robotics applications; Alive (Fernández et al.
2008), an open platform for developing social and emotion
oriented applications; and TIMI (Florez et al. 2010), a plan-
ning tool for real logistic problems.

Conclusions
In this paper, we have presented the ongoing work on build-
ing an architecture, PELEA, that integrates planning related
processes, such as sensing, planning, execution, monitoring,
replanning and learning. It is conceived as a flexible and
modular architecture that can accommodate state-of-the-art
techniques that are currently used in the whole process of
planning. This kind of architectures will be a key resource
to build new planning applications, where knowledge engi-
neers will define some of the components, parametrize oth-
ers, and reuse most of the available ones. This will allow
engineers to easily and rapidly develop applications that in-
corporate planning capabilities. We believe this kind of ar-
chitecture fills part of the technological gap between plan-
ning techniques and applications.

Acknowledgements
This work has been partially supported by the Spanish
MICINN project TIN2008-06701-C03.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.-
J.; Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Ygle-
sias, J.; Chafin, B.; Dias, W.; and Maldague, P. 2004.
MAPGEN: Mixed-initiative planning and scheduling for
the Mars Exploration Rover mission. IEEE Intelligent Sys-
tems 19(1):8–12.
Alcázar, V.; Guzmán, C.; Milla, G.; Prior, D.; Borrajo, D.;
Castillo, L.; and Onaindı́a, E. 2010. Pelea: Planning, learn-
ing and execution architecture. In Proceedings of the 28th
Workshop of the UK Planning and Scheduling Special In-
terest Group (PlanSIG’10).
Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodrı́guez, A.; Fernández, S.;
Arias, J. D.; and Borrajo, D. 2008. SAMAP. A user-
oriented adaptive system for planning tourist visits. Expert
Systems with Applications 34(2):1318–1332. ISSN: 0957-
4174.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proceed-
ings of the 21st Innovative Applications of Artificial Intel-
ligence Conference, Pasadena, CA, USA.

2http://robotica.isa.upv.es/virtualrobot/

Fdez-Olivares, J.; Castillo, L.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
experiences in SIADEX. In Proc. ICAPS 2006. Awarded
as the Best Application Paper of this edition.
Fernández, S.; Asensio, J.; Jiménez, M.; and Borrajo, D.
2008. A social and emotional model for obtaining believ-
able emergent behavior. In Traverso, P., and Pistore, M.,
eds., Artificial Intelligence: Methodology, Systems, and
Applications, volume 5253/2008 of Lecture Notes in Com-
puter Science, 395–399. Varna, Bulgaria: Springer Verlag.
Fernández, S.; de la Rosa, T.; Fernández, F.; Suárez, R.;
Ortiz, J.; Borrajo, D.; and Manzano, D. In Press. Using
automated planning for improving data mining processes.
Knowledge Engineering Review Journal.
Florez, J. E.; Garcı́a, J.; Álvaro Torralba; Linares, C.;
Ángel Garcia-Olaya; and Borrajo, D. 2010. Timiplan:
An application to solve multimodal transportation prob-
lems. In Steve Chien, G. C., and Yorke-Smith, N., eds.,
Proceedings of the 2010 Scheduling and Planning Appli-
cations woRKshop (SPARK’10), 36–42.
Flórez, J. E.; Álvaro Torralba; Garcı́a, J.; López, C. L.;
Ángel Garcı́a-Olaya; and Borrajo, D. 2011. Planning
multi-modal transportation problems. In Proceedings of
ICAPS’11. Freiburg (Germany): AAAI Press.
Garrido, A.; Onaindı́a, E.; Morales, L.; Castillo, L.;
Fernández, S.; and Borrajo, D. In Press. On the automatic
compilation of e-learning models to planning. Knowledge
Engineering Review Journal.
Garrido, A.; Guzman, C.; and Onainda, E. 2010. Anytime
plan-adaptation for continuous planning. In Proceedings
of the 28th Workshop of the UK Planning and Scheduling
Special Interest Group (PlanSIG’10).
Georgeff, M. P., and Lansky, A. L. 1987. Reactive rea-
soning and planning. In Proceedings of AAAI-87 Sixth Na-
tional Conference on Artificial Intelligence, 677–68.
Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In Proceedings of the
2nd International Conference on AI Planning Systems.
Rodrı́guez-Moreno, M. D.; Borrajo, D.; and Meziat, D.
2004. An AI planning-based tool for scheduling satellite
nominal operations. AI Magazine 25(4):9–27.
Vaquero, T.; Silva, J.; Ferreira, M.; Tonidandel, F.; and
Beck, C. 2009. From requirements and analysis to pddl
in itsimple3.0. In Proceedings of the 3rd International
Competition on Knowledge Engineering for Planning and
Scheduling.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
School Of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania.


