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Abstract

The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning. In earlier
work (Hoffmann 2005), it was observed that the optimal re-
laxation heuristic h+ has amazing qualities in many classical
planning benchmarks, in particular pertaining to the complete
absence of local minima. The proofs of this are hand-made,
raising the question whether such proofs can be lead automat-
ically by domain analysis techniques. The TorchLight tool
answers this question in the affirmative.
The tool is based on a connection between causal graph struc-
ture and h+ topology. It distinguishes between global anal-
ysis and local analysis. Global analysis shows the absence
of local minima once and for all, for the entire state space
of a given planning task. Local analysis determines the per-
centage of individual sample states not on local minima, thus
allowing to make finer distinctions. Finally, diagnosis sum-
marizes structural reasons for analysis failure, thus indicating
domain aspects that may cause local minima.
Complementing the ICAPS’11 and JAIR papers on Torch-
Light (Hoffmann 2011b; 2011a), we provide a brief summary
of TorchLight’s workings and results, and illustrate its func-
tionalities with example output on some IPC benchmarks.

Introduction
The ignoring delete lists relaxation is of paramount impor-
tance for both satisficing and optimal planning (e.g., Bonet
and Geffner 2001; Hoffmann and Nebel 2001; Richter and
Westphal 2010; Helmert and Domshlak 2009). The plan-
ners based on it approximate, in a variety of ways, the opti-
mal relaxation heuristic h+ which itself is NP-hard to com-
pute. As was observed in earlier work (Hoffmann 2005), h+

has strong qualities in many classical planning benchmarks.
Figure 1 gives an overview of these results (omitting ADL
domains and including the more recent benchmarks Eleva-
tors and Transport (without action costs).

The results divide domains into classes along two di-
mensions. We will herein ignore the horizontal dimension,
which pertains to dead ends. The vertical dimension divides
the domains into three classes, with respect to the behavior
of exit distance, defined as d − 1 where d is the distance to
a state with strictly smaller h+ value. In the “easiest” bot-
tom class, there exist constant upper bounds on exit distance
from both, states on local minima and states on benches (flat
regions). In the figure, the bounds are given in square brack-
ets. For example, in Logistics, the bound for local minima is
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Figure 1: Overview of h+ topology (Hoffmann 2005).
0 – meaning that no local minima exist at all – and the bound
for benches is 1. In the middle class, a bound exists only for
local minima; that bound is 0 (no local minima) for all do-
mains shown. In the “hardest” top class, both local minima
and benches may take arbitrarily many steps to escape.

The proofs underlying Figure 1 are hand-made. For deal-
ing with unseen domains, the question arises whether we can
design domain analysis methods leading such proofs auto-
matically. The TorchLight tool answers this question in the
affirmative. The key to the analysis is a connection between
causal graph structure and h+ topology. In its most basic
form, the connection is this:
If the causal graph is acyclic, and every variable transition

is invertible, then there are no local minima under h+.
The proof of this result works in two steps. Step (A) iden-
tifies circumstances under which one can deduce from an
optimal relaxed plan for a state s that there exists a mono-
tone exit path, i.e., a path from s to a state s′ with h+(s′) <
h+(s) and where all intermediate states s′′ on the path have
h+(s′′) = h+(s). Step (B) devises causal graph based suffi-
cient criteria implying that analysis (A) will always succeed.
This scheme can be used to prove results stronger than the
above, allowing e.g. casual graph cycles arising (only) due
to transition “side effects” that are harmless in certain ways.

TorchLight distinguishes between global analysis and lo-
cal analysis. Global analysis shows the absence of local
minima once and for all, for the entire state space of a given
planning task. This is based on step (B) above. Local analy-
sis determines the percentage of individual sample states not
on local minima – we refer to this as the success rate – thus
allowing to make finer distinctions in planning tasks where
local minima do exist. To analyze a given sample state s, we
feed step (A) with the relaxed plan for s computed by FF’s
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Figure 2: Overview of TorchLight domain analysis results.
“*”: global analysis always succeeds; “+”: local analysis
always succeeds if provided an optimal relaxed plan; mean
success rates when sampling one state per domain instance.

heuristic function. Since this relaxed plan is not necessarily
optimal, this local analysis is approximate: if it succeeds,
there is no guarantee that s is indeed not a local minimum.

TorchLight is implemented in C based on FF. Its analy-
sis techniques rely on the finite-domain variable representa-
tion of planning. This is obtained from the PDDL input by
running Fast Downward’s translator (Helmert 2009). That
translation is the main bottleneck in TorchLight’s runtime
performance. Up to 100 sample states, in more than 96% of
the 1160 test instances in our experiment, the actual analysis
takes at most as much time as the translator.

Figure 2 gives an overview of TorchLight’s analysis re-
sults. The domains whose h+ topology is not known are
shown separately. For each domain, “*” and “+” indi-
cate domain-specific performance guarantees that we have
proved. The numbers give the per-domain average success
rates when taking a single sample state per instance. Clearly,
“harder” domains tend to have lower success rates.1

TorchLight’s diagnosis summarizes structural reasons for
analysis failure, thus indicating domain aspects that may
cause local minima. Since the tested criteria are sufficient
but not necessary, there is no correctness guarantee. Still, at
least for local analysis, the diagnosis can be quite accurate.
In Zenotravel, it always correctly identifies fuel consump-
tion as the problem. In Mprime and Mystery, most of the
time the same correct diagnosis is returned. In Satellite and
Rovers, it always reports the problem to be that switching on
an instrument, respectively taking an image, deletes calibra-
tion – precisely the only reason why local minima exist here.
In Blocksworld-Arm and Freecell, the diagnosis identifies
critical resources (“hand-empty” and “have-cellspace”).

We next exemplify global analysis, local analysis, and di-
agnosis, with example runs on IPC benchmarks. We close
the paper with a brief discussion of future work.

Global Analysis
Figure 3 gives verbatim output of TorchLight when run on
the largest Logistics instance from the 1998 competition (we
omit some parts of the output that are not relevant here).

1In Driverlog and Rovers, deep local minima do exist, but only
in awkward situations that don’t tend to arise in the IPC instances.
Hanoi and Blocksworld-NoArm are not actually easy to solve for
FF, and the absence of local minima is due to idiosyncratic reasons.

The reader familiar with FF will notice FF’s footprint in
this output. The run of Fast Downward’s translator is indi-
cated by TorchLight near the start of Figure 3. Once transla-
tion terminates, TorchLight reads Fast Downward’s interme-
diate output file, and matches the values of the finite-domain
variables against FF’s grounded facts (this involves a few
subtle but uninteresting implementation details).

As visible in Figure 3, TorchLight then builds some ba-
sic data structures pertaining to the support graph (SG),
a simple variant of causal graphs, and the domain transi-
tion graphs (DTG) as known from Fast Downward (Helmert
2006). It then sets some basic properties of these structures,
for example annotating every individual DTG transition with
a flag indicating whether or not the transition is invertible.

Once the basic structures are built and analyzed, Torch-
Light runs global analysis. This works by enumerating
all global dependency graphs (gDG). A global dependency
graph is a sub-graph of the support graph that, starting from
some goal variable x0, recursively includes all transitive pre-
decessors of x0. The gDG is called successful if it does not
contain any cycles, and satisfies a number of supplementary
criteria implying that analysis (A), cf. the above, will suc-
ceed. If, and only if, all gDGs are successful – i.e., if as
shown here the percentage of successful gDGs is 100% –
then it is proved that the state space does not contain any lo-
cal minima under h+.2 Further, each gDG delivers a bound
on the exit distance. Maximizing this bound over all gDGs
delivers a bound that is valid across the whole state space.
In the shown Logistics example, that bound is 1. That same
bound would be returned for any Logistics instance, i.e.,
TorchLight here always finds the exact bound as proved by
hand (cf. Figure 1).

Note that the shown instance is huge. FF generates almost
a million “action templates”, i.e., instantiated actions not yet
tested for (relaxed) reachability. This instance size is also
reflected in the 9.78 seconds runtime for Fast Downward’s
translator. By contrast, the actual analysis (i.e., the part of it
that we’re interested in right now) takes only 0.24 seconds.

As shown in Figure 2, global analysis succeeds in Logis-
tics, Miconic-STRIPS, Movie, and Simple-TSP. In all other
domains, however, the fraction of successful gDGs never
attains 100%. In these cases, nothing is proved, so those
gDGs that are successful may at best serve as an indication
of which aspects of the domain are “good-natured”.

Local Analysis
Local analysis is run on a set of random sample states. The
number R of such states is an input parameter to TorchLight.
Each state is sampled by executing K ∗hFF(sI) random ac-
tions, where K is another input parameter, sI is the initial
state, and hFF(sI) is FF’s heuristic value for that state. We
start in sI and keep selecting uniformly one of the applica-
ble actions at each state. The path length factor K is set
to 5 in our experiments. We have not played much with
this parameter; its value makes a difference mainly in do-
mains containing dead ends (like transportation with non-

2This is a strictly more general criterion than the one mentioned
in the introduction: if the causal graph is acyclic and all transitions
are invertible, then all gDGs are successful; but not vice versa.



./torchlight -o domains/logistics/domain.pddl -f domains/logistics/p30.pddl

TorchLight: running Fast-Downward translator to generate variables ... done.
TorchLight: creating SG and DTG structures ... done.
TorchLight: static examination of SG and DTG structures ... done.

TorchLight guaranteed global analysis:
No local minima under h+, exit distance bound 1.
Percentage of successful x0/t0 gDGs : 100.00% (30780 of 30780)

Time spent: 0.14 seconds instantiating 912252 easy, 0 hard action templates
9.78 seconds in FD translator generating variables
0.24 seconds in guaranteed global analysis

Figure 3: Example run of TorchLight (global analysis) in the Logistics domain.

replenishable fuel), which may not be found if the random
walks are too short (we get back to this below).

Given a sample state s, and a relaxed plan P+(s) for s,
local analysis applies step (A) to identify whether or not
P+(s) complies with a special case implying the existence
of a monotone exit path from s. If so, we say that s is suc-
cessful. If P+(s) is optimal, then this analysis is sound,
i.e., for successful s an exit path as claimed is guaranteed
to exist. In TorchLight, P+(s) is returned by FF’s heuristic
function, thus P+(s) is not necessarily optimal, thus the lo-
cal analysis is approximate.3 If s has no relaxed plan at all,
then we count the state as unsuccessful.

Upon analyzing all sample states, TorchLight outputs the
success rate as well as the min/mean/max exit distance
bound identified. Figure 4 gives verbatim output for in-
stances from Transport, Blocksworld-Arm, and Mystery.

Figure 4 (a) shows the output for the largest Transport in-
stance of IPC’08. The “-s 100” in the command line gives
the number of sample states (called R herein); the default
value is R = 10. We see that all sample states are success-
ful, indicating (rightly) the absence of local minima. The
largest exit distance bound is 2, however most states have
a smaller bound, as indicated by the mean 0.16. Exit dis-
tance in Transport relates to the number of vehicle moves
needed in order to load/unload the next package. That num-
ber can easily be constructed to be large, however apparently
this does not tend to happen in the present IPC benchmark
instances. As before, we see that Fast Downward’s transla-
tor constitutes by far the most costly part of the computation.
Note, though, that the sampling procedure also takes consid-
erable time (spent in the generation of applicable actions).

In Figure 4 (b), we see a domain, Blocksworld-Arm as
run in IPC’00, that does contain local minima under h+,
and where, thus, global analysis is necessarily useless – it
can only ever answer “sorry no success”. By contrast, ap-
proximate local analysis returns interesting information, in
terms of the success rate: 25% on one of the largest IPC’00
instance as run here (60 blocks). This indicates (rightly) that
there are many states on local minima. Note that, for the
25% successful states, the exit distance is constantly 0, i.e.,
these are situations where h+ can be decreased directly due

3TorchLight also implements a version of local analysis guar-
anteed to be sound. This is based on a localized variant of global
dependency graphs. We do not discuss this here since the empirical
results are not promising – this local analysis tends to apply only
in those domains successfully analyzed by global analysis anyway.

to some simple action that is not intrusive anywhere else.
Consider finally Figure 4 (c), which illustrates the role of

dead ends. The Mystery domain of IPC’98, encoding trans-
portation with consumption of non-replenishable fuel, is a
classical example of a domain containing such states. Fig-
ure 4 (c) shows the run of TorchLight on one of the largest
IPC’98 instances (these are not ordered strictly by increas-
ing size). Like in Blocksworld-Arm, the success rate is very
low, 34% in this case, rightly indicating the complex nature
of the search space surface. However, this time that behavior
is mostly due to the presence of dead ends among the sample
states, and due to the capability of relaxed planning to recog-
nize these. As visible in the output, 57% of the sample states
are recognized to be dead ends. Of the remaining 43 sam-
ple states (remember that our total is 100), 34 are successful
(and 9 are not). If we sample the states less deeply, by set-
ting K in the random path length K ∗ hFF(sI) to K = 1
instead of K = 5, then only 4 sample states have no relaxed
plan, and the success rate skyrockets to 78%.

Diagnosis
There is a variety of information sources in TorchLight that
could be used for diagnosis, that is, for the identification
of domain features that are good-natured/bad-natured. So
far, only a first exploration of this has been made, and only
in the context of approximate local analysis. We have im-
plemented a few first-shot methods identifying which op-
erators and variables were involved in the reasons for suc-
cess/failure of such analyses, in the sample states.

Judging from our current results, the most useful one
of these methods reports operators that were “harmful” in
the analysis, in that they had “side-effects” preventing them
from use in the special case identified by step (A). As an
example, consider an operator moving a vehicle, whose in-
tended effect is to change the position of the vehicle, but that
has a harmful side effect consuming fuel. The diagnosis re-
ports the name of the operator, along with the name of the
predicate affected by the harmful effect. It maintains occur-
rence counts of these operator-predicate pairs, and weighs
these pairs by frequency in order to provide some measure of
“importance”. Figure 5 gives verbatim output for instances
from Mprime, Rovers, and Freecell.

Consider Figure 5 (a). Like Mystery, Mprime encodes
transportation with consumption of non-replenishable fuel.
In both domains, the available fuel units are associated
with locations, rather than with vehicles (the only differ-



./torchlight -o domains/transport/domain.pddl -f domains/transport/p30.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 100.00%
Dead-end states: 0.00%
Exit distance bound min: 0, mean: 0.16, max: 2

Time spent: 0.01 seconds instantiating 39304 easy, 0 hard action templates
11.79 seconds in FD translator generating variables
3.37 seconds sampling states
0.52 seconds in approximate local analysis of sample states

(a) Transport
./torchlight -o domains/blocksworld/domain.pddl -f domains/blocksworld/p61.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 25.00%
Dead-end states: 0.00%
Exit distance bound min: 0, mean: 0.00, max: 0

Time spent: 0.00 seconds instantiating 7260 easy, 0 hard action templates
2.33 seconds in FD translator generating variables
0.83 seconds sampling states
2.38 seconds in approximate local analysis of sample states

(b) Blocksworld-Arm
./torchlight -o domains/mystery/domain.pddl -f domains/mystery/p13.pddl -s 100

TorchLight approximate local analysis of sampled states:
Success and hence no local minima under h+: 34.00%
Dead-end states: 57.00%
Exit distance bound min: 0, mean: 0.00, max: 0

Time spent: 0.03 seconds instantiating 43554 easy, 0 hard action templates
4.83 seconds in FD translator generating variables
0.27 seconds sampling states
0.05 seconds in approximate local analysis of sample states

(c) Mystery
Figure 4: Example runs of TorchLight (approximate local analysis) in the Transport, Blocksworld-Arm, and Mystery domains.

ence is that Mprime has an operator allowing to transfer
fuel between locations). To discourage planner developers
in IPC’98 from analyzing domains and designing domain-
specific heuristics, the semantics of both domains was dis-
guised behind meaningless names. One undesirable side
effect of this security measure is that the verbatim output
in Figure 5 (a) is, also, meaningless. According to Derek
Long, more precisely to Long and Fox’s (2000) synthesis of
generic types, the “feast” operator in Mprime corresponds
to a vehicle move, and the “locale” predicate corresponds to
the level of available fuel. Thus the analysis in Figure 5 (a)
correctly reports the problem to be fuel consumption.4

Figure 5 (b) demonstrates a case where the diagnosis iden-
tifies a very particular reason for the existence of local min-
ima. Namely, in Rovers, the only reason for their existence
is that taking an image has the harmful side-effect of delet-
ing camera calibration. If the same camera is, without a vi-
able alternative, required to take another image, and if re-
calibrating the camera involves changing the rover position

4This is not always the case, due to the peculiar encoding of fuel
pertaining to locations rather than vehicles. This sometimes tricks
the diagnosis into thinking that it’s moving away from locations,
not fuel consumption, causes the local minima. This never happens
in Zenotravel, where fuel pertains to vehicles as one would expect.

and thus incurs additional costs, then this side effect may re-
sult in a local minimum: the relaxed plan prior to taking the
image did not take into account the need to re-calibrate, so
after taking the image the relaxed plan length increases. The
diagnosis correctly identifies exactly the culprit operator ef-
fect. Note, though, that we set R = 1000 here. The reason
for this is that this kind of awkward situation happens only
rarely, so we need a large number of sample states in order
to find it. (Even with R = 1000, we obtain any diagno-
sis only in 8 of the 20 IPC’02 Rovers instances.) Note that,
with such large R, the runtime advantage of analysis over
Fast Downward disappears (in this example at least).

Consider finally Figure 5 (c), in which we demonstrate a
case where weighing operator-predicate pairs by frequency
is important. Obviously, a major difficulty when playing
Freecell is that, when sending a card to a free cell, then
the desired effect – making space where the card previously
was – is countered by the undesired side-effect of consum-
ing space where the card now is. This is reflected in the
diagnosis by the operator-predicate pair “SENDTOFREE
(CELLSPACE)”. However, there are many other operator-
predicate pairs in the diagnosis that are not that sensible, or
not sensible at all. For example, “SENDTOFREE (ON)”
suggests that, when sending a card to a free cell, the effect



./torchlight -o domains/mprime/domain.pddl -f domains/mprime/p34.pddl -D

Top weighted non-recovered op/predicate in approximate local analysis:
100.00% of weight -- FEAST (LOCALE)

Time spent: 0.02 seconds instantiating 8964 easy, 0 hard action templates
1.41 seconds in FD translator generating variables
0.00 seconds sampling states
0.00 seconds in approximate local analysis of sample states

(a) Mprime
./torchlight -o domains/rovers/domain.pddl -f domains/rovers/p19.pddl -D -s 1000

Top weighted non-recovered op/predicate in approximate local analysis:
100.00% of weight -- TAKE_IMAGE (CALIBRATED)

Time spent: 0.02 seconds instantiating 4476 easy, 0 hard action templates
0.86 seconds in FD translator generating variables
0.77 seconds sampling states
0.21 seconds in approximate local analysis of sample states

(b) Rovers
./torchlight -o domains/freecell/domain.pddl -f domains/freecell/p79.pddl -D

Top weighted non-recovered op/predicate in approximate local analysis:
58.33% of weight -- SENDTOFREE (CELLSPACE)
33.33% of weight -- SENDTOFREE (CLEAR)
8.33% of weight -- SENDTOFREE (ON)

Time spent: 0.05 seconds instantiating 182188 easy, 0 hard action templates
9.63 seconds in FD translator generating variables
0.14 seconds sampling states
0.02 seconds in approximate local analysis of sample states

(c) Freecell

Figure 5: Example runs of TorchLight (diagnosis) in the Mprime, Rovers, and Freecell domains. In Mprime, the “feast”
operator corresponds to a vehicle move, and the “locale” predicate corresponds to the level of available fuel.

causing trouble is the one removing the card from its previ-
ous location. In the example shown, this incorrect diagnosis
receives a much smaller weight than the correct one.

Discussion

TorchLight is a new tool whose mission is to analyze search
space topology without running any search. What renders
this “mission impossible” possible is the observation that
causal graphs can be used to characterize rich planning sub-
classes in which there exist no local minima under h+.

Apart from furthering our understanding of what makes
planning tasks amenable to current heuristic search tech-
niques, such analysis has manifold potential practical uses.
In particular, these include: the targeted generation of
macro-actions by constructing the identified exit paths; plan-
ner performance prediction by machine learning over the
generated features; automatic planner/search configuration,
even on-line during search since analyzing a single relaxed
plan already delivers useful information; automatic problem
abstraction by removing (some) harmful effects identified
by diagnosis; automatic domain reformulation by using the
generated features as reformulation guidance; and PDDL
modeling support for end-users by integrating diagnosis as
feedback into a modeling environment.
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