
New Algorithms and Hardness Results for Multi-Agent Plan Recognition

Bikramjit Banerjee
School of Computing

The University of Southern Mississippi
Hattiesburg, MS 39406

Jeremy Lyle
Dept. of Mathematics

The University of Southern Mississippi
Hattiesburg, MS 39406

Landon Kraemer
School of Computing

The University of Southern Mississippi
Hattiesburg, MS 39406

Abstract

We extend our recent formalization of multi-agent plan recog-
nition (MAPR), to accommodate compact multi-agent plan
libraries and incomplete plans, and propose polynomial time
algorithms for several cases of static teams: when team-size
is bounded by 2, or when the social structure graph is a star,
a tree of bounded depth, or a path. However, we show that
when the teams are dynamic and even when the social struc-
ture graph is as simple as a path, MAPR is NP-complete. Fi-
nally, we show rigorously for the first time, that when activ-
ity interleaving is allowed, even the single agent version of
MAPR is NP-complete.

Introduction
Multi-agent plan recognition (MAPR) refers to the problem
of explaining the observed behavior of multiple agents by
identifying the (dynamic) team-structures and the team plans
(based on a given plan library) being executed, as well as
predicting their future behavior. Recently, we introduceda
formal model for MAPR and used it to investigate the com-
plexity of its simplest setting (Banerjee, Kraemer, and Lyle
2010). However, this model has several limitations which
we address in this paper, and investigate the complexities of
various settings in a richer model.

Our focus is on the symbolic MAPR problem, as shown

A c t i v i t yR e c o g n i t i o n(B) S e n s o r r e a d i n g s(x 1 , x 2 , … , x T)
P l a nR e c o g n i t i o n(A) L a b e l e d a c t i v i t i e s /T r a c e s(y 1 , y 2 , … , y T)

(D y n a m i c)G o a l s / P l a n s P l a nL i b r a r yP s y c h o l o g i c a l /O r g a n i z a t i o n a lM o d e l sD o m a i n i n d e p e n d e n tf o c u s o f t h i s p a p e r
below, in order to de-
velop MAPR theory in
a domain-independent
way. As such, we
abstract away the
complex problem of
sensor interpretation
(activity recognition),
to wean MAPR out of
domain-dependency,
and assume that a
symbolic trace and a
plan library are avail-
able in a common
language. We begin
with an illustration of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this abstracted MAPR problem in a multi-agent blocks
words domain, shown in Figure 1. In part (a), two teams of
robotic arms assemble the goal words “TAR” and “AXE”
from separate stacks, starting from the (not necessarily)
same initial configuration. Part (b) shows the trace of 6
steps of activities of the 4 robotic arms, as seen by the
(remote) recognizer. The recognizer works with incomplete
information, i.e., the association between the arms and the
stack identifiers (that would have enabled it to identify
teams directly) are unavailable. Therefore, while arms 1
and 2 jointly assemble “TAR”, and arms 3 and 4 jointly
assemble “AXE”, arms 2 and 3 appear to assemble “TAX”
as well, creating ambiguity for the recognizer. The key
insight is that it is impossible topartition the trace into
non-overlapping, complete or incomplete team-plans if
the goal hypothesis “TAX” is accepted. Note, teammates
are not required to start plan execution at the same time,
and may not complete a plan by the observation horizon,
making probabilistic prediction a useful objective. Part (c)
shows a (non-unique) plan from the library, for start state
in (a) and goal “TAR”, in the form of a plan graph. This is
a graph based on the partially ordered set of steps needed
to achieve a goal from a start state, with added constraints:
role constraints (which steps need to be performed by
the same agent) andconcurrency constraints(which steps
need to be executed simultaneously; not needed in this
illustration). Note, the duration and the team size needed to
execute a plan are unspecified though constrained, e.g., 1 to
4 agents can execute this plan in 5 to unlimited time steps
(due to noops).

Typically for plan recognition with single agents, a plan
library is given in a compact hierarchical form, such as an
HTN (Erol, Hendler, and Nau 1994). Formulating such
a library for a multi-agent system is more complex (Suk-
thankar and Sycara 2008). In this paper, we develop algo-
rithms and complexity results for two less expressive (than
HTNs) plan libraries, viz., context free grammars (CFGs)
and plan graphs (Figure 1(c)), each of which incorporates
some desirable features of HTN, e.g., recursiveness and hi-
erarchies in CFGs, and partial ordering in plan graphs. Both
advance our previous formalization in (Banerjee, Kraemer,
and Lyle 2010) which accommodated none of these desir-
able features.

In this paper, we refine our previous model (Banerjee,

A T RX E A T RX ET e a m 1 ; G o a l : T A R T e a m 2 ; G o a l : A X EA r m 1 A r m 2 A r m 3 A r m 4(P a r t i a l) G o a lA R T X EA.
(a) (b) (c)

Figure 1: Multi-Agent Blocks Words.

Kraemer, and Lyle 2010) to make 2 important generaliza-
tions: allow compact, non-trivial plan libraries that corre-
spond to infinite languages as opposed to the finite language
in (Banerjee, Kraemer, and Lyle 2010), and relax the as-
sumption in (Banerjee, Kraemer, and Lyle 2010) that all ob-
served plans are completed by the observation horizon. We
propose a multi-agent context free grammar to compactly
describe multi-agent plans, and adapt Vilain’s Earley-based
algorithm (Vilain 1990) to parse multi-agent activity strings
with this grammar to yield the highest valued parse. We use
this algorithm to polynomially solve several special cases
of MAPR when the teams are static: where team-size is
bounded by 2, or where the social structure graph is a star, a
tree of bounded depth, or a path. However, when the teams
are dynamic, we show that even when the social structure
graph is as simple as a path, and the library contains plan
graphs, MAPR is NP-complete. Finally, we show rigorously
for the first time, that when activity interleaving is allowed,
even a single agent MAPR is NP-complete.

Preliminaries

LetA be a set ofn agents,{a1, a2, . . . , an}, andΣ be a fixed
size alphabet of grounded, primitive actions (e.g., “(unstack
A T)”) that these agents can be observed to execute. We are
given a trace,T , of observed activities of these agents over
T steps of time, in the form of aT × n matrix, T = [tij],
wheretij ∈ Σ is the action executed by agentaj at timei,
j = 1, . . . , n andi = 1, . . . , T . Note that we actually do not
require the observed agents to act in a synchronized manner,
as Figure 1(b) may suggest. Rather, sensor interpretations
are reported with the timestamps of the corresponding ob-
servations, which are then placed into the trace rows on a
discretized time scale. The resolution of this discretization
is such that no two symbolic activities of any agent fall into
the same trace cell, i.e., the resolution of the trace rows is
adapted to the fastest agent, with “(noop)”s filling the re-
sulting empty cells of the slower agents.

We are also given a finite library of team plansL, in some
form. In this paper, our choice of a representation for the
plan library is guided by a need to strike a middle ground
between polynomial solvability of some cases, against the

NP-completeness of others. Our strategy is to select a more
expressive language (in particular, context free grammars)
for the easier cases, but a more limited language (in partic-
ular, the finite language from (Banerjee, Kraemer, and Lyle
2010)) for the harder cases. The rationale for such a strategy
is that the results are expected to remain unchanged (or be-
come easier and harder respectively) when more restrictive
representations (such as special cases of context free gram-
mars) are considered for the easier cases, or more general
representations (such as the infinite language corresponding
to the plan graph representation introduced above) for the
harder cases. We first introduce the various forms of the li-
brary forMAPR.

The Plan Library
We defineL in three different forms. The first iscontext
free grammarto be used to parse strings of activity vectors
of agents. Following the conventions of (Kautz and Allen
1986; Vilain 1990), we assume that all plans are either END
plans or not. An END plan is one that is meaningful in and of
itself, while a non-END plan can only occur as a component
of some other plan. We define a set of END goals, such that
each END plan derives some END goal. As in (Vilain 1990),
the start production rule is

S → END | END S

The production for all END goals is given by

END → P j
1 | P j′

2 | . . . (1)

whereP j
i is the ith END goal, that can be achieved by a

team containingj agents. The production ofP j
i , which rep-

resents an END plan, takes the following form

P j
i → . . . Qj

1 . . . Qj
2 . . .

where the right hand side of the rule contains non-END non-
terminalsQj

i that only describe (sub)goals ofj-agent teams.
All terminals on the right hand side above are alsoj length
vectors of symbols fromΣ. Moreover, the productions ofQj

i

are also limited toj length terminals andj length non-END
non-terminalsQj

k. Additionally, we require that no END

goal,P j
i , ever appears on the right hand side of any rule ex-

cept rule 1. In other words, an END goalP j
i cannot be a

part of itself or another END goalP j
k . This is a technical

requirement, and is not truly an assumption, See (Banerjee,
Lyle, and Kraemer 2011) for the justifications of these as-
sumptions.

Allowing the capability of recursion enables us to com-
pactly represent a plan such asbounding overwatch, which
could be represented by the following rules

Qj → XjY j | XjY jQj

Xj → (firek, withdrawj−k) | (firek, withdrawj−k)Xj

Y j → (withdrawk, firej−k) | (withdrawk, firej−k)Y j

If Qj must be an END goal, we simply add a dummy END
goalP j and a dummy END planP j → Qj , to satisfy the
technical requirement.

The second form ofL is afinite collection of plan graphs,
used in the illustration in Figure 1(c). Plan graphs grounded
in start-goal states can be viewed as being produced by
decomposition(Ghallab, Nau, and Traverso 2004) from
a (more abstract and traditional) Hierarchical Task Net-
work (Erol, Hendler, and Nau 1994) plan library into a par-
tially ordered set of primitive actions (which we call the plan
graph), after a team of agents have chosen a goal. Notice, we
do not assume that all agents must start their team activities
at the same time (as the illustration in Figure 1 (b) might sug-
gest) since agents can include arbitrary numbers of “noop”s
before and between operators.

A third form for L is a finite collection of finite matri-
ces of symbols fromΣ. This library, that we used before
in (Banerjee, Kraemer, and Lyle 2010), is hardly practical,
but its purpose is to establishbaselinehardness results such
that more practical libraries are likely to make those cases
even harder. It is straightforward to see that the third lan-
guage above is the least expressive and is a special case of
the other two, since it corresponds to highly constrained plan
graphs, and can also be expressed by a regular grammar – a
special case of CFG. Therefore, the first two forms ofL can
be seen as engendering a set of matrices, but this set can be
infinite. Thus hardness results based on the third language
should also carry forward to the other two languages. For
polynomial solvability, however, the results would be more
interesting with the CFG library.

Definitions
As mentioned before, we assume the library to be in differ-
ent form for different cases, but for the sake of uniformity let
L

π
−→ p denote the fact that anx× y matrix of symbols from

Σ, sayp, is engendered by some planπ in the libraryL. We
do not requirex to be related toT , or y to n. Formally,

Definition 1. (π
−→) Given anx×y matrixp, pij ∈ Σ, we say

L
π
−→ p iff

• L can derivep using a top level production ruleπ, when
L is a context free grammar,

• p satisfies all the ordering, role and concurrency con-
straints ofπ ∈ L, whenL is a finite set of plan graphs
(Figure 1(c))

• p = π, whenL is a finite collection of matrices of symbols
fromΣ.

Thex×y matrixp above can be thought of as the trace of
activities of one team ofy agents, forx steps. In the rest of
the paper, we shall represent the number of rows of a matrix
p asr(p) and the number of its columns asc(p). The above
definition connects ap to the plans in the libraryL. The
following definition connects it to the traceT , in which case
it is necessary thaty ≤ n, but the correspondence between
the columns ofp and the setA (of agents) is unspecified.

Definition 2. (Occurrence) An occurrence of a matrixp
(of symbols fromΣ, and with≤ n columns and a finite
number of rows) in the traceT is given by a tupleop =
(k1, k2, . . . , kc(p), tp) such that

• 1 ≤ tp ≤ T

• akj
∈ A andki 6= kj , 1 ≤ i, j ≤ c(p)

• pij = T (tp + i − 1, kj), i = 1, . . . , τ, j = 1, . . . , c(p)

whereτ = min{r(p), T − tp + 1}. In other words, ifτ con-
tiguous rows, (viz.,tp, tp + 1, . . . , tp + τ − 1), and c(p)
columns (sayk1, . . . , kc(p), a c(p)-selection in any order
from n agent indices) can be found inT such that the re-
sulting submatrix exactly matches theτ × c(p) (sub)matrix
of p, thenp occurs inT . If τ = r(p), then the occurrence
is complete, but ifr(p) > T − tp + 1 then the occurrence is
partial.

A partial occurrence can be interpreted as yielding apre-
dictionof what observations can be expected beyond the ob-
servation horizon,T . Since it is not guranteed that all ob-
served plans will have completed by the observation horizon
T , allowing partial occurrences is an important generaliza-
tion of (Banerjee, Kraemer, and Lyle 2010). Furthermore,
such predictions are useful since they can help validate (or
revise) the current explanations when more observations be-
come available.

Note that a givenp can have multiple occurrences in
T . Two occurrences ofp in T , (k1, k2, . . . , kc(p), tp)

and (k
′

1, k
′

2, . . . , k
′

c(p), t
′

p), are distinct iff tp 6= t
′

p or

{k1, k2, . . . , kc(p)} 6= {k
′

1, k
′

2, . . . , k
′

c(p)}. We represent the
set of all distinct occurrences ofp in T asOp,T .

In order to formalize the partitioning ofT using various
occurrences, we first formalize the notion ofconflictof two
occurrences in the following definition.

Definition 3. (Conflict) Two occurrences of matrices
p, q (same or distinct, partial or complete),op =

(k1, k2, . . . , kc(p), tp), oq = (k
′

1, k
′

2, . . . , k
′

c(q), tq) are said
to be in conflict iff both of the following hold:

• {k1, k2, . . . , kc(p)}
⋂

{k
′

1, k
′

2, . . . , k
′

c(q)} 6= ∅

• tp ≤ tq + r(q) − 1 andtq ≤ tp + r(p) − 1

Finally, a partition of the traceT for a given libraryL is
defined as follows:

Definition 4. (Partition) A partition ofT for a given library
L, represented asΠT |L, is a set of triples,(p, op, π), such
that all of the following hold:

• op ∈ Op,T , ∀(p, op, π) ∈ ΠT |L,

• For each(p, op, π) ∈ ΠT |L, L
π
−→ p,

• There is no pair of triples,(p, op, πp), (q, oq, πq) in ΠT |L,
such thatop, oq are in conflict,

• For each(i, j) such that1 ≤ i ≤ T, 1 ≤ j ≤ n, there
exists(p, (k1, . . . , kp, tp), πp) ∈ ΠT |L such thattp ≤ i ≤
tp + r(p) − 1 andj ∈ {k1, . . . , kp}.

We call the set of possible partitions (whose finiteness de-
pends on the nature ofL) of T , P. We associate a utility
functionf : P 7→ ℜ to the partitions, so that each partition
of T can be evaluated for its preferability as an explanation
for the activities observed, as well as possible predictions
of some activities beyondT (when occurrences are partial).
We can now define theMAPR problem as follows:

Definition 5. (MAPR) The multi-agent plan recognition
problem, represented asMAPR(TT×n,L, f, k) is defined as
follows:

Instance: A fixed set of symbols,Σ; activity matrix T (of
sizeT ×n) such thattij ∈ Σ, a plan libraryL, a function
f : P 7→ ℜ andk ∈ Z.

Decision Question: Is there a partition, ΠT =
{(p, op, π), . . .} of T such thatf(ΠT |L) ≥ k?

Optimization Question: Which partition ofT , if any, say
ΠT |L = {(p, op, π), . . .} maximizesf(ΠT |L)? We repre-
sent the optimization problem asMAPR(TT×n,L, f).

The objective of interest is non-unique (Banerjee, Lyle,
and Kraemer 2011), but we only consider the optimization
problem here.

The Utility Function
The number of possible partitions may not be a polynomial
in n, T , or even finite; consequently the size of the func-
tion f may not be compact. Without assuming some kind of
structure inf , it may be hard to ensure its polynomial com-
putability, without which polynomial timeMAPR appears
hopeless. As in (Banerjee, Kraemer, and Lyle 2010), we as-
sumef is additive for polynomial time results, and of the
form

f({(p1, op1
, π1), . . . , (pz, opz

, πz)}) =
∑

i

v(pi, opi
, πi),

v being some value function that maps the triples
(pi, opi

, πi) to values. See (Banerjee, Lyle, and Kraemer
2011) for more details.

Social Structures
One of the major goals of this paper is to present polyno-
mial solvability results for some interesting special cases of
MAPR, where special structures are exploited. In the past,
social structures, i.e., some known organizational struc-
ture among the observed agents have been used for solving
MAPR but such studies have been constrained by very spe-
cific application domains (Kaminka, Pynadath, and Tambe
2002; Tambe 1996).

We consider social structures given by graphs, where
agents are the vertices. We say that agents that consti-
tute a path in this graph can form a team, but not other-
wise. This prevents agents from “jumping hierarchy” and
also captures the notion of a team leader in a hierarchical
setting. In fact, we consider the hierarchical social struc-
ture given by a tree of a bounded depth. This is a practi-
cal consideration, since in reality the number of levels in
a hierarchy are often bounded, but the number of mem-
bers can be variable. We also consider more restricted so-
cial structures such as a star (tree hierarchy of depth 1) and
path (special tree of variable depth, representing a “chain
of command”) graphs. For instance, for the following
path graph on 3 agents,{A,B,C}, the possible teams are
{{A}, {B}, {C}, {A,B}, {B,C}, {A,B,C}}, but {A,C}
is not a valid team.

��
��
A ��

��
B ��

��
C

A social structure graph preventsarbitrary teams, and
thus imposes structure onMAPR to allow us to solve some
special cases easily. In particular for path graphs, since the
number of possible teams is rendered polynomial,MAPR
can be solved in polynomial time if the teams are static.
However, even with a polynomial number of possible teams,
if the teams can change dynamically, we show later that
MAPR is NP-complete. In the context of social structures
defined above, our previous hardness result (Banerjee, Krae-
mer, and Lyle 2010) can be interpreted as being based on a
social structure graph that iscompletethus allowing arbi-
trary (i.e., an exponential number of) teams.

Non-interleaved Plan Execution
The problem formulation in the Definitions section does not
accommodate interleaved plan execution by the observed
agents. In other words, an agent must complete a plan be-
fore moving on to a different plan. All of our results in this
section fall in the non-interleaved category, but later in the
paper we present the first rigorous hardness result forMAPR
in the face of interleaved plan execution. We consider both
static and dynamic teams.

Static Teams

In many situations, the team structure among the agents
may remain static through the observation horizonT . This
is clearly the case, for instance, in several application do-
mains where multi-agent activity recognition has been ex-
plored, such as multi-robotic soccer (Vail and Veloso 2008)
and multi-agent capture-the-flag games (Sadilek and Kautz
2010). Interestingly, MAPR is NP-complete even if the
teams are static but can be of size 3 or more, as our proofs
in (Banerjee, Kraemer, and Lyle 2010) demonstrate. How-
ever, it is unknown if additional structure in the form of a
bound on the team size or a known social structure can be
exploited to solve MAPR more easily. In this section we
show that if the team size is bounded by 2, or if the social
structure is a star, path, or a bounded-depth tree, thenMAPR
is in P.

Algorithm 1 ROLECOMBINE(r, q)

1: Input: Two vectors of sets of integersr andq, both of length
s

2: zi ← ri ∩ qi for i← 1, 2, . . . , s
3: for i← 1, . . . , s do
4: wi ← {j | 1 ≤ j ≤ s, zi = zj}
5: if |wi| 6= |zi| then
6: Return ∅
7: end if
8: end for
9: Return z

All of the polynomial time results in this section are
based on the CFG plan library introduced earlier, for which
we present algorithm PARSE, derived from Vilain’s Earley-
based parser (Vilain 1990). The input to this algorithm are:
anL × s matrix x of symbols fromΣ representing the ac-
tivities of s agents forL steps; a context-free grammarL
with a set of top-level non-terminals of team-sizes only
P = {P s

1 , P s
2 , . . . , P s

w} representing END-goals; and an oc-
currenceox.

The output of PARSE is the highest valued partition ofx
and the corresponding value ((∅, ∗) if the parse fails). In
Algorithm 2, α represents an arbitrary terminal (vector of
lengths), β an arbitrary terminal or non-terminal, and upper-
case unitalicized letters represent arbitrary non-terminals.
oxi represents the occurrenceox with the start time replaced
by i. xi,j represents thejth element of the vectorxi of
lengths, andxk

i represents the submatrix ofx from rows
i thruk (and alls columns).

Our parser is adapted for multi-agent CFG (i.e., vector ter-
minals instead of scalar) presented in the Plan Library sec-
tion, and to accommodate a value function and partial occur-
rences. Steps 1–34 are same as Earley’s parser with predict-
scan-complete loop, except steps 19–22 which help maintain
a chain of END rules that had the best parse value, complet-
ing at observationk. This allows us to return thehighest
valuedparse in contrast to Earley. Besides, in order to en-
sure consistency of agent roles from one terminal to the next
in a parse of thesameEND goal, we maintain the role hy-
pothesis (which agent column in a terminal matches which
column of matrixx) as an additional part ofstates (basic
Earley parser only maintains the dotted rule and the start in-
dex), and use the function ROLECOMBINE (Algorithm 1) to
verify if two role hypothesesr andq are consistent, and if
so, return a combined hypothesis (∅ otherwise).

Step 35 is a repeat of the “Complete” block (lines 18–
32), but only onstates[L] and is an addition to the Ear-
ley parser, to accommodate the values of partial occurrences
into the dynamic programming. For every incomplete END-
plan that started at or beforeL, we fakecompletion (i.e., we
do not advance the• as in line 29) and see if a complete parse
upto j followed by a partial occurrence tillL can give us a
better partition ofxL

1 . In other words, we solve the problem
V (L) = max1≤j<L[V (j)+bestpartial(xL

j+1)] by dynamic
programming. If the maximum number of dotted rules af-
forded by the grammar isG, then since there areL steps of
observation,s agents, and ROLECOMBINE is O(s3), step 35

Algorithm 2 PARSE(x,L, ox)

1: Initialize: bestpartition [0 . . . L] ←
ˆ

∅ ∅ . . . ∅
˜

;
bestval [0 . . . L] ←

ˆ

0 0 . . . 0
˜

;
states [0 . . . L] ←

ˆ

∅ ∅ . . . ∅
˜

; roles [0 . . . s] ←
ˆ

{1, 2, . . . , s} . . . {1, 2, . . . , s}
˜

2: Add (S→ •END S, 0, roles) and (S→ •END, 0, roles) to
states[0]

3: for k ← 0 to L do
4: repeat
5: ———————Predict———————–
6: for all (Q→ . . . • Y . . . , i, r) ∈ states[k] do
7: add (Y → •β . . . , k, roles) to states[k] for all pro-

ductions inL with Y on the lefthand side.
8: end for
9: ———————–Scan————————

10: for all (Q→ . . . • α . . . , i, r) ∈ states[k] do
11: r′m ← {j|1 ≤ j ≤ s, xk+1,m = αj} for m ←

1, 2, . . . , s
12: z ←ROLECOMBINE(r, r′)
13: if z 6= ∅ then
14: add(Q→ . . . α • . . . , i, z) to states[k + 1]
15: end if
16: end for
17: ———————Complete———————
18: for all (Q→ . . . β•, i, r) ∈ states[k] do
19: if Q ∈ P and(bestpartitionk = ∅ or bestvalk <

bestvali + v(xk
i , oxi, Q→ . . . β)) then

20: bestpartitionk ← concat(bestpartitioni, (Q →
. . . β, i + 1, k))

21: bestvalk ← bestvali + v(xk
i , oxi, Q→ . . . β•)

22: end if
23: for all (R→ . . . •Q . . . , j, r′) ∈ states[i] do
24: z ←ROLECOMBINE(r, r′)
25: if Q ∈ P then
26: z ← roles
27: end if
28: if z 6= ∅ then
29: add(R→ . . . Q • . . . , j, z) to states[k]
30: end if
31: end for
32: end for
33: until no states can be added tostates[k]
34: end for
35: Repeat the “Complete” block above withk set toL, but only

on incomplete rules (line 18) and do not advance• (line 29).
36: Return (bestpartitionL, bestvalL)

is O(s3GL). Therefore, the complexity of the entire algo-
rithm is still the same as Earley’s with the additional factor
of s3 to account for vector terminals, leading to a complex-
ity of O(s3G2L3). Since ROLECOMBINE is rather simple
and PARSE is a simple extension of (Vilain 1990), we omit
proofs of their correctness. Based on PARSE, we give the
following results (proofs can be found in (Banerjee, Lyle,
and Kraemer 2011)):

Theorem 1. WhenL is a context free grammar and team-
sizes are bounded by 2, thenMAPR(TT×n,L, f) can be
solved in timeO(n2.5G2T 3) for additivef .

We now consider how a known social structure can be
exploited to solveMAPR in polynomial time, even when
the (static) teams can have more than two agents. We first
present the result when the social structure graph is astar,
which forms the base case for induction on multi-level trees
of bounded depth. Finally, we consider a path social struc-
ture.

Lemma 2. WhenL is a context free grammar and the social
structure graph is a star, thenMAPR(TT×n,L, f) can be
solved in timeO(n2G2T 3) for additivef .

Theorem 3. WhenL is a context free grammar and the
social structure graph is a tree of bounded depthd, then
MAPR(TT×n,L, f) can be solved in timeO(nd+1G2T 3)
for additivef .

Another case of static teams with a known social struc-
ture can be made from a path, which is a special tree, but of
variable depth.

Lemma 4. WhenL is a context free grammar and the social
structure graph is a path, thenMAPR(TT×n,L, f) can be
solved in timeO(n5G2T 3) for additivef .

Dynamic Teams
Despite the positive results of the previous section, there
are many scenarios where the team structures among the
observed agents can indeed change dynamically within the
observation horizon. Tracking dynamic teams has received
some attention in the past, initially as a part of broader en-
vironmental dynamism (Tambe 1996), but with greater fo-
cus more recently (Sukthankar and Sycara 2006; Avrahami-
Zilberbrand and Kaminka 2007). However, the hardness of
this problem has been unknown so far. In this section we
show thatMAPR is NP-complete when teams can be dy-
namic, even when the social structure of the observed agents
is as simple as a path. This indicates, that for more com-
plex and realistic social structures such as hierarchical/tree
structures, the problem will remain NP-hard since a path is
a special case of a tree. Note that the team sizes are variable
here.

Theorem 5. When L is a finite collection of matri-
ces, and the social structure graph is a path, then
MAPR(TT×n,L, f, k) is NP-complete for the class of poly-
nomially computablef .

Proof: Since the social structure is a path graph, the
agents/columns of the trace matrix can be (re)arranged such
that the column-ordering matches the vertex ordering in the

given path. Then every occurrence isrectangular, i.e., con-
tiguous on both the time and the agent dimensions, since
teams are only allowed on subpaths of the given social struc-
ture. Thus the problem of partitioning the trace reduces to
that of rectangular partitioning of the trace matrix.

We reduce an arbitrary instance of theRTILE prob-
lem (Khanna, Muthukrishnan, and Paterson 1998) to a spe-
cial instance ofMAPR. See (Banerjee, Lyle, and Kraemer
2011) for the relevant details ofRTILE. For the instance
(B, p, u) of RTILE, we create aMAPR instance as follows.
We create ann × n matrix of the same symbol for the trace
T , whereB is of sizen×n. To create the plan library,L, we
form submatrices of the same symbol, of sizei × j, for all
i = 1 . . . n, j = 1 . . . n. Thus any contiguous submatrix of
T matches some element ofL, and hence is in fact an occur-
rence. More importantly, such a contiguous submatrix ofT ,
or an occurrenceo, corresponds to a rectangular tile of the
matrixB, and hence can be associated with the correspond-
ing tile value, call itvo. We assign value to each occurrence
o asv(o) = vo/K, whereK =

∑

i,j B[i, j]. Finally, for the
utility function f we choose the polynomially computable
function

f(o1, o2, . . . , oz) = (1− |p− z|).(1/(1 + max
i

v(oi)− u/K))

and setk = 1. This instance ofMAPR has a solution with
value≥ k iff RTILE(B, p, u) has a solution. The proof of
inclusion in NP is similar to (Banerjee, Kraemer, and Lyle
2010).

Although the above proof shows that there is some poly-
nomialf for which this class ofMAPR is hard, the chosen
f has such a specific form that it could leave one wondering
whether an additivef could still admit a polynomial time
solution. We leave this avenue for future work.

… .… .… .:: :: :: :: :: ::
S t a r t

F i n i s h
i

j

Figure 2: The plan graph corresponding to thei × j matrix
plan. The two-headed dashed arrows represent concurrency
constraints, the solid arrows represent ordering constraints,
and the two-headed thick arrows represent role constraints.

The proof of Theorem 5 can be readily extended to cover
plan libraries that are finite collections of plan graphs (as
presented in illustration in Figure 1(c)). Such a plan library
itself can engender an infinite collection of plan matrices,
indicating that this problem is no easier than that addressed
in Theorem 5. The proof proceeds the same way as Theo-
rem 5, except that instead of the plan submatrix (using the

same symbol,a, say) of sizei × j, we create the plan graph
shown in Figure 2.

Corollary 1. When L is a finite collection of plan
graphs, and the social structure graph is a path, then
MAPR(TT×n,L, f, k) is NP-complete for the class of poly-
nomially computablef .

Essentially, the representation of the plan library as a fi-
nite set of matrices becomes a special case of the plan graph
representation, and possibly other (more useful) representa-
tions as well. In fact, Theorem 5 establishes a baseline such
that this problem in conjunction with any practically inter-
esting plan library (such as an HTN or a context free gram-
mar) should be at least as hard as any NP-complete problem.

Interleaved Plan Execution
Interleaved execution of plans have been accommodated
in activity recognition in the past (Chai and Yang 2005;
Hu and Yang 2008), where an agent can interrupt a plan
to serve another and resume it later. In a multi-agent sys-
tem, this means that an agent can also be a part of another
team in the interim, or leave a team and join another while
the former team plan is still in progress. Although heuris-
tic approaches have been proposed to address interleaving,
there has been no formal investigation into the hardness of
interleaved plan recognition even with a single agent. Be-
low, we prove the hardness of this problem for the first time,
by showing a reduction fromX3C (exact cover by 3-sets), a
known NP-complete problem (Garey and Johnson 1979).

Theorem 6. WhenL is a finite collection of strings∈ Σ∗

(i.e., the finite matrix library for a single agent) or plan
graphs (as with Theorem 5 and Corollary 1), and the agent
is allowed to execute plans in an interleaved manner, then
MAPR(TT×1,L, f, k) is NP-complete wheref is polynomi-
ally computable (and even additive).

Proof: First we note that a certificate can be given
as

〈

(τ1
1 , τ1

2 , . . . , π1), (τ
2
1 , τ2

2 , . . . , π2) . . .
〉

, whereπ1, π2. . . .

are the plans that the agent has executed, andτ j
i is the time

(in [1, T]) when it executed theith step of the planπj . The
certificate is clearly of linear size, and can be verified in
polynomial time as in (Banerjee, Kraemer, and Lyle 2010).

Next, we polynomially reduce a general instance ofX3C
(with X and C ⊆ 2X , s.t. |X| = 3q, and ci ∈ C ⇒
|ci| = 3) to a special instance ofMAPR(TT×1,L, f, k) with
interleaving as follows. We assume|Σ| ≥ 3, and chooseτ
such thatτ < |X| but (|Σ| − 1)τ ≥ |X|. Then for each
elementxi ∈ X we create a string,s(xi) of length τ by
sampling with replacement fromΣ \ {α}, such thats(xi) 6=
s(xj) if xi 6= xj . The selected symbolα is never used in
this process, and is reserved for later. We order the elements
of X andc ∈ C in lexicographic order on thes(xi)s. Then
for each orderedci ∈ C given by ci = {x1

i , x
2
i , x

3
i }, we

create a stringπi = s(x1
i) · α · s(x2

i) · α · s(x3
i) · α of length

3(τ + 1), where· is the string concatenation operator. We
call the set of|C| πis the plan libraryL. We choose the
strings(x1) · α · s(x2) · α · . . . s(x|X|) · α based on ordered
X as the traceT of lengthT = |X|(τ + 1). Figure 3 shows
an illustrative example of this reduction.

We claim that this setting ofMAPR has a solution with
q plans iff X3C has a cover of sizeq. To solveMAPR, we
clearly need to cutT at various positions so that (possibly
discontiguous) segments can be joined to reflectπ ∈ L. We
call a cut beneath anyα a legal cut, while a cut beneath any
symbol in the trace string that comes from the setΣ \ {α}
is called anillegal cut. It is easy to see that if all cuts in
a MAPR solution are legal, then a solution to theX3C in-
stance can be trivially constructed. Furthermore, if a solu-
tion to X3C exists, it can trivially produce a solution to this
setting ofMAPR, using legal cuts only. On the other hand, if
a solution toMAPR could incorporate illegal cuts, then this
one-to-one correspondence between the solutions ofMAPR
and those ofX3C would break down, but Lemma 7 shows
that no cut in aMAPR solution can ever be illegal.

Lemma 7. A solution to the above instance ofMAPR must
only incorporate legal cuts.

Proof (by contradiction): Suppose there is one or more il-
legal cut in the solution. Consider the bottom-most illegal
cut – say thekth cut from the top– and the segment ending
at this cut. Call this theopensegment. Since the open seg-
ment does not end inα, it must be appended by one or more
segments that lie between the(k + 1)th and the subsequent
cuts, to produce a complete plan. However,all subsequent
cuts (if any) arelegalby assumption. That is, all intervening
segments in these legal cuts are of lengths that are multiples
of τ + 1. Observe that no number of such segments can
complete the open segment, because the number of symbols
between the lastα (or the beginning) of the open segment
and the nextα in the completed (i.e., appended) plan must
necessarily exceedτ . This violates every plan in the library
by construction, and therefore we do not have a solution– a
contradiction.

Contrasting this result with the polynomial solvability of
MAPR without interleaving and with a single agent (Baner-
jee, Kraemer, and Lyle 2010) reveals the impact of in-
terleaved plan execution on the plan recognition problem.
SinceMAPR with multiple agents and interleaving cannot
be any easier, this also offers evidence of the hardness of the
latter.

Conclusions
We have presented two important extensions to our recent
formalization of MAPR, to accommodate compact multi-
agent plan libraries and incomplete plans. We have studied
several special cases ofMAPR with static teams, bounded
team sizes, and known social structures, and shown how
these can be solved in polynomial time. Unfortunately, with
dynamic teams and social structure even as simple as a path,
MAPR turns out to be NP-complete. Moreover, when ac-
tivity interleaving is allowed, even the single agent problem
turns out to be NP-complete, implying the hardness of multi-
agent interleaved plan recognition. From the point of adver-
sariality, a single agent can render the recognizer’s problem
from P to NP-complete by interleaving activities, but with
multiple (and a variable number of) agents, the problem is
NP complete with or without activity interleaving. In other
words, interleaving is an effective adversarial tool for a sin-

c b cxsc b bxsb c cxsb c bxsb b cxsb b bxs xxxxxxxxxxxxC xxxxxxXcb

 !)(,)(,)(,)(,)(,)(3 } },,{} ,,,{} ,,,{} ,,,{ { },,,,,{} ,,,{ 654321 542321642531 654321

!

bbb
 b cb
 cbb

)1(xs)3(xs)5(xs
1 bb c

 b cc
 cb c

)2(xs)4(xs)6(xs
2 bbb

 bb c
 b cb

)1(xs)2(xs)3(xs
3 bb c

 b cc
 cbb

)2(xs)4(xs)5(xs
4

(a)

bbb
 bb c
 b cb
 b cc
 cbb
 cb c

)6(xs

T r a c e)1(xs
)3(xs)2(xs
)5(xs)4(xs L e g a l c u t

I l l e g a l c u t
S o l u t i o n :),2 4,2 3,2 2,2 1,1 6,1 5,1 4,1 3,8,7,6,5(),2 0,1 9,1 8,1 7,1 2,1 1,1 0,9,4,3,2,1(21

(b)

Figure 3: Illustration of the reduction from an instance ofX3C to MAPR with interleaving for a single agent. Part (a) shows
the setup and the plan library consisting ofπ1–π4. Part (b) shows the trace and the solution.

gle (observed) agent against a recognizer, but it is not as
effective for multiple (observed) agents.

Acknowledgments
We are thankful to the anonymous reviewers, and also to Gal
Kaminka and Gita Sukthankar, for valuable suggestions and
comments. This work was supported in part by a start-up
grant from the University of Southern Mississippi.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2007. To-
wards dynamic tracking of multi-agent teams: An initial re-
port. InProceedings of the AAAI Workshop on Plan, Activity
and Intent Recognition (PAIR-07).

Banerjee, B.; Kraemer, L.; and Lyle, J. 2010. Multi-agent
plan recognition: Formalization and algorithms. InProceed-
ings of AAAI-10, 1059–1064.

Banerjee, B.; Lyle, J.; and Kraemer, L. 2011. New al-
gorithms and hardness results for multi-agent plan recog-
nition. Technical report. Available athttp://www.cs.
usm.edu/∼banerjee/tr/longer.pdf.

Chai, X., and Yang, Q. 2005. Multiple-goal recognition
from low-level signals. InProceedings of the AAAI, 3–8.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94),
1123–1128. AAAI Press.

Garey, M. R., and Johnson, D. S. 1979.Computers and
Intractability: A Guide to the Theory of NP-Completeness.
San Francisco, CA: W.H. Freeman and Co.

Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.

Hu, D. H., and Yang, Q. 2008. Cigar: Concurrent and
interleaving goal and activity recognition. InProceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence, 1363–1368.
Kaminka, G.; Pynadath, D.; and Tambe, M. 2002. Moni-
toring teams by overhearing: A multi-agent plan recognition
approach.Journal of Artificial Intelligence Research17.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proc. AAAI.
Khanna, S.; Muthukrishnan, S.; and Paterson, M. 1998. On
approximating rectangle tiling and packing. InProceedings
of the ninth annual ACM-SIAM symposium on Discrete al-
gorithms, SODA ’98, 384–393. Philadelphia, PA, USA: So-
ciety for Industrial and Applied Mathematics.
Sadilek, A., and Kautz, H. 2010. Recognizing multi-agent
activities from gps data. InProceedings of AAAI-10, 1134–
1139.
Sukthankar, G., and Sycara, K. 2006. Simultaneous team
assignment and behavior recognition from spatio-temporal
agent traces. InProceedings of AAAI conference.
Sukthankar, G., and Sycara, K. 2008. Hypothesis pruning
and ranking for large plan recognition problems. InProc. of
AAAI.
Tambe, M. 1996. Tracking dynamic team activity. InProc.
of AAAI.
Vail, D. L., and Veloso, M. M. 2008. Feature selection for
activity recognition in multi-robot domains. InAAAI’08:
Proceedings of the 23rd national conference on Artificial in-
telligence, 1415–1420. AAAI Press.
Vilain, M. 1990. Getting serious about parsing plans: a
grammatical analysis of plan recognition. InProc. of AAAI-
90.

