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Abstract

We extend our recent formalization of multi-agent plan recog-
nition (MAPR), to accommodate compact multi-agent plan
libraries and incomplete plans, and propose polynomial time
algorithms for several cases of static teams: when team-size
is bounded by 2, or when the social structure graph is a star,
a tree of bounded depth, or a path. However, we show that
when the teams are dynamic and even when the social struc-
ture graph is as simple as a path, MAPR is NP-complete. Fi-
nally, we show rigorously for the first time, that when activ-
ity interleaving is allowed, even the single agent version of
MAPR is NP-complete.

Introduction

Multi-agent plan recognition (MAPR) refers to the problem
of explaining the observed behavior of multiple agents by
identifying the (dynamic) team-structures and the teamgpla
(based on a given plan library) being executed, as well as
predicting their future behavior. Recently, we introdueed
formal model for MAPR and used it to investigate the com-
plexity of its simplest setting (Banerjee, Kraemer, ancelLyl
2010). However, this model has several limitations which
we address in this paper, and investigate the complexifies o
various settings in a richer model.

Our focus is on the symbolic MAPR problem, as shown
below, in order to de-
velop MAPR theory in
a domain-independent
way. As such, we
abstract away the
complex problem of
sensor interpretation
(activity  recognition),
to wean MAPR out of
domain-dependency,
and assume that a
symbolic trace and a
plan library are avail-
able in a common
language. We begin
with an illustration of
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this abstracted MAPR problem in a multi-agent blocks
words domain, shown in Figure 1. In part (a), two teams of
robotic arms assemble the goal words “TAR” and “AXE”
from separate stacks, starting from the (not necessarily)
same initial configuration. Part (b) shows the trace of 6
steps of activities of the 4 robotic arms, as seen hy the
(remote) recognizer. The recognizer works with incomplete
information, i.e., the association between the arms and the
stack identifiers (that would have enabled it to identify
teams directly) are unavailable. Therefore, while arms 1
and 2 jointly assemble “TAR”, and arms 3 and 4 jointly
assemble “AXE”, arms 2 and 3 appear to assemble “TAX”
as well, creating ambiguity for the recognizer. The key
insight is that it is impossible tgartition the trace into
non-overlapping, complete or incomplete team-plans if
the goal hypothesis “TAX” is accepted. Note, teammates
are not required to start plan execution at the same time,
and may not complete a plan by the observation horizon,
making probabilistic prediction a useful objective. Pa (
shows a (non-unique) plan from the library, for start state
in (@) and goal “TAR”, in the form of a plan graph. This is

a graph based on the partially ordered set of steps needed
to achieve a goal from a start state, with added constraints:
role constraints(which steps need to be performed by
the same agent) antbncurrency constraintéwhich steps
need to be executed simultaneously; not needed in this
illustration). Note, the duration and the team size needed t
execute a plan are unspecified though constrained, e.g., 1 to
4 agents can execute this plan in 5 to unlimited time steps
(due to noops).

Typically for plan recognition with single agents, a plan
library is given in a compact hierarchical form, such as an
HTN (Erol, Hendler, and Nau 1994). Formulating such
a library for a multi-agent system is more complex (Suk-
thankar and Sycara 2008). In this paper, we develop algo-
rithms and complexity results for two less expressive (than
HTNSs) plan libraries, viz., context free grammars (CFGs)
and plan graphs (Figure 1(c)), each of which incorporates
some desirable features of HTN, e.g., recursiveness and hi-
erarchies in CFGs, and patrtial ordering in plan graphs. Both
advance our previous formalization in (Banerjee, Kraemer,
and Lyle 2010) which accommodated none of these desir-
able features.

In this paper, we refine our previous model (Banerjee,
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Figure 1: Multi-Agent Blocks Words.

Kraemer, and Lyle 2010) to make 2 important generaliza- NP-completeness of others. Our strategy is to select a more
tions: allow compact, non-trivial plan libraries that aor expressive language (in particular, context free grammars
spond to infinite languages as opposed to the finite language for the easier cases, but a more limited language (in partic-
in (Banerjee, Kraemer, and Lyle 2010), and relax the as- ular, the finite language from (Banerjee, Kraemer, and Lyle
sumption in (Banerjee, Kraemer, and Lyle 2010) that all ob- 2010)) for the harder cases. The rationale for such a strateg
served plans are completed by the observation horizon. We is that the results are expected to remain unchanged (or be-
propose a multi-agent context free grammar to compactly come easier and harder respectively) when more restrictive
describe multi-agent plans, and adapt Vilain’s Earleyeldas  representations (such as special cases of context free gram
algorithm (Vilain 1990) to parse multi-agent activity sigis mars) are considered for the easier cases, or more general
with this grammar to yield the highest valued parse. We use representations (such as the infinite language correspondi
this algorithm to polynomially solve several special cases to the plan graph representation introduced above) for the
of MAPR when the teams are static: where team-size is harder cases. We first introduce the various forms of the li-
bounded by 2, or where the social structure graph is a star, a brary for MAPR.

tree of bounded depth, or a path. However, when the teams

are dynamic, we show that even when the social structure The Plan Library

graph is as simple as a path, and the library contains plan we define£ in three different forms. The first isontext
graphs, MAPR is NP-complete. Finally, we show rigorously  free grammarto be used to parse strings of activity vectors
for the first time, that when activity interleaving is allodle  of agents. Following the conventions of (Kautz and Allen

even a single agent MAPR is NP-complete. 1986; Vilain 1990), we assume that all plans are either END
plans or not. An END plan is one that is meaningful in and of
Preliminaries itself, while a non-END plan can only occur as a component

of some other plan. We define a set of END goals, such that

Let A be asetof. agents{ay, as, . .., a,}, andX be a fixed each END plan derives some END goal. As in (Vilain 1990),
size alphabet of grounded, primitive actions (e.g., “(aokt the start production rule is
A T)") that these agents can be observed to execute. We are
given a trace7, of observed activities of these agents over S—END|ENDS
T steps of time, in the form of & x n matrix, 7 = [t;;], ; o i
wheret;; € X is the action executed by ageni at timeji, The production forall END goals is given by
j=1,...,nandi =1,...,T. Note that we actually do not END—>P{|P2J'/| 1)
require the observed agents to act in a synchronized manner, '
as Figure 1(b) may suggest. Rather, sensor interpretationswhere P/ is theith END goal, that can be achieved by a
are reported with the timestamps of the corresponding ob- team containing agents. The production d@t’/, which rep-
servations, which are then placed into the trace rows on a yegents an END plan, takes the following form
discretized time scale. The resolution of this discreiorat
is such that no two symbolic activities of any agent fall into Pl —...Q...Q)...
the same trace cell, i.e., the resolution of the trace rows is _ _ :
adapted to the fastest agent, with “(noop)”s filling the re- where the right hand side of the rule contains non-END non-
sulting empty cells of the slower agents. terminals@; that only describe (sub)goals pfagent teams.

We are also given a finite library of team plafisin some All terminals on the right hand side above are ajdength
form. In this paper, our choice of a representation for the Vvectors of symbols frorx. Moreover, the productions ¢f;
plan library is guided by a need to strike a middle ground are also limited tgi length terminals angl length non-END
between polynomial solvability of some cases, against the non-terminals@;. Additionally, we require that no END



goaI,Pij, ever appears on the right hand side of any rule ex-
cept rule 1. In other words, an END go&J cannot be a
part of itself or another END goaP]. This is a technical

e p = m,when. is afinite collection of matrices of symbols
fromX.

Thex x y matrix p above can be thought of as the trace of

requirement, and is not truly an assumption, See (Banerjee, gtjyities of one team of agents, for steps. In the rest of

Lyle, and Kraemer 2011) for the justifications of these as-
sumptions.

Allowing the capability of recursion enables us to com-
pactly represent a plan such lagunding overwatchwhich
could be represented by the following rules

Qj 5 XIYJ |ijij
X7 = (fire® withdraw’=*) | (fire®, withdraw’=*)X’
Y —  (withdraw®, fire’=*) | (withdraw®, fire’=*)Y”

If @7 must be an END goal, we simply add a dummy END
goal P/ and a dummy END pla®’ — @7, to satisfy the
technical requirement.

The second form of is afinite collection of plan graphs
used in the illustration in Figure 1(c). Plan graphs grouhde

in start-goal states can be viewed as being produced by \ynerer —

decomposition(Ghallab, Nau, and Traverso 2004) from
a (more abstract and traditional) Hierarchical Task Net-
work (Erol, Hendler, and Nau 1994) plan library into a par-
tially ordered set of primitive actions (which we call thapl

the paper, we shall represent the number of rows of a matrix
p asr(p) and the number of its columns a&). The above
definition connects a to the plans in the libran. The
following definition connects it to the tracg, in which case

it is necessary thaj < n, but the correspondence between
the columns op and the setd (of agents) is unspecified.

Definition 2. (Occurrence) An occurrence of a matriyp
(of symbols from>, and with < n columns and a finite
number of rows) in the tracé is given by a tupley,
(k1, k2, ..., ke, tp) Such that

e 1<, <T

o ap, € Aandk; # kj, 1 <4,j < c(p)

e pi; =T, +i—1,kj),i=1,....,7,5=1,...,¢c(p)
min{r(p), T —t, + 1}. In other words, ifr con-
tiguous rows, (Viz.t,,t, + 1,...,t, + 7 — 1), and ¢(p)
columns (sayky, ..., ke, a c(p)-selection in any order
from n agent indices) can be found ih such that the re-
sulting submatrix exactly matches the< ¢(p) (sub)matrix

graph), after a team of agents have chosen a goal. Notice, Weof p, thenp occurs in7. If 7 = r(p), then the occurrence

do not assume that all agents must start their team activitie
at the same time (as the illustration in Figure 1 (b) mightsug

gest) since agents can include arbitrary numbers of “noop”s

before and between operators.

A third form for £ is a finite collection of finite matri-
ces of symbols fronk. This library, that we used before
in (Banerjee, Kraemer, and Lyle 2010), is hardly practical,
but its purpose is to establigfaselinehardness results such

is complete, but if (p) > T — t,, + 1 then the occurrence is
partial.

A partial occurrence can be interpreted as yieldimyex
diction of what observations can be expected beyond the ob-
servation horizony'. Since it is not guranteed that all ob-
served plans will have completed by the observation horizon
T, allowing partial occurrences is an important generaliza-

that more practical libraries are likely to make those cases tion of (Banerjee, Kraemer, and Lyle 2010). Furthermore,
even harder. It is straightforward to see that the third lan- SUch predictions are useful since they can help validate (or
guage above is the least expressive and is a special case ofevise) thg current explanations when more observations be
the other two, since it corresponds to highly constrainedpl ~ COMe available. _ ,
graphs, and can also be expressed by a regular grammar — a_ Note that a giverp can have multiple occurrences in
special case of CFG. Therefore, the first two formg£afan 7. T‘f"o joccurrences op in T, (ki ks,..., kc(p)/»tp)

be seen as engendering a set of matrices, but this set can beand (&, ks, .. ., kc(p),tp), are distinct iff ¢, # ¢, or
infinite. Thus hardness results based on the third language roy ’

should also carry forward to the other two Ianguages.g Fc?r (s, Ko} 7 AR K, o Ky 1 We Tepresent the

polynomial solvability, however, the results would be more
interesting with the CFG library.

Definitions

As mentioned before, we assume the library to be in differ-
ent form for different cases, but for the sake of uniforméy |

£ = p denote the fact that anx y matrix of symbols from

3, sayp, is engendered by some plarin the library £. We

do not requirer to be related td@”, or y to n. Formally,

Definition 1. () Given anz x y matrixp, p;; € %, we say

L5 piff

e [ can derivep using a top level production rule, when
L is a context free grammar,

e p satisfies all the ordering, role and concurrency con-
straints ofr € £, when/ is a finite set of plan graphs
(Figure 1(c))

set of all distinct occurrences pfin 7 asO,, 7.

In order to formalize the partitioning df using various
occurrences, we first formalize the notionaainflict of two
occurrences in the following definition.

Definition 3. (Conflict) Two occurrences of matrices
p,q (same or distinct, partial or complete)p,
(k1 k2, ..o kepytp), 0g = (kl,kQ,...,kc(q),tq) are said
to be in conflict iff both of the following hold:

o (ki ko, ket Ry koo Ky} # 0
o t, <t,+r(¢)—landt, <t,+r(p) —1

Finally, a partition of the trac& for a given library( is
defined as follows:

Definition 4. (Partition) A partition of 7 for a given library
L, represented asl; ., is a set of triples(p, o,,7), such
that all of the following hold:



® Op € OP,T7 V(p, Op77T) S HT|£1
e For each(p, 0,, ) € 7z, L 5 p,

e There is no pair of triples(p, 0,, 7y,), (¢, 04, 74) in 7,
such that,, o, are in conflict,

e For each(i,j) suchthatl < i < T, 1 < j < n, there
exists(p, (ki,...,kp,tp),mp) € 7| such that, <i <
tp+r(p)—landj € {ki,...,kp}.

We call the set of possible partitions (whose finiteness de-
pends on the nature df) of 7, P. We associate a utility
function f : P — R to the partitions, so that each partition
of 7" can be evaluated for its preferability as an explanation
for the activities observed, as well as possible predistion
of some activities beyond (when occurrences are partial).
We can now define thBlIAPR problem as follows:

Definition 5. (MAPR) The multi-agent plan recognition
problem, represented APR(7r« ., L, f, k) is defined as
follows:

Instance: A fixed set of symbol$;; activity matrix 7 (of
sizeT x n) such that;; € X, a plan library £, a function
f:P+— Randk € Z.

Decision Question:Is there a partition,
{(p,0p,),...} of T such thatf (Il|z) > k?

Optimization Question: Which partition of7, if any, say
7z = {(p,0p,7),...} maximizesf (Il .)? We repre-
sent the optimization problem 8APR(71 ., L, f).

IIr

The objective of interest is non-unique (Banerjee, Lyle,
and Kraemer 2011), but we only consider the optimization
problem here.

The Utility Function

The number of possible partitions may not be a polynomial
in n, T, or even finite; consequently the size of the func-
tion f may not be compact. Without assuming some kind of
structure inf, it may be hard to ensure its polynomial com-
putability, without which polynomial timéMAPR appears
hopeless. As in (Banerjee, Kraemer, and Lyle 2010), we as-
sumef is additive for polynomial time results, and of the
form

f({(plv Oplvﬂ-l)v ey (pza Opzaﬂ—z)}) Zv(pi; Op,;aﬂ_i);

7
v being some value function that maps the triples
(pi,0p;, ™) 1o values. See (Banerjee, Lyle, and Kraemer

2011) for more details.

Social Structures

One of the major goals of this paper is to present polyno-
mial solvability results for some interesting special cask
MAPR, where special structures are exploited. In the past,
social structures i.e., some known organizational struc-

We consider social structures given by graphs, where
agents are the vertices. We say that agents that consti-
tute a path in this graph can form a team, but not other-
wise. This prevents agents from “jumping hierarchy” and
also captures the notion of a team leader in a hierarchical
setting. In fact, we consider the hierarchical social struc
ture given by a tree of a bounded depth. This is a practi-
cal consideration, since in reality the number of levels in
a hierarchy are often bounded, but the number of mem-
bers can be variable. We also consider more restricted so-
cial structures such as a star (tree hierarchy of depth 1) and
path (special tree of variable depth, representing a “chain
of command”) graphs. For instance, for the following
path graph on 3 agent$ A, B, C'}, the possible teams are
{{A}.{B},{C},{A, B}, {B,C},{A, B,C}}, but{A,C}
is not a valid team.

O—E—0O©

A social structure graph prevengsbitrary teams, and
thus imposes structure AMAPR to allow us to solve some
special cases easily. In particular for path graphs, sihee t
number of possible teams is rendered polynonfiéhPR
can be solved in polynomial time if the teams are static.
However, even with a polynomial number of possible teams,
if the teams can change dynamically, we show later that
MAPR is NP-complete. In the context of social structures
defined above, our previous hardness result (Banerjee; Krae
mer, and Lyle 2010) can be interpreted as being based on a
social structure graph that mompletethus allowing arbi-
trary (i.e., an exponential number of) teams.

Non-interleaved Plan Execution

The problem formulation in the Definitions section does not
accommodate interleaved plan execution by the observed
agents. In other words, an agent must complete a plan be-
fore moving on to a different plan. All of our results in this
section fall in the non-interleaved category, but laterhia t
paper we present the first rigorous hardness resulfsiPR

in the face of interleaved plan execution. We consider both
static and dynamic teams.

Static Teams

In many situations, the team structure among the agents
may remain static through the observation horiZzanThis

is clearly the case, for instance, in several application do
mains where multi-agent activity recognition has been ex-
plored, such as multi-robotic soccer (Vail and Veloso 2008)
and multi-agent capture-the-flag games (Sadilek and Kautz
2010). Interestingly, MAPR is NP-complete even if the
teams are static but can be of size 3 or more, as our proofs
in (Banerjee, Kraemer, and Lyle 2010) demonstrate. How-
ever, it is unknown if additional structure in the form of a
bound on the team size or a known social structure can be

ture among the observed agents have been used for solvingexploited to solve MAPR more easily. In this section we

MAPR but such studies have been constrained by very spe-

cific application domains (Kaminka, Pynadath, and Tambe
2002; Tambe 1996).

show that if the team size is bounded by 2, or if the social
structure is a star, path, or a bounded-depth tree,Mh&RR
isinP.



Algorithm 1 ROLECOMBINE(r, q)

1: Input: Two vectors of sets of integersandgq, both of length
S

All of the polynomial time results in this section are >
based on the CFG plan library introduced earlier, for which
we present algorithm ARSE, derived from Vilain’s Earley-
based parser (Vilain 1990). The input to this algorithm are:

tivities of s agents forL steps; a context-free grammaér
with a set of top-level non-terminals of team-sizeonly
P={P;,P;,..., P;}representing END-goals; and an oc-

3
4
an L x s matrix z of symbols from3 representing the ac- 5:
6
7

currenceo,. g
The output of RRSE is the highest valued partition of 10:

and the corresponding valu€d(x) if the parse fails). In 11:

Algorithm 2, « represents an arbitrary terminal (vector of

lengths), 4 an arbitrary terminal or non-terminal, and upper-  12:
case unitalicized letters represent arbitrary non-teafsin 13:
04; represents the occurrenag with the start time replaced 14:

by i. z;; represents thgth element of the vector; of 15
length s, andz¥ represents the submatrix ef from rows ig
i thru k& (and alls columns). 18:

Our parser is adapted for multi-agent CFG (i.e., vector ter- 1g.

minals instead of scalar) presented in the Plan Library sec-

tion, and to accommodate a value function and partial occur- 2q.

rences. Steps 1-34 are same as Earley’s parser with predict-

scan-complete loop, except steps 19-22 which help maintain 21:
a chain of END rules that had the best parse value, complet- 22:
ing at observatiork. This allows us to return thhighest 23:
valuedparse in contrast to Earley. Besides, in order to en- 24:
sure consistency of agent roles from one terminal to the next 25:

in a parse of thesameEND goal, we maintain the role hy- 25
pothesis (which agent column in a terminal matches which %j
column of matrixxz) as an additional part oftates (basic 29
Earley parser only maintains the dotted rule and the startin 3.
dex), and use the functiondRECoMBINE (Algorithm 1) to 31
verify if two role hypotheses andq are consistent, and if 32:
s0, return a combined hypothesisdtherwise). 33:

Step 35 is a repeat of the “Complete” block (lines 18— 34

32), but only onstates[L] and is an addition to the Ear- 3%

ley parser, to accommodate the values of partial occureence
into the dynamic programming. For every incomplete END-

36:

2. zi—mriNgfori—12 ... s

3: fori«1,...,sdo

4w —{jl1<j< s,z =2}

5: if |ws| # |z then

6: Return @

70 endif Algorithm 2 PARSE(z, £, 0,)

8: end for TP - :

9 Return » 1: Initialize: bestpartition[0...L] «— [0 0 ... 0 ];
bestval [0. .. L] — [0 0 0;
states[0...L) — [0 0 ... 0 ]; roles[0...s] «—

[ {1,2,...,s} ... {1,2,...,s} ]

: Add (S — eEND S 0, roles) and (S — eEND, 0, roles) to

states|0]

s fork—0to L do

repeat
Predict
forall (Q—...eY...,i,1r) € states[k] do
add(Y — ef...,k,roles) to states[k] for all pro-
ductions inZ with Y on the lefthand side.
end for

Scan
forall (Q— ...e«a...,i,7) € states[k] do
r — {1 <4 < 8, %p11,m = a;} for m «—
1,2,...,s
2 «—ROLECOMBINE(r, ")
if z # 0 then
add(Q — ...«ae... i, z2)tostates[k + 1]
end if
end for

Complete
forall (Q — ...Qe,i,1) € states[k] do
if Q € P and(bestpartition, = 0 orbestval, <
bestval; + v(mf, 02i, @ — ... [3)) then
bestpartitiony, «— concat(bestpartition;, (Q —
CBit1,k))
bestvaly, «— bestval; + v(xF, 0.:,Q — ... [e)
end if
forall R— ...eQ...,j,7") € states[i] do
2z «—ROLECOMBINE(r, ")
if Q € Pthen
z « roles
end if
if z # () then
add(R— ...Qe...,7J 2)to states[k]
end if
end for
end for
until no states can be addedstmtes|[k]
end for
Repeat the “Complete” block above wikhset toL, but only
on incomplete rules (line 18) and do not advamcéne 29).
Return (bestpartitionr,, bestvalr)

plan that started at or before we fakecompletion (i.e., we
do not advance theas in line 29) and see if a complete parse
upto j followed by a partial occurrence till. can give us a
better partition ofz. In other words, we solve the problem
V(L) = maxi<; <[V (j)+bestpartial (x}, | )] by dynamic
programming. If the maximum number of dotted rules af-
forded by the grammar i&, then since there arg steps of
observations agents, and BLECOMBINE is O(s?), step 35



is O(s*GL). Therefore, the complexity of the entire algo-  given path. Then every occurrenceréstangular i.e., con-
rithm is still the same as Earley’s with the additional facto  tiguous on both the time and the agent dimensions, since
of s3 to account for vector terminals, leading to a complex- teams are only allowed on subpaths of the given social struc-
ity of O(s3G?L3). Since ROLECOMBINE is rather simple ture. Thus the problem of partitioning the trace reduces to
and RARsSE s a simple extension of (Vilain 1990), we omit  that of rectangular partitioning of the trace matrix.

proofs of their correctness. Based oRRBE, we give the We reduce an arbitrary instance of tHTILE prob-
following results (proofs can be found in (Banerjee, Lyle, em (Khanna, Muthukrishnan, and Paterson 1998) to a spe-
and Kraemer 2011)): cial instance oMAPR. See (Banerjee, Lyle, and Kraemer

i 2011) for the relevant details RTILE. For the instance
Theorem 1. WhenZ is a context free grammar and team- (B, p, u) of RTILE, we create MAPR instance as follows.
sizes are bounded by 2, thdhAPR(77«,, L, f) can be We create am x n matrix of the same symbol for the trace
solved in timeO (n?-5G2T?3) for additive f. T, whereB is of sizen x n. To create the plan library, we

: . form submatrices of the same symbol, of size j, for all
We now consider how a known social structure can be i=1...mj=1...n. Thusany contiguous submatrix of

exploited to solveMAPR in polynomial time, even when 7 naiches’'some element6f and hence is in fact an occur-
the (static) teams can have more than two agents. We first rence. More importantly, such a contiguous submatrig of
present the result when the social structure graphstag or an occurrence, corresponds to a rectangular tile of the
which forms the base case for induction on multi-level trees matrix B, and hence can be associated with the correspond-
of bounded depth. Finally, we consider a path social struc- ing tile value, call itv,. We assign value to each occurrence
ture. oasv(o) =v,/K,whereK =}, . Bli, j|. Finally, for the

Lemma 2. WhenZ is a context free grammar and the social  Utility function f we choose the polynomially computable

structure graph is a star, theMAPR(Zr,, L, f) can be function

solved in timeD (n2G2T3) for additive f. f(o1,02,..,0:) = (1= [p — 2]).(1/(1 + maxv(o;) — u/K))
Theorem 3. When/ is a context free grammar and the  anq set; = 1. This instance oMAPR has a solution with
social structure graph is a tree of bounded depththen value> k iff RTILE(B, p,u) has a solution. The proof of
MAPR(Z7x,, L, f) can be solved in time(n'+'G*T?) inclusion in NP is similar to (Banerjee, Kraemer, and Lyle
for additive f. 2010). O

Another case of static teams with a known social struc-  Although the above proof shows that there is some poly-
ture can be made from a path, which is a special tree, but of nomial f for which this class oMAPR is hard, the chosen
variable depth. f has such a specific form that it could leave one wondering
whether an additivef could still admit a polynomial time

Lemma 4. When( is a context free grammar and the social . .
solution. We leave this avenue for future work.

structure graph is a path, theMAPR(7r«,, £, f) can be
solved in timeD (n®G2T3) for additive f.

Dynamic Teams

Despite the positive results of the previous section, there
are many scenarios where the team structures among the
observed agents can indeed change dynamically within the
observation horizon. Tracking dynamic teams has received
some attention in the past, initially as a part of broader en-
vironmental dynamism (Tambe 1996), but with greater fo-
cus more recently (Sukthankar and Sycara 2006; Avrahami-
Zilberbrand and Kaminka 2007). However, the hardness of
this problem has been unknown so far. In this section we
show thatMAPR is NP-complete when teams can be dy-
namic, even when the social structure of the observed agents
is as simple as a path. This indicates, that for more com-

plex and realistic social structures such as hierarchieal/ lan. The two-headed dashed armows represent concurrenc
structures, the problem will remain NP-hard since a path is plan. 1T . pres ency
constraints, the solid arrows represent ordering comgsai

ial fatree. N hat th m siz re variabl . .
ﬁesrp;eca case of atree. Note that the team sizes are variab eand the two-headed thick arrows represent role constraints

Theorem 5. When £ is a finite collection of matri-
ces, and the social structure graph is a path, then
MAPR(7xn, £, f, k) is NP-complete for the class of poly-  presented in illustration in Figure 1(c)). Such a plan ligra
nomially computablef. itself can engender an infinite collection of plan matrices,
Proof: Since the social structure is a path graph, the indicating that this problem is no easier than that addesse
agents/columns of the trace matrix can be (re)arranged suchin Theorem 5. The proof proceeds the same way as Theo-
that the column-ordering matches the vertex ordering in the rem 5, except that instead of the plan submatrix (using the

Figure 2: The plan graph corresponding to the j matrix

The proof of Theorem 5 can be readily extended to cover
plan libraries that are finite collections of plan graphs (as



same symbolg, say) of size x j, we create the plan graph We claim that this setting d1APR has a solution with
shown in Figure 2. q plans iff X3C has a cover of sizg. To solveMAPR, we

Corollary 1. When £ is a finite collection of plan  Clé&rly need to cuf at various positions so that (possibly
graphs, and the social structure graph is a path, then discontiguous) segments can be joined to refteet £. We

MAPR(T L) is NP- lete for the cl fooly- call acut beneath any alegalcut, while a cut beneath any
nomialfyzé%;fdté’blt)g‘{S complete for the class ot poly symbol in the trace string that comes from the et {«}

) ) ] _is called anillegal cut. It is easy to see that if all cuts in
_Essentially, the representation of the plan library as a fi- 3 MAPR solution are legal, then a solution to tX&C in-
nite set of matrices becomes a special case of the plan graphstance can be trivially constructed. Furthermore, if a solu
representation, and possibly other (more useful) reptasen tjon to X3C exists, it can trivially produce a solution to this
tions as well. In fact, Theorem 5 establishes a baseline such setting ofMAPR, using legal cuts only. On the other hand, if
that this problem in conjunction with any practically inter 5 splution toMAPR could incorporate illegal cuts, then this
esting plan library (such as an HTN or a context free gram- gpe-to-one correspondence between the solutioMAd?R
mar) should be at least as hard as any NP-complete problem. ang those 0iX3C would break down, but Lemma 7 shows
. that no cut in aMAPR solution can ever be illegal. O
Interle.aved Plan Execution Lemma 7. A solution to the above instance MAPR must
Interleaved execution of plans have been accommodated only incorporate legal cuts.
in activity recognition in the past (Chai and Yang 2005; - . .
Hu and Yang 2008), where an agent can interrupt a plan Proof (by contradiction): Suppose there is one or more il-
to serve another and resume it later. In a multi-agent sys- legal cut in the solution. Consider the bottom-most |Ilegal
tem, this means that an agent can also be a part of anotherCUt — say thekth cut from the top— and the segment ending
team in the interim, or leave a team and join another while &t this cut. Call this thepensegment. Since the open seg-
the former team plan is still in progress. Although heuris- Mentdoes notend i, it must be appended by one or more
tic approaches have been proposed to address interleaving S€gments that lie between tfie + 1)th and the subsequent
there has been no formal investigation into the hardness of CUtS; t0 produce a complete plan. Howeaf,subsequent
interleaved plan recognition even with a single agent. Be- Cuts (if any) aréegalby assumption. That is, all intervening
low, we prove the hardness of this problem for the first time, S€gments in these legal cuts are of lengths that are muitiple
by showing a reduction from{3C (exact cover by 3-sets),a  Of 7 + 1. Observe that no number of such segments can

known NP-complete problem (Garey and Johnson 1979). complete the open segment, because the number of symbols
between the last: (or the beginning) of the open segment

Theorem 6. WhenC is a finite collection of strings X" and the next in the completed (i.e., appended) plan must
(i.e., the finite matrix library for a single agent) or plan  necessarily exceed This violates every plan in the library
graphs (as with Theorem 5 and Corollary 1), and the agent py construction, and therefore we do not have a solution— a

is allowed to execute plans in an interleaved manner, then ~oniradiction. ]
MAPR(Trx1, £, f, k) is NP-complete wherg is polynomi- Contrasting this result with the polynomial solvability of
ally computable (and even additive). MAPR without interleaving and with a single agent (Baner-
Proof: First we note that a certificate can be given jee, Kraemer, and Lyle 2010) reveals the impact of in-
as((r},73,...,m), (7£,73,...,m2)...), wheremy, m5. ... terleaved plan execution on the plan recognition problem.
are the plans that the agent has executed,rérisl the time SmceMAP_R W|th multiple agents and interleaving cannot
(in [1,7]) when it executed théh step of the plamr;. The be any easier, this also offers evidence of the hardnesg of th

certificate is clearly of linear size, and can be verified in latter.
polynomial time as in (Banerjee, Kraemer, and Lyle 2010).

Next, we polynomially reduce a general instance&x8C Conclusions
(with X andC C 2%, st. |X| = 3¢, and¢; € C = We have presented two important extensions to our recent
lc;| = 3) to a special instance MAPR(77x 1, £, f, k) with formalization of MAPR, to accommodate compact multi-
interleaving as follows. We assumg| > 3, and choose agent plan libraries and incomplete plans. We have studied
such thatr < |X| but (|X| —1)" > |X|. Then for each several special cases BAPR with static teams, bounded
elementz; € X we create a strings(x;) of lengthr by team sizes, and known social structures, and shown how
sampling with replacement frol \ {«}, such that(z;) # these can be solved in polynomial time. Unfortunately, with

s(z;) if x; # x;. The selected symbet is never used in  dynamic teams and social structure even as simple as a path,
this process, and is reserved for later. We order the elesnent MAPR turns out to be NP-complete. Moreover, when ac-

of X andc € C in lexicographic order on the(z;)s. Then tivity interleaving is allowed, even the single agent peshl
for each ordered; € C given byc; = {z},27, 27}, we turns out to be NP-complete, implying the hardness of multi-
create a string; = s(z;) - - s(x7) - a- s(x7) - o of length agent interleaved plan recognition. From the point of adver

3(T + 1), where- is the string concatenation operator. We sariality, a single agent can render the recognizer’s bl
call the set of|C| 7;s the plan libraryC. We choose the  from P to NP-complete by interleaving activities, but with
strings(xy) - o~ s(w2) - - ... s(xx|) -« based on ordered  multiple (and a variable number of) agents, the problem is
X as the tracd of lengthT = | X|(7 + 1). Figure 3 shows NP complete with or without activity interleaving. In other
an illustrative example of this reduction. words, interleaving is an effective adversarial tool foiira s



={a,b,¢}, X = (X0, X, X3, 04, X5, X}
{

{00525, X by 400, X X o 4000 000, X5}, 00, 004, X5} )

s(x,) = bbb, s(x,) = bbc,s(x;) = beb, s(x,) = bee, s(x) = cbb, s(x,) = cbe

ﬂ'l 72'2 71'3 7[4
b b b b
s(x)) { b s(xy)4 | b s(xp) { b s(xp){ | p
b c b c
2 | o 2 |«
b b b b
s(x3)4 | ¢ s(xy) c s(xy) b s(x4) c
A || e L e
a a a a
[ ¢ [ c| [ b [ c|
s(,\'S){ b S(x()){ b s(,\g){ c s(x5) b
b c b b
2 K2 K2 [

(@)

b Solution:
s(xp) b
b (1,2,3,4,9,10,11,12,17,18,19,20, 7,)
b (5.6,7.8,13,14,15,16,2122,2324, 7))
c

s(xz)

Z Legal cut
s(x3)4 |
3 b

s(x4)

Tllegal cut

s(xs)

s(xg)

—t A A A —

(b)

Figure 3: lllustration of the reduction from an instanceX®C to MAPR with interleaving for a single agent. Part (a) shows
the setup and the plan library consistingmefr,. Part (b) shows the trace and the solution.

gle (observed) agent against a recognizer, but it is not as Hu, D. H., and Yang, Q. 2008. Cigar: Concurrent and

effective for multiple (observed) agents.
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