
Corpus-Based Incremental Intention Recognition
via Bayesian Network Model Construction

Han The Anh ∗ and Luı́s Moniz Pereira
Centro de Inteligência Artificial (CENTRIA)

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

h.anh@fct.unl.pt, lmp@di.fct.unl.pt

Abstract

We present a method for incremental intention recogni-
tion by means of incrementally constructing a Bayesian
Network (BN) model as more actions are observed.
It is achieved based on a knowledge base of easily
maintained and constructed fragments of BNs, connect-
ing intentions to actions. The simple structure of the
fragments enables to easily and efficiently acquire the
knowledge base, either from domain experts or auto-
matically from a plan corpus. We show experimental
results improvement for the Linux Plan Corpus. In ad-
dition, we create a new, so-called IPD Plan Corpus, for
strategies in the iterated Prisoner’s Dilemma and show
the experimental results for it.

1. Introduction
We propose a method for intention recognition in a dynamic,
real-world environment. An important aspect of intentions is
their pointing to the future, i.e. if we intend something now,
we mean to execute a course of actions to achieve something
in the future (Bratman 1987). Most actions may be executed
only at a far distance in time. During that period, the world is
changing, and the initial intention may be changed to a more
appropriate one or even abandoned (Bratman 1992). An in-
tention recognition method should take into account these
changes, and may need to reevaluate the intention recogni-
tion model depending on some time limit; in addition, as a
new action is observed, the model should be reconfigurable
to incorporate new observed actions.

Generally, intention recognition (also called goal recog-
nition) is defined as the process of becoming aware of the
intention of another agent and, more technically, as the prob-
lem of inferring an agent’s intention through its actions and
their effects on the environment (Heinze 2003). Plan recog-
nition is closely related to intention recognition, extending it
to also recognize the plan the observed agent is following in
order to achieve his intention (Sadri 2010).

Intention recognition is performed in domains in which
it is preferable to have a fast detection of just the user goal
or intention than a more precise but time consuming detec-
tion of the complete user plan, e.g. in the interface agents
domain (Horvitz et al. 1998). Generally, the input of both

∗HTA is supported by FCT Portugal (reference
SFRH/BD/62373/2009).

intention and plan recognition systems are a set of conceiv-
able intentions and a set of plans achieving each intention
(plan library or plan corpus). Intention recognition is dis-
tinct from planning, as goals are not known a priori, and
presumed goals are subject to defeasibility. There are also
generative approaches based on planning algorithms, which
do not require plan library/corpus (e.g., see (Ramı́rez and
Geffner 2010)).

In this work, we use Bayesian Networks (BN) as the in-
tention recognition model. The flexibility of BNs for repre-
senting probabilistic dependencies and the efficiency of in-
ference methods for BN have made them an extremely pow-
erful and natural tool for problem solving under uncertainty
(Pearl 1988; Pearl 2000).

This paper presents a knowledge representation method to
support incremental BN construction for performing inten-
tion recognition during runtime, from an initially given do-
main knowledge base. As more actions are observed, a new
BN is constructed reinforcing some intentions while ruling
out others. This incremental method allows domain experts
to specify knowledge in terms of small and simple BN frag-
ments, which can be easily maintained and changed. Alter-
natively, these fragments can be easily learned from data.

It is inspired by the fact that knowledge experts often
consider a related set of variables together, and organize
domain knowledge in larger chunks. An ability to rep-
resent conceptually meaningful groupings of variables and
their interrelationships facilitates both knowledge elicitation
and knowledge base maintenance (Natarajan et al. 2008;
Laskey 2008). To this end, there have been several methods
proposed for Bayesian network construction from small and
easily maintained network fragments (Pearl 1988; Natarajan
et al. 2008; Laskey 2008). Basically, a combination of BNs
is a graph that includes all nodes and links of the networks,
where nodes with the same name are combined into a com-
mon node. The main issue for a combination method is how
the influence of different parents of the common node can be
combined in the new network, given the partial influence of
each parent in the corresponding fragment. The most exten-
sively used and popular combination method is Noisy-Or,
firstly proposed by (Pearl 1988) for Bayesian networks of
Boolean variables, and generalized by (Srinivas 1993) for
the general case of arbitrary domains. A set of conditions
is needed to be satisfied for the Noisy-OR method to work

properly. We will discuss in more detail in the third section
where the method is applied in our work (Def.5).

In the next section we recall some background about BN.
Then a general method for incremental BN model construc-
tion during runtime is presented. We next address a spe-
cial well-known case and present experimental results for it,
comparing with other systems.

2. Bayesian Networks
Definition 1 A Bayes Network is a pair consisting of a di-
rected acyclic graph (DAG) whose nodes represent variables
and missing edges encode conditional independencies be-
tween the variables, and an associated probability distri-
bution satisfying the Markov assumption of conditional in-
dependence, saying that variables are independent of non-
descendants given their parents in the graph (Pearl 2000).

In a BN, associated with each node of its DAG is a spec-
ification of the distribution of its variable, say A, condi-
tioned on its parents in the graph (denoted by pa(A))—i.e.,
P (A|pa(A)) is specified. If pa(A) = ∅ (A is called root
node), its unconditional probability distribution, P (A), is
specified. These distributions are called Conditional Proba-
bility Distribution (CPD) of the BN.

The joint distribution of all node values can be de-
termined as the product of conditional probabilities of
the value of each node on its parents P (X1, ..., XN) =∏N

i=1 P (Xi|pa(Xi)), where V = {Xi|1 ≤ i ≤ N} is the
set of nodes of the DAG.

Suppose there is a set of evidence nodes (i.e. their values
are observed) in the DAG, say O = {O1, ..., Om} ⊂ V . We
can determine the conditional probability distribution of a
variable X given the observed value of evidence nodes by
using the conditional probability formula

P (X|O) =
P (X,O)
P (O)

=
P (X,O1, ..., Om)
P (O1, ..., Om)

(1)

where the numerator and denominator are computed by
summing up the joint probabilities over all absent variables
with respect to V .

3. Incremental Bayesian Network
Construction for Intention Recognition

In (Pereira and Han 2009; Pereira and Han 2010), a general
BN model for intention recognition is presented and justified
based on Heinze’s intentional model (Heinze 2003). Basi-
cally, the BN consists of three layers: cause/reason nodes in
the first layer, connecting to intention nodes in the second
one, in turn connecting to action nodes in the third. The in-
terested readers are referred to those papers for more details.
Han and Pereira (2010a) then presented a method for incre-
mentally constructing such BN model for performing incre-
mental intention recognition, including all the three layers.

A BN model for intention recognition consists of two lay-
ers: the layer of intentions and the layer of actions.

Definition 2 (Intention Recognition BN – IRBN)
A BN for intention recognition (IRBN) W is a triple
〈{Is,As}, pa, PW 〉 where

• Is and As are the sets of intention nodes and action nodes,
respectively. They stand for binary random variables.

• pa is a mapping which maps a node to the set of its par-
ent nodes such that: ∅ 6= pa(A) ⊆ Is ∀A ∈ As, and
pa(I) = ∅ ∀I ∈ Is. This means there is no isolated
action node and intentions are represented by top nodes.

• CPD tables of the action nodes and prior probabilities of
the intention nodes are given by the probability distribu-
tion PW , i.e. PW (X|pa(X)) defines the probability of
X conditional on pa(X) in W, for all X ∈ VW where
VW = Is ∪As.
The intention recognition method will be performed by

incrementally constructing an IRBN as more actions are ob-
served. The construction is based on a prior knowledge base
of Unit BN Fragments consisting of a single intention con-
necting to a single action. We refer to them as the Unit Frag-
ment (of BN) for intention recognition.

Definition 3 (Unit Fragment) A Unit Fragment of BN for
intention recognition consists of an intention I connecting
to (i.e. causally affecting) an action A, and is denoted by
UF (I ,A). Both nodes stand for binary random variables.

Definition 4 (Knowledge Base) A domain knowledge base
KB consists of a set unit fragments.

An intention I has the same fixed prior probability distri-
bution in all the unit fragments it belongs to, denoted by
PKB(I). The prior probability distribution of the top (inten-
tion) nodes also can be made situation-dependent by adding
a pre-intentional layer of cause/reason nodes as in (Han and
Pereira 2010a)—which would enable it to deal with and ex-
plain some important issues in intention/plan recognition
such as intention change/abandonment (Geib and Goldman
2003). However, since the dataset we use later for evalua-
tion has no such information available, we omit that layer to
simplify the presentation.

The simple structure of unit fragments enables domain ex-
perts to easily construct and maintain the knowledge base.
The BN fragments also can be learned from appropriate
datasets, as we shall see later with the Linux plan corpus.

Before presenting the intention recognition algorithm,
let us define some operators for handling CPD tables and
IRBNs.

3.1 Operators for Constructing IRBN
As a new actionA is observed, we need to incorporate it into
the current IRBN. Firstly, the appropriate unit fragments for
A are selected from the domain knowledge base. Han and
Pereira (2010a) proposed some methods for selecting the ap-
propriate fragments in a situation-sensitive manner. They
are based on the intuition that whether an intention may give
rise to an action depends on the situation in which the ac-
tion is observed. That enables to reduce the size of the BN
model, which otherwise could be very large.

We are not going to elaborate further on these methods
here, and assume that the operator select(A,SIT) provides the
(context-dependent) set of unit fragments for action A given
the situation at hand SIT. If SIT is empty, select(A,SIT) is

A
.
.
.
.

I1

AIN

A

.

.

.

.

I1

IN

Figure 1: Noisy-OR Combination Method

the set of all unit fragments for actionA from the knowledge
base.

Secondly, after having obtained the appropriate frag-
ments, we combine them using the Noisy-OR method (Pearl
1988; Srinivas 1993; Cozman 2004) and obtain an IRBN
with a single action (Figure 1). It is called an Unit IRBN
for action A in situation SIT, and denoted by irBN(A,SIT).

Definition 5 (Unit IRBN via Noisy-OR) The Unit IRBN
for action A in a given situation SIT, irBN (A,SIT), is ob-
tained via Noisy-OR method as follows.

Let select(A,SIT) = {UF (I1 ,A),,UF (IN ,A)} and
for 1 ≤ i ≤ N , P (A = T |Ii = T) = pi (defined in frag-
ment UF (Ii ,A)). Then, irBN(A, SIT) is the result of com-
bining UF (I1 ,A),,UF (IN ,A) using Noisy-OR method,
i.e. p(A = T |I1, ..., IN) = 1−

∏
i:Ii=T (1− pi). Note that

the prior probability distribution of Ii, 1 ≤ i ≤ N , in the
new combined BN is the same as in its original fragment.

The rationale and appropriateness of the application of the
Noisy-OR method here for combining unit fragments is
based on the intuition that each intention Ii, 1 ≤ i ≤ N ,
can be interpreted as a “cause” of action A; and action A oc-
curs when one or more of the intentions are active. Detailed
arguments for this can be found in (Cozman 2004).

Definition 6 (Project of CPD Table) Let T be a CPD table
defining P (X|V), the probability of a random variable X
conditional on a set of random binary variables V, and V ′ (
V . The project of T on V ′, denoted by proj(T, V′), is the
part of T corresponding to all variables in V \ V ′ being
false.

Now we need to combine the obtained unit IRBN,
irBN(A, SIT), with the current IRBN. For that, in the sequel
we define how to combine two IRBNs. Intuitively, we sim-
ply add up all the new nodes and links of the new IRBN to
the current IRBN, keeping the CPD tables from the original
IRBNs.
Definition 7 (Combination of IRBNs) Let W1 =
〈{Is1, As1}, pa1, P1〉 and W2 = 〈{Is2, As2}, pa2, P2〉
be two IRBNs. The combination of these two IRBNs is an
IRBN, denoted by comb(W1, W2) = 〈{Is,As}, pa, PW 〉,
defined as follows

• As = As1 ∪As2; Is = Is1 ∪ Is2;
• pa(I) = ∅ ∀I ∈ Is; pa(A) = pa1(A) ∪ pa2(A);
• PW (I) = PKB(I) ∀I ∈ Is; and for each A ∈
As, PW (A|pa(A)) = PW1(A|pa(A)) if A ∈ As1 and
PW (A|pa(A)) = PW2(A|pa(A)) if A ∈ As2.

Note that here it is allowed the possibility that the observed
agent follows multiple intentions simultaneously. In (Han
and Pereira 2010a) the authors dealt with the case of a sin-
gle intention being pursued, where in the combined IRBN
only the intersection (instead of union) of two intention sets,
Is1 ∩ Is1, is retained; which enables to reduce the size of
the IRBN model.

When some intentions are found irrelevant—e.g. because
they are much unlikely1—those intentions should be remove
from the IRBN. This is enacted by considering them as com-
pletely false and employing a project operator.

Definition 8 (Remove Intentions from IRBN) Let W =
〈{Is,As}, pa, PW 〉 be an IRBN and R ⊂ Is a strict
subset of Is. The result of removing the set of inten-
tions R from W is an IRBN, denoted by remove(W, R) =
〈{IsR, AsR}, paR, PR〉, and defined as follows

• AsR = {A ∈ As | paR(A) 6= ∅}; IsR = Is \R;
• paR(I) = ∅ ∀I ∈ IsR; paR(A) = pa(A) \R;
• PW (I) = PKB(I) ∀I ∈ Is; and for each A ∈ AsR,
PR(A|paR(A)) is defined by the CPD table proj (T , IsR)
where T is the CPD table for A in W, i.e. defined by
PW (A|pa(A)).

Based on these operators, we now can describe an algorithm
for incremental intention recognition in a real-time manner.

Incremental Intention Recognition Algorithm. Repeat
the following step until some given time limit is reached;
the most likely intention in previous cycle is the final result.

• Let A be a new observed action and SIT the current situa-
tion. Combine the current IRBN W with irBN(A,SIT)
we obtain W′ = comb(W, irBN(A, SIT)). If A is the ini-
tially observed action, let W′ = irBN(A, SIT).

• Compute the probability of each intention in W ′, condi-
tional on the set of current observed actions in W ′. Re-
move the intentions which are much less likely than the
others (following Definition 8).

Note that if an observed action is not in the knowledge
base, the action is considered irrelevant to the sought for
intention, and discarded. Furthermore, at any cycle, if the
likelihood of all the intentions are very small (say, smaller
than a given threshold), one could say that the sought for in-
tention is abandoned. This is because the causes and actions
do not support or force the intending agent to keep pursuing
his initial intention anymore.

4. Relations Amongst Intention Nodes
When considering the case in which the observed agent may
pursue multiple intentions simultaneously, it is undoubtedly
indispensable to take into account and express the relations
amongst the intentions in the model.

Pursuing one intention may exclude the other intention to
be pursued. It may be so because of resource limitation, e.g.

1One intention is much less likely than the other if the fraction
of its likelihood and that of the most likely intention is less than
some small threshold. It is up to the KB designer to provide it.

allowance time is not enough for accomplishing both inten-
tions at the same time. It also may be because of the nature
or restriction of the observed agent’s task: the agent is re-
stricted to pursuing a single intention (e.g. in constructing
Linux plan corpus, a user is given one task at a time to com-
plete. We shall discuss this case in more detail in the next
sections).

We introduce a so-called exclusive relation e—a binary
relation on the set of intention nodes—representing that if
one intention is pursued, then the other intention cannot be
pursued. It is usually, although perhaps not always, the case
that intentions exclusiveness is symmetric. It holds for the
resource limitation case: one intention excludes the other in-
tention because there is not enough resource for accomplish-
ing both, which in turn implies that the latter intention also
excludes the former one. It also clearly holds for the case
where the agent is restricted to pursuing a single intention.
In this paper, we assume that the exclusive relation on inten-
tions e is symmetric; it can be renamed mutually exclusive
relation.

Intentions I1 and I2 are mutually exclusive iff they cannot
be pursued simultaneously, i.e. P (I1 = T, I2 = T) = 0.
Thus, for any action A, if I1, I2 ∈ pa(A) then the CPD
table for A is undefined. Hence, the BN needs to be re-
structured. The mutually exclusive intentions must be com-
bined into a single node since they cannot co-exist as par-
ents of a node. Each intention represents a possible value of
the new combined node. Namely, let I1, ..., It be such that
e(Ii, Ij), ∀i, j : 1 ≤ i < j ≤ t. The new combined node,
I , stands for a random variable whose possible outcomes are
either Ii, 1 ≤ i ≤ t, or Ĩ—the outcome corresponding to the
state that none of Ii = T . Note that if the intentions I1, ..., It
are exhaustive, Ĩ can be omitted. Next, I is linked to all the
action nodes that has a link from one of Ii, 1 ≤ i ≤ t.

It remains to re-define CPD tables in the new BN. They
are kept the same for actionAwhere I 6∈ pa(A). ForA such
that I ∈ pa(A), the new CPD table at I = Ii corresponds
to the CPD table in the original BN at Ii = T and Ij =
F ∀j 6= i, 1 ≤ j ≤ t, i.e. P (A|I = Ii, ...) = P (A|I0 =
F, ..., Ii−1 = F, Ii = T, Ii+1 = F, ..., It = F,). Note
that the left hand side is defined in the new BN, and the right
hand side is defined in the original BN. Similarly, the new
CPD table at I = Ĩ corresponds to Ii = F ∀1 ≤ i ≤ t.
In addition, prior probability P (I = Ii) = P (Ii = T) and
P (I = Ĩ) =

∏t
i=1 P (Ii = F) (and then being normalized).

In the next section we will look at a special case where
the observed agent pursues a single intention. Thus, all in-
tentions are mutually exclusive, and they can be combined
into a single node. We then evaluate the method using the
Linux Plan Corpus. After that, in Section 6., we present a
new plan corpus, called IPD, and also present experimental
results for it.

5. Single Intention Being Pursued
5.1 The Model
Suppose the observed agent pursues a single intention. In
this case, all intentions are mutually exclusive, and they can
be combined into a single node. The IRBN then consists of

a single intention node, linking to all action nodes.
Let I1, ..., In be the intentions in the original IRBN. As

usual, they are assumed to be exhaustive, i.e. the observed
agent is assigned an intention from them. The combined
node I thus has n possible outcomes Ii, 1 ≤ i ≤ n. Let
A1, ..., Am be the current observed actions. Applying Equa-
tion 1, we easily obtain the probability of each intention
conditional on the current observed actions as follows, for
1 ≤ j ≤ n,

P (I = Ij |A1, ..., Am) =
P (Ij)

∏m
i=1 P (Ai|Ij)∑n

j=1 P (Ij)
∏m

i=1 P (Ai|Ij)

This implies our intention recognizer has a linear complexity
O(|Is|), where Is is the set of intentions being modeled.

5.2 Experimental Evaluation
The Linux Plan Corpus Plan corpus is the term used
to describe a set of plan sessions and consists of a list of
goals/intentions and the actions a user executed to achieve
them (Armentano and Amandi 2009). Although there are
many corpora available for testing machine learning algo-
rithms in other domains, just a few are available for train-
ing and testing plan/intention recognizers; furthermore, each
of the plan/intention recognizers using plan corpora usu-
ally has its own datasets—which leads to a difficult com-
parison amongst each other. For that important reason,
we chose Linux plan corpus (Blaylock and Allen 2004)—
one of the rare regularly used plan corpora—which was
kindly made publicly available by Nate Blaylock—in order
to test our system. It also enables a better comparison with
other systems using this corpus (Blaylock and Allen 2005;
Blaylock and Allen 2004; Armentano and Amandi 2009).

The Linux plan corpus is modeled after Lesh’s Unix plan
corpus (Lesh 1998). It was gathered from 56 human users
(graduate and undergraduate students, faculty, and staff)
from the University of Rochester Department of Computer
Science. The users have different levels of expertise in the
use of Linux, and they were allowed to perform as many
times as they wished, in order to contribute more plan ses-
sions. The sessions, consisting in sequences of commands
performed by the users to achieve a given goal/intention,
were automatically recorded. At the end of each session,
the users were asked to indicate whether they succeeded in
achieving their goal/intention. In total, there are 547 ses-
sions, 457 of which were indicated as successfully complet-
ing the goal, 19 goal schemas and 43 action schemas. More
details can be found in (Blaylock and Allen 2004) or (Linux-
Plan-Corpus).

Learning Unit Fragments from Data For unit fragment
UF (I ,A), the conditional probability of A given I is de-
fined by the frequency of A in a plan session for achieving
the goal/intention I divided by the frequency of any action
for achieving I: P (A = T |I = T) = freq(AI)

freq(I) . For better
understanding, in the plan corpus each action is marked with
the intention which the action is aiming at. Then, freq(AI)
is the frequency of A being marked by I , and freq(I) is the
frequency of seeing the mark I .

Critical Values
decreasing

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

Τ

Pr
ec
isi
on

4�best

3�best

2�best

1�best

Critical Values
decreasing

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

Τ

C
on
ve
rg
en
ce

4�best

3�best

2�best

1�best

Figure 2: Precision and convergence for τ ∈ [0, 1] and for different values of N (N = 1, 2, 3, 4) on Linux Plan corpus.

Note that prior probabilities of all the intentions in the
corpus are given initially, and used for generating tasks for
users (Linux-Plan-Corpus ; Blaylock and Allen 2004).

Making Predictions Similar to (Blaylock and Allen
2004), instead of letting the recognizer make a prediction
after each observed action, we set a confidence threshold τ
(0 ≤ τ ≤ 1) , which allows the recognizer to decide whether
or not it is confident enough to make a prediction; the rec-
ognizer only makes a prediction if the likelihood of the most
likely intention in the model is greater than τ . Otherwise, it
predicts “don’t know”. In addition, instead of only predict-
ing the most likely intention, the recognizer provides a set
of N most likely ones (N-best prediction).

Evaluation Metrics For evaluating our system and com-
paring with the previous ones (Blaylock and Allen 2004;
Armentano and Amandi 2009), we use three different met-
rics. Precision and recall report the number of correct
predictions divided by total predictions and total predic-
tion opportunities, respectively. More formally (also see
(Armentano and Amandi 2009)), let Seq = a1, ..., an be
a sequence of actions (plan session) achieving intention
I . Considering N-best prediction case, let correct(A) =
1 if I is one of N most likely intentions, and 0 other-
wise. Then, precision and recall for Seq are defined as:
precision(Seq) = (

∑n
i=1 correct(ai))/z; recall(Seq) =

(
∑n

i=1 correct(ai))/Z, where z and Z are the number of
predictions made (when the recognizer is confident enough)
and the total number of prediction opportunities (i.e. when
τ = 0), respectively.

On the other hand, convergence is a metric that indi-
cates how much time the recognizer took to converge on
what the current user goal/intention was. Let t be such that
correcti = 0 for 0 ≤ i ≤ t − 1 and 1 for t ≤ i ≤ n (i.e.
t is the first time point which from there on the system al-
ways correctly predicts), convergence for Seq is defined as:
convergence(Seq) = (z − t+ 1)/z.

Finally, the overall precision, recall and convergence are
obtained by taking averages over all testing sessions.

Experiments and Results Because of the small size of the
Linux corpus, similar to previous works, we ran experiments
using the one-out cross validation method (Armentano and
Amandi 2009). Just one at a time, one plan session in the
whole corpus is left out. The rest of the corpus is used for
training the model, which is then evaluated against the left

Table 1: Intention Recognition Results on the Linux Plan Corpus

N-best 1-best 2-best 3-best 4-best
τ 0.95 0.5 0.45 0.42

Precision 0.786 0.847 0.870 0.883
Recall 0.308 0.469 0.518 0.612

Converg. 0.722 0.799 0.822 0.824

out plan session. We study the effect of confidence level τ
w.r.t. precision and convergence (for recall, it clearly is a
decreasing function of τ) (Figure 2). The greater N, the bet-
ter precision and convergence. The difference in precision
and convergence between two different values of N is large
when τ is small, and gets smaller for greater τ . Most in-
terestingly, we observe that precision and convergence are
not increasingly monotonic on τ . There are critical values
of τ at which the measures have maximal value, and those
values are smaller for greater N. This observation suggests
that in plan/intention recognition task, the more precise (i.e.
the smaller N) the decision is needed to make, the greater
confidence level the recognizer should gain to make a good
(enough) decision. On the other hand, the recognizer should
not be too cautious, leading to refuse to make a prediction
when it would have been able to make a correct one. In
short, this experimentation suggests an important need to
study (experimentally) the confidence threshold τ carefully
for particular application domains, and for particular values
of N . Using the same τ for all values of N could decrease
the recognizer’s performance.

Table 1 shows some of the results for different values ofN
(and the corresponding value of τ). Similar to the previous
works on the same Linux corpus (Blaylock and Allen 2004;
Armentano and Amandi 2009), we keep the best results of
each case w.r.t. τ for the comparison. For example, we ob-
tained a precision of 78.6% for 1-best that is increased to
87.0% for 3-best prediction and 88.3% for 4-best one. Con-
vergence is increased from 72.2% for 1-best to 82.2% for
3-best and 82.4% 4-best prediction.

The best performance on the Linux corpus (namely, in
terms of precision and convergence) so far was reported in
(Armentano and Amandi 2009), where the authors use vari-
able Markov model with exponential moving average. Here
we got an increment of 14% better precision and 13.3%
better convergence for 1-best prediction, 8.2% better preci-
sion and 9.3% better convergence for 2-best prediction, and
7.5% better precision and 7.7% better convergence for 3-

best prediction. We also obtained better recalls comparing
with (Blaylock and Allen 2004) in all cases.

Note that in (Armentano and Amandi 2009), the au-
thors use a more fine-grained preprocessing method for their
work, but we suspect it would have increased their perfor-
mance. To fairly compare with both works, we use the orig-
inal corpus.

6. IPD Plan Corpus
We present a new plan corpus in the context of Iterated Pris-
oner’s Dilemma (IPD)2 and show the experimental results
for it. The intentions/goals to be recognized are the (known)
strategies in IPD (see below) and plan sessions are the se-
quences of moves these strategies play with other players.

6.1 Iterated Prisoner’s Dilemma
Prisoner’s Dilemma is a symmetric two-player non-zero
game defined by the payoff matrix (for row player)

(C D

C R S
D T P

)
Each player have two options in each round, cooperates
(C) or defects (D). A player who chooses to cooperate
with someone who defects receives the sucker’s payoff S,
whereas the defecting player gains the temptation to defect,
T . Mutual cooperation (resp., defection) yields the reward
R (resp., punishment P) for both players. In PD, it satisfies
that T > R > P > S. Thus, in a single round, it is al-
ways best to defect, but cooperation may be rewarded if the
game is iterated. In IPD, it is also required that mutual co-
operation is preferred over an equal probability of unilateral
cooperation and defection (2R > T + S); otherwise alter-
nating between cooperation and defection would lead to a
higher payoff than mutual cooperation.

IPD is usually known as a story of tit-for-tat (TFT), which
won both Axelrod’s tournaments (Axelrod 1984). TFT starts
by cooperating, and does whatever the opponent did in the
previous round. It will cooperate if the opponent cooper-
ated, and will defect if the opponent defected. But if there
are erroneous moves (i.e. an intended move is wrongly per-
formed with a given execution error), the performance of
TFT declines: it cannot correct errors or mistakes. Tit-for-
tat is then replaced by generous tit-for-tat (GTFT), a strategy
that cooperates if the opponent cooperated in the previous
round, but sometimes cooperates even if the opponent de-
fected (with a fixed “forgiveness” probability p > 0) (Sig-
mund 2010). GTFT can correct mistakes.

Subsequently, TFT and GTFT were replaced by win-stay-
lose-shift (WSLS) as the winning strategy chosen by evo-
lution (Sigmund 2010). WSLS repeats the previous move
whenever it did well, but changes otherwise.

Some other less famous strategies (which we are going to
use later) are GRIM – a grim version of TFT, prescribing
to defect except after a round of mutual cooperation, and
Firm-But-Fair (FBF) – known as a tolerant brother of TFT,

2It also applies for other famous social dilemmas such as Snow
Drift and Stag Hunt (Sigmund 2010).

prescribing to defect only if getting a sucker’s payoff S in
previous round. Details of all strategies considered here can
be found in (Sigmund 2010) (Chapter 3).

Next, we describe how training and testing plan corpora
are created employing these strategies. Abusing notations,
R, S, T and P are also referred to as game states (in a single
round or interaction). We too use E (standing for empty) to
refer to the game state having had no interaction.

6.2 IPD Plan Corpus Description
We made an assumption that all strategies to be recognized
have the memory size bounded-up by M (M ≥ 0)—i.e.
their decision at the current round is independent of the past
rounds that are at a time distance greater thanM . The strate-
gies described above have memory M = 1.

An action in the corpus is of the form s1...sMξ, where
si ∈ {E,R, T, S, P}, 1 ≤ i ≤ M , are the states of the M
last interactions, and ξ ∈ {C,D} is the current move. We
denote by ΣM the set of all possible types of action. E.g,
Σ1 = {EC,RC, TC, SC, PC,ED,RD, TD, SD,PD}.
This encoding method enables to save the game states with-
out having to save the co-player’s moves, thus simplifying
the corpus representation, described below.

Suppose we have a set of strategies to be recognized. The
plan corpus for this set consists of a set of plan sessions gen-
erated for each strategy in the set. A plan session of a strat-
egy is a sequence of actions played by that strategy (more
precisely, a player using that strategy) against an arbitrary
player. As an example, let us consider TFT and the fol-
lowing sequence of its interactions with some other player
(denoted by X), in the presence of noise

round : 0 1 2 3 4 5
TFT : − C C D D D

X : − C D D C D

TFT-states : E R S P T P

The corresponding plan session for TFT is
[EC,RC, SD,PD, TD]. At 0-th round, there is no
interaction, thus the state is E. TFT starts by cooperating
(1-st round), hence the first action of the plan session is EC.
Since player X also cooperates in the 1-st round, the game
state at this round is R. TFT reciprocates in the 2-nd round
by cooperating, hence the second action of the plan session
is RC. Similarly for the third and the fourth actions. Now,
at the 5-th round, TFT should cooperate since X cooperated
in 4-th round, but because of noise, it makes an error to
defect. Therefore, the 5-th action is TD.

6.3 Plan Corpora Generation
Let us start by generating a plan corpus of seven strategies
within the IPD framework: AllC (always cooperate), AllD
(always defect), TFT, GTFT (probability of forgiveness a
defect is p = 0.5), WSLS, GRIM and FBF.

We collect plan sessions of each strategy by playing a ran-
dom choice (C or D) in each round with it. To be more thor-
ough, we can also play all the possible combinations for each
given number of rounds to be played. For example, if it is
10, there will be 1024 (210) combinations—C or D in each

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Τ
Pr
ec
isi
on

3�best

2�best

1�best

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Τ

C
on
ve
rg
en
ce

3�best

2�best

1�best

Figure 3: Plot of our method’s precision and convergence for τ ∈ [0, 1] and for different values of N (N = 1, 2, 3) in IPD Plan Corpus.

round. When noise is present, each combination is played
repeatedly several times.

The training corpus is generated by playing with each
strategy all the possible combinations 10 times, and for each
number of rounds from 5 to 10. The testing dataset is gener-
ated by playing a random choice with each strategy in each
round, and also for each number of rounds from 5 to 10.
We continue until obtaining the same number of sessions as
in the training dataset (corpus). Both datasets are generated
in presence of noise (namely, an intended move is wrongly
performed with probability 0.05).

6.4 Results
The intention recognition model is acquired using the train-
ing corpus. Figure 3 shows the precision and convergence
of the model with respect to the testing dataset. Given that
the training as well as the testing datasets are generated in
presence of noise, the achieved intention recognition perfor-
mance is quite good. Namely, for big enough τ , both pre-
cision and convergence scores are greater than 0.9, even for
the 1-best case.

7. Related Work
Bayesian networks have been one of the most successful
models applied for intention/plan recognition problem (most
importantly, see, (Charniak and Goldman 1993; Geib and
Goldman 2009)). Depending on the structure of plan li-
braries, they employed some knowledge-based model con-
struction to build BNs from the library, and then infer the
posterior probability of explanations (for the set of observed
actions). These works address a number of issues in inten-
tion/plan recognition, e.g. the observed agent follows mul-
tiple intentions or interleaved plans simultaneously; fails to
observe actions; addresses partially ordered plans. However,
they made several assumptions for the sake of computational
efficiency. First, the prior probabilities of intentions are as-
sumed to be fixed. This assumption is not reasonable be-
cause those prior probabilities should depend on the situa-
tion at hand, and be captured by the causes/reasons of inten-
tions (see (Pereira and Han 2010) for several examples). In
(Pynadath and Wellman 1995), a similar context-dependent
approach was used, although the model is not incremental.
Second, intentions are assumed to be independent of each
other. This is not generally the case since the intentions may
support or exclude one another. Those works hence do not
appropriately address multiple intention recognition.

This latter assumption must always, explicitly or implic-
itly, be made by the approaches based on (Hidden) Markov

Models, e.g. (Armentano and Amandi 2009; Bui 2003),
or statistical corpus-based machine learning (Blaylock and
Allen 2004; Blaylock and Allen 2005). Generally, in those
approaches, a separate model is built for each intention; thus
no relations amongst the intentions are expressed or can be
expressed. These works were restricted to the single inten-
tion case.

8. Conclusion and Future Work
We have presented a method for incremental intention
recognition. The method is performed by dynamically con-
structing a BN model for intention recognition from a prior
domain knowledge base consisting of easily maintained
fragments of BN. A fragment consists of a single intention
connecting to a single action. This simple network struc-
ture allows easy maintenance by domain experts as well as
automatically building from available plan corpora.

The main contribution of this paper is our efficient, yet
very simple, method for incremental intention recognition.
In general, its performance is better than all existent ones
that make use of the Linux corpus. Given that our method
also has the same linear complexity as other (best) existent
ones, and that our model learning process is much simpler,
we believe to have achieved significant improvements. In
addition, the good performance of the method with respect
to the Linux corpus shows its applicability to the important
interface-agents domain (Horvitz et al. 1998).

The other contribution, though perhaps only minor, is our
method for multiple intention recognition. We have pro-
posed how to represent relationships amongst intentions in
the intention recognition model. This aspect is indispens-
able in multiple intention recognition, but always omitted in
previous works. Our next step is to evaluate the method ex-
perimentally. Note that although elsewhere reported a capa-
bility of dealing with the case where multiple intentions are
being followed (e.g. (Geib and Goldman 2009)), to the best
of our knowledge that capability has never been evaluated
experimentally, partly due to unavailability of appropriate
plan corpora or benchmarks. Thus, for the evaluation, we
must gather an appropriate plan corpus allowing for the pos-
sibility that users pursue multiple intentions simultaneously.

In addition, for the intention recognition community,
given the rich set of strategies in the literature (Hofbauer
and Sigmund 1998; Sigmund 2010), we have provided here
an important, easily extendable benchmark for evaluating
intention recognition methods. Given that IPD and other
social dilemmas are regularly found in everyday life, and
the strategies studied within the framework of those dilem-

mas actually reflect human behaviors, we believe that game
theory (and more generally, evolutionary game theory (Hof-
bauer and Sigmund 1998)) is a highly promising framework
for creating benchmarks for intention recognition. Meth-
ods applicable for this benchmark can be used for a wide
range of application domains, as diverse as in economics,
psychology and biology (Sigmund 2010). For example,
our intention recognition model has been successfully used
to study the role of intention recognition in the evolution
of cooperation, one of the most important issues actively
studied in those fields (Han, Pereira, and Santos 2011;
Han, Pereira, and Santos).

We also aim at a real deployment for some application
domains such as Elder Care (Pereira and Han 2010) and
Ambient Intelligence (Han and Pereira 2010b). The simple
structure of our BN fragments would enable an easy data
collection process.

References
[Armentano and Amandi 2009] Armentano, M. G., and
Amandi, A. 2009. Goal recognition with variable-order
Markov models. In IJCAI’09, 1635–1640.

[Axelrod 1984] Axelrod, R. 1984. The Evolution of Coop-
eration. Basic Books, ISBN 0-465-02122-2.

[Blaylock and Allen 2004] Blaylock, N., and Allen, J.
2004. Statistical goal parameter recognition. In ICAPS04,
297–304. AAAI.

[Blaylock and Allen 2005] Blaylock, N., and Allen, J.
2005. Recognizing instantiated goals using statistical
methods. In IJCAI Workshop on Modeling Others from
Observations (MOO-2005), 79–86.

[Bratman 1987] Bratman, M. E. 1987. Intention, Plans,
and Practical Reason. The David Hume Series, CSLI.

[Bratman 1992] Bratman, M. E. 1992. Planning and the
stability of intention. Minds and Machines 2(1):1–16.

[Bui 2003] Bui, H. H. 2003. A general model for online
probabilistic plan recognition. In IJCAI’03, 1309–1318.

[Charniak and Goldman 1993] Charniak, E., and Goldman,
R. 1993. A Bayesian model of plan recognition. Artificial
Intelligence 64(1):53–79.

[Cozman 2004] Cozman, F. G. 2004. Axiomatizing noisy-
or. In ECAI-04, 979–980.

[Geib and Goldman 2003] Geib, C. W., and Goldman, R. P.
2003. Recognizing plan/goal abandonment. In IJCAI’03.

[Geib and Goldman 2009] Geib, C. W., and Goldman,
R. P. 2009. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence
173(2009):1101–1132.

[Han and Pereira 2010a] Han, T. A., and Pereira, L. M.
2010a. Anytime intention recognition via incremental
Bayesian network reconstruction. In AAAI 2010 Fall Symp.
on Proactive Assistant Agents, 20–25. AAAI.

[Han and Pereira 2010b] Han, T. A., and Pereira, L. M.
2010b. Proactive intention recognition for home ambient
intelligence. In IE Workshop on AI Techniques for Ambient
Intelligence, 91–100. IOS Press.

[Han, Pereira, and Santos] Han, T. A.; Pereira, L. M.; and
Santos, F. C. Intention recognition promotes the emergence
of cooperation. Adaptive Behavior. to appear 2011.

[Han, Pereira, and Santos 2011] Han, T. A.; Pereira, L. M.;
and Santos, F. C. 2011. The role of intention recognition
in the evolution of cooperative behavior. In IJCAI’2011. to
appear.

[Heinze 2003] Heinze, C. 2003. Modeling Intention Recog-
nition for Intelligent Agent Systems. Ph.D. Dissertation,
The University of Melbourne, Australia.

[Hofbauer and Sigmund 1998] Hofbauer, J., and Sigmund,
K. 1998. Evolutionary Games and Population Dynamics.
Cambridge University Press.

[Horvitz et al. 1998] Horvitz, E.; Breese, J.; Heckerman,
D.; Hovel, D.; and Rommelse, K. 1998. The Lumiere
project: Bayesian user modeling for inferring the goals and
needs of software users. In UAI’98, 256–265.

[Laskey 2008] Laskey, K. B. 2008. Mebn: A language
for first-order Bayesian knowledge bases. Artificial Intelli-
gence 172(2-3):140 – 178.

[Lesh 1998] Lesh, N. 1998. Scalable and Adaptive Goal
Recognition. Ph.D. Dissertation, U. of Washington.

[Linux-Plan-Corpus] Linux-Plan-Corpus.
http://www.cs.rochester.edu/research/cisd/resources/linux-
plan/. Last access: November 21 2010.

[Natarajan et al. 2008] Natarajan, S.; Tadepalli, P.; Diet-
terich, T. G.; and Fern, A. 2008. Learning first-order prob-
abilistic models with combining rules. Annals of Mathe-
matics and Artificial Intelligence 54:223–256.

[Pearl 1988] Pearl, J. 1988. Probabilistic Reasoning in In-
telligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

[Pearl 2000] Pearl, J. 2000. Causality: Models, Reasoning,
and Inference. Cambridge U.P.

[Pereira and Han 2009] Pereira, L. M., and Han, T. A.
2009. Intention recognition via causal Bayes networks plus
plan generation. In Procs. of 14th Portuguese Intl. Conf. on
Artificial Intelligence (EPIA’09), 138–149. LNAI 5816.

[Pereira and Han 2010] Pereira, L. M., and Han, T. A.
2010. Intention recognition with evolution prospection and
causal Bayesian networks. In Computational Intelligence
for Engineering Systems. Springer. 1–33.

[Pynadath and Wellman 1995] Pynadath, D. V., and Well-
man, M. P. 1995. Accounting for context in plan recogni-
tion, with application to traffic monitoring. In UAI.

[Ramı́rez and Geffner 2010] Ramı́rez, M., and Geffner, H.
2010. Probabilistic plan recognition using off-the-shelf
classical planners. In AAAI’2010.

[Sadri 2010] Sadri, F. 2010. Logic-based approaches to in-
tention recognition. In Handbook of Research on Ambient
Intelligence: Trends and Perspectives.

[Sigmund 2010] Sigmund, K. 2010. The Calculus of Self-
ishness. Princeton U. Press.

[Srinivas 1993] Srinivas, S. 1993. A generalization of the
noisy-or model. In UAI’93.

	Introduction
	Bayesian Networks
	Incremental Bayesian Network Construction for Intention Recognition
	Operators for Constructing IRBN

	Relations Amongst Intention Nodes
	Single Intention Being Pursued
	The Model
	Experimental Evaluation

	IPD Plan Corpus
	Iterated Prisoner's Dilemma
	IPD Plan Corpus Description
	Plan Corpora Generation
	Results

	Related Work
	Conclusion and Future Work

