
Planning with SAT, Admissible Heuristics and A*

Jussi Rintanen
The Australian National University, Canberra, Australia

Abstract
We study the relationship between optimal plan-
ning algorithms, in the form of (iterative deepen-
ing) A∗ with (forward) state-space search, and the
reduction of the problem to SAT. Our results es-
tablish a strict dominance relation between the two
approaches: any iterative deepening A∗ search can
be efficiently simulated in the SAT framework, as-
suming that the heuristic has been encoded in the
SAT problem, but the opposite is not possible as A∗
and IDA∗ searches sometimes take exponentially
longer.

1 Introduction
We investigate the relations between two main approaches
to finding optimal plans: state-space search with heuristic
search algorithms such as A∗, and the reduction to the propo-
sitional satisfiability problem SAT. Our optimality criterion is
the minimality of the number of actions in a plan.

The theoretical limitations of the leading approaches to the
optimal planning problem are well understood. A∗ [Hart et
al., 1968] is the best-known optimal search algorithm, which
is guaranteed to expand the smallest possible number of states
of any algorithm that does search state-by-state. The perfor-
mance of A∗ is determined by the heuristic it uses. With a
perfect heuristic it expands only the states corresponding to
one optimal action sequence from the initial state to a goal
state. With less informed heuristics the memory consumption
is typically much higher. For example, with the trivial heuris-
tic h(s) = 0 it will expand all states with a distance < k − 1
from the initial state when k is the length of the shortest path
to a goal state. For short (polynomially long) plans A∗ still
requires an exponential amount of memory in the worst case.

Planning by reduction to SAT, as proposed by Kautz and
Selman [1992], has slightly different computational limita-
tions. The sizes of the required formulas are linearly propor-
tional to the length of action sequences considered. These
action sequences may have an exponential length with re-
spect to the representation of the problem instance, and, simi-
larly to A∗, will in this case require an exponential amount
of memory. However, for short plans (polynomial in the
size of the representation), even when A∗ expands an ex-
ponential number of states, the corresponding SAT problem

can be solved in polynomial space (simply because SAT∈NP
and NP⊆PSPACE.) This optimal space bound is achieved by
well-known algorithms for the SAT problem, including the
Davis-Putnam-Logemann-Loveland procedure [Davis et al.,
1962]. A counterpart of SAT in the state-space search do-
main is the iterative deepening A∗ (IDA∗) algorithm [Korf,
1985] which stores in the memory, at any given time, only
one bounded-length path in the state-space, and not all visited
states like A∗ does. Under mild assumptions, IDA* does not
perform many more search steps than A∗ [Korf, 1985, Theo-
rem 6.4]. Although the worst-case resource requirements of
SAT and IDA∗ are the same, the results of our work show that
there is a simple implementation of SAT-based planning that
is guaranteed to never do worse than state-space search with
IDA∗, and will sometimes perform exponentially better.

Our first result shows that if a given heuristic is encoded
in the SAT problem, the Davis-Putnam-Logemann-Loveland
procedure [Davis et al., 1962] can simulate state-space search
with IDA∗ [Korf, 1985], the iterative deepening variant of A∗
[Hart et al., 1968], within the same time and space bounds.
Our second result shows that the opposite does not hold: we
construct a planning problem that requires an exponential
amount of computation by A∗ and IDA∗, but only a short
resolution proof which is constructed by the unit propagation
procedure in linear time.

The structure of the paper is as follows. In Section 2 we
present the background of the work in SAT. Section 3 relates
the notion of admissibility to the SAT framework and shows
that one of the best known admissible heuristics is implicit
in it. Section 4 presents a simulation of IDA∗ with the Davis-
Putnam-Logemann-Loveland procedure for SAT. In Section 5
we show that both IDA∗ and A∗ are sometimes exponentially
worse than SAT. We conclude by discussing related work in
Section 6 and future research topics in Section 7.

2 Technical Background
Let Σ be a set of propositional variables. Formulas (over Σ)
can be recursively constructed as follows. Every a ∈ Σ is a
formula. If φ is a formula, then so is ¬φ. If φ1 and φ2 are
formulas, then so are φ1 ∨φ2 and φ1 ∧φ2. We also use > for
the constant true and ⊥ for false. For propositional variables
x ∈ Σ, x and ¬x are literals. The complement l of a literal
l is defined by x = ¬x and ¬x = x when x ∈ Σ. A finite
disjunction of literals is a clause.

A valuation of Σ is a (total) function v : Σ → {0, 1}. A
formula φ is satisfied by v (written v |= φ) if the following
holds. If φ = x for some x ∈ Σ, then v |= φ iff v(x) = 1.
If φ = ¬φ1, then v |= φ iff v¬ |= φ1. If φ = φ1 ∧ φ2, then
v |= φ iff v |= φ1 and v |= φ1. If φ = φ1∨φ2, then v |= φ iff
v |= φ1 or v |= φ2. The logical consequence relation φ |= φ′

holds if v |= φ implies v |= φ′ for all valuations v. We use
these notations also for sets of clauses. A formula φ (over Σ)
is satisfiable if and only if v |= φ for some valuation v of Σ.

2.1 Planning
Planning problems are expressed in terms of a set F of facts
(Boolean state variables) and a set of actions. Each action has
a precondition C ⊆ F , consisting of the facts that have to
be true for the action to be possible, and a set P of facts that
become true (the add effects) and a setN of facts that become
false (the delete effects). We define prec(〈C,P,N〉) = C and
eff(〈C,P,N〉) = P ∪ {¬f |f ∈ N}. An action is possible
in state s (a valuation of F) if s |= C. The successor state
s′ = succa(s) of s with respect to a = 〈C,P,N〉 satisfies the
following: s′ |= l for all l ∈ eff(a) and s′(f) = s(f) for all
f ∈ F\(P ∪N).

A problem instance is 〈F, I,A,G〉, where F is a set of
facts, I is a state, A is a set of actions, and G is a set of
literals. The objective is to find a shortest sequence of actions
such that succan(succan−1(succa2(succa1(I)))) |= G.

2.2 Planning in the Propositional Logic
Planning was first represented in the propositional logic by
Kautz and Selman [1992]. The idea is to look at the bounded
length planning problem with time points 0, . . . , T . A propo-
sitional formula encodes the possible plans and their execu-
tions by describing how the state can change between two
consecutive time points.

In this paper, we use a simple and efficient encoding based
on explanatory frame axioms. The propositional variables we
use are f@t for facts f ∈ F and t ∈ {0, . . . , T}, a@t for
actions a ∈ A and t ∈ {0, . . . , T − 1}.

We translate the action a = 〈C,P,N〉 into the following
propositional clauses for all t ∈ {0, . . . , T − 1}.

¬a@t ∨ f@t for all f ∈ C (1)
¬a@t ∨ f@(t+ 1) for all f ∈ P (2)
¬a@t ∨ ¬f@(t+ 1) for f ∈ N (3)

For every fact f and time t ∈ {0, . . . , T−1}we have frame
axioms that state when facts remain unchanged.

f@t ∨ ¬f@(t+ 1) ∨ ak1
@t ∨ · · · ∨ akm

@t (4)
¬f@t ∨ f@(t+ 1) ∨ an1

@t ∨ · · · ∨ ans
@t (5)

Here ak1
, . . . , akm

are all the actions that change f from false
to true. and an1

, . . . , ans
are all the actions that change f

from true to false.
Additionally, at most one action can take place at a time,

which is expressed by the clauses
¬a@t ∨ ¬a′@t for all a, a′ ∈ A, t ∈ {0, . . . , T − 1}, (6)

and at least one action must take place, expressed by∨
a∈A

a@t for every t ∈ {0, . . . , T − 1}. (7)

For given sets of facts and actions and an integer T , we
denote the set of all the above clauses by HT . The action
sequences can be restricted to plans that reach some goals
from some initial state by using HT with additional clauses.

For a given state s : F → {0, 1}, we define a clause set
representing s by lits(s) = {f ∈ F |s(f) = 1} ∪ {¬f |f ∈
F, s(f) = 0}. For a clause set S over F , we define the set
S@t in which every propositional variable f ∈ F has been
replaced by its time-tagged variant f@t.

Let I be the initial state andG a set of literals that describes
the goal states. The optimal planning problem can be defined
as finding a T so that lits(I)@0∪HT ∪G@T is satisfiable and
lits(I)@0∪HT−1 ∪G@(T − 1) is unsatisfiable. An optimal
plan can be easily constructed from a valuation that satisfies
the first clause set.

2.3 Resolution Proof Systems

The resolution rule defines one of the simplest proof systems
for the propositional logic. It is used for showing that a set of
clauses is unsatisfiable.

Definition 1 (Resolution) Let c1 = l1 ∨ · · · ∨ ln and c2 =
l1 ∨ l′2 ∨ · · · ∨ l′m be two clauses. The resolution rule allows
deriving the clause c3 = l2 ∨ · · · ∨ ln ∨ l′2 ∨ · · · ∨ l′m. We use
the notation c1, c2 ` c3 for this. As a special case, resolving
the unit clauses l1 and l1 results in the empty clause.

Definition 2 (Derivation) Let S = {c1, . . . , cn} be a set of
clauses. A resolution derivation of the clause c from S is any
clause sequence c′1, . . . , c

′
m with the following properties.

1. For every i ∈ {1, . . . ,m}, either c′i ∈ S or c′j , c
′
k ` c′i

for some 1 ≤ j < k < i.

2. c′m = c.

Definition 3 (Refutation) Let S = {c1, . . . , cn} be a set of
clauses. A resolution refutation of S (which shows S to be
unsatisfiable) is any resolution derivation of the empty clause
from S.

A simple special case of the resolution rule is unit resolu-
tion, which infers φ from a unit clause l and another clause
l ∨ φ, where φ is a disjunction of literals. This rule leads to
a very simple and efficient, but incomplete, inference proce-
dure, which performs all unit resolution steps with a given
clause set. This procedure can be implemented in linear time
in the size of the clause set, and because there is (only) a
linear number of possible unit resolution steps (each clause
need to be involved at most once), it can be performed ex-
haustively. The fact that the clause c can be derived from S
by unit resolution is denoted by S `UP c. The unit propaga-
tion procedure is a component of virtually all systematic SAT
algorithms, including the Davis-Putnam procedure [Davis et
al., 1962] or the conflict-driven clause learning (CDCL) pro-
cedure [Mitchell, 2005].

3 Admissible Heuristics and Planning as SAT
Lower bound functions (heuristics) in algorithms such as A∗
are used for search space pruning. We denote a given lower
bound for the distance from a state s to a goal g by hg(s).

Any admissible heuristic hg(s) is implicit in a logic for-
malization of planning, because admissibility means that the
information given by the heuristic is a logical consequence of
the formula that represent the planning problem: hg(s) is a
true lower bound for the distance for reaching the goals from
state s, not just an estimate. In this abstract sense, as far as
only logical consequence is considered, all admissible heuris-
tics are redundant.

Proposition 4 Let h be an admissible heuristic, s a state, g a
formula, T and t ≤ T non-negative integers, and hg(s) = n.
Then lits(s)@t∪HT |= ¬g@t′ for all t′ ∈ {t, . . . ,min(T, t+
n− 1)}.

The above is simply by the definition of admissibility and
the properties of the formalization of action sequences in the
propositional logic: If g cannot be reached by less than n
actions, then g must be false in all time points before n.

Although logically redundant, the information in admissi-
ble heuristics may be useful for algorithms for SAT because
of the pruning of the search space.

We propose a notion of an implementation of an admissible
heuristic for the unit propagation procedure.

Definition 5 Let f be a fact. A clause set χT (for the plan
length T) implements the admissible heuristic hf (s) if for all
t ∈ {0, . . . , T}, all states s, and all t′ ∈ {t, . . . ,min(T, t +
hf (s)− 1)}, we have lits(s)@t ∪HT ∪ χT `UP ¬f@t′.

The heuristic and χT may depend on a given initial state,
but we have not expressed this possible dependency in the
above definition. We don’t discuss this issue further here.

Next we will show that HT , alone, encodes one of the best
known (but by no means the strongest) admissible heuristics,
with χT as the empty set. This is the hmax heuristic of Bonet
and Geffner [2001]. It is implicit in the planning as SAT ap-
proach in the strong sense that it is inferred by the unit prop-
agation procedure. The heuristic can be defined as follows.

Definition 6 (hmax [Bonet and Geffner, 2001]) The hmax

heuristic for all f ∈ F is defined by the equation

hfmax(s) =

{
0, if s |= f

mina∈A,f∈eff(a)

(
1 + maxf ′∈prec(a) h

f ′

max(s)
)

for which a solution can be obtained as the least fixpoint of a
procedure that starts with

hfmax(s) =

{
0 if s |= f
∞ otherwise

and repeatedly performs updates hfmax(s) := min(hfmax(s),

mina∈A,f∈eff(a)(1+maxf ′∈prec(a) h
f ′

max(s))) for every f ∈ F
until no change takes place.

It is easier use the above fixpoint iteration to first identify
all facts with lower bound 0, then those with lower bound 1,
2 and so on. We do this implicitly in the next proof.

Theorem 7 The empty clause set χT = ∅, for any T ≥ 0,
implements hfmax for any fact f .

Proof: We have to show that lits(s)@t ∪HT `UP ¬f@t′ for
any state s, any T ≥ 0, any fact f , and any t and t′ such
that t′ ∈ {t, . . . ,min(T, t + hfmax(s) − 1)}. The proof is
by nested inductions, one with T which we leave implicit to
simplify the presentation.

Base case hfmax(s) = 1: hfmax(s) = 1 implies s 6|= f .
Hence ¬f@t is one of the unit clauses in lits(s)@t, and we
immediately have lits(s)@t ∪HT `UP ¬f@t.

Inductive case hfmax(s) > 1: We show by induction that
lits(s)@t∪HT `UP ¬f@(t+ i) for all i ∈ {0, . . . ,min(T −
t, hfmax(s)− 1)}.

Base case i = 0: Proof of lits(s)@t ∪ HT `UP
¬f@t for i = 0 is as in the base case.
Inductive case i ≥ 1: Since hfmax(s) > i, for
every action a ∈ A with f ∈ eff(a) we have
hf
′

max(s) > i− 1 for at least one f ′ ∈ prec(a). By
the outer induction hypothesis we have lits(s)@t ∪
HT `UP ¬f ′@(t + i − 1). By Formula 1 we
have lits(s)@t ∪ HT `UP ¬a@(t + i − 1). As
this holds for all actions that make f true, by the
frame axiom 4 and the inner induction hypothe-
sis lits(s)@t ∪ HT `UP ¬f@(t + i − 1) we have
lits(s)@t ∪HT `UP ¬f@(t+ i).

�

All admissible heuristics commonly used in planning are
computable in polynomial time. The question of whether an
admissible heuristic can be encoded compactly is essentially
the question of circuit complexity of the corresponding lower
bound functions [Balcázar et al., 1988; Papadimitriou, 1994].
Since every polynomial time function can be represented as a
polynomial circuit [Papadimitriou, 1994], all of these heuris-
tics can indeed be expressed “compactly” as formulas. For
some admissible heuristics it is obvious that their represen-
tation is so compact that it is practically usable, for example
pattern databases, but for others it is less obvious.

4 Simulation of IDA∗ with SAT search
Next we give a simulation of a bounded horizon search with
IDA∗ in the DPLL procedure [Davis et al., 1962], showing
that with a very simple and natural branching rule, DPLL is
at least as powerful as state-space search with IDA*. DPLL
can be viewed as a resolution proof system, and it is one of the
least powerful of such complete systems [Beame et al., 2004].
Hence this result shows that several other resolution proof
systems, including conflict-driven clause learning [Beame et
al., 2004; Pipatsrisawat and Darwiche, 2009], are more pow-
erful than state-space search with IDA*.

To obtain the result, we limit the DPLL procedure to
choose only action variables as branching variables, assign

1: procedure DPLL(S)
2: S := UP(S);
3: if {x,¬x} ⊆ S for any x then return false;
4: x := any variable such that {x,¬x} ∩ S = ∅;
5: if DPLL(S ∪ {x}) then return true;
6: return DPLL(S ∪ {¬x})

Figure 1: The DPLL procedure

A B C D

A@t ¬A@t

B@t ¬B@t

C@t ¬C@t

Figure 2: Branching in IDA* vs. DPLL

all variables for time t before proceeding with time t+ 1, and
always choose the truth-value true first.

The next lemma shows how unit propagation computes
successor states with the encoding from Section 2.2.

Lemma 8 Let s and s′ be states, a1, . . . , ak a sequence of
actions so that s′ = succak

(· · · succa1
(s) · · ·). Let k ≤ n.

Let La =
⋃n−1

i=0 A@i. Let L+
a = {a1@0, . . . , ak@(k − 1)}.

Then lits(s)@0 ∪ Hn ∪ L+
a ∪ {¬a@t|a@t ∈ La\L+

a } `UP
lits(s′)@k.

The main result of the section shows that DPLL search
trees never have more nodes than IDA∗ search trees.

Theorem 9 Let N be the size of a failed IDA∗ search tree
with heuristic h and depth-bound T . Then there is a DPLL
search tree of size less than 2N that shows lits(I)@0∪HT ∪
χT ∪ g@T unsatisfiable.

Proof: The DPLL procedure is given in Figure 1. It uses the
unit propagation procedure UP(S), which resolves every unit
clause l with clauses l ∨ φ to obtain φ (or the empty clause
when resolving l and l) which is added to S. When no further
clauses can be derived, the resulting clause set is returned.

We prove that the number of nodes in the DPLL search tree
is at most that of the IDA* search tree, when the variable on
line 4 is always chosen so that it is an action variable a@t
and for all actions variables a′@t′ such that t′ < t, either
a′@t′ ∈ S or ¬a′@t′ ∈ S.

The proof is by mapping IDA* search trees to DPLL search
trees of slightly different structure, and showing that DPLL
traverses the trees at most as far as IDA* does. The difference
between the search trees of DPLL and state-space search with
IDA* and DPLL is illustrated in Figure 2. The node in the
IDA* tree on top has 4 successor nodes, corresponding to the
actions A, B, C and D. The DPLL tree has binary branches

A B C

D E F G H I

A@0 ¬A@0

D@1 ¬D@1 B@0

F@1 ¬F@1

G@1 ¬G@1

¬B@0

Figure 3: An IDA* search tree and a DPLL search tree

only, with an action and its negation as the two arc labels, as
required by the DPLL procedure. The last (rightmost) suc-
cessor of any node does not have its action as a branching
variables. In our example, D@t is not a branching variable.
Instead, it is inferred from ¬A@t,¬B@t,¬C@t and the ax-
iom 7 from Section 2.2. A node with n successors requires a
total of 2n− 1 nodes in the corresponding DPLL search tree.
Hence there are less than twice as many nodes in the DPLL
tree. A full example of an IDA* search tree, with each branch
cut-off after two actions, and the corresponding DPLL search
tree are given in Figure 3.

When IDA* has reached a node in depth n corresponding
to an action sequence a1, . . . , an, the corresponding state is
s′ = succan(· · · succa1(I) · · ·). The clause set in the cor-
responding node in the DPLL search tree includes the same
actions as literals a1@0, . . . , an@(n − 1) and the negations
of all other action variables for time points ≤ n − 1. Hence
by Lemma 8 DPLL has inferred the set lits(s′)@(n − 1). If
n + h(s′) > T , the node will be a cut-off node for IDA*.
Because χT implements the heuristic h, by Definition 5 we
have lits(s′)@(n − 1) ∪ HT ∪ χT `UP l@T for at least one
goal literal l ∈ G. Hence DPLL will backtrack in this node, if
it has not backtracked earlier (and sometimes it has, as shown
by Theorem 10.) Therefore the DPLL search tree will not
be expanded further than the IDA* search tree, and it is – in
terms of the number of nodes – less than twice the size. �

The above theorem assumes that the IDA* search does
not detect cycles. Cycles can be eliminated from the DPLL
search by encoding a constraint that says that the states at any
two time points are different. Eliminating the cycles, for both
IDA* and DPLL, is not necessary for the correctness or the
termination of the search, but may improve performance.

The above result is not specific to DPLL. A similar simula-
tion is possible with other systematic proof methods for SAT,

for example the CDCL algorithm. A close correspondence
between the branches of a search tree (paths from the root
to a leaf, as in Figure 3) and the clauses learned by CDCL
can be easily established. To sketch the proof idea, note that
every branch in the DPLL tree in Figure 3 corresponds to a
clause, for example A@0 ∨ ¬B@0 ∨ F@1 ∨ ¬G@1. It can
be learned by the CDCL algorithm, similarly to the unit res-
olution derivation in the proof of Lemma 8. Resolving these
clauses, for example A@0 ∨ ¬B@0 ∨ F@1 ∨ ¬G@1 with
A@0∨¬B@0∨F@1∨G@1, yieldingA@0∨¬B@0∨F@1,
and this clause further with A@0 ∨ ¬B@0 ∨ ¬F@1, and so
on, will eventually derive the empty clause.

5 Exponential Separation of A∗ and SAT
We show that some problems that are trivial for SAT (in the
sense that a simple unit-resolution strategy will solve them)
are very difficult for state-space search with both A∗ and
IDA∗ when employing the same heuristic.

Theorem 10 State-space search with A∗ and a heuristic h is
sometimes exponentially slower than any algorithm for SAT
that uses unit resolution, if the latter implements h.

Proof: We give an example for which unit resolution imme-
diately proves the lack of plans of length n− 1 when n is the
shortest plan length, and finds a plan of length n, but A∗ with
hmax will visit an exponential number of states.

The idea is the following (illustrated in Figure 4.) The
goals can be reached with the action sequence y1, . . . , yk+2

of length k + 2. Seemingly (as far as hmax is concerned),
the goals can also be reached with a k + 1 step plan consist-
ing of k actions from {x1, x′1, . . . , xk, x′k} followed by bad.
However, bad irreversibly falsifies one of the goals. The ac-
tions x1, x′1, . . . , xk, x

′
k induce a very large state space with

2k+1 − 1 states, which will be exhaustively searched by A∗,
making its runtime exponential in k.

On the other hand, unit propagation will immediately infer
that action bad cannot be taken and that y1, . . . , yk+2 is the
only possible plan. If T < k + 2, a refutation is immediately
found. If T = k + 2, the unit resolution procedure will find a
satisfying assignment.

Next we formalize the example in detail. The state vari-
ables are p1, . . . , pk+1 (of which exactly one is true in any
reachable state), r2, . . . , rk+2 (of which at most one is true in
any reachable state), b1, . . . , bk (which can be independently
true or false), and g1 and g2. Only g1 and p1 are initially true.
All other variables are false. The goal consists of g1 and g2.
The actions are given in Table 1.

The hmax estimate for the state reached by action y1 from
the initial state is k + 1 (which is also the actual distance.)

The hmax estimate for all states reached from the
initial state by a sequence of i actions from the set
{x1, . . . , xk, x′1, . . . , x′k} is k−i+1 (which always seems bet-
ter than taking the action y1 first), although the goals cannot
be reached this way: the action bad fools hmax to think that
goals can be reached with bad as soon as pk+1 has been made
true, but bad actually irreversibly falsifies one of the goals.

action precon add del
x1 p1 p2 p1
x′1 p1 p2, b1 p1
x2 p2 p3 p2
x′2 p2 p3, b2 p2
...
xk pk pk+1 pk
x′k pk pk+1, bk pk
bad pk+1 g2 g1
y1 p1 r2 p1
y2 r2 r3 r2
...
yk rk rk+1 rk
yk+1 rk+1 rk+2 rk+1

yk+2 rk+2 g2 rk+2

Table 1: The actions in the proof of Theorem 10

y1

y2

y3

y4

x1 x′1

x2 x′2 x2 x′2

bad bad bad bad

Figure 4: Illustration of the proof of Theorem 10 with k = 2

The A∗ algorithm generates 2k states with pk+1 true and dif-
ferent values for b1, . . . , bk, as determined by the choices be-
tween xi and x′i for i ∈ {1, . . . , k}.

Next we show that lits(I)@0∪Hk+1∪{g1@k+1, g2@k+
1} is found unsatisfiable by unit propagation.

The frame axiom for g1 is g1@t ∨ ¬g1@(t + 1) because
none of the actions makes g1 true. Hence from the goal literal
g1@k+1 we can infer g1@k, g1@(k−1), . . . , g1@1 with unit
resolution, and therefore the bad action can be inferred to be
never possible: we get ¬bad@k, . . . ,¬bad@0.

From ¬r2@0 (initial state) and r2@0 ∨ ¬r2@1 ∨ y2@0
(frame axiom) and ¬y2@0∨r2@0 (precondition) we can infer
¬r2@1 with unit resolution. Similarly we can infer ¬ri@1
for all i ≥ 3, and, more generally, ¬ri@j and ¬yi@j and
¬g2@(j + 1) for all 1 < j < i ≤ k + 2. Since g2@k + 1 be-
longs to the clause set, we have derived the empty clause. The
number of unit resolution steps is quadratic in k and linear in
the size of the clause set.

When there are k+2 time points, the same reasoning shows
that unit propagation yields y1@0, . . . , yk+2@(k + 1) and
¬g2@(k + 1). As yk+2 is the only action that can make g2
true, we get yk+2@(k + 1) by unit resolution from the frame
axiom. The rest of the plan is obtained analogously. �

The above proof can be adapted to other admissible heuris-
tics that use a delete-relaxation or other simplification that
makes it seem that the action bad does not delete g2.

6 Related Work
The power of different limited inference methods for ap-
proximate reachability (e.g. planning graphs) have been in-
vestigated earlier [Brafman, 2001; Geffner, 2004; Rintanen,
2008]. All three works investigate ways of strengthening in-
ference with SAT to derive the invariants/mutexes in planning
graphs. None of them attempts to relate SAT to state-space
search, and the only result that is directly related to ours is
Brafman’s Lemma 1 which shows that for a sequential en-
coding (one action at each time point) Reachable-1 – which
is closely related to hmax – is stronger than unit propagation.
This seems to conflict with our Theorem 7, which shows unit
propagation to be at least as strong. This discrepancy is due
to our use of explanatory frame axioms. Brafman’s Lemma
3 for parallel plans uses explanatory frame axioms, and then
unit propagation is at least as strong as Reachability-1.

7 Conclusions
We have shown that IDA∗ search for state-space reachabil-
ity problems can be efficiently simulated by DPLL search.
Our results also show that unit resolution is sometimes ex-
ponentially more efficient than state-space search with A∗ or
IDA∗: A∗ and IDA∗ need exponential time, but short resolu-
tion proofs are immediately found with unit resolution. The
work complements recent experimental results that suggest
that SAT-based methods for non-optimal planning are at least
as strong as state-space search [Rintanen, 2010].

One could view Theorems 9 and 10 as suggesting a sim-
ple IDA∗ style state-space search algorithm extended with
some (unit) resolution inferences. Such a procedure would in
some cases improve IDA∗, but would not fully benefit from
the power of modern SAT algorithms. Much of that strength
comes from the less rigid structure of the proofs, which would
mostly be lost in a pure forward-chaining state-space search.
The general challenge is to utilize this strength and guarantee
a performance that typically exceeds A∗ and IDA∗, also for
problems that would seem to be more suitable for forward-
chaining state-space search.

A more direct avenue to useful implementations is to en-
hance SAT-based optimal planning with encodings of more
powerful admissible heuristics than hmax. Unlike state-space
search algorithms, SAT-based methods can take advantage
of lower bounds for arbitrary facts (not only goals) as addi-
tional constraints. This suggests that the more powerful lower
bounding methods have much more to contribute than what is
currently utilized by state-space search methods. This is an
important topic for future work.

References
[Balcázar et al., 1988] José Luis Balcázar, Josep Dı́az, and

Joaquim Gabarró. Structural Complexity I. Springer-
Verlag, Berlin, 1988.

[Beame et al., 2004] Paul Beame, Henry Kautz, and Ashish
Sabharwal. Towards understanding and harnessing the po-
tential of clause learning. Journal of Artificial Intelligence
Research, 22:319–351, 2004.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.
Planning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

[Brafman, 2001] R.I. Brafman. On reachability, relevance,
and resolution in the planning as satisfiability approach.
Journal of Artificial Intelligence Research, 14:1–28, 2001.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Love-
land. A machine program for theorem proving. Commu-
nications of the ACM, 5:394–397, 1962.

[Geffner, 2004] Héctor Geffner. Planning graphs and knowl-
edge compilation. In Didier Dubois, Christopher A. Welty,
and Mary-Anne Williams, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR 2004), pages 662–
672, 2004.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of
minimum-cost paths. IEEE Transactions on System Sci-
ences and Cybernetics, SSC-4(2):100–107, 1968.

[Kautz and Selman, 1992] Henry Kautz and Bart Selman.
Planning as satisfiability. In Bernd Neumann, editor, Pro-
ceedings of the 10th European Conference on Artificial In-
telligence, pages 359–363. John Wiley & Sons, 1992.

[Korf, 1985] R. E. Korf. Depth-first iterative deepening:
an optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985.

[Mitchell, 2005] David G. Mitchell. A SAT solver primer.
EATCS Bulletin, 85:112–133, February 2005.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional Complexity. Addison-Wesley Publishing Company,
1994.

[Pipatsrisawat and Darwiche, 2009] K. Pipatsrisawat and
A. Darwiche. On the power of clause-learning SAT
solvers with restarts. In I. P. Gent, editor, Proceedings
of the 15th International Conference on Principles and
Practice of Constraint Programming, CP 2009, number
5732 in Lecture Notes in Computer Science, pages
654–668. Springer-Verlag, 2009.

[Rintanen, 2008] Jussi Rintanen. Planning graphs and
propositional clause-learning. In Gerhard Brewka and
Patrick Doherty, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Eleventh In-
ternational Conference (KR 2008), pages 535–543. AAAI
Press, 2008.

[Rintanen, 2010] Jussi Rintanen. Heuristics for planning
with SAT. In David Cohen, editor, Principles and Practice
of Constraint Programming - CP 2010, 16th International
Conference, CP 2010, St. Andrews, Scotland, Septem-
ber 2010, Proceedings., number 6308 in Lecture Notes
in Computer Science, pages 414–428. Springer-Verlag,
2010.

