
Heuristics with Choice Variables:
Bridging the Gap between Planning and Graphical Models

Emil Keyder
INRIA, France

Miquel Ramı́rez
Universitat Pompeu Fabra
08018 Barcelona, Spain

Héctor Geffner
ICREA & Universitat Pompeu Fabra

08018 Barcelona, Spain

Abstract

Motivated by the goal of applying inference techniques used
in graphical models to planning, we introduce a novel heuris-
tic based on the idea of choice variables, implicit multivalued
variables to which no plan can assign more than one value.
We adapt the recursive conditioning algorithm for calculat-
ing the probability of evidence in Bayesian networks to ef-
ficiently compute the values of this heuristic by considering
problem structure and reasoning by cases about different as-
signments to these variables. The resulting algorithm is expo-
nential in the treewidth of the graph describing the causal re-
lationships between the choice variables of the problem. We
present some examples of the computation of the heuristic,
and discuss the issues faced in applying it to existing plan-
ning benchmarks, a goal which for now remains elusive.

Introduction
Many recently proposed techniques in planning make use of
invariants such as landmarks and mutexes. Here, we con-
sider a new type of invariant in planning: implicit multival-
ued variables to which a value can be assigned at most once
by a plan. These variables, which we call choice variables,
are different from standard multivalued variables in that they
do not represent properties of the current state that may
change in future states, but rather commitments made by the
planner to solve the problem while accepting the constraints
that a choice imposes upon the space of possible plans. In-
deed, they are more similar in spirit to the variables used
in graphical models such as constraint satisfaction problems
and Bayesian networks, in which a single value that is con-
sistent with the rest of the solution to the problem, or a single
most likely instantiation, must be chosen for each variable.

Choice variables can be used as a tool for improving the
quality of planning heuristics, by forcing them to respect
features of a problem that otherwise might not be present in a
relaxation. Consider a problem in which an agent must travel
from an initial location to one of a set of markets and buy
a set of items. In an optimal plan, the agent moves from its
initial location to a market which minimizes the sum of the
movement cost and the total cost of the items at that market.
The delete relaxation of this problem, however, throws away
information that restricts the agent to traveling to a single
market. When movement costs are low, the optimal delete
relaxation plan is then to move to all markets that carry some

required item at the lowest price and buy each at a different
market. The knowledge that the set of markets constitutes a
choice variable, only one of whose values can be chosen,
allows us to improve the value of a delete-relaxation heuris-
tic by computing its value in several different versions of
the same problem, in each of which the actions allowing the
agent to move to all but one of the markets are excluded.
Taking the minimum among these estimations then gives a
strictly more informative estimate for the cost of the prob-
lem.

Since the number of possible assignments to a set of vari-
ables grows exponentially in the size of the set, the approach
of enumerating all possible assignments becomes unfeasible
as the number of variables increases. However, this effect
can be mitigated when the interactions between choice vari-
ables are in some way structured. Consider a variant of the
problem above in which there are several different types of
market, so the agent must first go to one of a set of markets
which sells food, then to one of a set of markets which sells
drinks, etc. As long as the sequence in which the different
types of markets must be visited is fixed, the choice of the
nth market to visit is dependent only on the market chosen
at step n− 1. In effect, the graph describing the interactions
between the choice variables of the problem forms a chain,
a structure that various algorithms for graphical models can
take advantage of to reduce the time complexity to linear in
the number of variables. Here we adapt the recursive condi-
tioning algorithm (Darwiche 2001) to the planning setting to
take advantage of such problem structure.

The resulting heuristic is related to factored approaches
to planning, which decompose a planning problem into
a set of factors and attempt to find plans for each that
can be interleaved with the plans for the others in order
to obtain a global solution (Amir and Engelhardt 2003;
Fabre et al. 2010). Such factors may share with each other ei-
ther fluents or actions; our approach is similar to the former,
with the shared fluents being the different values of choice
variables. The number of times that the value of a variable
shared between two factors must be changed has been inves-
tigated in this setting as a complexity parameter of the plan-
ning problem (Brafman and Domshlak 2006); our heuristic
can be seen as having a priori knowledge that this parameter
is limited to 1 for the set of choice variables. The behaviour
of our heuristic when this assumption about the problem is

not satisfied and constitutes a relaxation of the problem re-
mains to be investigated. While factored planning methods
attempt to find explicit plans for the global problem, we in-
stead obtain heuristic estimates of the cost of solving each
subproblem and combine these costs in order to obtain a
heuristic for the global problem.

In this work, we focus on how to use choice variables to
efficiently compute better heuristic estimates for planning
problems, and assume that the choice variables themselves
are given to the planner.

Background
We use the STRIPS formalization of planning, in which
problem states and operators are defined in terms of a set
of propositional variables, or fluents. Formally, a planning
problem is a 4-tuple Π = 〈F,O, I,G〉, where F is such
a set of variables, O is the set of operators, with each
operator o ∈ O given by a 3-tuple of sets of fluents
〈Pre(o),Add(o),Del(o)〉 and a cost cost(o), I ⊆ F is the
initial state, and G ⊆ F describes the set of goal states. A
state s ⊆ F is described by the set of fluents that are true in
that state. An operator o is applicable in s when Pre(o) ⊆ s,
and the result of applying it is s[o] = (s \Del(o))∪ Add(o).
The set of goal states is {s | G ⊆ s}, and a plan is a sequence
of operators π = o1, . . . , on such that applying it in I results
in a goal state. The cost of π is

∑n
i=1 cost(oi), with an op-

timal plan π∗ being a plan with minimal cost. The perfect
heuristic h∗(s) is the cost of an optimal plan for a state s,
and an admissible heuristic h is one for which h(s) ≤ h∗(s)
for all s.

The Choice Variables Heuristic
Choice variables in STRIPS can be defined as sets of fluents
such that each operator adds at most one of them, and such
that no plan applicable in the initial state contains more than
one operator that adds some fluent in the set:

Definition 1 (Choice variable in STRIPS) A choice vari-
able Ci = {d1, . . . , dn} consists of a set of fluents such
that maxo∈O |Add(o) ∩ Ci| = 1, and for any sequence of
actions π applicable in I , |πCi | ≤ 1, where πCi = {o ∈ π |
Add(o) ∩ Ci 6= ∅}.

Given a set of choice variables C = {C1, . . . , Cn}, an
assignment to C is a set v such that |v ∩ Ci| ≤ 1 for
i = 1, . . . , n. Note that an assignment does not necessarily
specify a value for each choice variable. For an assignment
v, a problem Πv that respects v can be obtained by remov-
ing from the problem all operators that add a value that is
inconsistent with v:

Definition 2 (Πv) Given a problem Π = 〈F, I,O,G〉, a set
of choice variables C, and an assignment v to C, let Πv =
〈F, I,Ov, G〉, where Ov is given by

Ov =
⋂
Ci∈C

{o ∈ O | (Ci \ v) ∩Add(o) = ∅} (1)

In other words, Ov consists of the set of operators that
either add no fluent in Ci or add the value d such that v ∩
Ci = {d}. When v ∩ Ci = ∅, no operator adding any value

of Ci is included in Ov. Given a base heuristic h, we can
define the choice variable heuristic hc in terms of h and the
problems Πv for v ∈ φ(C), where φ(C) denotes the set of
possible assignments to C:

hc = min
v∈φ(C)

h(Πv) (2)

Proposition 3 (Admissibility and optimality of hc)
Given a problem Π with a set of choice variables C and
an admissible base heuristic h, hc is also admissible.
Furthermore, if h is the perfect heuristic h∗, then hc = h∗.

Proof sketch: Let v be the assignment made to C by an op-
timal plan π∗. Then π∗ is also a plan for Πv, since it cannot
contain any operators assigning values to C other than those
in v, and h∗(Πv) = cost(π∗). The properties above follow
from the fact that hc is defined to be the minimum heuristic
value for any Πv. 2

While the value of hc can be computed as implied by
Equation 2, this requires that h be evaluated |φ(C)| times,
which is exponential in |C|. For problems in which choice
variables exhibit some degree of conditional independence,
however, it is possible to reduce the number of evaluations
by taking advantage of this structure, which we encode by
means of the choice variable graph.

The Choice Variable Graph
The choice variable graph (CVG) is a directed graph GC =
〈C ∪ CG, EC〉, where CG = ∪g∈G{Cg} is the set of unary
goal choice variables, Cg = {g}. In the following, Ci may
denote either one of the explicitly defined choice variables of
the problem or some Cg ∈ CG. To describe the construction
of GC , we first define the notion of conditional relevance:

Definition 4 (Conditional relevance) For p, q ∈ F and
B ⊆ F , p is conditionally relevant to q given B if:

• p = q, or
• There exists o ∈ O with p ∈ Pre(o), r ∈ (Add(o) ∪

Del(o)) \B, and r is conditionally relevant to q given B.

In other words, p is conditionally relevant to q given B
if whether p is true in the current state or not changes the
cost of achieving q, even when the truth values of fluents
in B are held constant. We denote this by rel(p, q, B). This
definition can easily be extended to sets of fluents: P ⊆ F
is conditionally relevant to Q ⊆ F given B if there exist
p ∈ P , q ∈ Q such that rel(p, q, B). The set of edges EC of
GC is then given by:

EC = {〈Ci, Cj〉 | rel(Ci, Cj ,∪Ck∈C\{Ci,Cj}Ck)}

In words, there is an edge e = 〈Ci, Cj〉 inGC ifCi is con-
ditionally relevant to Cj given the values of all other choice
variables. In what follows, we will assume that the CVGGC
given by this definition is directed acyclic.
GC encodes a set of relationships between its nodes sim-

ilar to those encoded by a Bayesian network, but rather
than associating with each node Ci a conditional probability

table (CPT) that specifies the probability of a node’s tak-
ing different values given the values of its parents, it asso-
ciates a conditional cost table (CCT) that specifies the cost
of the subproblem of making true some d ∈ Ci given an
assignment to its parent nodes Pa(Ci). For an assignment
v ∈ φ(Ci ∪ Pa(Ci)), this cost is that of a STRIPS problem
with goal G = v[{Ci}] and initial state s∪v[Pa(Ci)], where
the notation v[C ′] denotes the set of values in v which be-
long to the domain of some Ci ∈ C ′. The set of operators of
the problem is given by Ov, which is computed as in Defini-
tion 2.

Rather than calculating the costs of these subproblems
and storing them in a table beforehand, the CCT can be rep-
resented implicitly as a heuristic that estimates the costs of
these problems as they are needed. We denote the heuris-
tic values for such a subproblem with h(v[Ci] | v[Pa(Ci)]).
This notation parallels that used in Bayesian nets for the con-
ditional probability of a node being instantiated to a value
given the values of its parent nodes, and makes clear the
relationship between the subproblems considered here and
factors in Bayesian nets that consist of a node together with
all of its parents. The choice variable decomposition heuris-
tic hcd can then be written as follows:

hcd(Π) = min
v∈φ(C)

 |G|∑
i=1

h(gi | v[Pa(Cgi)]) + (3)

|C|∑
i=1

h(v[Ci] | v[Pa(Ci)])


hcd approximates the value of hc under the assumption of

acyclicity, discussed above, and the additional assumption
of decomposability, which allows us to obtain heuristic esti-
mates for the global problem by summing estimates for dis-
joint subproblems. It can be shown that under these two as-
sumptions, the values of hc and hcd are equal for certain base
heuristics, notably h∗ and h+. However, for non-optimal
delete relaxation heuristics such as hadd, the hcd heuristic can
sometimes result in more accurate heuristic estimates than
hc, as partitioning the problem into subproblems allows the
elimination of the some of the overcounting behaviour typi-
cally observed with hadd. Note that in Equation 3, while all
possible assignments to non-goal choice variables are con-
sidered, the values of the goal choice variables are forced to
take on their (unique) values gi. This can be seen as analo-
gous to the notion of evidence in Bayesian nets, which are
nodes whose values have been observed and which therefore
cannot take on other values.

To formalize the assumption of decomposability dis-
cussed above, we extend the definition of conditional rel-
evance: an operator o is conditionally relevant to a set of
fluents Q given another set of fluents B if rel(Add(o) ∪
Del(o), Q,B) holds. We define the decomposability of a
problem with respect to a set of choice variables in terms
of this idea:

Definition 5 (Decomposability) A problem Π is decom-
posable with a set of choice variables C if each operator

in Π is relevant to a single Ci ∈ C given all the other
choice variables in C, i. e. if for each o ∈ O, |{Ci |
rel(o, Ci,∪Ck∈C\{Ci}Ck)}| = 1.

When this decomposability condition is not met, the cost
of o may be counted in more than one subproblem, leading
to an inadmissible heuristic even if the underlying heuristic
used to compute the costs of subproblems is admissible.

Proposition 6 (Equivalence of hc and hcd) Given a prob-
lem Π with a set of choice variables C such that the CVG
GC is directed acyclic and Π is decomposable with C, and
base heuristic h∗ or h+, hc = hcd.

Proof sketch: The proof follows from the fact that due to the
definition of decomposability, an optimal (relaxed) plan can
be partitioned into a set of subsets such that each constitutes
a (relaxed) plan for a subproblem in hcd, and optimal (re-
laxed) plans for each subproblem can be combined to obtain
a global optimal (relaxed) plan. 2

Proposition 7 (Admissibility and optimality of hcd)
Given a problem Π with a set of choice variables C such
that the CVG GC is directed acyclic and Π is decomposable
with C, and an admissible base heuristic h, hcd is also
admissible. Furthermore, if h = h∗, then hcd = h∗.

Proof sketch: The proof follows from that of Proposition 3,
and the observation that each operator in an optimal plan
π∗ contributes cost to exactly one subproblem in hcd due
to decomposability. Optimal (admissible) estimates for each
subproblem can therefore be summed to obtain optimal (ad-
missible) estimates for the global problem. 2

Efficient Computation of hcd
We now turn our attention to how to take advantage of the
conditional independence relations between choice variables
encoded by GC , showing how to adapt the recursive con-
ditioning algorithm (Darwiche 2001) to the computation of
hcd. Given a Bayesian networkN and evidence e in the form
of an observed instantiation of a subset of the nodes of N ,
the recursive conditioning algorithm operates by selecting
a cutset C that when instantiated results in two connected
components N l,N r that are conditionally independent of
one another givenC. The method then enumerates the possi-
ble instantiations c of C, recording each and solvingN l and
N r by applying the same method recursively with the perti-
nent evidence. In enumerating the possible instantiations of
the cutset, the observed values of nodes that constitute the
evidence e are respected. When the network on which the
method is called consists of a single node, the probability
corresponding to the current instantiations of the node and
its parents can be looked up directly in the associated CPT.
Given two conditionally independent networks N l,N r, the
joint probability of the evidence for an instantiation c of the
cutset C is calculated as the product of the probability of the
evidence for each, and these results for all possible instanti-
ations of C are summed to obtain the total probability.

The recursive conditioning algorithm can be driven by a
structure known as a dtree, a binary tree whose leaves cor-
respond to the factors of N (Darwiche 2001). Each inter-
nal node d of the dtree corresponds to a subnetwork N d of

N , with the root node corresponding to the full network,
and specifies a cutset consisting of those variables shared
between its two children dl and dr which do not appear in
its acutset, defined as the set of variables that appear in the
cutsets of the ancestors of d. An instantiation of all of the
variables that appear in a node’s cutset and acutset then en-
sures that all variables shared between its two children are
instantiated, resulting in two networks which are condition-
ally independent given the instantiation. A dtree node spec-
ifies that recursive conditioning be applied to the associated
network by instantiating its cutset, and then applying recur-
sive conditioning to the resulting two networks N l and N r

by using dl and dr as dtrees for those.
To avoid repeated computations, each dtree node may also

maintain a cache, which records for each instantiation y of
its context, defined as the intersection of the set of variables
of the corresponding subnetwork with the nodes of its acut-
set, the probability resulting from y. While this increases the
space requirements of the algorithm, in many settings the
associated gains in time are of greater importance. With full
caching, recursive conditioning driven with such a dtree is
guaranteed to run in O(nw) time, where n is the number of
nodes in the network and the width w is a property of the
dtree. Given an elimination ordering of width w for a net-
work, a dtree with width ≤ w can be constructed in linear
time.1 While finding the optimal elimination ordering for a
graph which results in the lowest width dtree is an NP-hard
problem, many greedy heuristics provide reasonable perfor-
mance in practice (Dechter 2003).

In order to compute hcd using recursive conditioning, we
replace the CPTs associated with each factor with CCTs rep-
resented implicitly by a heuristic estimator h, which rather
than calculating the probability of some instantiation of a
node given an instantiation of its parent nodes, estimates the
cost of achieving a value of a choice variable given values
in the domains of its parent variables. To obtain the cost re-
sulting from an instantiation of a cutset, the costs of the two
components are summed rather than multiplied, and the min-
imum such cost is taken over all of the possible instantiations
of the cutset. The fact that each of the goal choice variables
Cg must be assigned its single possible value g, and that a
choice variable may already be assigned a value in a state
from which the hcd is computed, can be seen as equivalent
to evidence in the Bayesian networks setting.

The modifications described above result in Algorithm 1.
Since the CVGs that we consider are typically small and the
time taken by computing the value of a heuristic at each state
is the largest factor in heuristic search planners’ runtime, we
use full caching of computed costs for each subproblem. We
construct the dtree used in the algorithm from the elimina-
tion ordering suggested by the greedy min-degree heuristic,
which orders the nodes last to first in increasing order of
their degree. Finally, the values of choice variables in the
state from which the heuristic is computed, as well as the
single values of each of the goal choice variables, are given
to the algorithm as evidence.

1Elimination orderings and width are beyond the scope of this
paper. For an overview of the subject, see e. g. Bodlaender.

Input: A dtree node D
Input: An assignment v to C
Input: A base heuristic function h
Output: A heuristic estimate hcd ∈ R+

0

function RC-h (D, v) begin
if D is a leaf node then

Ci ← the choice variable associated with D
return h(v[Ci] | Pa(Ci))

endif
else if cacheD[v[context(D)]] 6= undefined then

return cacheD[v[context(D)]]
endif
else

hcd ←∞
for c ∈ φ(cutset(D)) do

hl ← RC-h(Dl, v ∪ c)
hr ← RC-h(Dr, v ∪ c)
hcd ← min(hcd, hl + hr)

end
cacheD[v[context(D)]]← hcd

return hcd

endif
end

Algorithm 1: Recursive conditioning for calculating hcd in a
planning problem with choice variables.

Proposition 8 (Correctness of RC-h) If GC is acyclic, the
RC-h algorithm computes the values of the choice variable
decomposition heuristic hcd.

We omit the proof due to lack of space.

Proposition 9 (Complexity of RC-h) The number of calls
made to the underlying heuristic estimator h by RC-h is
O(nw), where n is the number of nodes in the CVG GC and
w is the width of the dtree used.

Proof: Direct from results concerning the complexity of re-
cursive conditioning (Darwiche 2001). 2

home

marketf1 (5)
1

marketf2 (1)1

Cf
marketd1 (10)

10

10

marketd2 (5)
5

10

Cd

Figure 1: A market problem. Food is available at marketf1 and
marketf2, while drink is available at marketd1 and marketd2. Num-
bers in parenthesis give the cost of each good at the specified mar-
ket, and those next to each edge show the movement cost.

Example. Consider a problem in which an agent must buy
food and drink, and two different markets are available sell-
ing each (Figure 1). The CVG for this problem is a tree,
with the choice of the food market independent of all other
choice variables, the choice of the drink market dependent

only on the food market, and the choice variables for the two
goals have-food and have-drink dependent only on the mar-
ket chosen for each (Figure 2). The RC-h algorithm begins
at the root node of the dtree (Figure 3), and must enumer-
ate the possible instantiations of its cutset {Cf}. marketf1
is selected as the first value, and the recursion proceeds with
a call to the right subtree. This is an internal node with an
empty cutset, so no further variables are instantiated. The al-
gorithm then recurses to the right child, which is a leaf node
in which the base heuristic is used to estimate the cost of
the goal have-food from the initial state {home,marketf1},
with actions adding other values of the choice variable Cf
disallowed. There is a single possible plan for this compo-
nent which consists of buying food at marketf1, and this
plan has cost 5, which is returned to the parent node. The
algorithm then proceeds to evaluate the cost of the left node,
which is the cost of making marketf1 true from the initial
state {home}, 1. Since the cutset of the node is empty, no
further instantiations are required and the value 5 + 1 = 6
is returned to the root node. The algorithm now estimates
the cost of the node with cutset {Cd}, instantiating it first to
marketd1. In the call to the right child, the cost of achieving
marketd1 from initial state {home,marketf1} is evaluated,
to give cost 10, and in the left child, the cost of buying drink
at marketd1 is evaluated, to give cost 10. The returned val-
ues are summed in the internal node with cutset Cd to give
cost 20. The value resulting from Cd = marketd2 is calcu-
lated similarly, giving cost 5 + 5 = 10, which is lower than
the previous instantiation, and therefore returned to the root
node, in which it is summed with the cost calculated for the
right child to give a final cost of 10+6 = 16 for the instanti-
ation Cf = marketf1. The cost of choosing Cf = marketf2
is computed similarly and turns out to be 17, which is higher
than the previous estimate, so 16 is returned as the final
value. Note that the optimal delete relaxation plan for this
problem is to move to marketf2 and buy food there, and to
move from home to marketf1 and from there to marketd2 to
buy drinks there, for a total cost of 1 + 1 + 1 + 5 + 5 = 13.

The “sequential markets problem” problem can also be
seen as the most probable explanation (MPE) problem
on hidden Markov models (HMMs). HMMs are dynamic
Bayesian processes defined by H = 〈S,O, T, I, E〉, where
S is a set of states, O is a set of observations, T (s′ | s)
for s, s′ ∈ S is the probability of transitioning from s to s′,
I(s) for s ∈ S is the probability that the initial state is s,
and E(o|s) for o ∈ O, s ∈ S is the probability of observa-
tion o in state s. The MPE problem for HMMs is to compute
a sequence of states s0, . . . , st that maximizes the proba-
bility of a sequence of observations o1, . . . , ot, where this
probability is given by I(s0)

∏t
i=1 T (si | si−1)E(oi | si).

An MPE problem for an HMM can be encoded as a mar-
ket problem with a sequence of t different market types, at
each of which there is a choice of |S| different markets from
which the single required item of that type must be bought.
The costs of buying the required item and moving between
markets are obtained by taking the negative logarithm of the
associated probabilities, so that finding a plan with minimal
cost is equivalent to finding a state trajectory with maximum
probability for the HMM.

Cf Cd

CgdCgf

Figure 2: The CVG for the two markets problem shown in Fig-
ure 1, with factors Cf , Cf → Cd, Cf → Cgf , Cd → Cgd .

Cd → Cgd Cf → Cd Cf Cf → Cgf

{Cd} {}

{Cf}

Figure 3: A dtree for the CVG shown in Figure 2, resulting from
the min-degree elimination ordering 〈Cgd , Cgf , Cd, Cf 〉. Cutsets
are shown for internal nodes.

Implementation
The recursive conditioning algorithm naturally avoids re-
dundant computations by caching for each node the values
resulting from different assignments to its context. However
it is designed to compute the probability of a single piece of
evidence and therefore makes no attempt to preserve infor-
mation between calls. We observe that the heuristic values
hv(Ci = v[Ci] | Pa(Ci)) do not change from state to state
for components in which there is no non-choice fluent that is
conditionally relevant to Ci given Pa(Ci). These values can
then be cached in each leaf node of the dtree the first time
they are computed, and reused in later heuristic computa-
tions. We have implemented this optimization in the results
described below.

Domains and Experimental Results
We have found that in practice few problems conform to the
rather strict requirements that we have laid out for hcd. Mul-
tivalued variables in planning problems typically represent
properties of states, rather than choices made by plans, and
their values tend to change many times during the execu-
tion of a plan, violating the fundamental property that we
have used to define choice variables. One technique that we
have investigated in certain problems is stratification, which
consists of replacing a single multivalued variable X with
several multivalued variables X0, . . . , Xn, with Xi repre-
senting the ith value assigned to X in the original problem.
Each of these variables can than be treated as a choice vari-
able in the new encoding, and the part of the CVG corre-
sponding to these variables forms a chain in which each Xi

is dependent only on Xi−1, leading to a width of 1. How-
ever this approach does not generally pay off as variables
that were previously dependent only on X now depend on
each of the variables Xi, increasing the width of the graph

to the horizon used to obtain the new encoding.
We were also initially optimistic that hcd could give infor-

mative estimates in domains such as Sokoban or Storage, in
which a number of objects have to be placed in a set of goal
locations. The final goal location chosen for an object can
here be seen as a choice variable. However, in the absence
of an ordering over the objects, the position of each object
affects the available choices for the others, and even if an
ordering is imposed, the cost of the last object to be placed
is dependent on the locations of all other objects, leading to
the CVG’s width growing with problem size.

One area in which it has been easy to apply hcd, however,
is in planning encodings of problems from the graphical
models setting. We now present two domains that we have
adapted to the planning setting for which hcd is able to com-
pute optimal values. We compare the performance of hcd to
that of a standard delete relaxation heuristic, the cost of the
relaxed plan obtained from the additive heuristic hadd (Key-
der and Geffner 2008). We use the same heuristic within the
framework of hcd to obtain the heuristic estimates for the
cost of each subproblem h(Ci | Pa(Ci)). The heuristics are
used in greedy best-first search with delayed evaluation, with
a second open queue for states resulting from helpful actions
(Helmert 2006). Helpful actions for hcd are those which are
helpful in any one of the subproblems and which can be ap-
plied in the current state. All experiments were run on Xeon
Woodcrest 2.33 GHz computers, with time and memory cut-
offs of 1800 seconds and 2GBs, respectively.

Minimum Cost SAT. As a canonical example of a con-
straint satisfaction problem, we consider a version of the
boolean satisfiability problem with three literals per clause
in which a satisfying assignment with minimum cost must
be found (MCSAT) (Li 2004). The natural choice variables
for the problem consist of the sets {xi,¬xi} for each prob-
lem variable xi. An encoding that results in an acyclic CVG
is obtained by imposing an ordering over the set of variables
of the problem, and using operators which can set variables
which are not highest-ranked in any clause freely, but which
ensure for the other variables that the clauses in which they
are highest-ranked are already satisfied if the assignment
made by the operator itself does not satisfy the clause. We
omit some details of the encoding here due to lack of space,
but the end result is that hcd can be used to compute the opti-
mal cost in this type of encoding. The number of evaluations
of the base heuristic for a single call to hcd is exponential in
the width of the ordering over the variables that is used to
generate the problem.

We generated random MCSAT problems with 4.3 times
as many clauses as variables, a ratio that has been shown
to produce problems for which satisfiability testing is hard
(Mitchell, Selman, and Levesque 1992). The number of vari-
ables in the problems ranged from 5 to 34. The choice vari-
able heuristic hcd is optimal for this domain, while the ad-
ditive heuristic hadd produces both overestimates and under-
estimates, with the error in the estimation growing as the
number of variables increases. When used in search, hcd is
able to solve problems of up to 25 variables with orders of
magnitude fewer node expansions than hadd. However, for
the ratio of clauses to variables that we consider, the CVG is

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

h
cd

h
add

Figure 4: Node expansions on the Sequential Markets domain.

usually clique-like, and therefore has treewidth close to the
number of variables in the problem. The computation of hcd
therefore rapidly becomes unfeasible, while hadd is able to
scale up to larger instances. The higher informativeness of
hcd does not pay off in terms of plan cost either, with the
plans found having roughly equal cost for both heuristics.

Sequential Markets Problem. We generated market
problems such as those described above, with the number
of markets of each type fixed at 15, and the number of dif-
ferent types of markets varying between 50 and 340. The
hcd heuristic computes optimal heuristic values for this do-
main that are 2-6 times cheaper than those computed by hadd,
with the effect becoming more pronounced as the number
of market types is increased. When the two heuristics are
used in greedy best-first search, hcd scales up well due to the
constant width of the domain, solving all 30 problems with
much fewer node evaluations than those required by hadd in
the 21 problems it is able to solve (Figure 4). The compu-
tation time of hcd is roughly 10 - 20 times slower than that
of hadd in this domain, and due to the constant width of the
CVG does not change as problem size is varied. The heuris-
tic is also beneficial in terms of the costs of the plans that
are found, with hcd finding lower cost plans for all of the
instances solved with both heuristics, and the difference in
cost growing with the size of the problem.

Conclusions
We have introduced a new type of invariant in planning that
we call choice variables, multivalued variables whose val-
ues can be set at most once by any plan. By reasoning by
cases about different assignments to these variables and ex-
cluding operators that violate these assignments, we obtain
the hcd heuristic that goes beyond the delete relaxation in its
estimates. The values of this heuristic can be computed by
adapting inference techniques for graphical models to the
planning setting, with the complexity of the heuristic com-
putation then depending on the treewidth of the graph that
describes the causal relationships between choice variables.

Our attempts to apply hcd to benchmark planning prob-
lems have until now proved disappointing due to the lack of
domains with variables that naturally exhibit the choice vari-
able property. We have investigated the use of new encod-
ings to induce this structure, however such transformations
usually result in the treewidth of the CVGs increasing with
domain size, and the computational overhead of the heuris-
tic swiftly becoming impractical. We hope to eventually ad-
dress this challenge by considering meaningful relaxations
of these graphs that decrease the width parameter while re-
specting the essential features of the problem.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Proc. of the 18th IJCAI, 929–935.
Bodlaender, H. L. 1993. A tourist guide through treewidth.
Acta Cybernetica 11:1–23.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In Proc. of the 21st AAAI, 809–
814.
Darwiche, A. 2001. Recursive conditioning. Artificial In-
telligence 126(1-2):5–41.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Proc. of the 20th ICAPS, 65–72.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. of the 18th ECAI, 588–
592.
Li, X. Y. 2004. Optimization Algorithms for the Minimum-
Cost Satisfiability Problem. Ph.D. Dissertation, North Car-
olina State University.
Mitchell, D. G.; Selman, B.; and Levesque, H. J. 1992. Hard
and easy distributions of SAT problems. In Proc. of the 12th
AAAI, 459–465.

