
Enhancing Search for Satisficing Temporal Planning
with Objective-driven Decisions

J. Benton† and Patrick Eyerich‡ and Subbarao Kambhampati†

† Dept. of Computer Science and Eng. ‡ Department of Computer Science
Arizona State University University of Freiburg
Tempe, AZ 85287 USA Freiburg, Germany

{j.benton,rao}@asu.edu eyerich@informatik.uni-freiburg.de

Abstract

Heuristic best-first search techniques have recently enjoyed
ever-increasing scalability in finding satisficing solutions to a
variety of automated planning problems, and temporal plan-
ning is no different. Unfortunately, achieving efficient com-
putational performance often comes at the price of clear guid-
ance toward solution of high quality. This fact is sharp in
the case of many best-first search temporal planners, who of-
ten use a node evaluation function that is mismatched with
the objective function, reducing the likelihood that plans re-
turned will have a short makespan but increasing search per-
formance. To help mitigate matters, we introduce a method
that works to progress search on actions declared “useful”
according to makespan, even when the original search may
ignore the makespan value of search nodes. We study this
method and show that it increases over all plan quality in
most of the benchmark domains from the temporal track of
the 2008 International Planning Competition.

Introduction
Heuristic best-first search planning methods have been the
de facto standard for generating scalable satisficing planning
algorithms for over a decade. This success has lead to us-
ing these techniques in a broad range of problems, including
temporal planning. In temporal planning problems, actions
have duration and the objective function (fOF) is typically
to minimize plan makespan (i.e., fOF is plan makespan).
However, as recently pointed out by Benton et al. (2010),
using makespan to evaluate search nodes (i.e., in typicalA∗-
like fashion with f = g + h) can significantly reduce the
scalability of search. Instead, most temporal planners tend
to avoid directly searching on makespan and use other mea-
sures for node evaluation to achieve scalable performance
(c.f., Sapa (Do and Kambhampati 2003) and TFD (Eyerich,
Mattmüller, and Röger 2009)). Unfortunately, taking this
approach can come at the cost of plan quality—one cannot
necessarily expect a low makespan when the node evalua-
tion of search is mismatched with the objective function.

Although the strategy of optimizing for fOF using a
search not explicitly guided by fOF might seem quixotic, we
have argued elsewhere (Cushing, Benton, and Kambhampati
2011) that this is, in fact, the only reasonable thing to do
when there is a high cost-variance. Indeed, in makespan
planning we have g-value plateaus over fOF (i.e., where
gOF does not change from the parent to child node and

fOF = gOF +hOF) and hence an implied infinite cost vari-
ance. Nevertheless, while strategies that use a node evalu-
ation function other than fOF can improve scalability, and
may find reasonably low makespan plans using branch-and-
bound search, the quality improvement within a given time
limit may not be sufficiently high.

To try to improve matters, we adopt a general way of
pushing the base-level search toward higher quality plans
according to fOF . We seek to augment search approaches
where f 6= fOF and f is the node evaluation function for
an A∗-like best-first search. We adapt the concept of “use-
lessness” introduced by Wehrle, Kupferschmid, and Podel-
ski (2008), who prune away certain states from consider-
ation that appear to offer no benefit for finding a solution
toward the goal. In specific, our approach evaluates search
nodes according to their degree of “usefulness” on fOF it-
self.

The idea is to provide a window into the objective func-
tion while still maintaining scalability. This is done, in par-
ticular, on areas of the search space that appear to have
zero-cost according to fOF . For makespan, this lets us con-
sider parallelizing actions as much as possible (i.e., adding
an action that runs in parallel with others often has no ef-
fect on makespan, so it is highly desirable for minimiza-
tion). Among nodes generated from a zero-cost (i.e., zero-
makespan) action, we choose the node with high usefulness
for immediate expansion, a local lookahead that allows the
main search algorithm to then evaluate its children on the
evaluation function f . In the end, we get a final heuristic
search that proceeds in two steps: (1) a best-first search step
that uses the planner’s usual open list structure and search
(i.e., including its usual node evaluation function f used by
the search), and (2) a local decision step where the most use-
ful search states (according to fOF) are expanded.

The rest of this paper proceeds as follows. After an
overview of background and notation, we discuss the idea of
operator usefulness. We then show how to embed local de-
cisions on usefulness into a best-first search framework. Fi-
nally, we present empirical analysis showing the quality ben-
efits that can be gained by using this approach in the plan-
ner Temporal Fast Downward (TFD) (Eyerich, Mattmüller,
and Röger 2009), a state-of-the-art best-first search heuristic
planner for temporal planning.

Background and Notation
Before going into our technique, we must first cover some
background information and notation on best-first search,
temporal planning, g-value plateaus and useless search op-
erators.

Best-First Search
Best-first search is a well-known algorithm for searching
over a (possibly infinite) state space from an initial state I
to a state that entails the goal G (Pearl 1984). We provide
a brief overview of it while introducing notation. The algo-
rithm, shown in Algorithm 1, provides an open list, where
the best-valued state may be removed, and a closed list
which allows for duplicate detection.

It begins with the initial state I in the open list. It then re-
peats the following process: The best-valued state (accord-
ing to an evaluation function f) s is taken. If s is not in the
closed list it is added, otherwise we skip this state (as it has
already been explored). If s |= G, then s is returned as a
solution, otherwise s is expanded. This means all possible
successor states (also known as child states) are generated.
To generate a child state we use an operator o = 〈p, e, c〉,
where p is a set of conditions for the applicability of o, e is
a transformation function on states (i.e., effects), and c is a
constant-valued cost. o is considered applicable on s (the
parent state) if s |= p. Provided the conditions of o are met,
we define o(s) = s′ to be the child state of s, such that s′ is
the state resulting from the transformation function e on s.
Each child state is evaluated according to f . In the best-first
search algorithm A∗, f(s′) = g(s′) + h(s′), where g is a
function returning the current (known) cost of s′ and h is a
function returning a heuristic distance from s′ to the least-
cost goal node. After evaluation, s′ is added into the open
list.

Importantly, the function f and its components g and h,
are often defined in terms of the objective function of the
search. For instance, in cost-based classical planning, where
we seek to minimize the cost of a plan, we can define f , g,
and h in terms of the summed costs of actions in a plan. Pro-
vided h always returns a lower bound on the cost to a goal,
this guarantees optimal solutions. Even when this is not
the case, the conventional wisdom and empirical evidence
points to this yielding better-quality solutions than metrics
like search distance (c.f., Richter and Westphal (2010)).

Temporal Planning
In temporal planning, actions can run concurrently with
one another and have duration, and the (typical) objec-
tive is to minimize plan makespan. For simplicity, we as-
sume a temporal semantics similar to Temporal GraphPlan
(TGP) (Smith and Weld 1999). That is, action conditions
must hold through their entire duration and effects can only
change at the end of an action (i.e., they cannot be changed
by some other action running in parallel).

For our discussion, we assume planners with a forward
state-space search space like that of Sapa (Do and Kamb-
hampati 2003) and Temporal Fast Downward (TFD) (Ey-
erich, Mattmüller, and Röger 2009), where each state has
a time stamp t that defines what point in time actions are

Algorithm 1: Best-first search.
1 open.add(I)
2 closed← ∅
3 while open is not empty do
4 s← open.remove best f()
5 if s 6∈ closed then
6 closed.add(s)
7 if s |= G then
8 return s as solution
9 forall the child states s′ of s do

10 if s′ is no dead-end then
11 open.add(s′)
12 return no solution found

added and an event queue (or agenda), that defines specific
decision epochs where actions end. A special search oper-
ation called advance time increases t from its current value
to the next (i.e., smallest) decision epoch and applies the ef-
fects of the action at that time point.1

Best-first search satisficing temporal planners use a range
of techniques to speed up search. We cannot go over all
of those here. It is important, however, to understand how
these planners might go about minimizing makespan. We
are concerned with two related questions (1) how to define
the cost of search operations and (2) how to define g-values
and h-values. To answer (1), we consider the objective func-
tion (i.e., makespan minimization). Any search operation
that adds to makespan has a cost equal to the amount of
makespan added, all others do not. From this decision, it
follows that we should define g as the makespan of the par-
tial state, gm, and h as the remaining “makespan-to-go”, hm.
This makes fm = fOF (where we introduced fOF as the ob-
jective function in the introduction).

Some planners consider g to be the time stamp of a state,
which we call gt, and the remaining makespan from that
point to be estimated by a heuristic ht (Haslum and Geffner
2001). When summed, these turn out to be equal values,
i.e., gt + ht = gm + hm. Other planners (such as Sapa (Do
and Kambhampati 2003)) have an evaluation function that
does not return makespan values.2 Since no known compre-
hensive studies have been conducted on various definitions
of f for temporal planning, it is difficult to say what effect
this has on final plan makespan. However, as we pointed
out earlier, some evidence in cost-based planning points to a
negative effect (Richter and Westphal 2010).

g-value Plateaus
A g-value plateau is a region of the search space where the
evaluation of states with respect to g does not change from
parent to child. In state-space temporal planners, as high-
lighted by Benton et al. (2010), g-values can occur in abun-

1Note that some forward state-space temporal planners do not
use this exact method for search (c.f., Coles et al. (2009)), but we
frame our discussion in this way since the planner we use for our
experiments (Temporal Fast Downward) does.

2Also note that the Temporal Fast Downward planner uses gt as
its g-value, and a heuristic on the sum of action durations.

l1 l2 l3 l4

l0

1h

2h

3h

4h

3
h

1
h

1h

t1 t2 t3 t4

Figure 1: Layout for the example problem.

t1: l1�l0

4h

t2: l2�l0

3h

t3: l3�l0

1h

t4: l4�l0

1h

t0

Figure 2: A makespan-optimal plan for the example.

dance and can cause problems for best-first search. To see
this, let us look at an example.
Example: Consider the simple problem shown in Figure 1
of moving trucks in a logistics domain. We have 5 loca-
tions {l0, . . . , l4} all connected in the following way: Driv-
ing from location l1 to l0 takes 4 hours, from l2 to l0 takes
3 hours, and from l3 or l4 to l0 takes 1 hour. We can also
drive from l4 to l2 in 2 hours, from l3 to l2 in 1 hour, and
from l2 to l1 in 3 hours. Trucks t1, . . . , t4 start respectively
at l1, . . . , l4. The goal is to move all the trucks to l0. Each
drive action has the condition that the truck must be at the
appropriate location and the effect that the truck is at its des-
tination. An optimal solution to this planning problem is
shown in Figure 2.

Given that every optimal solution requires that, at time t0,
we begin driving t1 from l1 to l0, let us assume a planner
is expanding the search state with this action. In this case,
every child that drives one of the other trucks (and the ad-
vance time operator) has an equal g-value. In fact, we would
end up with a fairly expansive g-value (and f -value) plateau
where we must try every possible way of adding the various
drive actions across all decision epochs until we reach a plan
with (an optimal) makespan of 4 hours.

Useless Search Operations
Useless operators are defined by Wehrle, Kupferschmid, and
Podelski (2008) as those operators that are unnecessary for
finding optimal solutions from a state s. In sequential clas-
sical planning with unit costs, you can further formalize the
notion of useless operators by taking d(s) as the optimal dis-
tance to a goal state from s and dō(s) as the optimal distance
to a goal state without an operator o (i.e., d(s) is a perfect
heuristic and dō(s) is a perfect heuristic without the operator
o). If dō(s) ≤ d(o(s)) then o is a useless operator. To un-
derstand why consider that if dō(s) ≤ d(o(s)), then it must

also be the case that d(s) ≤ d(o(s)). Since this is true if and
only if an there are no optimal plans that start from s, omust
be useless.

Unfortunately, this definition is not easily transferable to
planning for makespan minimization (at least not in planners
like TFD) where we have zero-cost search operations. Using
the original definition, search operations would be consid-
ered useless when they were not (e.g., when adding a useful
operator that runs parallel to an optimal plan we would get
no increase in makespan). Instead, we can give a weaker
criterion for uselessness.

Definition 1. An operator o is guaranteed makespan-useless
when dōm(s) < dm(o(s)), where dm(s) returns the remain-
ing makespan of a plan.

This definition lets some useless search operations to fall
through the cracks, but it catches operators that will strictly
increase makespan when added to the plan.

This idea can be extended to any heuristic, such that hō(s)
represents running the heuristic without the operator o from
state s. Wehrle, Kupferschmid, and Podelski (2008) call op-
erators declared useless by hō(s) ≤ h(o(s)) relatively use-
less operators in the sequential classical planning setting.
We use hōm(s) < hm(o(s)) to define possibly relatively
makespan-useless operators.

Useful Search Operations
In contrast with a useless search operator, which should
never be explored, a useful search operator is one whose ab-
sence would lead to worse plan quality. We can find a useful
operator by using the same method for finding useless op-
erators. In other words, operator o is useful in a state s if
dō(s) > d(o(s)). We say the state o(s) = s′ is useful if the
operator generating it is useful. In this section we discuss
how we can use this notion to enhance satisficing planners
using best-first search.

Integrating Usefulness with Satisficing Planning
To see how we might use the concept of operator usefulness,
let us revisit the example from Figure 1. Every optimal plan
will need to include the operator that drives t1 from l1 to
l0, starting from time 0. Therefore, as before, we optimisti-
cally assume that the search algorithm finds (and chooses to
expand) a state se that already includes this operator. Oth-
erwise we make no assumptions on the definition of g- or
h-values or what order states would be expanded in during a
planner’s regular (perhaps modified) best-first search.

Consider the possibility of using operator usefulness here.
Let us assume for a moment that we can find dm and dōm
(i.e., the perfect heuristic on makespan). We want to find
guaranteed makespan-useful operators, or operators owhere
dōm(s) > dm(o(s)). In our example on the state se, we
would find the operators depicted in Figure 3 as guaranteed
makespan-useful. Again, we cannot say whether an oper-
ator whose absence does not change makespan is useful or
useless.

Since the guaranteed makespan-useful search operations
are within a makespan g-value plateau, they are locally with-
out cost according to the makespan objective. We would

t1: l1�l0

4h

t2: l2�l1

3h

t2: l1�l0

4h

t3: l3�l0

1h

t4: l4�l0

1h

t0

(a) Without t2: l2�l0

t1: l1�l0

4h

t2: l2�l0

3h

t3: l3�l0

1h

t4: l4�l2

2h

t4: l2�l0

3h

t0

(b) Without t4: l4�l0

Figure 3: Plans resulting from removing useful operators.

like to greedily seize the opportunity to expand the best pos-
sible search operator, keeping in mind that, since we have
no guarantees on search behavior, the possibility of expand-
ing a certain node may never present itself again. The idea
is to generate a short “tunnel” in areas of original best-first
search that provide zero-cost search operations according to
the objective function (which is not necessarily the evalua-
tion function used for nodes).

Notice that some operators are more useful than others.
For instance, if we are disallowed from driving t2 from l2
to l0, the makespan of the plan increases by 3 hours. In
contrast, if we cannot drive t4 from l4 to l0 the makespan
increases by just 1 hour. Looking at Figure 3 again, indeed
driving t2 from l2 to l0 is the most useful operator, as we
lose the most time when we do not include it. Therefore,
we would want to choose this operator before all others to
include in the plan.

More formally, at a state s, we can define the makespan
heuristic degree of usefulness of an operator o as υo(s) =
hōm(s) − hm(o(s)). With this information, we can create a
new search algorithm that interleaves local search decisions
using degree of usefulness on makespan g-value plateaus
(i.e., plateaus on gm) and any best-first search strategy. We
show how the interleaving would work when combined with
a best-first search strategy in Algorithm 2

Up to line 12, the algorithm follows regular best-first
search. At that point, generated child states are split from
the regular search and placed into a υlist if they are on a gm-
value plateau and are possibly makespan-useful. Otherwise,
they are placed in the regular open list. On line 18, the algo-
rithm begins the local decision stage. If there are any nodes
in the υlist (and there exists at least one node that has a value
unequal to the others), the most useful node is removed and
expanded, its child states placed directly into the open list.
Finally, the rest of the υlist contents are placed into the open
list. On the next iteration on line 4, the υlist is cleared.

Evaluation
We have shown how to integrate our strategy for making lo-
cal decisions into best-first search. In this section, we eval-
uate this approach in the planner Temporal Fast Downward
(TFD) (Eyerich, Mattmüller, and Röger 2009). The best-
first search in TFD uses a modified version of the context-
enhanced additive heuristic (Helmert and Geffner 2008) that
sums the durations as operator costs, meaning the heuris-
tic captures a sequential view of actions. With this heuris-

Algorithm 2: Local decisions on degree of usefulness
interleaved with best-first search for temporal planning.

1 open.add(I)
2 closed← ∅
3 while open is not empty do
4 υlist← ∅
5 s← open.remove best f()
6 if s 6∈ closed then
7 closed.add(s)
8 if s |= G then
9 return s as solution

10 forall the child states s′ of s do
11 if s′ is not dead-end then
12 if gm(s) = gm(s′) and vo(s) ≤ 0 then
13 υlist.add(s′)
14 else
15 open.add(s′)
16 if υlist is not empty &
17 ∃s1, s2 ∈ υlist: o1(s) = s1,
18 o2(s) = s2 & υo1(s) < υo2(s) then
19 s′′ ← υlist.remove best vo
20 closed.add(s′′)
21 if s |= G then
22 return s as solution
23 forall the child states s′′′ of s′′ do
24 if s′′′ is not dead-end then
25 open.add(s′′′)
26 open← open ∪ υlist
27 return no solution found

tic, hceadur, the planner uses a state’s timestamp as its g-value
(i.e., gt) for a final f = gt + hceadur. Its search strategy uses
preferred operators as defined in its classical planning coun-
terpart, Fast Downward (Richter and Helmert 2009). TFD
is an anytime planner, searching until it exhausts the search
space or it reaches a timeout limit. It also reschedules solu-
tions after it finds them in an attempt to minimize makespan
(so a sequential plan may be rescheduled to a highly parallel
one).

To detect possibly makespan-useful operators, we used
the heuristic produced by Benton et al. (2010) for TFD in
their original study of g-value plateaus. It uses a modified
version of hceadur to capture causal and temporal constraints
between actions, detected during the extraction of a relaxed

 80

 90

 100

 110

 120

 130

 140

 150

 0 200 400 600 800 1000 1200 1400 1600 1800

S
c
o
re

Time (sec.)

TFD
TFD

gm
useful

+TFD
gm

useful
+TFD

Figure 4: Anytime behavior showing the change in IPC
score as time progresses.

plan. These constraints are encoded in a Simple Temporal
Network (STN). The makespan of the schedule produced by
the solution to the STN is returned as a heuristic estimate.

We implemented Algorithm 2 into TFD for a planner we
call TFDgm

useful. Additionally, we generated a two-phase ver-
sion of the planner. This variant employs lazy evaluation
in the original TFD planner in a first phase. This means
each state’s parent heuristic is used (rather than its own
value). After a solution is found (or 8 minutes has passed,
whichever comes first) the planner restarts into a second
phase using TFDgm

useful. It turns out that, using lazy evalua-
tion, TFD tends to find (lower quality) solutions fast. The
search uses the plan found in the first phase (if any) to prune
the search space of the second phase (which focuses on find-
ing higher quality plans using the useful actions technique).
This is similar to the strategy employed by LAMA, though
that planner restarts with different weights in a weighted A*
search (Richter and Westphal 2010). We call this version
+TFDgm

useful. Finally, to help discover the benefits granted by
the two-phased search, we implemented +TFD, which uses
TFD with lazy evaluation until a solution is found (or 8 min-
utes has passed) then switches to TFD without lazy evalua-
tion.

Along with the original TFD, we tested all these vari-
ants on the temporal domains from the 2008 International
Planning Competition (IPC-2008) (except modeltrain, as in
our tests TFD is unable to solve more than 2 problems
in this domain, depending on its settings). This bench-
mark set is known to contain plateaus on gm (Benton et
al. 2010).3 The experiments were run on a 2.7 GHz AMD
Opteron processor, with a timeout of 30 minutes and a mem-
ory limit of 2 GB.

Recall that, to find whether a search operator is useful re-
quires a heuristic to be run on both the parent (without con-
sidering the operator) and the child (using the normal heuris-
tic). Let us analyze about how many times we are running
heuristics in TFDgm

useful and the second phase of +TFDgm
useful

3We used the elevators-numeric and openstacks-adl variants for
our results on the respective domains following the IPC-2008 rules
by using the domain variant that all our planner versions did best
in.

Domain TFD +TFD TFDgm
useful +TFDgm

useful
Crewplanning 22.44 29.64 22.57 29.66
Elevators 13.88 14.16 15.40 15.79
Openstacks 25.79 27.22 27.81 28.78
Parcprinter 8.73 8.74 8.47 8.50
Pegsol 28.73 28.73 28.81 28.81
Sokoban 10.93 10.88 10.79 10.79
Transport 5.06 5.06 4.68 4.68
Woodworking 19.72 19.71 19.93 19.73
Overall 135.28 144.13 138.48 146.75

Table 1: Results using the measure from IPC 2008.

Domain TFD +TFD TFDgm
useful

Crewplanning (24) 8% (30) 0% (24) 7%
Elevators (19) 7% (19) 6% (20) 3%
Openstacks (30) 13% (30) 6% (30) 4%
Parcprinter (13) -4% (13) -4% (13) 1%
Pegsol (30) 0% (30) 0% (30) 0%
Sokoban (11) -1% (11) -1% (11) 0%
Transport (6) 9% (6) 9% (6) 0%
Woodworking (26) 7% (26) 7% (25) -1%
Total (159) 6% (165) 3% (159) 3%

Table 2: Percentage improvement made by +TFDgm
useful, com-

paring plans solved by both approaches (number of plans
solved by both approaches shown in parenthesis).

as compared to the original TFD. Assume n nodes are gen-
erated by the search with e nodes expanded and a branch-
ing factor of b. We will always run hceadur on every child
node, so TFD would run this heuristic n times. Assuming
a percentage of states in g-value plateaus, r, we must run
the modified (and slower) makespan heuristic in TFDgm

useful
about b× e× r + n× r times. Therefore, we may expect a
slowdown in finding solutions from TFD to TFDgm

useful.
To help see whether this greatly effects the search, we

measured the quality and coverage across all benchmarks
over time using the scoring system from the IPC-2008,
which captures a notion of coverage and quality by summing
the values of all Q ∗ /Q, where Q∗ is the makespan of the
best known solution for a problem and Q is the makespan
found by the planner for the problem (unsolved instances
get a score of 0). The results of this appear in Figure 4.
As expected, the scores for TFDgm

useful start lower than TFD,
but at about 10 minutes dominate it. On the other hand,
+TFDgm

useful dominates +TFD very quickly. Given that +TFD
and +TFDgm

useful use the same initial search (i.e., TFD with
lazy evaluation), this provides an indication that the useful
actions lookahead technique used in combination with the
two-phase search is more effective than applying the useful
actions technique alone. Hence, with a computational time
limit we have a greater likelihood of finding a better solu-
tion if we stop +TFDgm

useful than +TFD (and after around 10
minutes, the same holds true for TFDgm

useful vs. TFD).
The final IPC scores for all four variations are found in

Table 1. Notice that +TFDgm
useful is better than the other ap-

proaches across problems. Looking carefully across the do-

mains, we can see the individual increases in IPC score are
fairly minor between TFDgm

useful and +TFDgm
useful in all but the

Crewplanning domain, for which the lazy heuristic evalu-
ation scheme tends to work quite well. +TFD shows that
this improvement appears to come from using lazy evalua-
tion for finding a first solution. As far as the IPC metric is
concerned, we get better values when using useful actions
(i.e., between TFD vs. TFDgm

useful and +TFD vs. +TFDgm
useful)

in Crewplanning, Elevators, Openstacks, Pegsol, and Wood-
working.

To get a better view of the plan-for-plan quality improve-
ments, we compare direct makespan decreases (i.e., quality
increases) on the problems solved by TFD, +TFD, TFDgm

useful
and +TFDgm

useful. Table 2 shows the percentage improvement
on each domain as compared with +TFDgm

useful for problems
solved by both planners. It is evident that +TFDgm

useful gives
better quality plans over the usual TFD search in most of the
domains (all but Parcprinter and Sokoban, for which there is
a small decrease in plan quality). We get the largest increase
in Openstacks, a domain where sequential plans are often
easy to find (at least with TFD) but less easy to reschedule
into parallel ones.

Related Work
For this work, we sought to give some degree of remedy for
maintaining quality while employing scalability techniques
for searching over zero-cost search operators. As men-
tioned earlier, others have noticed this problem. Richter and
Westphal (2010) provide an investigation into the issue of
variable-cost operators in the best-first search classical plan-
ner LAMA, where they notice better scalability (but lower
quality) when ignoring search operator costs completely ver-
sus taking costs into account. The work most related to
ours was done by Benton et al. (2010), where they study the
problem of g-value plateaus that occur in temporal planning
in-depth. Cushing, Benton, and Kambhampati (2011) also
study the broader problem of searching using variable-cost
operators, while Thayer and Ruml (2009) propose a search
method for bounded-suboptimal search with variable opera-
tor costs.

Our approach for tackling the problem is related to two
common enhancements to best-first search for satisficing
planning: (1) methods that permanently or temporarily
prune search spaces using heuristics and (2) methods that
perform lookaheads. The prime examples of pruning search
using heuristics are helpful actions (Hoffmann and Nebel
2001) and preferred operators (Richter and Helmert 2009).
These techniques find a relaxed solution to a planning prob-
lem and exclude all operators that fail to achieve values
which are part of it, marking included operators as helpful
or preferred.

Interestingly, the idea of helpful actions was extended
upon to generate a lookahead technique in the planner
YAHSP (Vidal 2004). This planner attempts to use the en-
tire relaxed solution to perform a lookahead. That is, it tries
to use each action in the relaxed plan, applying them in or-
der to reach deeper into the search space. It turns out that
this approach works quite well to increase solution coverage

across benchmarks, but does not do as well in terms of the
quality of the solutions found. Others have expanded on this
idea by attempting to find relaxed plans that would perform
better for lookahead (Baier and Botea 2009), and still others
have used a more of a local search approach for probing the
search space based on solutions to relaxed plans (Lipovetzky
and Geffner 2011).

Finding whether an operator is useful or useless also has
connections to landmarks (Hoffmann, Porteous, and Sebas-
tia 2004). It requires that we run the heuristic without an
operator o at state s. For most reasonable heuristics, if we
get a value of infinity when excluding o from its computa-
tion, then o is a landmark to finding a solution from s.

Summary and Future Work
We have shown a novel method for enhancing heuristic best-
first search for satisficing planning. Our approach focuses
on finding plans of higher quality by exploiting the notion
of usefulness on the objective function fOF . The idea is to
turn the search toward solutions of higher quality, even when
the node evaluation function differs from fOF . In particu-
lar, our technique performs a lookahead on useful operators
over g-value plateaus in temporal planning, where the ob-
jective is to minimize makespan. We applied this method
to the best-first search of the planner Temporal Fast Down-
ward (TFD). Our experiments on the variants TFDgm

useful and
+TFDgm

useful show that using this method, we can achieve bet-
ter quality solutions.

For future work, we are investigating how to apply similar
approaches to cost-based classical planning, where often the
biggest problem is not g-value plateaus, but variable cost op-
erators. Further, we are considering ways of exploiting the
connection to local landmarks to enhance the search further.

Acknowledgements We thank Robert Mattmüller for dis-
cussions on this work. This research is supported in part by
ONR grants N00014-09-1-0017 and N00014-07-1-1049, the
NSF grant IIS-0905672, and by DARPA and the U.S. Army
Research Laboratory under contract W911NF-11-C-0037.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Proc. ICAPS
2009.
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.;
and Kambhampati, S. 2010. G-value plateaus: A challenge
for planning. In Proc. ICAPS 2010.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009.
Extending the use of inference in temporal planning as for-
wards search. In ICAPS.
Cushing, W.; Benton, J.; and Kambhampati, S. 2011. Cost-
based satisficing search considered harmful. In Proceed-
ings of the Workshop on Heuristics in Domain-independent
Planning.
Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. JAIR 20:155–194.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and
numeric planning. In Proc. ICAPS 2009, 130–137.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. ECP 2001, 121–132.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In ICAPS.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA plan-
ner: Guiding cost-based anytime planning with landmarks.
JAIR 39:127–177.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. IJCAI 1999, 326–
337.
Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In ICAPS.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS 2004, 150–159.
Wehrle, M.; Kupferschmid, S.; and Podelski, A. 2008.
Useless actions are useful. In Proc. ICAPS 2008, 388–395.

