
Constraint Priorities - a Way of Getting an Optimal Timetable Fully

Automatically. Three Steps Into the Modern Timetable Scheduler

Wieslaw Dudek
Wieslaw Dudek Timetables, Krakow, Poland

Wieslaw.Dudek@gmail.com

Abstract
The presentation goes through all the system features which
make the new timetabling technology unique and efficient,
presenting constraint priorities as the most important
innovations in the scheduling process. The system of
priorities exists in the main three fundamental modules:
inconsistency detection system, optimization module and
solver. The complete constraint system is also presented as
an important part of useful timetabling software.
Moreover, the presentation covers other features which can
also make the solution useful for other non-school
problems. The described solution is available at
www.school-timetable.eu.

 Introduction

The process of building a timetable is very complex and
arduous as it requires many difficult constraints to be
reconciled at once. This is too great a challenge for people
even in cases of small bundles of requirements but can be
simplified by using modern software systems.

In this paper the modern system means software which
can take care of the whole scheduling process without
bothering its users too much and without asking any
questions about how to arrange some classes which
apparently had been too difficult for the system to set. All
the questions should be constructive ones.

The www.school-timetable.eu site is such a new,
modern solution to the problem. The most innovative
feature is prioritizing the constraints. It is so natural for
people working on a timetable to abandon some
unimportant requirements due to lack of time or skills.
Time and skills count in virtual reality as well.

Constraint priorities are taken into account in the main
three fundamental modules in the system i.e. inconsistency
detection system, optimization module and solver.

Every scheduler needs a complete set of requirements,
which can be defined by the user, to achieve the goal of
getting a timetable in a fully automatic way, simply by

clicking on „Generate” button. Without a complete set, the
received solution would be imperfect and would require
user interaction and analysis; in some cases the whole
timetable would need to be rebuilt making the solution
useless.

If users are given a possibility to enter all of their
requirements into the timetable, they most likely enter all
of them and thus schedulers need good inconsistency and
optimization systems based on priorities.

Inconsistency Detecting System

The inconsistency detecting system filters the requirements
and removes the ones with less priority which are in
conflict with the important ones. The priorities can be
assigned to constraints based on their category i.e. min,
max quantity, gap mode etc. and the resource they concern
e.g. a teacher, a classroom.

Assuming the priorities were assigned to constraints
correctly, the system will erase only the ones that must be
removed i.e. the ones with lower priorities.

Solver

As soon as the inconsistency detecting system removes
inconsistencies, the solving process begins. This process
needs to be efficient and it is crucial for schedulers to
consider it effective. The www.school-timetable.eu system
has got the most powerful solver. The solver was tested on
data coming from 2008-2010. The 4.0 version proves its
effectiveness by arranging all of the classes with good
execution time, provided the user turned on the correction
process or has not banned any of the constraints from being
removed during the optimization process. The algorithm
managed to solve a timetable with 13 sites, 1300 courses,
12000 subjects, 30000 students in it, which means it can be
used for timetabling a university schedule with shared

classrooms, teachers etc.
The solver takes into consideration each requirement

which needs to be defined for school timetables and can be
easily extended with new ones. At present the solver copes
with all of the constraints used in school planning that were
necessary during the last few years of the system
development, even at times when full timetables needed to
be built without enough information provided e.g. missing
classes, unknown language levels.

The quest for completeness produced flexibility of the
system and now it is able to handle other types of
timetables e.g. work schedules. It is worth mentioning such
constraints, which are not present or very rare in other
timetabling systems, like different working times for sites,
inter-moving modes and times, classes order, first/last
lesson in a day, packages of courses for individual
students, resources other than classrooms, combined &
correlated classes, shift work, space between classes etc.

Optimization Module

Often to get a complete solution some systems need their
users to manually abandon some difficult constraints and
decide which ones need to be removed first. Our system is
much more „aware” of timetabling possibilities and reality
than its users; everything it needs from them is the
importance of constraints in a form of their priority. There
is no reason to ask the users to help solve some sub-
problems because the computer has much more chance to
try them out quickly.

The optimization process is a way of getting a complete
solution. The last step in it is the correction process, which
is the last resort to receive a full solution if the user had not
allowed to remove some of the constraints (called fixed)
because of their high importance. The correction process
works in two runs. The first run will be called here „the
ambitious run” and results in a fully or partially built
timetable with all important (fixed) constraints in their
place. The second run, called „the good enough run,”
arranges the rest of the classes which were not able to be
arranged in the previous „ambitious run.” However, this
time without constraint fixing so it will be possible to
remove them if necessary and place all the remaining
classes. This is modeled after people who need to abandon
their ambitious plans before they fail; doing so at the very
last moment they are able to get much further, had they
taken a shortcut right at the beginning.

The timetable correction is fully automatic but can also
be used manually if the users want to. It also lets its users
fix more constraints than it is really needed if they are
afraid they could be removed by the system too early.

System Architecture

The ideas mentioned in the preceding paragraphs were
foundations of the www.school-timetable.eu system
architecture depicted on Figure 1.

Figure 1: Overview of the www.school-timetable.eu system
architecture

As one can see from the process flow perspective showed
on Figure 1, the system fully automatically applies a wide
range of techniques in order to receive a complete solution.
There is no need for difficult questions like "How to
arrange some classes?" because the system can decide by
itself which difficult constraint it should remove on the
basis of constraint priorities. However, a user is allowed to
change the priorities dynamically by creating corrections
(see „Manual correction>Create a subproblem”) or even
arbitrarily impose a given distribution of classes manually
(see „Manual correction>Update the results”).

Besides, it is possible to define an expected or fixed
distribution of classes at the very beginning if one is aware
of all of the requirements at this stage. Taking a closer look
into the remaining steps of the process we can distinguish
the following ones: entering data /constraints defining/,
assigning priorities to constraints and sharing and
managing the final timetable.

Constraints Defining
The step of entering data needs to be sufficient and
effective. Sufficiency means a complete set of constraints
which can be reflected in the system (see „Solver” chapter)
while effectiveness signifies a simplicity of applying
constraints. For many scheduling systems defining groups

of students seems to be the most difficult thing to do.
Creating groups is related to many reasons; one of them

concerns student body sizes - some of them are too big to
be taught, other ones suffer from the shortage of teachers.
Another reason for dividing students into groups can be a
need to combine groups on student body, year or school
level. At the end students can select an individual
education mode or some optional courses. The system has
to be on alert and ensure that some common constraints for
such groups will be met e.g. to avoid overlaping of courses
selected by the same student, impose no gaps for students
in certain kinds of schools or make sure that some defined
constraints for the groups will be met.

In www.school-timetable.eu scheduler system the way
of defining groups depends on the initial data we have. If
we already know the way of dividing students into groups,
the whole process can be simplified by using packages of
courses (see Figure 2).

Figure 2: Defining the packages of courses

Sometimes it is impossible to say how students are going
to be divided, nonetheless, we need to secure a certain
selection of groups avoiding overlaping of courses; later on
appropriate courses will be selected according to skills or
preferences. To achieve this goal we cannot use packages
of courses but need a more flexible solution - correlating
subjects designed by a maximum number of simultaneous
lessons from a group of subjects or a subject combining
feature.
Setting a minimum number of simultaneous lessons can be
a way of correlating some classes of subjects; however,
setting a max number of simultaneous lessons to one could
be a way of separating subjects in time. On the other hand,
the goal of subject combining is to correlate lessons, share
a classroom by some of the subjects, define a common
lesson for several classes, define elective line i.e. a block
of many classes of many subjects where each student may

choose one subject from that line.

Priorities Defining
The second step of the flow in Figure 1 is to assign
priorities to the previously entered constraints. To simplify
the assignment process there are some predefined priorities
for existing constraints which do not have to be redefined
in many cases. However, if necessary, they can be changed
e.g. a user can demand no gaps for a few teachers as a
priority request.

In the example below (Figure 3) John Smith and Ann
Brown's teacher gaps & availabilities are set to be more
important than the same constraint types for other teachers.
Also John Smith's gaps & availabilities are more important
that the same ones for Ann Brown because "Elements
before constraints" attribute is set to "Yes". With the "No"
value the order would be different: John Smith's gaps >
Ann Brown's gap > John Smith's availability > Ann
Brown's availability.

Figure 3: Example of constraint priorities defining

Sharing and Managing the Final Timetable
Ultimately, after a timetable is created, it can be easily
accessed online by students, classes, teachers & classrooms
supervisors. If required, registering for courses can be
turned on and even more preferences can be taken into
account during the scheduling process. Another option for
schools is the possibility to manage teacher substitutions
online. The change will be immediately communicated to
the end users /students, teachers etc./.

Figure 4: Sharing the timetable online

Development Perspectives

The author’s desire is to build a modern and user-friendly
tool for scheduling purposes both for schools and other
institutions working with timetables; the system should be
capable of creating optimal timetables and should allow its
users to access them online. The release of the Android
version of the timetable browser is planned in 2011. The
new interfaces for institutions other than schools should be
soon put into place.

Although the algorithm is in its final state of
development there are still opportunities for improvement.
Generating a timetable for a university with all of its
departments is available, though the whole process takes a
few hours. It is possible to increase its speed by using
concurrent threads and splitting techniques.

Another area for development is an classrooms
arrangement system which could be capable of operating
on groups of classrooms instead of individual ones. It is
worth mentioning the another area for improvement such
as integration with other systems. Although the system is
ready to operate on the open JSON RPC standard and it is
also fast enough to be used separately, the integration with
other existing systems can be convenient for the end users.
It is possible to develop some pieces of administrative
software to use with the timetable generator or to integrate
it closely with other systems which perform their tasks
well.

History

The idea of the scheduler in its current state has been
maturing for 16 years since 1995 when it was first taken
into consideration. The year 2008 turned out to be critical
for the project since the main questions were answered and
a new online system was built.
However since its first release in 2008 many parts of the

generator have been improved. Here are some of the most
important dates in the project’s development. Most of the
following tasks were executed by one person only - the
author:
• 1995-2008 - idea development,
• IV 2008 - the beginning of the project and its first release

- v1.0,
• V-VI 2008 - improvements in inconsistency system,
• VI 2008 - gap constraints revised,
• VII 2008 - classroom management system (preferred

classrooms, arrangement modes, fixed classrooms) & no
1 or 2-hour-long working days,

• IX 2008 - student groups, combined subjects, more
improvements in inconsistency system,

• II 2009 - v2.0 with new graphical design and lots of
improvements: sharing & managing timetables online
(substitutions); priorities used in inconsistency system;
new important constraints introduced: group of days,
order of classes, sites with independent set of times of
lessons, blocked subjects, students & courses,

• VII 2009 - optimisation system using priorities,
• XI 2009 - v3.0 with usability improvements, packages of

courses, registration for courses before or after
scheduling, correlation or separation of subjects within
subject groups,

• XII 2009 - optimisation system improved,
• III 2010 - v4.0 performance & efficiency improved;

JSON-RPC & XSD,
• VIII 2010 - successful execution of large university

timetables with up to 13 sites and 1300 courses with
about 10 subjects each (12000 subjects were defined),

• XII 2010 - new usage scenarios and application - work
scheduling; data entering speed-up and simplicity -
mass change & automatic package of courses generation
based on courses properties,

• I 2011 - bilingual version and foundation for multilingual
version; exports & imports of data,

• II 2011 - timetable correction by days and further speed-
up of generation process,

• III 2011 - timetable correction by sub-problem /solving
sub-problem in independent way as an external
timetable and merge results afterwards/, automatic
correction if not arranged lessons; manual and arbitrary
corrections.

References

Demo samples: http://www.school-timetable.eu/access/demo

A service guide: http://www.school-timetable.eu/guide/guide

A service tutorial: http://www.school-timetable.eu/access/tutorial

More info: http://www.school-timetable.eu

