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Abstract

Plan recognition is the problem of inferring the goals and
plans of an agent from partial observations of her behavior.
Recently, it has been shown that the problem can be formu-
lated and solved using planners, reducing plan recognition to
plan generation. In this work, we extend this model-based
approach to plan recognition to the POMDP setting, where
actions are stochastic and states are partially observable. The
task is to infer a probability distribution over the possible
goals of an agent whose behavior results from a POMDP
model. The POMDP model is shared between agent and ob-
server except for the true goal of the agent that is hidden to
the observer. The observations are action sequences O that
may contain gaps as some or even most of the actions done
by the agent may not be observed. We show that the posterior
goal distribution P (G|O) can be computed from the value
function VG(b) over beliefs b generated by the POMDP plan-
ner for each possible goal G. Some extensions of the basic
framework are discussed, and a number of experiments are
reported.

Introduction
Plan recognition is the problem of inferring the goals and
plans of an agent from partial observations of her behav-
ior (Cohen, Perrault, and Allen 1981; Pentney et al. 2006;
Yang 2009). The problem arises in a number of applica-
tions, and has been addressed using a variety of methods,
including specialized procedures (Kautz and Allen 1986;
Avrahami-Zilberbrand and Kaminka 2005), parsing algo-
rithms (Pynadath and Wellman 2002; Geib and Goldman
2009) and Bayesian networks inference procedures (Bui
2003). In almost all cases, the space of possible plans or
activities to be recognized is assumed to be given by a suit-
able library of policies or plans.

Recently, two formulations have approached the plan
recognition problem from a different perspective that re-
places the need for a set of possible agent policies or plans,
by an agent action model and a set of possible goals. The
model expresses how the agent can go about achieving
these goals and is used to interpret the observations. The
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result is a posterior probability distribution over the pos-
sible goals. In these approaches, the possible agent be-
haviors are encoded implicitly in the set of goals and ac-
tion models, rather than explicitly as a library of plans.
The advantage of these approaches to plan recognition is
that they can leverage on model-based behavior genera-
tors; namely, planners. In (Ramirez and Geffner 2009;
2010), the model is classical planning model, namely, the
initial state is fully known to agent and observer, and the ac-
tions have deterministic effects, while in (Baker, Saxe, and
Tenenbaum 2009), the model is a Markov Decision Process
(MDP), so that the states are fully observable, and actions
have stochastic effects.

In this work, we extend the model-based approach to
plan recognition over POMDP settings, where actions are
stochastic and states are partially observable. The task is to
infer a probability distribution over the possible goals of an
agent whose behavior results from a POMDP (Partially Ob-
servable MDP) model. The model is shared between agent
and observer except for the true goal of the agent that is hid-
den to the observer. The observations are action sequences
that may contain gaps as some or even most of the actions
done by the agent are not observed. We show that the poste-
rior goal distribution can be computed from the value func-
tion over beliefs generated by a POMDP planner for each
possible goal G. More precisely, executions are sampled
from this value function, assuming that the agent tends to
select the actions that look best, and the likelihood of the
observations O given the goal G is approximated from these
samples. In analogy to the other cases, the goal recogni-
tion problem over POMDPs is solved using an off-the-shelf
POMDP planner. While POMDP planners do not scale up
as well as MDP planners, and certainly much worse than
classical planners, we show that still a rich variety of recog-
nition problems involving incomplete information can be ef-
fectively modeled and solved in this manner. The expressive
power and computational feasibility of the approach will be
illustrated through a number of experiments over several do-
mains.

The paper is organized as follows. We start with an exam-
ple (Section 2), and then review previous approaches (Sec-
tion 3), and POMDPs (Section 4). We then consider a pre-
liminary formulation of POMDP goal recognition that as-
sumes that all agent actions and observations are visible to



the observer (Section 5), and a more general form that as-
sumes neither (Section 6). We then test the latter over sev-
eral problems (Section 7) and summarize the contributions
(Section 8).

Motivation
As an illustration of how a goal recognition problem can be
naturally cast in the POMDP setting, consider an agent that
is looking for an item A or B each of which can be in one
of three drawers 1, 2, or 3, with probabilities P (A@i) and
P (B@i) equal to:

P (A@1) = 0.6 , P (A@2) = 0.4 , P (A@3) = 0

P (B@1) = 0.1 , P (B@2) = 0.6 , P (B@3) = 0.3

The actions available to the agent are to open and close the
drawers, to look for an item inside an open drawer, and to
grab an item from a drawer if it’s known to be there. Let us
assume that the agent is a male, and hence that the proba-
bility that he doesn’t observe the object in the drawer when
the object is actually there is non-zero, say 0.2, but that the
probability that he observes an object when it’s not there is
0 indeed.

Let us assume that the possible goals G1, G2, and G3 of
the agent are to have item A, item B, or both, with priors
0.4, 0.4, and 0.2. We want to find out the goal posterior
probabilities when the behavior of the agent is partially ob-
served. In our setting, the observer gets to see some of the
actions done by the agent, but not necessarily all of them.
The observer must then fill up the gaps. Let us assume that
it is observed that the agent opens drawer 1, then drawer 2,
and then drawer 1 again; i.e.,

O = {open(1), open(2), open(1)}.

The most likely explanation of this observation trace is that
the agent is looking for item A; else it wouldn’t have started
by looking in drawer 1 where the probability of finding B is
0.1. Then, it’s likely that the agent didn’t observe A in that
drawer, that it closed it, and then looked for A in drawer 2.
Then, probably the agent didn’t find A in drawer 2, and thus
looked again in drawer 1.

Indeed, the algorithm that we will describe, concludes that
the posterior probabilities for the three possible goals are
P (G1|O) = 0.6, P (G2|O) = 0.1, and P (G3|O) = 0.3,
with G1 as the most likely goal.

Previous Approaches
As mentioned in the introduction, the problem of plan, goal,
or activity recognition has been addressed in many ways, in
most cases assuming that there is a library of possible plans
or policies that represents the possible agent behaviors. The
problem has been formulated in a variety of ways, as a de-
ductive problem over a suitable logical theory (Kautz and
Allen 1986), a matching problem over a suitable AND/OR
graph (Avrahami-Zilberbrand and Kaminka 2005), a pars-
ing problem over a grammar (Pynadath and Wellman 2002;
Geib and Goldman 2009), and an inference task over a dy-
namic Bayesian network (Bui 2003).

Some recent approaches, however, attempt to map the
plan recognition problem into plan generation to leverage
on the performance of state-of-the-art planners. Ramirez
and Geffner (2010) consider the problem of plan recogni-
tion over classical planning models where the goal of the
agent is hidden to the observer. They show that the posterior
distribution P (G|O) over the possible agent goals G given
a sequence of observations O, can be defined from the costs
c(G,O) of the plans that achieve G while complying with
the observations O, and the costs c(G,O) of the plans that
achieve G while not complying with O. Indeed, they define
the likelihood P (O|G) as a monotonic (sigmoid) function
of the difference in costs c(G,O) − c(G,O). Thus, when
the best plans for G all comply with O, this difference will
be positive, and the larger the difference, the larger the like-
lihood P (O|G). In order to compute the posterior probabil-
ities P (G|O) for a set G of possible goals G, the likelihoods
P (O|G) are then derived in 2|G| planner calls, and they are
then plugged into Bayes rule along with the priors P (G) to
yield the posterior probabilities P (G|O).

The other recent model-based approach to plan recogni-
tion is in the MDP setting where actions are assumed to have
stochastic effects and states are fully observable (Baker,
Saxe, and Tenenbaum 2009). Baker et. al. show that from
the value function VG(s) that captures the expected cost
from state s to the goal G, for every state s and goal G,
it is possible to define the probability that the agent will take
a given action a in s if her goal is G. From this probability
P (a|s,G) and simple manipulations involving basic prob-
ability laws, they derive the likelihood P (O|s,G) that the
agent performs a sequence of actions O given that she starts
in s and pursues the goal G. As before, from the likelihoods
and the goal priors P (G), they derive the posterior prob-
abilities P (G|O) using Bayes rule. Once again, the main
computational work is done by the planner, in this case an
MDP planner, that must furnish the value function VG(s) for
all goals G and states s. Notice that in both the classical and
MDP formulations, probabilities are inferred from costs; in
the first case, the costs c(G,O) and c(G,O), in the second,
the expected costs VG(s). The formulation that we develop
below takes elements from both formulations while extend-
ing them to the POMDP setting where actions are stochastic
and states are just partially observable.

Background: Goal MDPs and POMDPs
Shortest-path MDPs provide a generalization of the state
models traditionally used in heuristic search and planning
in AI, accommodating stochastic actions and full state ob-
servability (Bertsekas 1995). They are given by

• a non-empty state space S,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S, and
• costs c(a, s) for a ∈ A and s ∈ S.

The goal states t are assumed to be absorbing and cost-free;
meaning Pa(t|t) = 1 and c(a, t) = 0 for all a ∈ A. Goal
MDPs are shortest-path MDPs with a known initial state s0



and positive action costs c(a, s) for all a and non-terminal
states s. Shortest-path and Goal MDPs appear to be less ex-
pressive than discounted reward MDPs, where there is no
goal, rewards can be positive, negative, or zero, and a pa-
rameter γ, 0 < γ < 1, is used to discount future rewards.
Yet, the opposite is true: discounted reward MDPs can be
transformed into equivalent Goal MDPs, but the opposite
transformation is not possible (Bertsekas 1995). The same
holds for discounted reward POMDPs and Goal POMDPs
(Bonet and Geffner 2009).

The solution to MDPs are functions π mapping states into
actions. The expression V π(s) denotes the expected cost
that results from following the policy π from the state s to
a goal state, and it can be computed by solving a system of
|S| linear equations. The optimal policies are well-defined
if the goal is reachable from every state, and corresponds to
the policies π∗ that minimize V π(s) over all states s. The
optimal cost function V ∗(s) = V π(s) for π = π∗, turns out
to be the unique solution to the Bellman equation:

V (s) = min
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s
′|s)V (s′)

}
(1)

for all s ∈ S \ SG, and V (s) = 0 for s ∈ SG. The Bellman
equation can be solved by the Value Iteration (VI) method,
where a value function V , initialized arbitrarily over non-
goal states, is updated iteratively until convergence using the
right-hand side of (1). The optimal policy π∗ is the policy
πV that is greedy in the value function V

πV (s) = argmin
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s
′|s)V (s′)

}
. (2)

when V = V ∗. Recent variants of value iteration aim to
exploit the use of lower bound (admissible) cost or heuristic
functions to make the updates more focused and to achieve
convergence on the states that are relevant only. One of
the first such methods is Real-Time Dynamic Programming
(RTDP), that in each trial simulates the greedy policy πV ,
updating the value function V over the states that are vis-
ited (Barto, Bradtke, and Singh 1995). With a good initial
lower bound V , RTDP and other recent heuristic search al-
gorithms for MDPs, can deliver an optimal policy without
even considering many of the states in the problem.

POMDPs (Partially Observable MDPs) generalize MDPs
by modeling agents that have incomplete state information
(Kaelbling, Littman, and Cassandra 1999) in the form of a
prior belief b0 that expresses a probability distribution over
S, and a sensor model made up of a set of observation tokens
Obs and probabilities Qa(o|s) of observing o ∈ Obs upon
entering state s after doing a. Formally, a Goal POMDP is
a tuple given by:
• a non-empty state space S,
• an initial belief state b0,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S,
• positive costs c(a, s) for non-target states s ∈ S,
• a set of observations Obs, and

• probabilities Qa(o|s) for a ∈ A, o ∈ Obs, s ∈ S.
It is also assumed that goal states t are cost-free, absorbing,
and fully observable; i.e., c(a, t) = 0, Pa(t|t) = 1, and
t ∈ Obs, so that Qa(t|s) is 1 if s = t and 0 otherwise. The
target beliefs or goals are the beliefs b such that b(s) = 0 for
s ∈ S \ SG.

The most common way to solve POMDPs is by formu-
lating them as completely observable MDPs over the belief
states of the agent. Indeed, while the effects of actions on
states cannot be predicted, the effects of actions on belief
states can. More precisely, the belief ba that results from
doing action a in the belief b, and the belief boa that results
from observing o after doing a in b, are:

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′) , (3)

ba(o) =
∑
s∈S

Qa(o|s)ba(s) , (4)

boa(s) = Qa(o|s)ba(s)/ba(o) if ba(o) 6= 0. (5)

As a result, the partially observable problem of going from
an initial state to a goal state is transformed into the com-
pletely observable problem of going from one initial belief
state into a target belief state. The Bellman equation for the
resulting belief MDP is

V (b) = min
a∈A

{
c(a, b) +

∑
o∈Obs

ba(o)V (boa)

}
(6)

for non-target beliefs b and V ∗(bt) = 0 otherwise, where
c(a, b) is the expected cost

∑
s∈S c(a, s)b(s).

Many of the methods used for solving POMDPs are MDP
methods extended to deal with the infinite and dense set of
possible belief states. In our experiments, we use RTDP-Bel
(Bonet and Geffner 2000; 2009), which is a straightforward
adaptation of RTDP to Goal POMDPs where states are re-
placed by belief states updated according to (6).

Goal Recognition: Complete Observations
Our first formulation of goal recognition over POMDPs is
a direct generalization of the MDP account (Baker, Saxe,
and Tenenbaum 2009). This account makes two assump-
tions. First, that the observation sequence O = a1, . . . , an
is complete, meaning that O contains all the actions done by
the agent up until an, and hence, that there are no gaps in
the sequence. Second, that the states of the MDP are fully
observable not only to the agent, but also to the observer.
The assumptions are pretty restrictive but serve to reduce
the goal recognition problem to a simple probabilistic infer-
ence problem. In the POMDP setting, the second assump-
tion translates into the (partial) observations gathered by the
agent being visible also to the observer. Thus, in this setting,
the observer gets two types of information: the complete se-
quence of actions O done by the agent, and the correspond-
ing sequence of POMDP observation tokens o ∈ Obs that
the agent received. In the next section, we relax these two
assumptions.

The POMDP is assumed to be known by both the agent
and the observer, except for the actual goal G of the agent.



Instead, the set G of possible goals is given along with the
priors P (G). The posterior goal probabilities P (G|O) can
be obtained from Bayes rule:

P (G|O) = αP (O|G)P (G) (7)

where α is a normalizing constant that doesn’t depend on
G. The problem of inferring the posteriors P (G|O) gets
thus mapped into the problem of defining and computing the
likelihoods P (O|G). The key assumption is that if the agent
is pursing goal G, the probability P (a|b,G) that she will
choose action a in the belief state b is given by the Boltz-
mann policy:

P (a|b,G) = α′exp{β QG(a, b)} (8)

where α′ is a normalizing constant and β captures a ‘soft ra-
tionality’ assumption (Baker, Saxe, and Tenenbaum 2009):
for large β, the agent acts greedily on QG (optimally if QG
is optimal); for low β, the agent selects actions almost ran-
domly.

The term QG(a, b) expresses the expected cost to reach
the goal G from b starting with the action a; i.e.,

QG(a, b) = c(a, b) +
∑
o∈O

ba(o)VG(b
o
a) (9)

where VG is the value function for the POMDP assuming
that the goal states are those in which G is true, c(a, b) is
the expected cost of action a in b, and ba(o) and boa as de-
fined above, stand for the probability that agent observes
o after doing action a in b, and the probability distribu-
tion that results from doing a in b and actually observing
o. The likelihood P (Oi|b,G) of the observation sequence
Oi = ai, . . . , an given the belief b and the goal G, can be
computed recursively as:

P (Oi|b,G) =
{
P (an|b,G) if i = n, else
P (ai|b,G)

∑
o P (Oi+1|boa, G) ba(o) .

(10)
The likelihood P (O|b,G) is then P (Oi|b,G) for i = 0,
which can be computed from the recursion and plugged into
Bayes rule (7) to obtain the desired posterior goal proba-
bilities P (G|O). The POMDP planner enters into this for-
mulation by providing the expected costs VG(b) to reach G
from b, that are used via the factors QG(a, b) for defining
the probability that the agent will do the action a when in
the belief state b (Eq. 8).

Goal Recognition: Incomplete Observations
In the account above, the information available to the ob-
server contains both the sequence of actions O done by the
agent, and the observations o ∈ Obs that the agent receives
from the environment. Moreover, the sequence of actions
is assumed to be complete, so that all the agent actions are
observed. In the account below, the sequence of actions O
obtained by the observer may be incomplete and the obser-
vations received by the agent are not available.

As before, we assume a shared POMDP between agent
and observer, except for agent goal G that belongs to the
set G of possible goals but is hidden to the observer. Since

the observation sequence O = a1, . . . , an is not necessarily
complete, we cannot assume that action ai+1 in O is the
action that the agent did right after ai. Yet, the posterior
goal probabilities P (G|O) can be derived using Bayes rule
(7) from the priors P (G) and the likelihoods P (O|G) that
can now be defined as

P (O|G) =
∑
τ

P (O|τ)P (τ |G) (11)

where τ ranges over the possible executions of the agent
given that she is pursuing goal G. Executions τ contain the
complete sequence of agent actions.

We will say that an execution τ complies with the obser-
vation sequence O if the sequence O is embedded in the
sequence τ . Defining then the probabilities P (O|τ) to 1 or
0 according to whether the execution τ complies with O or
not, the sum in (11) can be approximated by sampling as

P (O|G) ≈ m0/m (12)

where m is the total number of executions sampled for each
goal G, and mO is the number of such executions that com-
ply with O.

For this approximation to work, executions τ for the goal
G need to be sampled with probability P (τ |G). This can
be accomplished by making the agent select the action a
in a belief b with a probability P (a|b,G) that results from
the Boltzmann policy (8). As before, it is assumed that the
POMDP planner, furnishes the value function VG(b) that en-
codes the expected cost from b to the goal.

Once the action a is sampled with probability P (a|b,G),
the resulting observation o, that is no longer assumed to
be available to the observer, is sampled with probability
ba(o). The resulting full traces b0, a0, o0, b1, a1, o1, . . . un-
til the goal is reached are such that bi+1 = boa for b = bi,
a = ai, and o = oi, where ai is sampled with probability
P (ai|bi, G), and oi is sampled with probability ba(oi) for
b = bi and a = ai.

The likelihoods P (O|G) approximated through (11) are
then plugged into Bayes rule (7) from which the posterior
goal probabilities P (G|O) are obtained.

The key computational burden in this account results from
the calculation of the value function VG over beliefs, that
must be provided as before by the POMDP planner, and the
simulated executions that need to be done for estimating the
likelihoods P (O|G) following (12).

Experiments
To evaluate the effectiveness of the goal recognizer de-
scribed in Section 6, we used the POMDP solver GPT (Bonet
and Geffner 2001) built around the RTDP-BEL algorithm.
GPT supports a very expressive language to define POMDPs
which have allowed us to test our approach over three chal-
lenging domains detailed next. We needed to make two
modifications on the original GPT sources. We changed the
code to have it built with the latest versions of the GNU C++
compiler and libraries, and added a method to simulate the
policies computed by GPT. The software for the goal recog-
nition part was implemented on PYTHON, making calls to
GPT when necessary.



Name |S| |A| |Obs| |b0| |G| T
OFFICE 2,304 23 15 4 3 3.4

DRAWERS 3,072 16 16 6 3 4.5
KITCHEN 69,120 29 32 16 5 10.1

Table 1: Domains used in the evaluation. |S| denotes num-
ber of states, |A| number of actions, |Obs| number of ob-
servations, |b0| cardinality of initial belief, |G| number of
possible goals and T average time (in seconds) to compute
VG(b0) for each of the goals G.

Table 1 shows the number of states, actions, observations,
goals, and possible initial states for each of the three do-
mains we used to evaluate the proposed goal recognition
scheme with incomplete observations. These are non–trivial
POMDPs that feature uncertainty in the initial state, stochas-
tic actions and stochastic sensors. We will describe the do-
mains next.

The DRAWERS domain is the task described early in the
paper. The agent goals are to be holding either an object
named A, an object named B or both. The two objects are
distributed in the drawers according to the probability distri-
bution described in Section 2. The agent can open drawers,
look for a particular object inside an open drawer and pick
an object. All actions have unitary cost. There is a small
chance – 30 out of every 100 times – that she does not find
the object she is looking for, even if the object actually is
in the inspected drawer. Singleton goals are considered to
have equal prior probability (0.4). For the joint goal we set
its prior probability to the product of the singleton goals. As
an illustration, if the agent is observed to “look into drawer
#3” then it is more likely the goal “hold B”, since A can’t
be initially placed in drawer #3.

In the OFFICE domain, adapted from (Bui 2003), the agent
being observed is a researcher who arrives early to her lab,
which consists of two rooms: one is her office, where she
has her workstation and a cabinet to store her coffee cup and
blank paper. The other is the club, where the lab coffee ma-
chine and printer are placed. The two rooms are connected
by a corridor. The researcher is initially on the corridor. The
printer can start either out of paper, clogged, both or none.
The agent goals are either to print an article, have a cup of
coffee or both. To print an article, the researcher needs to get
to her workstation, send the file to the printer queue and get
to the printer to retrieve it. There is a small chance – 20 out
of every 100 times – that the printer will get clogged while
trying to print the article. If the printer is out of paper, the file
is kept on the printer queue. In this case, the agent will need
to fetch blank paper from the cabinet in her office. When the
printer is clogged, the agent will have to execute several ac-
tions to service it. To have coffee, the agent needs to get the
cup from the cabinet in her office and then walk to the cof-
fee machine. As in the DRAWERS domain, all actions have
a cost of 1, singleton goals have equal prior probability, and
the joint goal prior probability is the product. For example, if
the agent is observed to execute the actions “walk to work-
station, walk from corridor into club” then the most likely
goal will be “print article”, since the agent doesn’t need to

get to the workstation if she’s pursuing the goal “have cof-
fee”.

In the KITCHEN domain the agent is trying to cook one
out of five possible dishes. There are ingredients i1, i2, i3,
i4 which are placed at random on two cupboards. Each dish
requires up to three different ingredients which are required
to be mixed in a bowl. The agent can inspect the cupboards
the find the ingredients it needs, having to move first in front
of the cupboard of interest. Additionally the agent needs to
get hold of three different objects – a tray, a pan and a pot –
which are all located in a third cupboard. Whenever a recipe
involves boiling or frying an ingredient, or a mix of them, the
agent needs to place the required objects on the stove. The
agent can navigate freely between the locations of the bowl,
the stove or the cupboards and can carry as many ingredients
as she sees fit. All goals have the same prior probability and
action costs are uniform. Thus if the agent is observed to
“take pan, take i2” then the most likely goals will be those
dishes which require to fry a mix of ingredients that includes
i2.

The synthetic dataset was built as follows. For each do-
main and goal, we first computed the value function VG for
each possible goal G using GPT. Then, we sampled 100 ex-
ecutions of the greedy policy based on VG for each possible
goal G ∈ G. From these 100 sampled executions, 10 ob-
servation sequencesO were obtained by sampling randomly
30%, 50% or 70% of the actions over an also randomly se-
lected execution.

In the table and figures, we don’t report the posterior goal
distributions P (G|O), but just the resulting binary classi-
fier that maps the observation sequences O into sets of most
likely goals G. These are the goals G that maximize the
posterior probability P (G|O). We denote this binary goal
recognizer as GR(m,β), where m and β stand for the two
parameters of the algorithm: the number of samples for each
goal used in the approximation of P (O|G), and the β coef-
ficient that expresses the level of noise in the action selec-
tion. The set of most likely goals are those G′ that verify
P (G′) = maxG∈G P (G|O)P (G) 1.

The classification instances are the pairs 〈O,G〉 over all
the observation sequences O and goals G. An instance is
positive (P) if O was generated with G, and negative (N)
otherwise. A true positive (TP) is a positive instance classi-
fied as positive, while a false negative, is a negative instance
classified as positive. True negatives (TN) and false neg-
atives (FN) are defined in a similar manner. The numbers
of instances in these different classes provide the standard
measures for evaluating the quality of a classifier. In partic-
ular, TPR, FPR, ACC, and PPV measure the True Positive
Rate, False Positive Rate, Accuracy, and Precision of a clas-
sifier, defined as TP/P , FP/N , TP + TN/P + N , and
TP/TP + FP respectively.

Figure 1 shows the aggregate results of the goal recog-
nizer GR(m,β) over all domains, in the form of a ROC
graph (Fawcett 2006) that plots TPR vs. FPR. As it can be
seen, the performance of the goal classifier approaches the

1We consider two real numbers x, x′ to be equal whenever |x−
x′| < ε, where ε is set to 10−7
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Figure 1: ROC graph showing the resulting goal classifier
GR(m,β) for different m and β values (number of samples and
noise level in action selection). Squares, triangles and circles de-
note different m values: 100, 1000 and 10000. Black, gray, and
light gray denote different β values: 1, 10, 40. Results for the ran-
dom guessing strategy are represented by the dotted line.

Domain Obs % L T ACC PPV TPR
30 4.9 24.6 0.99 0.97 1.00

office 50 7.6 24.7 1.00 1.00 1.00
70 10.8 24.8 1.00 1.00 1.00
30 3.8 95.2 0.86 0.73 0.73

kitchen 50 5.8 95.1 0.93 0.85 0.85
70 8.3 95.2 0.98 0.95 0.95
30 2.9 38.8 0.84 0.77 0.77

drawers 50 3.9 38.8 0.87 0.80 0.80
70 6.0 38.8 0.96 0.93 0.93

Table 2: Performance of GR(m = 10, 000, β = 40) . For
each domain and observation level we report the average
length of observation sequences O (L), the average time in
seconds to process one observation sequence (T) and the av-
erage accuracy (ACC), precision (PPV) and True Positive
rate (TPR).

optimal vertex (1, 0) as the number of samples m becomes
large (see caption for details). Performance is very good
– high TPR, low FPR – for m ≥ 1000 and high β values.
However we can also see that even with a substantial amount
of samples and the Boltzmann policy being almost greedy –
β = 40 – we cannot lower FPR nor raise TPR.

Table 2 offers a detailed picture of the performance of
the goal recognizer for values m = 10, 000 and β = 40.
In all domains we see how the accuracy of goal recogni-
tion increases as more information is conveyed by the in-
put observation sequence. It is remarkable that GR(m =
10, 000, β = 40) achieves almost perfect recognition on the
OFFICE domain, having some trouble with the shortest and
sparsest observation sequences.

Runtime is determined by the number of possible goals
|G|, the number of samples taken m and the value for β.
Processing one observation sequence involves simulating –
the time required to compute VG(b) is reported on Table 1 –
the Boltzmann policy m times |G|, hence the similarity be-
tween the run-times for OFFICE and DRAWERS, which have

the same number of possible goals. Runtime also increases
as m increases and as β decreases. While the reasons for
the former are quite obvious – the more simulations to check
whether they are compatible with O the more computation
– the former can seem a bit surprising. Runtime grows as
β decreases since action selection becomes noisier, so the
execution trace gets longer.

While the goal recognizing accuracy is very good, it
can’t be perfect since there may be observation sequences
O which result ambiguous. For example, in the OFFICE do-
main, the goal recognizer assigns equal P (O|G) to all goals,
when confronted with the sequence “walk from corridor to
lab, walk from lab to corridor, walk from corridor to club”.
While the joint goal is discarded because of its lower P (G),
there is no other information available that supports rejec-
tion of either of the singleton goals “read article” and “have
coffee”.

Extensions
The model above for goal recognition over POMDPs is sim-
ple but expressive, yet there are a number of natural exten-
sions, some of which we describe next.
• Agent POMDP model partially known by observer: in the
above formulation, the agent POMDP model is known by
the observer except for the hidden goal. Incomplete infor-
mation about the initial belief state b0 of the agent, however,
can be accommodated as well. The simplest approach is to
define a set B0 of possible initial belief states b0 each with a
probability P (b0). The formulation can then be generalized
to deal with both hidden goals G and hidden initial belief
states b0, and the posterior probabilities over the collection
of such pairs can be computed in a similar manner.
• Failure to observe and actions that must be observed: as
argued in (Geib and Goldman 2009), information about ac-
tions a that if done, must always be observed, is valuable,
as the absence of such actions from O, imply that their were
not done. This information can be used in a direct manner in
the formulation above by just adjusting the notion of when
a sample execution τ complies with O. In the presence of
must-see actions, executions τ comply with O when τ em-
beds O, and every must-see action appears as many times in
τ as in O.
• Observing what the agent observes: we have assumed that
the observer gets a partial trace of the actions done by the
agent and nothing else. Yet, if the observer gets to see some
of the observation tokens o ∈ Obs gathered by the agent,
she can use this information as well. In particular, the num-
ber mO in (12) would then be set to the number of sampled
executions for G that comply with both O and Obs.
• Noise in the agent-observer channel: if the observer gets
to see the actions done by the agent through a noisy channel
where actions can be mixed up, the problem of determin-
ing where a sample execution τ complies with the observa-
tions O is no longer a boolean problem where P (O|τ) is
either 0 or 1, but a probabilistic inference problem that can
be solved in linear-time with Hidden Markov Model (HMM)
algorithms, that would yield a probability P (O|τ) in the in-
terval [0, 1]. For this, the model must be extended with prob-
abilities PO(o|a) of observing token o from the execution of



action a, and hidden chain variables ti = j expressing that
the observation token oi in O = o1, . . . , on has been gener-
ated by action aj in the sample execution τ = a1, . . . , am.

Discussion
We have formulated and tested a new formulation of goal
recognition for settings where the observed agent can be
modeled as acting using a POMDP whose goal is hidden
to the observer. The posterior goal probabilities G for the
hidden goals G ∈ G are computed from Bayes rule using
the priors P (G) and likelihoods P (O|G) that are approxi-
mated in two steps: using first a POMDP planner to produce
the expected costs VG from beliefs to goals, and using these
costs to sample the possible executions for each goal G. A
number of direct extensions have also been discussed, like
the integration of uncertainty about the initial belief of the
agent, noise in the agent-observer channel, and observations
obtained by both the agent and observer. A number of exper-
iments have been reported and the results appear promising.
The software and the domains will be made available.
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