Accurately Determining Intermediate and Terminal Plan States Using Bayesian Goal Recognition

David Pattison and Derek Long

University of Strathclyde, Glasgow
G1 1XH, UK
david.pattison@cis.strath.ac.uk

GAPRec Workshop
ICAPS 2011, Freiburg

12th June, 2011
Overview

1. Recognition without Libraries
2. Results
3. Conclusions and Future Possibilities
The *de facto* (and defined) standard

- Traditional GR/PR makes use of libraries
 - Collection of known goals/plans
 - Hand coded or generated
 - Plans through state space
 - Specialised to one subject
 - Represented as HTNs

- Recognition
 - Probabilistic/Bayesian
 - Weights hand coded or automated
 - Observe actions and map to X plans from library which match with varying probabilities
The *de facto* (and defined) standard

- Traditional GR/PR makes use of libraries
 - Collection of known goals/plans
 - Hand coded or generated
 - Plans through state space
 - Specialised to one subject
 - Represented as HTNs

- Recognition
 - Probabilistic/Bayesian
 - Weights hand coded or automated
 - Observe actions and map to X plans from library which match with varying probabilities

- But what if there is nothing to map to?
Recognition without Libraries

- Goal Recognition as Planning
 - “Planning” in the sense of not doing any planning
- Planning and Recognition mirror one-another
 - Goal Recognition also uses Propositions, Actions, States and Goals
 - So why not try to link the two?
- Recognition systems have no common language, but Planning has PDDL
 - By working with PDDL, any problem can be constructed quickly
 - Use recent Planning advances in solving the GR problem
 - heuristic convergence
- No plan/goal library
 - Try to automatically detect lost information
Problem Formulation

- No libraries
- Any domain
- No pre-compilation
- Any (valid) fact conjunctions can be goal
- Use Planning representation for goal space
 - Cannot hope to enumerate the true goal space
 - Goal Space \mathcal{H} = domain’s reachable facts
 - Assume independence between facts
 - No explicit conjunctions (yet)
 - Standard mutex detection
- Also analogous to Particle Filtering and Fault Diagnosis
Plan movement through state-space
Assumptions and Relaxations

- Plan is totally-ordered
 - Can be taken from anywhere- created or parsed in from known results
 - We use IPC3/IPC5 results
- Fully observable
 - No hidden actions
- No assumption about “intelligence” of plan
- No knowledge of plan steps remaining
- **Anything** can be a goal, and a goal can be made up of anything
 - Conjunctions are common in Planning, but uncommon in Recognition
Step 1 – Putting the Vitamins back in

- Cue strange orange juice analogy...
Step 1 – Putting the Vitamins back in

- Cue strange orange juice analogy...
- PDDL domain inputs are flat and dull
- But once instantiated, structure is rich, albeit hard to find
Step 1 – Putting the Vitamins back in

- Cue strange orange juice analogy...
- PDDL domain inputs are flat and dull
- But once instantiated, structure is rich, albeit hard to find
- Domain Transition Graphs, Causal Graphs, Static Facts, Relaxed Plans, Heuristic Estimates, Sampling
Domain Analysis

- Predicate Partitioning
 - Grounding process produces all goals
 - So try and categorise them to find those which are very likely and those which are less likely
- Causal Graph Leaf-Nodes
 - Exist only to be altered, so adjust probabilities of facts containing them appropriately
- Produce initial probability distribution over \mathcal{H}
- But of course a manual distribution is still possible
Step 2 – Plan Observation

- Action is fed into recogniser
- Get *heuristic estimate* to all $f \in \mathcal{H}$
 - Further actions needed to achieve f
 - If decreasing, fact is possibly goal
 - If increasing, fact is probably not goal
- Use heuristic results to increase/decrease probability if f being a goal w.r.t. mutually-exclusive facts
- Over time, some facts will become highly likely to be goals
 - ... or at least be in final state
- Heuristic estimates used to update goal probabilities using Bayes’
Heuristic Bayesian Updates

- After each observation, a subset of the search-space will be closer.
- The amount of work performed by an action w.r.t \(G \) is

\[
W(G | O) = \begin{cases}
\frac{1}{| \bar{G}_{\text{mutex}}^{\text{nearer}} |} & \text{if } h_t(G) < h_{t-1}(G), \\
\frac{1}{| \bar{G}_{\text{mutex}}^{\text{nearer}} |} & \text{if } h_t(G) = h_{t-1}(G) = 0, \\
0 & \text{otherwise}
\end{cases}
\]

- Give a *bonus* to facts which remain true.
Example of $W(G)$ with and without bonus

- **Goal:** Passenger 1 and Passenger 2 at City 1
- **$W(G)$** associated with Passenger 2

Table: Without bonus

<table>
<thead>
<tr>
<th></th>
<th>at p2 c1</th>
<th>at p2 c2</th>
<th>at p2 c3</th>
<th>in plane p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>0.33</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.33</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: With bonus

<table>
<thead>
<tr>
<th></th>
<th>at p2 c1</th>
<th>at p2 c2</th>
<th>at p2 c3</th>
<th>in plane p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.33</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.33</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Is O relevant if G is goal

- Feed into *conditional probability*

\[
P(O|G) = \lambda \times W(G|O) \times S(G) + (1 - \lambda) \times \frac{1}{1 + |\text{mutex}(g)|} \tag{2}
\]

- Stability \(S'(G) \) indicates how often a fact flicks from true to false

\[
S_t(G) = \begin{cases}
1
& \text{if } G \text{ unachieved in } P, \\
\frac{|\text{Obs}| - G^\text{true}_t}{\sum G^\text{true}_i}
& \text{otherwise}
\end{cases} \tag{3}
\]
Example of $P(G | A)$ with and without bonus

- **Goal:** Passenger 1 and Passenger 2 at City 1
- **$P(G | A)$** associated with Passenger 2

Table: Without bonus

<table>
<thead>
<tr>
<th></th>
<th>at p2 c1</th>
<th>at p2 c2</th>
<th>at p2 c3</th>
<th>in plane p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>0.32</td>
<td>0.05</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.33</td>
<td>0.01</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.89</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>0.89</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>0.63</td>
<td>0.18</td>
<td>0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>8</td>
<td>0.63</td>
<td>0.18</td>
<td>0.00</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table: With bonus

<table>
<thead>
<tr>
<th></th>
<th>at p2 c1</th>
<th>at p2 c2</th>
<th>at p2 c3</th>
<th>in plane p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>0.32</td>
<td>0.05</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.33</td>
<td>0.01</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
<td>0.05</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Step 3 – Hypotheses

- Now have a new probability distribution over \mathcal{H}
- Pull out highest probability facts to form *terminal goal hypothesis*
Step 3 – Hypotheses

- Now have a new probability distribution over \mathcal{H}
- Pull out highest probability facts to form *terminal goal hypothesis*

<table>
<thead>
<tr>
<th>Domain</th>
<th>$P = 0%$</th>
<th>$P = 25%$</th>
<th>$P = 50%$</th>
<th>$P = 75%$</th>
<th>$P = 100%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driverlog</td>
<td>0.22/0.3</td>
<td>0.33/0.45</td>
<td>0.46/0.6</td>
<td>0.55/0.69</td>
<td>0.66/0.84</td>
</tr>
<tr>
<td>Rovers</td>
<td>0.28/1</td>
<td>0.28/1</td>
<td>0.28/1</td>
<td>0.28/1</td>
<td>0.32/1</td>
</tr>
<tr>
<td>Zenotravel</td>
<td>0.28/0.46</td>
<td>0.23/0.39</td>
<td>0.25/0.43</td>
<td>0.36/0.63</td>
<td>0.4/0.68</td>
</tr>
<tr>
<td>Average</td>
<td>0.26/0.59</td>
<td>0.28/0.61</td>
<td>0.33/0.68</td>
<td>0.4/0.77</td>
<td>0.46/0.84</td>
</tr>
</tbody>
</table>
A Step Further

- But we would also like to have hypotheses for non-goal intermediate states
- So *estimate* the number of steps remaining based on what the final goal is expected to be
- Can then generate a hypothesis for n further observations
Estimating Intermediate Goals

- Estimate whether G will be true in n steps
- Clearly linked to whether action which achieves it will be observed

\[
P^n(A) = \begin{cases}
0 & \text{if } h(A_{pre}) > n, \\
\max P(f) & \forall f \in A_{add} \text{ otherwise}
\end{cases} \quad (4)
\]

\[
P^n(G) = \max P^n(A) \quad \forall A \in achievers(G) \quad (5)
\]
Intermediate Results - Driverlog

Density of Bounded Intermediate Hypothesis P/R in Driverlog 1-10
Intermediate Results- Rovers

Density of Bounded Intermediate Hypothesis in Rovers 1-10
Intermediate Results- Zenotravel

Density of Bounded Intermediate Hypothesis in Zenotravel 1-10
Conclusions

- Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries
Conclusions

- Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries
- How well are Plan Libraries replaced?
Conclusions

- Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries
- How well are Plan Libraries replaced?
 1. Structure- largely done
 2. Prediction- Good results for both intermediate and terminal results
 3. Abstraction- None really. Could be learned from domains, or probable conjunctions generated at runtime
 4. Termination- Intermediate state estimates are pretty good, but the estimation itself is too short
 - Probably heavily linked to heuristic choice
- Backwards compatibility not broken at any point
 - Known goal conjunctions can still be added
 - Known plans still applicable
 - Probability weightings still applicable
Extensions

- The move into PR seems natural
Extensions

- The move into PR seems natural
- Bringing Planning and PR closer together
Extensions

- The move into PR seems natural
- Bringing Planning and PR closer together
- Convergence
Extensions

• The move into PR seems natural
• Bringing Planning and PR closer together
• Convergence
 • Instead of storing plans in a library, generate them at runtime
 • Use of landmarks, inference, deduction in next action-prediction
 • “Heuristic learning” from previous plan observations
 • Macro-Actions ⇒ high-level concepts?
 • Domain-learning/extension
 • Conjunction learning- genetic techniques
Thank you for your attention

• Questions/comments?
Coffee Break

- Resume at 11.00