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Abstract 

Human operators in human-machine systems can be sup-
ported by assistant systems in order to avoid and resolve 
critical workload peaks. The decisions of such an assistant 
system should at best be based on the current and anticipat-
ed situation (e.g. mission progress) as well as on the current 
and anticipated cognitive state of the operator, which in-
cludes his/her beliefs, goals, plan, intended action, interac-
tion with the environment, and subjective workload. The 
more of this can be assessed, the easier and the earlier hu-
man errors can be recognized and corrected by assistant sys-
tem initiative. Multiple approaches to enable an assistant 
system to correctly decide whether, when, and in which way 
to take initiative are currently under research at the Univer-
sität der Bundeswehr München, e.g. mixed-initiative mis-
sion planning, which includes assuming the human opera-
tor’s plan and estimation of operator workload by means of 
human operator behavior models. We here give an overview 
of these approaches and present our position in favor of an 
overarching framework for modeling a human operator, 
which is based on our Cognitive Process model. 

Introduction  

The Universität der Bundeswehr München (UBM) is con-

ducting research in the field of aeronautical human-

machine systems. During the development of complex 

human-machine systems (such as an aircraft), often models 

of human operators are used in order to optimize system 

behavior. In contrast to this it is not common in such sys-

tems that the machine reasons upon the human’s cognitive 

state during runtime.  

 In our current main application we regard a helicopter 

cockpit crew consisting of two persons (cf. figure 1). One 

of them is the helicopter commander, who is at the same 

time the operator of a smaller number of Uninhabited Aer-

ial Vehicles (UAVs). The other person is the helicopter 

pilot. In this context the UBM is developing prototypes of 
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artificial cognitive systems that aid the cockpit crew in 

coping with high work demands caused by multi-vehicle 

guidance and mission management (Strenzke et al. 2011). 

To be more precise, both crew members shall be supported 

by an assistant system for each workstation. In future, the 

decisions of such an assistant system shall be based on the 

current and anticipated situation (e.g. mission progress) as 

well as on the current and anticipated cognitive state of the 

operator, which includes his/her beliefs, goals, plan, in-

tended action, interaction with the environment, and sub-

jective workload. The more of this can be assessed, the 

easier and the earlier human errors can be detected and 

corrected by assistant system initiative. Multiple approach-

es to enable an assistant systems to correctly decide about 

taking initiative (whether, when, and in which way) are 

currently under research at the UBM.  

 In this article, we first present our Cooperative Automa-

tion paradigm for assistant systems and then give an over-

view of our research work. Finally, an overarching frame-

work for modeling a human operator is proposed, which is 

based our Cognitive Process model. 

 Figure 1: Helicopter Crew in Manned-Unmanned Teaming 



Cooperative Automation Approach 

The Cooperative Automation approach (Onken and Schulte 

2010) is an answer to the vicious circle of automation en-

gineering, which is observable in the evolutionary devel-

opment of supervisory control systems (Sheridan 1992). In 

brief, this vicious circle describes the increase of automa-

tion to counteract human errors, which thereby in turn 

provokes human error through automation complexity and 

opacity. The Cooperative Automation approach is intended 

to build automation functions that do not accept orders 

from the human operator in a supervisory control fashion. 

Instead these functions work upon the same objectives as 

the human does in a human-machine-team relationship.

 According to (Onken and Schulte 2010) a cognitive 

assistant system shall be designed as such a cooperatively 

functioning automation. It is furthermore defined by the 

following basic requirements. The assistant system shall 

guide the attention of the human operator to the most ur-

gent task. In case the human operator cannot accomplish or 

should not work upon this task (due to overtaxing, risk or 

cost), the assistant system shall take initiative to transfer 

the situation into one which can be handled by the operator 

(by generating proposals or executing actions on own initi-

ative). Thereby, an assistant system shall provide im-

provement of the operator’s situation awareness, reduction 

of subjective workload, as well as error avoidance and 

correction. 

Current Assistant System Research 

This chapter describes several research aspects concerning 

the mentioned two helicopter crew assistant systems. 

Knowledge-Based Assistant System 

The UAV operator assistant system is realized as a 

knowledge-based system that supports the UAV operator 

upon detection or anticipation of suboptimal behavior. It 

mainly holds knowledge about the modes of interaction 

with the human operator. See figure 2 and (Donath, 

Rauschert and Schulte 2010) for further information.  

 In assistance cases, the system has three options to aid 

the operator. It can provide a warning, suggest an action 

proposal, or initiate an action (e.g. reconfiguration of some 

system). To communicate with the operator, the assistant 

system instantiates a dialog or makes an announcement via 

speech synthesis and the displaying of a message box in 

the task-based UAV guidance GUI. Whenever appropriate, 

this message box includes a few buttons that allow the 

operator to invoke further aid by the assistance system or 

to either accept or reject its proposals. See (Strenzke and 

Schulte 2011) for more detail. 

 To decide whether, when, and in which way assistance 

should be provided to the UAV operator 

• the assistant system has to be able to anticipate, which 

tasks the operator has to execute and when he/she is 

supposed to do this (i.e. plan is incomplete and has to be 

evolved soon due to time constraints), and 

• the assistant system has to be able to notice insufficient 

quality in the past planning process of the operator (i.e. 

his/her plan is of too low quality). 

Figure 2: Goal structure of a cognitive assistant system 

 In principle, the assistant system needs to solve the fol-

lowing questions through target-performance comparison: 

 What is the operator planning? 

 Is his/her plan good enough? 

 Does he/she pursue the plan or make errors? 

 Is he/she overtaxed w.r.t. to mental resources? 

 What is he/she currently doing? 

 Clearly, these questions are difficult to answer by a 

technical system. In the following sections we present our 

research approaches to these problems. 

Mixed-Initiative Mission Planning 

The UAV operator generates and modifies the multi-UAV 

mission plans incrementally. The above-mentioned assis-

tant system is able to evaluate, complete, and generate such 

mission plans with the aid of the Mixed-initiative Mission 

Planner (MMP). As shown in figure 3, the MMP generates 

two types of plans: Reference plans and assumed human 

plans.  

 The assumed human plan can be regarded as the assis-

tant system’s assumption about the best possible plan the 

human has in mind after he/she revealed a partial plan
1
  by 

entering UAV tasks into the UAV guidance system (system 

plan, cf. figure 3). The assumed human plan is generated 

by completing this partial plan through adding the tasks the 

machine supposed that the human should add to the system 

                                                 
1 The human can either be aware of the plan being incomplete or he/she is 
not, but the machine concludes that the plan is only partial due to missing 
mission-relevant tasks. 
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plan (at some later point in time). In this process it takes 

into account constraints concerning human goals (which 

are known by the machine because they are shared in the 

Cooperative Automation approach), fragments of the hu-

man plan, and the current actions of the UAVs. This ap-

proach can be seen as plan recognition by planning. The 

assumed human plan can be used by the assistant system as 

a list of tasks to be worked upon by the UAV operator at 

(or before) the specific times that have been scheduled by 

the MMP. These operator tasks can be either the execution 

of an already planned UAV task (already included in the 

system plan) or the planning of a UAV task that is missing 

in the system plan. 

 The reference plan is generated by the MMP without 

regarding any human input, simply by solving the UAV 

mission problem through automated planning. The as-

sumed human plan can be evaluated by comparing its costs 

to those of the reference plan. In addition to that, the refer-

ence plan can be offered by the assistant system to the 

human in case there is the need of complete mission re-

planning. I.e. if there is a difference between the reference 

and the assumed human plan, the reference plan stands for 

what the machine supposes the human should do instead of 

what he/she has planned. 

Figure 3: Mixed-initiative planning concept for the MMP 

 The assistant system has the choice to urge the human 

operator to make the system plan converge to either the 

assumed human plan or to the reference plan. The decision 

of the assistant system can be based either on certain use 

cases (e.g. major change in the tactical situation or recep-

tion of follow-up mission order) or on a cost comparison 

(target-performance comparison) between the reference 

and the assumed human plan.  Further information about 

this and the MMP in general can be found in (Strenzke and 

Schulte 2011). 

 The current implementation of the MMP is based on 

PDDL 2.2 (Edelkamp and Hoffmann 2004) world model-

ing. We intend to improve the MMP by taking advantage 

of the expressiveness of PDDL 3.0 (Gerevini and Long 

2006) and by plan validation / plan repair with VAL 

(Howey, Long, and Fox 2004). 

Operator Workload Estimation 

In a similar application context we experimentally ana-

lyzed the correlation between the subjective workload and 

the behavior of a UAV operator guiding multiple UAVs 

from a helicopter cockpit, i.e. using them as remote sensor 

platforms for the reconnaissance of the helicopter route. 

Especially the changes of his/her behavior can be used as 

an indicator for high workload situations due to the appli-

cation of so called self-adaptive strategies (SAS). A human 

operator will apply suchlike strategies in order to keep the 

subjective workload within bearable limits and to retard 

possible performance decrements (Canham 2001; Schulte 

and Donath 2011). Since such a change in human behavior 

occurs prior to grave performance decrements, recogniza-

ble changes in human operator behavior can be used as 

trigger for assisting functions. Therefore, for each operator 

task an assistant system needs different human behavior 

models, representing behavior within normal workload 

situations and modified behavior as a consequence of SAS 

(cf. figure 4). By the use of such models an assistant sys-

tem can be enabled to anticipate workload-induced human 

error and take initiative prior to the occurrence of the error.  

Figure 4: Subjective workload recognition by behavior models 

 In the experiment, human operator behavior was cap-

tured during a certain, recurring task situation. The opera-

tor had to identify objects (ground vehicles) along the route 

observed by the reconnaissance UAVs. The object identifi-

cation task consists of essentially three subtasks, the 

recognition and marking of a hotspot in the photos made 

by the UAVs, the object classification process via the 

video stream generated by the UAVs, and the entering the 

classification result into the mission management system. 

We analyzed gaze tracking and manual interaction 

(touchscreen button pressing) data to decide if the behavior 

corresponds with a normal workload situation or a high 



workload situation respectively. The following SAS were 

observed (Schulte and Donath 2011): 

 Proactive task reduction (e.g. using fewer UAVs for 

task accomplishment than available) 

 Less exect task performance (e.g. watching video 

stream from a suboptimal UAV/camera position in 

relation to the object to be identified) 

 Omission of subtasks (e.g. classifying the object 

without entering the result into the system 

thereafter) 

 Total neglect of the object identification tasks 

within a complete mission phase 

 Purposeful delay of task accomplishment (i.e. 

interruption / task switching and then continuing)  

 Each of the mentioned SAS indicates excessive work-

load and can therefore be used to enable an assistant sys-

tem to decide to take initiative and offer assistance.  

 Our approach is to use Hidden Markov Models repre-

senting person-specific, task-specific human operator be-

havior within normal workload conditions in the first step. 

In future, further HMMs will be added to represent human 

operator behavior within high workload situations, i.e. the 

change of operator behavior caused by the use of SAS (cf. 

figure 4). See (Donath, Rauschert, and Schulte 2010) for 

further details. So far, the analysis process is only done 

offline. Hence, our assistant systems are currently not able 

to invoke functions based on workload estimation by be-

havior recognition.  

Optimization of Information Channel Selection 

In the cockpit setup described above, the pilot flying needs 

to take over additional responsibilities and tasks from the 

helicopter commander in order to enable the latter to ac-

complish the UAV guidance task. Therefore, the pilot 

flying is also in need of an assistant system, which aids 

him/her in navigation, aircraft system configuration, and 

timeliness in the mission plan. This assistant system has to 

decide whether, when, and through which information 

channel to inform the pilot about his/her most urgent task 

and anticipated or detected errors. 

 As stated before, there is no online workload estimation 

by behavior patterns in place. Therefore, (Maiwald and 

Schulte 2011) take the approach to predict the workload on 

the basis of task models for different task situations and 

current mental resource demands. By means of a resource 

model the assistant system is enabled to predict the opera-

tor’s workload for a certain task situation (see figure 6). 

Cases of an impending overtaxing can thereby be identified 

beforehand and prevented by resource-oriented planning of 

the machine-initiated interactions. E.g. if the pilot is cur-

rently performing a radio transmission his audio processing 

resources are occupied and therefore the assistant system’s 

information should be passed on via a message display. 

But in this case for example, the assistant system also 

needs to check if the pilot is currently watching the desig-

nated display. In addition to that, it would be useful to 

check if the pilot has noticed or read the corresponding 

message. 

Improving Gaze Tracking Data by Task Context 

For the above-mentioned reasons our assistant systems 

need access to gaze tracking data. In a realistic aircraft 

cockpit (cf. figure 1) it is very difficult to achieve gaze data 

quality that is accurate enough to determine in which peri-

od of time which object was looked at. This is especially 

true in the case of online data processing, which is needed 

for assistant system decision-making. Therefore, the data 

quality has to be enhanced by feedback loops as shown in 

the lower part of figure 5. Its upper part is dedicated to 

pilot task detection by gaze tracking, which includes the 

recognition of fixations out of the eye movement data as 

well as the mapping of fixations to objects in the simulator 

cockpit (e.g. an aircraft symbol in the moving map dis-

play). This data can also be used to make assumptions 

about the pilot’s current situation awareness (e.g. he/she 

has read a certain message or not) (Maiwald, Benzler, and 

Schulte 2010). 

Figure 5: Using and enhancing gaze data by task context 

 The data quality improvement and error correction shall 

be accomplished by applying strategies known from hu-

man visual perception, which are the stimulus-based bot-

tom-up strategy (Yantis and Jonides 1984) and the 

knowledge-based top-down strategy (Land and Lee 1994).  

 We intend to use Kalman Filtering for fixation correc-

tion towards areas in the display that hold relevant infor-

mation for the pilot. The detection of the currently pro-

cessed task by recognizing gaze routines is a candidate for 

Hidden Markov Modeling. More details about this can be 

found in (Strenzke et al. 2011).  



Figure 6: Mental resource-oriented information channel selection for assistant system initiative (Maiwald and Schulte 2011) 

A More Complete Human Operator Model  

When modeling the behavior of a rational agent, a world 

model has to be built. An assistant system is such a rational 

agent, but it has the specialty that it also needs a model of 

the human operator to be assisted. He/she can be seen as a 

rational agent as well, because we need the model rather to 

generate reference behavior (to which the actual measured 

behavior can be compared), than to predict the actual hu-

man behavior. The reason for this is that an assistant sys-

tem has its focus on recognizing erroneous and suboptimal 

behavior as well as high workload situations. Therefore it 

needs to generate a reference behavior dynamically for 

current situation, to which the actual behavior can then be 

compared. In contrast to this, the prediction of actual hu-

man operator behavior (e.g. human has high workload, will 

make certain error in near future) is not so important and 

also much more difficult to cover with a human operator 

model. 

 In the previous section it has been shown that there are 

numerous interdependencies between the operator’s goals, 

plans, actions, behavior, errors and workload. But the cur-

rent approaches to assess these constructs rely only on 

simple operator models, which focus only on a specific 

part of his/her cognitive state and process. A more com-

plete human operator model would allow more thorough 

reasoning upon the human’s cognitive state and cognitive 

process. E.g. if there are assumptions about his/her goal(s), 

it is of course easier to assume what he/he is planning. 

Also, in case there are assumptions about his/her plan, the 

recognition of the current action is facilitated. 

 In the following we depict our model of the Cognitive 

Process (Onken and Schulte 2010) and then add relevant 

psychological constructs to it in order to enable more so-

phisticated assistant system decisions upon a model of the 

human operator’s cognitive process. 

The Cognitive Process 

Figure 7 shows the Cognitive Process that is already used 

by the UBM to build knowledge-based assistant system 

behavior as well as cognitive agents (Artificial Cognitive 

Units, ACUs) for Uninhabited Aerial Vehicle guidance. It 

has not been used to model the cognitive process of a hu-

man operator so far. Due to its dedication to beliefs, goals, 

plans, and actions (instructions), the Cognitive Process 

model seems well-suited to unite the above-mentioned 

approaches to operator modeling and incorporate their 

interdependencies. A detailed description of the Cognitive 

Process can be found in (Onken and Schulte 2010). 

Figure 7: The Cognitive Process (Onken and Schulte 2010) 

Adding Behavior, Workload, and Error 

As we have shown in the overview of our current research 

topics, a model of a human operator needs to include con-

structs of behavior (which includes more than the intended 

action, e.g. sweating), mental workload, as well as errors. 

Figure 8 shows the enhanced model differentiated by the 

human operator’s conscious internal world and the external 

world, in which his actual behavior (e.g. eye movement, 

manual interactions) occurs and can be measured. 

Workload may induce errors (deviations) in the different 

steps of the cognitive process. Of course, workload is not 

the only source of human error, but for a start we focus on 

it in this application-driven model. 

 The error taxonomy of (Reason 1990) allows the attribu-

tion of error origin and temporality. Mistakes are made 

during planning phase, lapses are missed actions (e.g. 

memory problems), and slips refer to errors in the task 

execution. The mentioned three error types are mapped to 

the steps in the Cognitive Process as follows. Mistakes 

happen during planning (ep), lapses during action selection 

(ea), and slips during action execution, i.e. behavior (eb). 

Furthermore, errors can take place during information 

processing (ei) and goal inference (eg).  



  

Figure 8: A more complete model of the human operator 

Future Work 

In future research we will explore implementation ap-

proaches for the human operator model presented here. 

Our novel cognitive system architecture (Cognitive System 

Architecture with a Central Ontology and Specific Algo-

rithms, COSA²) is based on the Cognitive Process (see 

figure 7) and able of deliberative planning  (Brüggenwirth, 

Pecher, and Schulte 2011).  Integrating a model of the 

human operator into COSA² could either be achieved by 

updating the system’s beliefs about the cognitive state of 

the human operator or by adversarial or cooperative plan-

ning. The latter means that the machine and the human 

player have the proposition to solve a problem fully coop-

eratively and are also able to anticipate each other’s behav-

ior. In this case the actions of the human and of the ma-

chine can be calculated by means of a uniform planning 

process. Planning can be seen as top-down determination 

of plans out of beliefs and goals. The current task or action 

can be recognized by probabilistic methods as mentioned 

above (facilitated by assumptions about the human’s plan) 

and then be induced as a constraint into the planning prob-

lem. The exploitation of feedback loops as in the men-

tioned example remains future research work as well. 
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