
A New Approach to Conformant Planning via Classical Planners

Khoi Nguyen and Vien Tran and Tran Cao Son and Enrico Pontelli
Computer Science Department
New Mexico State University

Email: {knguyen,vtran,tson,epontell}@cs.nmsu.edu

Abstract

In this paper, we introduce a new approach to conformant
planning via classical planners. We view a conformant plan-
ning problem as a set of classical planning problems, called
sub-problems, and solve it using a generate-and-complete al-
gorithm. Key to this algorithm is a procedure which takes a
solution of a sub-problem and generates a solution for other
sub-problems. We implement this algorithm in a new planner,
called CPCL and evaluate it empirically against state-of-the-
art conformant planners using various benchmarks. The ex-
perimental results show that CPCL is superior to other plan-
ners in most benchmarks, both in performance and in scala-
bility.

Introduction
Conformant planning is the problem of computing a se-
quence of actions that achieves a goal in presence of in-
complete information about the initial state (Smith and Weld
1998). By definition, conformant planning searches for the
plan in the belief state space. Due to the incomplete infor-
mation, the belief state usually has large size which leads
to difficulty in searching for the solution. Thus one way
to address the problem is to translate the conformant plan-
ning problem to a classical planning problem which has been
done by t0 (Palacios and Geffner 2006).

The idea of using a classical planning system to solve a
non-classical planning problem has been applied to other
types of planning problems such as probabilistic planning.
FF-Replan (Yoon et al. 2007), the winner of the 2004 IPC,
which solves a probabilistic planning problem by (i) trans-
lating the problem into a classical planning problem, (ii)
computing a solution using a classical planner (FF), and (iii)
replanning whenever necessary.

It is interesting to contrast the approaches adopted in t0
and FF-Replan. While the translation employed by t0 could
produce a new problem whose size is exponential in the size
of the original one (if completeness is required), and thus
making the problem more difficult, the determinizing pro-
cess of FF-Replan simplifies the original problem by remov-
ing all information related to non-determinicity. This raises
the interesting question of whether an alternative approach
to t0, perhaps in a similar spirit to that of FF-Replan, could
produce similar results in conformant planning. It is clear
that the algorithm of FF-Replan cannot be applied to con-

formant planning, since conformant planning does not inter-
leave planning and execution.

In this paper, we develop a new approach to conformant
planning using classical planners. We implement the idea
in a system, called CPCL, and evaluate it against state-of-
the-art conformant planners using several benchmarks. The
experimental results show that the new planner performs ex-
ceptionally well in almost all domains and scales up better
than other planners.

Conformant Planning Problem
A conformant planning problem P is specified by a tuple
〈F,O, I,G〉, where F is a set of propositions, O a set of
action descriptions, I a set of formulae describing the initial
state of the world, and G a formula describing the goal.

A literal is a proposition p ∈ F or its negation ¬p. ¯̀

denotes the complement of the literal `, and it is defined as
¯̀ = ¬`, where ¬¬p = p for p ∈ F . For a set of literals L,
L = {¯̀ | ` ∈ L}; and L is often used to represent ∧`∈L`.

A set of literals X is consistent if there exists no p ∈
F such that {p,¬p} ⊆ X . A state s is a consistent and
complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of
states. A set of literals X satisfies a literal ` (resp. a set of
literals Y ) iff ` ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition,
denoted by pre(a), and a set of conditional effects of the
form ψ → ` (denoted by a : ψ→`), where pre(a) and
ψ are sets of literals and ` is a literal. We often write
a : ψ → `1, . . . , `k as a shorthand for the set {a : ψ →
`1, . . . , a : ψ → `k}.

The initial state I is a collection of literals, one-of clauses
(each of the form one-of(ψ1, . . . , ψn)), and or clauses
(each of the form or(ψ1, . . . , ψm)) where each ψi is a set
of literals.

A set of literals X satisfies the one-of clause
one-of(ψ1, . . . , ψn) if there exists some i, 1 ≤ i ≤ n, such
that ψi ⊆ X and for every j 6= i, 1 ≤ j ≤ n, ψj∩X 6= ∅. X
satisfies the or clause or(ψ1, . . . , ψm) if there exists some
1 ≤ i ≤ m such that ψi ⊆ X .

By ext(I) we denote the set of all states satisfying every
literal in I , every one-of clause in I , and every or clause
in I (e.g., if F={g, f, h} and I={or(g, h), one-of(f, h)}
then ext(I) = {{g, h,¬f}, {g,¬h, f}, {¬g, h,¬f}}).



The goal G is a collection of literals and or clauses.
Given a state s and an action a, a is executable in s if

pre(a) ⊆ s. A conditional effect a : ψ → l is applicable in
s if ψ ⊆ s. The set of effects of a in s, denoted by ea(s), is
defined as: ea(s) = {l | a : ψ → l ∈ O is applicable in s}.
The execution of a in a state s results in a successor state
succ(a, s), where succ(a, s) = (s ∪ ea(s)) \ ea(s) if a is
executable in s, and succ(a, s) = failed, otherwise. Us-
ing this function, we define ŝucc for computing the state
resulting from the execution of a sequence of actions α =
[a1, . . . , an]: ŝucc(α, s) = s if n = 0; and ŝucc(α, s) =
succ(an, ŝucc(β, s)) if n > 0 where β = [a1, . . . , an−1]

and ŝucc(γ, failed)
def
= failed for any sequence of ac-

tions γ. For a belief state S and action sequence α, let
ŝucc

∗
(α, S) = {ŝucc(α, s) | s ∈ S} if ŝucc(α, s) 6=

failed for every s ∈ S; and ŝucc∗(α, S) = failed, other-
wise. α is a solution of P iff ŝucc∗(α, ext(I)) 6= failed and
G is satisfied in every state belonging to ŝucc∗(α, ext(I)).

Conformant Planning using a Classical
Planner—An Intuition

In this section, we present our idea of how to use a classi-
cal planner to solve conformant planning problems. Let us
illustrate our idea in an example.

Example 1. Let us consider a small instance (denoted by
P1) of the coin problem from the IPC 2008 (Bryce and Buf-
fet 2008). In this problem, we have one elevator e0 which
can move between floors f0 and f1 if one of the actions
go up or go down is performed, depending on the loca-
tion of the elevator. Each floor has two positions p0 and p1.
An agent can enter (or exit) the elevator by using the action
step in (or step out). The agent can also move between po-
sitions on the same floor by using the actions move left and
move right. If the agent is at the same position as a coin, he
can collect the coin by using the action collect.

There is one coin, denoted by c0, whose initial location is
only partially known: the coin is on the floor f1 but it is not
known whether it is at the position p0 or p1. Furthermore,
the elevator’s location is initially unknown: it can be at f0 or
f1. Initially, the agent is at the position p0 of floor f0.

The goal is of the problem is to collect the coin c0—
denoted by the fluent have(c0).

Let us explore the encoding P1 = 〈F,O, I,G〉. In this
domain, the set of propositions F contains the following
propositions:1

• at(f, p): the agent is at position p of floor f ,
• in(e, f): the elevator is at the floor f ,
• coin at(c, f, p): the coin c is at position p of the floor f ,
• inside(e): the agent is inside the elevator e,
• have(c): the agent has the coin.

where f ∈ {f0, f1}, p ∈ {p0, p1}, e = e0, and c = c0. The
set of actions O with their conditional effects is given next:

1For simplicity, we omit the predicate shaft(e, p),
dec f(f, f ′) and dec p(p, p′) that denotes the spatial rela-
tion between elevators, positions and floors as they are static and
will be compiled away by the preprocessor of most planners.

go up(e, f0, f1) : in(e, f0)→ in(e, f1),¬in(e, f0)
go down(e, f1, f0) : in(e, f1)→ in(e, f0),¬in(e, f1)
step in(e, f, p) : in(e, f)→ inside(e),¬at(f, p)
step out(e, f, p) : in(e, f)→ at(f, p),¬inside(e)
move left(f, p1, p0) : true→ at(f, p0),¬at(f, p1)
move right(f, p0, p1) : true→ at(f, p1),¬at(f, p0)
collect(c0, f, p) : coin at(c0, f, p)→ have(c0),¬coin at(c0, f, p)

where f ∈ {f0, f1}, and p ∈ {p0, p1}. In addition,

pre(go up(e, f0, f1)) = {}
pre(go down(e, f1, f0)) = {}
pre(step in(e, f, p)) = {at(f, p)}
pre(step out(e, f, p)) = {inside(e)}
pre(move left(f, p, p′)) = {at(f, p)}
pre(move right(f, p, p′)) = {at(f, p)}
pre(collect(c0, f, p)) = {at(f, p)}

The initial state of the problem can be given by I = Id ∪ Io
where Id = {at(f0, p0)} and

Io = {one-of(coin at(c0, f1, p0), coin at(c0, f1, p1)),
one-of(in(e0, f0), in(e0, f1))}.

Finally, the goal of the problem is given by G =
{have(c0)}. Let

u0 = {at(f0, p0), coin at(c0, f1, p0), in(e0, f0)}
u1 = {at(f0, p0), coin at(c0, f1, p1), in(e0, f0)}
u2 = {at(f0, p0), coin at(c0, f1, p0), in(e0, f1)}
u3 = {at(f0, p0), coin at(c0, f1, p1), in(e0, f1)}

Define si = comp(ui). We have that ext(I) =
{s0, s1, s2, s3}. One of the solutions to this problem is:

α =

 go down(e0, f1, f0), step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0),
collect(c0, f1, p0),move right(f1, p0, p1),
collect(c0, f1, p1)


2

Let us introduce the notion of sub-problem.
Definition 1. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. For every s ∈ ext(I), the planning problem
P (s) = 〈F,O, s,G〉 is called a sub-problem of P .

Clearly, for every s ∈ ext(I), P (s) is a classical planning
problem. It is obvious that solution of P can be founded by
selecting (randomly) a sub-problem P (s) of P and repeat-
edly (i) computing a solution α of P (s); and (ii) testing if α
is a solution of P until a solution of P is found. Even though
this process is theoretically sound, such a brute-force com-
putation may not be practical for different reasons. First, the
set of solutions of P (s) is generally infinite and thus gen-
erating all solutions is impractical. Second, for efficiency
and space reasons, most state-of-the-art planners use heuris-
tics and remove some parts of the search space (non-optimal
planners avoid exploring the same state twice while opti-
mal planners ignore paths which violate some criteria, e.g.,
cost of current path is greater than an established threshold).
Third, the process ignores the relationships among the sub-
problems which are often useful in solving the problem. In-
spired by FF-Replan, we develop an algorithm for confor-
mant planning using a modification of the steps (i)-(ii).



Although every solution α of P is a solution of P (s), it is
often the case that we can find a subsequence2 αs of α such
that αs is a solution of P (s). For example, for the problem
P1 in Example 1, the following sub-sequences αsi of α, are
solutions of P (si):

αs0 = [step in(e0, f0, p0), go up(e0, f0, f1),
step out(e0, f1, p0), collect(c0, f1, p0)]

αs1 = [step in(e0, f0, p0), go up(e0, f0, f1),
step out(e0, f1, p0),move right(f1, p0, p1),

collect(c0, f1, p1)]
αs2 = [go down(e0, f1, f0), step in(e0, f0, p0),

go up(e0, f0, f1), step out(e0, f1, p0),
collect(c0, f1, p0)]

αs3 = [go down(e0, f1, f0), step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0),

move right(f1, p0, p1), collect(c0, f1, p1)]

Thus, one way of solving conformant problem is to mod-
ify a solution αs of a sub-problem P (s) of P—by adding
actions—so that it becomes a solution of P , as shown in the
next example.

Example 2. Let us consider the problem P1 from Exam-
ple 1. Let us assume that the classical planner selects
s0 from ext(I) and generates αs0 = [step in(e0, f0, p0),
go up(e0, f0, f1), step out(e0, f1, p0), collect(c0, f1, p0)]
as its first solution.
αs0 is not a solution of P1(s1). However, αs0 and αs1

share the first three actions and αs0 is executable in s1. Fur-
thermore, for s′1 = ŝucc(s1, αs0), we have that3 α01=αs0 ◦
β, where β = [move right(f1, p0, p1), collect(c0, f1, p1)],
is a solution of P1(s1).

Observe that α01 is also a solution of P1(s0). Thus, α01 is
a solution of the planning problem 〈P,O, {or(s0, s1)}, G〉.

Let us consider P1(s2). Checking to see whether
α01 is a solution of P1(s2) reveals that its first action,
step in(e0, f0, p0), is executable in s2; however, one of
the effects of this action, ¬at(f0, p0), is not contained
in succ(step in(e0, f0, p0), s2) because the precondition
in(e0, f0) of the conditional effect step in(e0, f0, p0) :
in(e0, f0) → ¬at(f0, p0) is not satisfied in s2. In order
to achieve this condition for step in(e0, f0, p0) from s2,
we should execute first the action go down(e0, f1, f0). Let
α012 = [go down(e0, f1, f0)]◦α01. We can verify that α012

is a solution of P1(s2). Moreover, we can also see that α012

is a solution of P1(s0), P1(s1), and P1(s3). In other words,
α012 is a solution of P1. Observe that α012 is identical to the
solution given in Example 1. 2

The above example shows that it is possible to use a clas-
sical planner and search in the original state space of a con-
formant planning problem for a solution by repeating the
following two steps until a solution is found:
• Compute a solution αs of a sub-problem P (s) of P , and
• Incrementally repair αs to meet the needs of other sub-

problems of P .

2We say that α is a subsequence of β is α is obtained by remov-
ing any number of elements from β.

3◦ denotes concatenation of two lists.

CPCL—A New Conformant Planner
We now describe a novel algorithm, called CPCL, which
solves a conformant planning problem by solving several
classical planning problems.

Algorithm
Alg. 1 shows the main search algorithm of the planner
CPCL. plan(X) plays the role of a classical planner that
returns a set of solutions of X . We assume that plan(X) re-
turns one solution at a time, nil if there is no more solution,
or failed if X does not have a solution. is solution(β, P )
checks whether or not β is a solution of the problem P .
Algorithm 1 CPCL(P)

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: Let Σ = [s0, . . . , sn] = ext(I) {Compute ext(I)}
4: αs0 = plan(P (s0)) {Get a solution of P (s0)}
5: if αs0 = failed then return failed
6: while αs0 6= nil do
7: if is solution(αs0 , P ) then return αs0
8: else β = completion(αs0 , P,Σ, 1)
9: if is solution(β, P ) then return β

10: αs0 = plan(P (s0))
11: end while
12: return unknown

completion(α, P,Σ, j) (0 ≤ j ≤ n) takes a problem P ,
whose initial belief state is [s0, . . . , sn], and a solution αsj−1

of P (sj−1) (where s−1 = sn), and attempts to create solu-
tions αsi for P (si), i = j + 1, . . . , n.

The procedure constructs a solution of the sub-problem
P (si) from the solution αsi−1

of P (si−1), by inserting ac-
tions into αsi−1

. To achieve this, the procedure starts with
the state si and an empty plan, considers each action a in
αsi−1

, and executes the following tasks:
• Task 1: inserts a sequence of actions before a, so that

(1) a is executable and (2) the execution of a maintains
some effects of a. If this fails then the algorithm stops
and declares that the original plan cannot be extended to
a plan for si.

• Task 2: makes sure that the final sequence of actions αsi
achieves the goal of P (si) and this may require adding
extra actions at the end of αsi .

Implementation and Evaluation
We develop CPCL using the source code of LAMA, the win-
ner of the deterministic track of IPC 2008 because of its ex-
ceptional performance and its object-oriented implementa-
tion which allows for an easy instantiation a new planning
module with different initial state and goal. In order to test
CPCL on the wide range of collected conformant planning
problems and achieve good performance, we have made the
following modifications to LAMA:
• The parser has been modified to consider various types of

actions that were rejected by LAMA;
• The parser has also been modified to enable the computa-

tion of the initial belief state of the planning problem;



• Algorithms 1 have been integrated to LAMA. To generate
more than one solution of a problem, we disable the A∗
search feature of LAMA by keeping the open list (queue
of unexplored nodes) after the first solution is found and
continue the search for the next solution if needed.
We compare CPCL with other state-of-the-art planners—

i.e., CPA (Tran et al. 2009), DNF (To et al. 2009), and t0
(Palacios and Geffner 2009)—on problems from the liter-
ature and previous planning competitions. The experiment
have been performed on a Core 2 2.66GHz machine, with
4Gb memory, with a run-time cutoff of 30 minutes.

The benchmark set contains 731 instances of 18 domains
from the recent IPCs (2006 and 2008) and from the distri-
bution of CFF and t0. CPCL is able to solve 684 instances
while other planners can only solve up to 417 instances(333,
360 and 417 for CPA(H), t0 and DNF respectively).

Instance CPA(H) t0 DNF CPCL

blw-03 20.4/205 48.51/80 307/325 1.3/266
blw-04 AB AB AB 29.5/1384
coins-10 0.03/48 0.04/26 0.20/27 0.037/36
coins-30 AB AB AB 1.0/1107
comm-15 2.29//95 0.092/110 3.43/125 0.1/97
comm-25 1222/389 1.55/453 1797/501 0.8/294
sortnet-5 0.02/13 0.18/15 0.03/15 0.05/15
sortnet-15 240/74 AB 35/118 63.9/120
sortnum-5 AB 1.9/10 1.67/10 0.81/10
sortnum-20 AB AB AB 12.3/190
uts-30 4.9/74 0.79/67 1.39/73 0.17/64
uts-cycle-03 0.01/3 0.14/3 0.01/3 0.04/3
uts-cycle-15 AB AB AB 1314/272
raos-keys-02 0.26/32 0.02/21 0.09/39 0.05/38
raos-keys-04 AB AB AB 16.78/163
forest-03 AB 0.62/45 TO 0.46/167
forest-09 AB AB AB 183.8/963

Table 1: Results for IPC 2006/08 Domains (Time in seconds)

Domains from IPCs: Table 1 contains the results of our
experiments with domains from the IPCs 2006 and 2008—
in terms of the time and length of the first solution reported
by each planner. Boldface indicates the fastest planner. AB
denotes an execution aborted by the planner due to“out of
memory,” and TO denotes time-out. CPCL performs ex-
ceptionally well, both in term of efficiency and scalability.
CPCL consistently outperforms other planners in large in-
stances. For space reason, we omit the result on domains
from the distribution of CFF and t0.

Conclusion
In this paper, we proposed a novel approach to conformant
planning using classical planner. We implemented the new
algorithm using the source code of the classical planner
LAMA, and evaluated the new planner, CPCL, against state-
of-the-art conformant planners. CPCL outperforms other
planners in both performance and scalability, indicating that
the proposed approach is a strong alternative to current state-
of-the-art approaches.

It is well-known that the scalability and performance of
a conformant planner depend on two factors: the ability to
deal with the potential large size of the initial belief state and

the ability to guide the search. CPCL deals with these two
problems by taking advantage of the best from the research
in conformant and in classical planning.

CPCL copes with the huge size of the initial belief state
by considering each possible initial state separately, which
reduces the memory requirements—which is often the prob-
lem for other planners. This also allows CPCL to easily take
advantage of techniques that have been developed in con-
formant planning research for reducing the size of the ini-
tial belief state. By converting the problem to a classical
problem, CPCL can exploit the best heuristic classical plan-
ners in computing a solution. Furthermore, the generate-
and-complete algorithm allows CPCL to generate a solution
by solving multiple smaller problems.

We observe that, even though CPCL can solve a wide
range of benchmarks from various sources, which seem to
be difficult for other state-of-the-art conformant planners,
there are still domains in which CPCL does not work well.
Among them, the adder domain seems to be the most diffi-
cult one. This domain is special in that the size of the initial
belief state is very small, but the number of actions which
can be executed in a state is very large. Furthermore, the
conditional effects of the actions are much more complex
than those in other domains. We hypothesize that these two
factors make this domain difficult for conformant planners.

References
D. Bryce and O. Buffet. The uncertainty part of the 6th IPC,
2008.
R. Brafman and J. Hoffmann. Conformant planning via
heuristic forward search: A new approach. In ICAPS 2004,
pages 355–364, 2004.
H. Palacios and H. Geffner. Compiling Uncertainty Away:
Solving Conformant Planning Problems Using a Classical
Planner (Sometimes). In AAAI, 2006.
H. Palacios and H. Geffner. Compiling Uncertainty Away in
Conformant Planning Problems with Bounded Width. JAIR,
35:623–675, 2009.
S. Richter and M. Westphal. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. JAIR,
39:127–177, 2010.
D.E. Smith and D.S. Weld. Conformant graphplan. In AAAI,
pages 889–896, 1998.
S. T. To, E. Pontelli, and T. C. Son. A conformant planner
with explicit disjunctive representation of belief states. In
ICAPS 2009, AAAI, 2009.
D. V. Tran, H. K. Nguyen, E. Pontelli, and T. C. Son. Im-
proving performance of conformant planners: Static analy-
sis of declarative planning domain specifications. In PADL
2009, pages 239–253. Springer, 2009.
S.W. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline
for probabilistic planning. ICAPS, 352–259. AAAI. 2007.


