
�

�

KEPS�2011�
Proceedings�of�the�Workshop�on�Knowledge�
Engineering�for�Planning�and�Scheduling��
�
Freiburg,�Germany�
June�12,�2011�
�
Edited�by�
Roman�Barták,�Simone�Fratini,�
Lee�McCluskey,�Tiago�Stegun�Vaquero�
�
�

Organization	

Roman Barták, Charles University, Czech Republic
contact email: bartak@ktiml.mff.cuni.cz

Simone Fratini, ISTC‐CNR, Italy
contact email: simone.fratini@istc.cnr.it

Lee McCluskey, University of Huddersfield, UK
contact email: lee@hud.ac.uk

Tiago Stegun Vaquero, University of Sao Paulo, Brazil
contact email: tiago.vaquero@usp.br

Program	Committee		

Mark Boddy, Adventium Labs, U.S.A.

Adi Botea, NICTA/ANU, Australia

Luis Castillo, IActive Intelligent Solutions, Spain

Amedeo Cesta, ISTC‐CNR, Italy

Stefan Edelkamp, Universität Dortmund, Germany

Susana Fernández, Universidad Carlos III de Madrid, Spain

Jeremy Frank, NASA Ames, USA

Antonio Garrido, Universidad Politecnica de Valencia, Spain

Arturo González‐Ferrer, University of Granada, Spain

Rania Hatzi, Harokopio University of Athens, Greece

Peter A. Jarvis, NASA, U.S.A.

Karen Myers, SRI International, USA

John Levine, University of Strathclyde, UK

José Reinaldo Silva, University of Sao Paulo, Brazil

David E. Smith, NASA, USA

Dimitris Vrakas, Aristotle University of Thessaloniki, Greece

Foreword�
�
�
Knowledge�engineering�for�AI�planning�and�scheduling�deals�with�the�acquisition,�design,�validation�and�
maintenance�of�domain�models,�and�the�selection�and�optimization�of�appropriate�machinery�to�work�on�
them.�These�processes�impact�directly�on�the�success�of�real�planning�and�scheduling�applications.�The�
importance� of� knowledge� engineering� techniques� is� clearly� demonstrated� by� a� performance� gap�
between�domain�independent�planners�and�planners�exploiting�domain�dependent�knowledge.�Despite�
the�progress�in�automated�planning�and�scheduling�systems,�these�systems�still�need�to�be�fed�by�careful�
problem�description�and�they�need�to�be�fine�tuned�for�particular�domains�or�problems.�

This,�the�third�KEPS�workshop�in�the�series�at�ICAPS�(following�on�from�2008�and�2010),�promises�to�be�
the� most� successful� yet� in� terms� of� participation.� This� is� evidenced� by� the� 17� papers� in� this� volume,�
written�by�authors�from�13�different�countries�representing�4�continents,�showing�a�growing�interest�in�
KEPS� and� a� global� participation� in� the� subject� area.� In� the� one�day� workshop� authors� will� be� able� to�
present� their�papers�by� talks,�demonstrations�and�posters,�depending�on� the�nature�of� the�content�of�
their�paper�and�its�likely�appeal�to�workshop�participants.�The�workshop�will�also�continue�to�debate�the�
perennial� theme� of� the� Knowledge� Engineering� Competition� (ICKEPS)� during� a� plenary� session,� in�
preparation�for�the�planned�fourth�run�of� ICKEPS�at� ICAPS�2012.�Topics�of�the�papers�this�year� include�
methods� and� tools� for� knowledge� acquisition� and� domain� modelling,� plan� visualisation,� knowledge�
representation�languages,�and�knowledge�extraction.�

The�largest�subset�of�papers�is�concerned�with�general�or�specific�knowledge�engineering�tools.�Vaquero�
et�al's�review�of�tools�and�methods�concentrates�on�reviewing�support�tools�for�the�process�of�designing�
a�planning�domain�model.��Clements�et�al's�work�is�concerned�with�the�process�of�building�models�of�real�
applications,�and�they�describe�a�development�environment�for�helping�build�such�models.�A�paper�by�
Grzes�et�al� introduces�a�novel� form�of�knowledge�engineering�for�MDP�planning,�based�on�a�relational�
database�scheme,�aimed�specifically�at�applications�in�assistive�technology.�Two�papers�concentrate�on�
translation�tools���Seipp�and�Helmert��show�how�to�enact�useful�reformulation�of�planning�problems�by�
translating� them� to� a� multi�valued� � variable� representation� and� then� conducting� a� "fluent� merging"�
technique,�whereas�Porco�et�al�investigate�the�novel�idea�of�translating�problems�of�high�computational�
complexity�into�STRIPS�in�order�to�utilise�standard�planners�in�their�solution.�

Several� papers� address� the� issue� of� extending� existing� domain� model� languages� or� finding� new� ones:�
Jonas's�paper�proposes�a�new�domain�modelling� language�based�on�Java,�while�Estler�and�Wehrheim's�
paper� describes� how� to� represent� planning� problems� as� graphs� and� perform� planning� using� graph�
transformations.� Two� papers� address� HTN� planning� extension:� Off� and� Zhang� extend� HTN� planning� to�
deal�with�worlds�that�require�an�open�world�assumption,�whereas�Castillo�et�al�extend�HTN�planning�to�
make�it�more�compatible�with�the�world�of�IT,�utilising�graphical�notations�such�as�BPM�and�UML.�

Plan�visualisation�is�utilised�by�several�authors:�Vaquero�et�al�in�one�paper�describe�an�overall�framework�
for�encompassing�post�design�analysis� in�planning�systems�utilising�visualisation;� in�another�paper�they�
show�how�during�a�post�design�phase,�plan�rationals�can�be�derived�to�drive�model�refinement.�Glinský�

and�Barták�describe�a�tool�being�developed�to�visualise�a�plan�for�verification�purposes,�while�Gerevini�
and�Saetti's�paper�concentrates�on�using�plan�visualisation�to�drive�a�mixed�initiative�planning�process�
built�around�an�existing�domain�independent�planner.�

A� major� theme� in� knowledge� engineering� concerns� techniques� which� extract� knowledge� from� existing�
domain� models.� Bernardini� and� Smith� introduce� a� method� for� extracting� useful� invariants� in� temporal�
domains,�while�Wickler's� paper�defines�domain�model� features� which� can� be�used� to� characterise� the�
domain� formulation,� having� potential� for� use� in� domain� validation.� Schmidt� et� al's� paper� describe� a�
method� to� improve� HTN� planning� utilising� extracted� domain� � knowledge,� while� Fujimura� details� a�
method�using�information�extraction�to�aid�production�planning�and�scheduling.�

We�would� like� to� thank� to� all� contributors� to� this�workshop�and� special� thanks�go� to� the� members�of�
program�committee�and�other�reviewers�for�their�valuable�comments.�

�

Roman�Barták,�Simone�Fratini,�Lee�McCluskey,�Tiago�Stegun�Vaquero�
KEPS�2011�Organizers�
June�2011� �

Contents�
�

Oral�Presentations�

A�Brief�Review�of�Tools�and�Methods�for�Knowledge�Engineering�for�Planning�&�Scheduling�...............�7�
Tiago�Stegun�Vaquero,�José�Reinaldo�Silva,�J.�Christopher�Beck�

Acquisition�and�Re�use�of�Plan�Evaluation�Rationales�on�Post�Design�...�15�
Tiago�Stegun�Vaquero,�José�Reinaldo�Silva,�J.�Christopher�Beck�

The�Challenge�of�Grounding�Planning�in�Simulation�in�an�Interactive�Model�Development�
Environment�..�23�
Bradley�J.�Clement,�Jeremy�D.�Frank,�John�M.�Chachere,�Tristan�B.�Smith,�Keith�Swanson�

Finding�Mutual�Exclusion�Invariants�in�Temporal�Planning�Domains�...�31�
Sara�Bernardini,�David�E.�Smith�

Using�Planning�Domain�Features�to�Facilitate�Knowledge�Engineering�..�39�
Gerhard�Wickler�

Fluent�Merging�for�Classical�Planning�Problems�..�47�
Jendrik�Seipp,�Malte�Helmert�

Heuristic�Search�Based�Planning�for�Graph�Transformation�Systems�..�54�
H.�Christian�Estler,�Heike�Wehrheim�

�

Poster�Presentations�

JPDL:�A�fresh�approach�to�planning�domain�modelling�...�63�
Michael�Jonas�

Cooperated�Integration�Framework�of�Production�Planning�and�Scheduling�based�on�Order�Life�
cycle�Management�...�71�
Shigeru�Fujimura�

Relational�Approach�to�Knowledge�Engineering�for�POMDP�based�Assistance�Systems�with�
Encoding�of�a�Psychological�Model�...�77�
Marek�Grze�,�Jesse�Hoey,�Shehroz�Khan,�Alex�Mihailidis,�Stephen�Czarnuch,�Dan�Jackson,�Andrew�
Monk�

Open�Ended�Domain�Model�for�Continual�Forward�Search�HTN�Planning�...�85�
Dominik�Off,�Jianwei�Zhang�

Taking�Advantage�of�Domain�Knowledge�in�Optimal�Hierarchical�Deepening�Search�Planning�............�93�
Pascal�Schmidt�and�Florent�Teichteil�Königsbuch,�Patrick�Fabiani�

Automatic�Polytime�Reductions�of�NP�Problems�into�a�Fragment�of�STRIPS�......................................�101�
Aldo�Porco,�Alejandro�Machado,�Blai�Bonet�

A�Conceptual�Framework�for�Post�Design�Analysis�in�AI�Planning�Applications�.................................�109�
Tiago�Stegun�Vaquero,�José�Reinaldo�Silva,�J.�Christopher�Beck�

�

System�Demonstrations�

An�Interactive�Tool�for�Plan�Visualization,�Inspection�and�Generation�..�118�
Alfonso�E.�Gerevini,�Alessandro�Saetti�

An�extended�HTN�knowledge�representation�based�on�a�graphical�notation�....................................�126�
Francisco�Palao,�Juan�Fdez�Olivares,�Luis�Castillo�and�Oscar�García�

VisPlan�–�Interactive�Visualisation�and�Verification�of�Plans�...�134�
Radoslav�Glinský,�Roman�Barták�

� �

�

�

�

�

Oral�Presentations�

�

�

�

�

�

�

A Brief Review of Tools and Methods for Knowledge Engineering for Planning &
Scheduling

Tiago Stegun Vaquero1 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronics Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Abstract

In this paper we present a brief overview of the Knowl-
edge Engineering for Planning and Scheduling (KEPS)
area in the light of a prospective design process of plan-
ning application models. The main discussion is based
on the fact that KE is better introduced in the planning
world through the design process, more than through the
planning techniques. Thus, we examine the fundamen-
tal steps in the design process of AI planning domain
models considering techniques and methods that have
appeared in the research literature. We analyze design
phases that have not been received much attention in
practical planning literature.

Introduction
The 25th. anniversary special issue of The Knowledge Engi-
neering Review (KER) brings some reflection on the devel-
opment of KE during this years and what would be the al-
ternatives for the future (McBurney and Parsons 2011). We
think that it would be interesting to briefly analyze in this pa-
per the relationship between KE and planning and schedul-
ing, specially, in the capability of the combined area (KE and
P&S) of treating complex real problems. First of all it would
be interesting to ask “to which point KE would be directed to
better contribute to solve a planning problem?”. Clearly we
can identify two main points were knowledge is involved in
planning and scheduling: i) in the support of the planning
algorithm, that is, in the underlying knowledge system used
as problem solver; ii) in the modeling of the surrounding do-
main, and the explicit enunciation of the planning problem.
Besides, expert knowledge about the domain can be used to
provide better answers.

While much of the mainstream of AI planning has fo-
cused on developing and improving planning techniques, for
almost twenty years there existed some research on design
processes for planning that considers the special character-
istics of this class of problem in which the knowledge man-
agement is particularly important (Allen, Hendler, and Tate
1990). The integration of the planning algorithms with the

design processes is clearly a vital, strategic goal for plan-
ning research. Both lines of work are essential, specially if
real-life application is the final objective.

Knowledge engineering for planning has not yet reached
the maturity of other traditional engineering areas (e.g., Soft-
ware Engineering (Sommerville 2004)) to define a common
sense design process for planning applications. Neverthe-
less, research in the planning literature has shown some dis-
cussion about the needs and singularities of such design pro-
cess and life cycle (McCluskey et al. 2003; Simpson 2007;
Vaquero et al. 2007). Some of these initiatives introduce
techniques, methods and tools to support designers during
the design life cycle.

In this paper we present an overview of the Knowledge
Engineering for Planning and Scheduling (KEPS) area in the
light of a hypothetical design process of planning applica-
tion models. We present a review of tools and methods that
address the challenges encountered in each phase of a design
process. While examining reviewing the literature about the
design cycle, we pinpoint those phases and aspects that have
not been received much attention in practical planning liter-
ature. Our goal is to provide some inputs for new upcoming
research on KEPS in order to address the challenges that
have receiving least attention in the AI planning community.
They will be important to the development of real planning
and scheduling applications.

Design Process of Planning Domain Models
Design process principles have become important to the
success of the development and maintenance of real world
planning applications. A well-structured design process in-
creases the chances of building an appropriate planning ap-
plication while reducing possible costs of fixing errors in
the future. In this section we examine existing research
on knowledge engineering for planning in the light of an
prospective design process which derive some features from
Software Engineering and Design Engineering fields and ex-
pert knowledge from the experience from real planning do-
main modeling (Vaquero et al. 2007). Such process follows

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

7

a partially ordered sequence of phases.The baseline phases
are as follows:

1. Requirements Specification: the elicitation, analysis,
and validation of requirements, potentially using a semi-
formal approach and viewpoint analysis (Sommerville
and Sawyer 1997).

2. Knowledge Modeling: the abstraction, modeling and re-
use of the domain definition and the basic relationships
within the planning problem.

3. Model Analysis: verification and validation of the do-
main model and the planning problem, as well as model
enhancement.

4. Deploying Model to Planner: translation of the problem
specification into a communication language understood
by automated planners.

5. Plan Synthesis: interaction with one or more automated
planning systems to create potential solutions to the plan-
ning problem.

6. Plan Analysis and Post-Design: analysis of the gener-
ated plans according to some metrics. New insights may
be generated and added to the requirements as part of the
overall, iterative design process.

Designing a real planning application following a pure
theoretical approach can be often impractical and therefore
research on real planning application has followed a more
practical approach: developing tools to support the design
process. Most of the work on KE for planning refers to tools
that cover some of the above phases of the design (specific
tools) while few of them try to cover the whole process (gen-
eral tools). In what follows we will explain and analyze how
the available tools approach each of the design phases.

In such analysis, we emphasize the characteristics of two
of the most important general tools for KE for planning:
GIPO (Simpson 2007) and itSIMPLE (Vaquero et al. 2007).
GIPO is the pioneer tool for KE for planning that explicitly
focus on the challenges of building a planning domain model
and itSIMPLE has focused on a disciplined design process
of real planning applications. itSIMPLE integrates a set of
languages and tools to support the cyclic design process of
a domain model, from a informal representation to a formal
model. The KE tool itSIMPLE is the winner of the 3rd Inter-
national Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS) and has been designed by
the author of this thesis. We also include other tools and
methods that have been active on the planning community,
especially in KE research. For example, we include tools
such as ModPlan (Edelkamp and Mehler 2005) for model-
ing and analysis with PDDL, MrSPOCK (Cesta et al. 2008)
verification of temporal and causal constraints, TIM (Fox
and Long 1998; Cresswell, Fox, and Long 2002) and DIS-
COPLAN (Gerevini and Schubert 1998) for model analy-
sis, VAL (Howey, Long, and Fox 2004) for plan validation,
and a number of application-specific tools such as JABBAH
(González-Ferrer, Fernández-Olivares, and Castillo 2009)
for modeling and planning in business process.

Requirements Specification
It is well-known in the software and systems world that
the lack of a requirements phase can be a primary cause
of difficulties in a project ranging from budget or schedule
overruns to outright failure (Kotonya and Somerville 1996;
Sommerville and Sawyer 1997). In real-life projects a clear
identification and analysis of requirements is a key issue to
the success of the project.

Real-life projects also have distinctive classes of users,
stakeholders whose viewpoints (Sommerville and Sawyer
1997) must be combined and made consistent with the goals
of the developer or designer. Therefore, a phase of require-
ment elicitation and analysis must not be missed. In the con-
text of complex systems, the specifications are very unlikely
to be provided at once, as components of the new system
and even some basic requirements may not be known in the
initial phase. Therefore, a requirements specification phase
is generally divided in two steps:

1. knowledge acquisition or requirements elicitation.

2. analysis of the requirements to spot conflicts, omissions
or misconceptions about the interaction between the plan-
ning systems and its surrounding environment.

The two pioneering works on knowledge acquisition in
planning were O-Plan (Tate, Drabble, and Dalton 1996) and
SIPE (Myers and Wilkins 1997). Both projects have devel-
oped tools that help in the knowledge engineering process.
Designed for some specific applications, O-Plan introduced
the “Common Process Method” while SIPE introduced the
Act Editor.

One of the first domain-independent tools in literature
for supporting knowledge acquisition is the system GIPO
(Simpson 2007). Knowledge acquisition is performed in
GIPO with visual interface that has been designed to assist
the user by taking care of simple syntax details in order to
avoid syntactically ill-formed model specifications (Simp-
son 2007). GIPO treats this phase as a large knowledge ac-
quisition process and does not distinguish non-functional re-
quirements from functional or operational aspects.

The system itSIMPLE (Vaquero et al. 2007; 2009) focuses
not only on the initial phases of a design process but also on
the design life cycle of planning applications. The tool pro-
vides an integrated environment that supports knowledge ac-
quisition in its early stages. The work was one of the first to
introduce the principles of requirements engineering to AI
planning. itSIMPLE is more pragmatic with the use of a vi-
sual interface for Elicitation and Analysis of Requirements;
it goes directly to the operational and functional aspects, as
well as non-functional requirements, using initially a semi-
formal representation language, the Unified Modeling Lan-
guage (UML) (OMG 2005). UML is the most commonly
used language for requirements representation in software
engineering. Many engineers, working in different applica-
tion areas, are familiar with this representation.

Because of its pragmatic approach, itSIMPLE is currently
closer to users and stakeholders while GIPO embodies a
more designer-oriented approach. The former environment
goes directly to requirements analysis and validation while
the latter encompasses all that in the knowledge analysis

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

8

and representation in Object Centered Language (OCL), a
language created as part of the GIPO project to better cap-
ture the semantics inherent in planning applications (Simp-
son et al. 2000). Therefore, no external analysis is consid-
ered in GIPO while such analysis is an important feature
in itSIMPLE via Petri Nets techniques (Silva and Santos
2003). Viewpoint analysis and requirements engineering ap-
proaches are lacking in GIPO whereas a sound manipulation
for knowledge that are strong in GIPO are missing in itSIM-
PLE. Certainly both are necessary.

Regarding domain-dependent tools, the work from
Bonasso and Boddy (2010) describes an ongoing project
for eliciting planning information from the domain experts
in order to support NASA operations personnel in planning
and executing activities on the International Space Station
(ISS). Aiming at the initial phase of the design, this work
introduces a tool for gathering procedural requirements, in-
cluding a) time, for both task duration and for temporal con-
straints among procedures, b) resources that are required,
produced or consumed by a procedure, c) preconditions,
post-conditions and other constraints for both a given proce-
dure and among concurrently executing procedures, and d)
the decomposition of large procedures into the fundamental
actions used to build up a mission plan (Bonasso and Boddy
2010). With such planning information acquired using tem-
plate forms, the goal is to generate actions specifications in
a standard planning languages that automated planners can
use. Even though the tool has a particular application, its
method can be generalized to other domains.

Knowledge Modeling
No real-life system is truly isolated. Any planning system
is embedded in a real domain: a myriad of “non-system”
tools, objects, people, and processes with which it must in-
teract. It is necessary to have a model for this environment
– and it is important that this model be developed indepen-
dently of the planning system (McDermott 1981). The term
model implies that we have a representation or a formal-
ism that mirrors behaviors in the real domain. Such model
representation must provide semantics, implying that named
elements within it correspond directly to named elements
in the real domain (McCluskey 2002). Moreover, since sev-
eral planning problems could be related to the same or sim-
ilar domains, reusability is a key issue in real-life planning
systems and is a fundamental part of the modeling process.
Reuse can speed up the design process by using well-tested
model structures and elements from other successful appli-
cations.

GIPO utilizes the Object Centered Language (OCL) to
model domain ontology, objects and actions. GIPO’s GUI
allows the use of diagrams to support users defining such
domain elements. For the domain ontology representation,
GIPO (version IV) provides an editor to create “Concept Di-
agrams” in the style of UML class diagrams to define the
kinds of objects and concepts, as well as their relationships.
These diagrams also provide the opportunity to define prop-
erties that are common to all object instances of the various
concepts (Simpson 2007).

The Life History editor from GIPO allows the user to

draw state machines that describe the dynamics of an object
class. It can be used to name the states that object instances
can occupy and to show the possible transitions between the
states. In addition to the manual input of the action represen-
tation, users can be assisted by induction techniques to aid
the acquisition of detailed operator descriptions. The oper-
ator description assistant, called opmaker, requires as input
an initial structural description of the domain along with a
training instance and a valid plan for that instance (Simpson
2007).

GIPO is the only tool that currently provides support
for knowledge re-use in which the development of the ac-
tion representation may involve the use of common de-
sign patterns of planning domain structures (called “Generic
Types”). Of course, domain knowledge re-use and storage
raise a number of issues such as when to create new reusable
knowledge to avoid storing too many similar ones, or what is
the impact on planner performance of a reusable component.
At the moment a base of cases does not exist and these issues
have consequently not yet been demonstrated in practice.

itSIMPLE provides a tool-set and methods to support de-
signers during domain model creation through an object-
oriented approach (Vaquero et al. 2007). The system uses
the diagrammatic language UML (OMG 2005) for Knowl-
edge Acquisition and Modeling processes. Modeling is made
through UML diagrams, from a high level of abstraction
(such as use case diagrams) to lower levels (e.g., class di-
agrams or state machine diagrams). The visual components
provided by UML can make the planning domain modeling
process friendly and can facilitate communication and anal-
ysis of requirements belonging to different viewpoints (e.g.,
stakeholders, planning domain experts, users).

Classes, properties, relationships, and constraints are de-
fined by using class diagrams which represent most of static
characteristics of a domain. Operators’ parameters and du-
rations are also specified in the class diagram. The dynamics
of operators (actions) are modeled by using UML state ma-
chine diagrams. These diagrams represent the states that a
class object can enter during its life. One diagram is built for
each class that has dynamic features. An action’s pre- and
post-conditions are defined by using a formal constraint lan-
guage of UML, called Object Constraint Language (OCL –
a different “OCL” than used in GIPO) (OMG 2003), as part
of operator representation. Planning problems are created by
using object diagrams which represent snapshots of a plan-
ning domain, most commonly the initial state and the goal
state. Users can also create preferences and constraints with
object diagrams, for instance on the plan trajectory, which
can capture either desirable or undesirable situations (Va-
quero et al. 2007).

ModPlan (Edelkamp and Mehler 2005) is a planning
workbench that provides some knowledge acquisition and
modeling functionalities. The tool uses PDDL (version 2.2)
as the base representation of the knowledge and it is aimed
more at planning experts than designers with domain knowl-
edge.

Bouillet et al. (2007) describe an ongoing knowledge
engineering and planning framework that supports design-
ers during construction of planning domains and problems

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

9

based on OWL ontologies (McGuinness and van Harme-
len 2004). The state of the world is represented as a set of
OWL facts, using a Resource Description Framework (RDF)
graph, while actions are described as RDF graph transfor-
mations. Planning goals are described as RDF graph pat-
terns. The framework allows the creation of planning do-
main through OWL ontologies extension in a collaborative
manner. The framework (2007) provides a certain re-use ca-
pability by the general concept of ontology, but not as ex-
plicitly as GIPO. As mentioned by Bouillet et al. (2007), the
use of OWL ontologies as a basis for modeling domains al-
lows the re-use of existing knowledge in the Semantic Web.
While the framework has been applied towards composing
workflows in stream processing systems, it can be seen as a
general tool and could, therefore, be applied in other plan-
ning domains (Bouillet et al. 2007).

Inspired by GIPO and itSIMPLE, Vodrazka and Chrpa
(2010) created a compact modeling tool for planning as
an attempt to simplify the model construction process to
non-planning experts. Unlike GIPO and itSIMPLE, the tool
called VIZ uses straightforward approach to model simple
STRIPS-like domains. The tool provides a graphical inter-
face that uses uniquely simple (non-standard) diagrams to
capture action specifications, objects and their relations.

Besides the general purpose tools, as those considered
above, there are also research on specific knowledge applica-
tions. For example, JABBAH (González-Ferrer, Fernández-
Olivares, and Castillo 2009) is a KE tool dedicated to Busi-
ness Process Modeling (BPM). This tool is able to support
modeling and representation of business process models in
order to use planners to obtain action plans for task manage-
ment.

Model Analysis
The definition of a suitable planning domain is related to the
possibility of analyzing the model during the design phases.
Contrasting features of the model being built and the ac-
quired requirements becomes very important in non-trivial
planning applications. Model analysis encompasses verifi-
cation, validation, knowledge enhancement and refinement
of the entire model (McCluskey 2002). Generally, the anal-
ysis, performed manually, automatically or system-assisted,
focuses on two main aspects: the static and dynamic proper-
ties. Fining errors, inconsistencies and incoherences in such
properties can save time and resources in posterior phases.

Static analysis essentially investigates whether the model
is self-consistent. Such analysis can range from simple syn-
tax checkers and debuggers to cross-validation of different
parts of the model, particularly for those models contain-
ing a set of diagrams or representation schemes. For exam-
ple, static analysis can be applied to verify the definition of
types of objects, constraints, state definition, and other static
model elements.

Dynamic analysis entails validating whether the behav-
ior of modeled actions is consistent to the requirements and
to what is expected by humans. That involves the examina-
tion of how actions interact with each other and how they
are executed. Both static and dynamic analysis can be made
independently of the planner.

Most real-life planning problems require the investigation
and enhancement of specific knowledge, acquired during
analysis, in order to achieve reliable planner performance
and high plan quality. Some of this specific knowledge may
take the form of heuristics or domain control knowledge that
can be used to guide planners in finding an efficient plan.
Moreover, knowledge enhancement may be concerned with
the inclusion of design decisions, reasons, and justifications
(i.e. rationales) in the specification process and documenta-
tion, which supports the maintenance of complex projects.
Klein (1993) explains how rationale are important to engi-
neering design projects for airplane parts.

Few methods and tools are available in the planning litera-
ture that can deal with domain analysis. As described by Mc-
Cluskey (2002), because AI planning has been largely in the
realm of research, many researchers in the past used nothing
more than basic syntax checkers in support of their model
analysis process. However, this approach is neither sufficient
nor efficient in large models. Inspired by these large appli-
cations, recent research has introduced more elaborated do-
main analysis techniques.

GIPO (Simpson 2007) checks local and global model con-
sistency such as object class hierarchy consistency, object
state descriptions invariants satisfaction, mutual consistency
of predicate structures, and others. This static validation can
uncover potential errors within a domain specification. In
addition to static analysis, GIPO provides a visual repre-
sentation of dynamic behavior for analysis, a combination
of state-machine-like diagrams to show how objects of two
or more concept types coordinate their dynamic movements
(Simpson 2007). GIPO allows designers to check the model
against a set of problems by using a stepper. The stepper
provides the manual selection of actions state-by-state to
verify their applicability and to validate the dynamic part
of domain model (Simpson 2007). Knowledge discovery
and enhancement during domain analysis is not provides by
GIPO.

itSIMPLE (Vaquero et al. 2007) provides a rich graphi-
cal interface where different viewpoints can be used to vali-
date or criticize a model. Users are supported while creating
coherent diagrams to avoid modeling mistakes. For exam-
ple, snapshots are created based on class diagrams and all
constraints defined on them. The tool can check each snap-
shot for coherence in order to avoid inconsistent states. For
dynamic analysis, the environment uses Petri Nets (Murata
1989), a formal representation for dynamic domain valida-
tion deploying visual and animated information of the entire
system based on the UML state machine diagrams. How-
ever, the approach with Petri Net is not fully implemented
and tested. itSIMPLE has no support for knowledge en-
hancement, trusting the requirement validation process to
provide insight into improving the problem description and
also, based on the direct intervention of the designer, to pro-
vide heuristics to guide the planner.

In the literature there is a large variety of techniques for
knowledge extraction during domain analysis, but most of
them are dependent of the planning system (McCluskey
2002). The extraction of properties such as types, invariants,
strategies, heuristics, or subproblems can be a way to en-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

10

hance models with essential information to be used during
the planning process. Systems such as TIM (Fox and Long
1998; Cresswell, Fox, and Long 2002) and DISCOPLAN
(Gerevini and Schubert 1998) find types and state invariants
while RSA (Scholz 1999) and RedOp (Haslum and Jons-
son 2000) find different types of constraints on which action
sequences are necessary or relevant for solving a given prob-
lem. Moreover, the work described in (Fox and Long 1999;
Crawford et al. 1996) introduces detection of symmetry as
additional knowledge to improve planners’ performance.

Deploying Model to Planner
Standard planners cannot directly parse arbitrary specifica-
tion languages. Enabling them to do so would require a large
amount of effort which is, at best, peripheral to the interests
of the researchers, mainly directed to the implementation of
AI planning algorithms. Therefore, it is reasonable to de-
velop a unified communication language embodying a con-
vergence of goals and computational effort.

At present, PDDL (Fox and Long 2003) works as such a
language even though it was not explicitly designed with that
purpose in mind. Thus, existing tools and integrated envi-
ronments should be able to translate specifications to a com-
munication language without any (or minimum) loss in the
problem specification. The communication language must,
therefore, have the same expressive power as the specifi-
cation language. Since expressiveness issues are not in the
scope of this thesis, we do not go into that discussion.

Considering general purpose tools, GIPO, itSIMPLE and
VIZ have sound and efficient mechanisms to translate their
respective front-end languages to PDDL. GIPO translates its
OCL domain model to PDDL 2.2 (Simpson 2007) while it-
SIMPLE transfers the knowledge in UML to a solver-ready
PDDL model up to version 3.1 (the latest version of PDDL)
(Vaquero, Silva, and Beck 2010). VIZ translates simple di-
agrams into a STRIPS-like PDDL model (Vodrazka and
Chrpa 2010).

Regarding specific tools, JABBAH translates a business
process model into a solver-ready representation, in this case
the Hierarchical Task Network (HTN) (González-Ferrer,
Fernández-Olivares, and Castillo 2009). Fernández et al.
(2009) describe an approach to represent data-mining pro-
cesses, using Predictive Model Markup Language (PMML),
in terms of automated planning and translate the data mining
tasks into PDDL. The tool PORSCE II (Hatzi et al. 2009),
while focusing on semantic description of web services, pro-
vides a translation process from OWL-S to PDDL to make
the domain available for planners.

Plan Development
In this phase, plans are produced by planning algorithms
based on knowledge specified and modeled in the domain
model. This phase is where most research work on AI plan-
ning are focused. However, instead of focusing on planning
techniques (see (Ghallab, Nau, and Traverso 2004) for de-
tails on techniques) we look at the research on KE tools that
give support and facilitate the use of planning algorithms,
by an integrated environment that support different planners

- using distinct AI planning approaches - and by including
features to communicate and visualize the resulting plans.

The most significant work on this phase is itSIMPLE (Va-
quero et al. 2009; Vaquero, Silva, and Beck 2010). As an
integrated environment, itSIMPLE uses PDDL to commu-
nicate automatically with solvers, including Metric-FF, FF,
SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp, SATPlan, Plan-
A, Blackbox, MaxPlan, LPRPG, and Marvin. In fact, the
tool allows new planners to be easily added. This feature
gives to itSIMPLE the flexibility to exploit recent advances
in solver technology. Designers can test different planning
approaches on their model and identify the most promising
one. Other tools like GIPO, ModPlan, JABBAH and VIZ do
not have such extensive connection with planners.

Plan Analysis and Post-Design
Because of the characteristics of models, it is likely that
some problem instances, domains, and models will be bet-
ter suited to the one planning algorithm rather than another.
Furthermore, for complex problems, the lack of knowledge
or ill-defined requirements and metrics could propagate to
specifications and from there to the problem submitted to
the planner. Either of these scenarios (and others) may lead
to the generation of poor quality plans. Regardless, bad plans
must be spotted and fixed.

A last fundamental step in the design cycle is the analy-
sis of generated plans with respect to the requirements and
quality metrics. Plan analysis naturally leads to feedback and
the discovery of hidden requirements for refining the model,
giving consequently the capacity of improving the quality
of generated plans. We call ‘post-design analysis’ the pro-
cess performed after plan generation, in which we have a
base model and a set of planners to investigate the solutions
generated by them. Such a post-design process requires ap-
proaches that range from simple plan validation and visual-
ization to a more sophisticated treatment based on metrics.
Such a treatment should be able to evaluate the plan and to
relate defects to a set of requirements or even to a lack of
such requirements. What may be produced is a new insight
and a need to change requirements which can be used in the
next design iteration.

AI planning research on plan analysis has developed tools
and techniques mostly for plan validation, plan visualization
(e.g., diagrams and Gantt charts), animation, plan querying
and summarization. In (Smith and Holzmann 2005), formal
verification is used in order to check the existence of unde-
sirable plans with respect to the domain model. The work
from Howey, Long, and Fox (2004) describes the system
VAL, a plan validation tool for PDDL. Given an input plan
in PDDL syntax and its respective domain model and prob-
lem, VAL validates action execution while recognizing if the
plan does not reach the specified goal or if it contains in-
valid sequence of actions. VAL has recently been extended
to capture most of PDDL features (up to version 3.0) such as
continuous effects, exogenous events and process handling.

GIPO provides a simple plan visualizer (animator) to al-
low a graphical view of successful plans. Recent publica-
tions (McCluskey and Simpson 2006) describes such visu-
alization tool. In contrast with GIPO, itSIMPLE starts from

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

11

basic visualization and simulation of plans to a more so-
phistiThis information is the base for discovering hidden re-
quirements, constraints, preferences and the real intentions
of design actors (knowledge that was not identified during
the virtual prototyping phase).cated simulation interaction
and analysis of domain variable (Vaquero et al. 2007). With
a flexible interface to a large set of planners, it is possi-
ble to analyze plans produced by different planning tech-
niques. The tool supports plan evaluation through a func-
tionality called “Variable Tracking”, which allows analysis
based on variable observation or quality metrics displayed
on charts. The functionality called “Movie Maker” provides
a simulation and a visualization of plans through a sequence
of UML object diagrams, snapshot-by-snapshot. A minimal
interaction with the simulator is allowed where new actions
can be added or removed to check different situations. The
plan analysis tools provided by itSIMPLE aim to help de-
signer adjust models by observing plans being executed in
diagrammatic form. However, the use of these diagrams pre-
vent the proper analysis of large-scale problems.

ModPlan integrates VAL for plan validation (Edelkamp
and Mehler 2005) and, for plan visualization, it includes the
animation system Vega (Hipke 2000) allowing a magnifica-
tion to an arbitrary part of the plan. Gantt charts are plot-
ted for temporal plans, in which a horizontal open oblong
is drawn against each activity indicating estimated duration.
Plan animation is assisted by users and is provided for some
benchmark domains. JABBAH also shows output plans for
business processes using Gantt diagram (González-Ferrer,
Fernández-Olivares, and Castillo 2009).

The work from Haas and Havens (2008) introduces a spe-
cific dynamic plan simulator for the Canadian CoastWatch
project. CoastWatch is an oversubscribed dynamic multi-
mode problem with unit resources and lies in the Search
& Rescue domain. CoastWatch datasets simulate a typical
day for the Canadian Coast Guard, where officers assign re-
sources (planes, helicopters, ships) to execute several dif-
ferent kinds of missions (rescue, patrol, transport). The dy-
namic simulator includes a visualization tool which creates
an animation of the planning and scheduling problem on
GoogleEarthTM. The animation steps through the scheduling
horizon and visualizes the different entities in action. Such
application-dependent simulator creates a good communica-
tion channel between project participants.

Aiming at plans with rich sophistication and complexity,
Myers (2006) describe a domain-independent framework for
plan summarization and comparison that can help a human
user to understand both key strategic elements of an individ-
ual plan and important differences among plans. The goal of
such summarization and comparison is to analyze the rela-
tive merits of various plan candidates before deciding on a
final option. The approach is grounded in a domain metathe-
ory, which specifies important semantic properties of tasks,
actions, planning variables, and plans. This work defines
three capabilities grounded in the metatheoretic approach:
(1) summarization of an individual plan, (2) comparison of
pairs of plans, and (3) analysis of a collection of plans. The
approach has the benefit of framing summaries and compar-
isons in terms of high-level semantic concepts, rather than

low-level syntactic details of plan structures and derivation
processes. As reported by Myers (2006), application of these
capabilities within a rich application domain facilitates user
understandability of complex plans.

Giuliano and Johnston (2010) proposes a visualization
tool for multi-objective problems in space telescope control
systems that helps users while selecting schedules to be ex-
ecuted. The tool supports schedule analysis by keeping user
objectives separated instead of combined to make trade-offs
between competing objectives. The analysis is done through
charts and graphs to explore the different aspects of distinct
schedules. In a similar direction, Cesta et al. (2008) describe
the MrSPOCK system able also to validate schedules and il-
lustrate trade-offs of space mission plans. These two works
emphasize how important and difficult it is to work with dif-
ferent criteria coming from distinct groups in real problems.

The main focus of works like Myers (2006), Cesta et al.
(2008) and Giuliano and Johnston (2010) is on helping users
to (1) better understand the underlying properties of gener-
ated plans and schedules and (2) to select the most appro-
priated solutions to be executed. In fact, re-modeling, or the
refinement cycle, seems not be the main target for most of
plan analysis tools in AI planning literature. In addition, ac-
quiring valuable information during analysis process itself is
not the main goal either.

Discussion
As defined by Fox (2011), knowledge engineering is “a dis-
cipline that involves integrating knowledge into computer
systems in order to solve complex problems, normally re-
quiring a high level of human expertise”. Therefore, KE is
connected with solving real problems. In what follows we
look at the tools and its underlying knowledge systems and
methods in this perspective, that is, by the contribution they
might have to the integration of knowledge into computer
systems that solve real problems.

As we mentioned before, the contribution of these tools
could appear: i) in the knowledge system underlying algo-
rithms encapsulated in planners; ii) in the knowledge repre-
sentation methods applied to the domain environment; iii) in
the knowledge about the design process. Here, we focus the
discussion on the last two kinds of contribution (since the
present analysis does not include planners).

Concerning the knowledge representation methods ap-
plied to the domain we should point the following:

1. none of the tools treat differently the knowledge encap-
sulated in the planning problem and in the surrounding
domain. Such a distinction could be valuable since in sev-
eral cases it is required to solve different instances of the
planning problem. All of those instances have the same
surrounding domain and such knowledge could be reused.

2. the general problem of reusing knowledge is not explored
besides some tools as GIPO where an attempt were made
by using design patterns.

3. there is no attempt in any tool to investigate the rela-
tionship between knowledge domain and the underlying
knowledge system that supports planners. That implies

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

12

that there is no way to find a “best planner” to a given
planning domain. Some tools (like itSIMPLE) address at
least a pool of planners where the result could be com-
pared, but that is far from solving the matching issue.

Regarding the design process, the challenging points are:

1. there is not a referential design process for planning
and scheduling applications. At most, general phases are
adapted from a General Design Theory (Tomiyama 1994)
or more recent developments of that. Therefore, it is not
clear if formal methods such as Process Algebra, Petri
Nets, and others would help or improve the process.

2. in all tools, few attention was given to requirement analy-
sis which is important to any real problem. Certainly it is
not possible to assume that the planning problem could be
synthesized ad hoc, without a requirement gathering and
analysis.

3. once the planning problem is defined, it is necessary to
provide a model of the overall domain that could be for-
mally verified. In that point it is important to notice that
to cover scheduling a formal time verification is required.
Unfortunately there is not a long list of time formalisms
that could be applied for that.

4. all previous topics are concerned with what could be
called the design phases, that is, all phases that culminate
with a design model for the domain and planning prob-
lem. However the design process could be accelerated if a
post-design process is added to feed the refinement cycle,
just when the top down refinement no longer improves the
model significantly.

Besides all these points another important issue is that
there is not enough effort to support scheduling for several
reasons, where the most significant is the lack of a time for-
malism that could be more practical to be inserted in soft-
ware tools. In addition, there has been not enough effort to
support resource reasoning.

Conclusion
In this paper, we presented a brief overview of tools and
methods on knowledge engineering for planning consider-
ing a design process of planning domain models. We re-
viewed existing tools that support each phase of such design
process, especially the plan analysis and post-design which
drive re-modeling and refinement. The intention of this pa-
per is to raise a discussion about where we are on the use
of knowledge engineering for planning and scheduling and
to give some inputs about were we want to go as research
community in this area.

References
Allen, J. F.; Hendler, J.; and Tate, A. 1990. Readings on
Planning. San Mateo, Ca., USA: Morgan-Kaufman.

Bonasso, P., and Boddy, M. 2010. Eliciting Planning In-
formation from Subject Matter Experts. In Proceedings of
ICAPS 2010 Workshop on Scheduling and Knowledge Engi-
neering for Planning and Scheduling (KEPS), 5–12.

Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2007. A Knowledge Engineering and Planning
Framework based on OWL Ontologies. In Proceedings of
the Second International Competition on Knowledge Engi-
neering.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2008. Validation and verification issues in a timeline-based
planning system. In Proceedings of the ICAPS 2008 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A. 1996.
Symmetry-breaking predicates for search problems. In Fifth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 148–159. Cambridge, Mas-
sachusetts: Morgan Kaufmann.

Cresswell, S.; Fox, M.; and Long, D. 2002. Extending tim
domain analysis to handle adl constructs. In Knowledge En-
gineering Tools and Techniques for AI Planning: AIPS’02
workshop.

Edelkamp, S., and Mehler, T. 2005. Knowledge acquisi-
tion and knowledge engineering in the modplan workbench.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

Fernández, S.; Fernández, F.; Sánchez, A.; de la Rosa, T.;
Ortiz, J.; Borrajo, D.; and Manzano, D. 2009. On Com-
piling Data Mining Tasks to PDDL. In Proceedings of the
Third International Competition on Knowledge Engineering
for Planning and Scheduling (ICKEPS), ICAPS 2009, 8–17.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proceeding of
the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI), 956–961. Stockholm, Sweden: Morgan
Kaufmann.

Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.

Fox, J. 2011. Formalizing knowledge and expertise: where
have we been and where are we going? The Knowledge En-
gineering Review 26(1):5–10.

Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of 15th National Conference on Artificial Intelligence, 905–
912. Madison, USA: AAAI Press/MIT Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. San Francisco, CA, USA:
Morgan Kaufman.

Giuliano, M. E., and Johnston, M. D. 2010. Visualization
Tools for Multi-Objective Scheduling Algorithms. In Pro-
ceedings of ICAPS 2010 System Demostration, 11–14.

González-Ferrer, A.; Fernández-Olivares, J.; and Castillo, L.
2009. JABBAH: A Java Application Framework for the
Translation Between Business Process Models and HTN.
In Proceedings of the Third International Competition on

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

13

Knowledge Engineering for Planning and Scheduling (ICK-
EPS), ICAPS 2009, 28–37.

Haas, W., and Havens, W. S. 2008. Generating Ran-
dom Dynamic Resource Scheduling Problems. In ICAPS
2008 Workshop on Knowledge Engineering for Planning
and Scheduling.

Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling
Systems (AIPS), 150–158. Breckenridge, CO: AAAI Press.

Hatzi, O.; Meditskos, G.; Vrakas, D.; Bassiliades, N.; Anag-
nostopoulos, D.; and Vlahavas, I. 2009. PORSCE II: Using
Planning for Semantic Web Service Composition. In Pro-
ceedings of the Third International Competition on Knowl-
edge Engineering for Planning and Scheduling, 38–45.

Hipke, C. A. 2000. Distributed Visualization of Geometric
Algorithms. Phd thesis, University of Freiburg.

Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In ICTAI’04: Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intel-
ligence, 294–301. Washington, DC, USA: IEEE Computer
Society.

Klein, M. 1993. Capturing design rationale in concurrent
engineering teams. IEEE Computer 26(1):39–47.

Kotonya, G., and Somerville, I. 1996. Requirements engi-
neering with viewpoints.

McBurney, P., and Parsons, S. 2011. The Knowledge En-
gineering Review, volume 26 - Special Issue 01 (25th An-
niversary Issue). Cambridge University Press.

McCluskey, T. L., and Simpson, R. M. 2006. Tool sup-
port for planning and plan analysis within domains embody-
ing continuous change. In Proceedings of the ICAPS 2006
Workshop on Plan Analysis and Management.
McCluskey, T.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis, P.;
Refanidis, I.; and SCHOLZ. 2003. Knowledge engineering
for planning roadmap.

McCluskey, T. L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning. Toulouse, France 1–4.

McDermott, J. 1981. Domain knowledge and the design
process. In Proceedings of the 18th Conference on Design
Automation, 580–588. Piscataway, NJ, USA: IEEE Press.

McGuinness, D. L., and van Harmelen, F. 2004. OWL Web
Ontology Language Overview. W3C recommendation.

Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.

Myers, K. L., and Wilkins, D. 1997. The Act-Editor User’s
Guide: A Manual for Version 2.2.

Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-06).
Cumbria, UK: AAAI Press.

OMG. 2003. OMG Unified Modeling Language Specifica-
tion - Object Constraint Language, Version 2.0.

OMG. 2005. OMG Unified Modeling Language Specifica-
tion, Version 2.0.

Scholz, U. 1999. Action constraints for planning. In Biundo
& Fox, 148–160. Berlin, Heidelberg: Springer Verlag.

Silva, J. R., and Santos, E. A. 2003. Viewpoint requirements
validation based on petri nets. In Proceedings of the 17th
Int. Conf. of Mechanical Engineering, Brazilian Mechanical
Eng. Society.

Simpson, R. M.; Mccluskey, T. L.; Liu, D.; and Kitchin, D.
2000. Knowledge Representation in Planning: A PDDL to
OCLh Translation. In In Proceedings of the 12th Interna-
tional Symposium on Methodologies for Intelligent Systems.
Charlotte, North Carolina, USA: Springer.

Simpson, R. M. 2007. Structural Domain Definition us-
ing GIPO IV. In Proceedings of the Second International
Competition on Knowledge Engineering for Planning and
Scheduling.

Smith, M. H., and Holzmann, G. J. 2005. Model Check-
ing Autonomous Planners: Even the best laid plans must be
verified. In Aerospace, 2005 IEEE Conference, 1–11. IEEE
Computer Society.

Sommerville, I., and Sawyer, P. 1997. Viewpoints: Prin-
ciples, Problems and a Practical Approach to Requirements
Engineering. Annals of Software Engineering 3:101–130.

Sommerville, I. 2004. Software Engineering (7th Edition).
Pearson Addison Wesley.

Tate, A.; Drabble, B.; and Dalton, J. 1996. O-Plan: a
Knowledged-Based Planner and its Application to Logistics.
In Advanced Planning Technology ARPI, 259–266. AAAI
Press.

Tomiyama, T. 1994. From general design theory to
knowledge-intensive engineering. Artificial Intelligence for
Engineering, Design, Analysis and Manufacturing 8:319–
333.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA: AAAI Press.

Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From Requirements and Analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, ICAPS 2009, 54–61.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Im-
proving Planning Performance Through Post-Design Analy-
sis. In Proceedings of ICAPS 2010 workshop on Scheduling
and Knowledge Engineering for Planning and Scheduling
(KEPS), 45–52.

Vodrazka, J., and Chrpa, L. 2010. Visual design of plan-
ning domains. In Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling (KEPS), 68–69.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

14

Acquisition and Re-use of Plan Evaluation Rationales on Post-Design

Tiago Stegun Vaquero1 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronics Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Abstract

In this article we investigate how knowledge acquired
during a plan analysis phase can be represented, stored,
and re-used to support the identification and evaluation
of potential adjustments to a domain model. We de-
scribe a post-design framework that combines a knowl-
edge engineering tool and an ontology-based reasoning
system for the acquisition and re-use of human-centric
rationales for plan evaluations. We aim at rationales
that represent information about (1) why a given plan
is classified as good or bad, (2) what are the proper-
ties of the plan that directly impact its quality, and (3)
how these properties affect the plan quality, positively
or negatively. This paper shows a case study, based on
a benchmark problem, which illustrates the process of
development and acquisition of rationales.

Introduction
Decisions about knowledge modeling and planning algo-
rithm development drastically affect the quality of plans.
From a planning technology perspective, in a ceteris paribus
scenario, factors such as the improper choice of planning
techniques and heuristics may lead to the generation of poor
solutions. From a knowledge engineering perspective, lack
of knowledge, ill-defined requirements and inappropriate
definition of metrics, constraints and preferences can con-
tribute directly to malformed models and, consequently, to
unsatisfactory plans, independent of the planning algorithm.
Traditionally, much of planning research has focused on
a perspective in which new algorithms are developed and
tuned to obtain high performance and better plans. Not much
investigation has been done from the knowledge engineer-
ing (KE) perspective, especially re-modeling and refining
the planning problem based on observations and informa-
tion that emerge during the design process itself.

In plan analysis, hidden knowledge and requirements cap-
tured from human feedback raise the need for a continuous
re-modeling process. The capture, representation and use of
such human-centered feedback is still an unexplored area in
the knowledge engineering for AI planning. Moreover, the
impact of such feedback and re-modeling on the planning
performance is unknown.

In (Vaquero, Silva, and Beck 2010), we propose of a post-
design tool for AI planning that combines the open-source

KE tool itSIMPLE (Vaquero et al. 2007) and a virtual proto-
typing environment called Blender to support the short-term
identification of inconsistencies and hidden requirements. In
that work, there is a first attempt to manually interpret and
insert rationales to support design decisions in a model adap-
tation approach. However, the proposed tool did not provide
a process to capture, store and evaluate rationales. Mean-
while, the discussion about the use of rationales has grown
very fast specially in the software engineering community,
guiding the process of documentation and reuse (Daughtry
et al. 2009).

In this paper, we present a post-design tool for AI plan-
ning that addresses the acquisition and re-use of human-
centered rationales for plan evaluations. We aim at ratio-
nales that describe the reasons behind the plan classification
(e.g., bad or good quality) given by designers or users. Such
rationales describe what are the properties of the plan that
impact its quality and how these properties affect the plan
quality: positively or negatively. We study an approach that
combines the open-source KE tool itSIMPLE (Vaquero et
al. 2007) and an ontology-based reasoning system to sup-
port the capture, representation and re-use of rationales dur-
ing plan evaluation. The aim of rationale re-use is to present
to the human planner the plan properties and elements that
are likely to impact its quality. This information becomes a
starting point for the evaluation of a newly generated plan.
In addition, the tool contributes to the continuous discovery
process of hidden requirements (e.g., constraints and prefer-
ences) that were not identified during the virtual prototyping
phase but can be available from user evaluation and justifi-
cation.

This paper is organized as follows. First, we discuss con-
cepts in knowledge engineering for planning and their role in
plan analysis and model adaptation – processes that are gen-
erally performed in a post-design phase. We then focus on
the contribution of rationales to plan design and life cycle,
that is, the capture, analysis and re-use of rationales. Next,
we present a case study based on the benchmark planning
problem called Gold Miner. Following there is a discussion
of the results and some concluding remarks.

Knowledge Engineering and Post-Design
Requirements engineering (RE) and knowledge engineer-
ing (KE) principles have become important to the suc-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

15

cess of the design and maintenance of real world planning
applications (McCluskey 2002). While pure AI planning
research focuses on developing reliable planners, KE for
planning research focuses on the design process for cre-
ating reliable models of real domains (McCluskey 2002;
Vaquero et al. 2007). A well-structured life cycle to guide
design increases the chances of building an appropriate plan-
ning application while reducing possible costs of fixing er-
rors in the future. A simple design life cycle is feasible for
the development of small prototype systems, but fails to pro-
duce large, knowledge-intense applications that are reliable
and maintainable (Studer, Benjamins, and Fensel 1998).

Research on KE for planning and scheduling has created
tools and techniques to support the design process of plan-
ning domain models (Vaquero et al. 2009; Simpson 2007).
However, given the natural incompleteness of the knowl-
edge, practical experience in real applications such as space
exploration (Jónsson 2009) has shown that, even with a
disciplined process of design, requirements from different
viewpoints (e.g. stakeholders, experts, users) still emerge af-
ter plan generation, analysis, revision and execution (Hatzi
et al. 2010). For example, the identification of unsatisfactory
solutions and unbalanced trade-offs among different quality
metrics and criteria (Jónsson 2009; Rabideau, Engelhardt,
and Chien 2000; Cesta et al. 2008) indicates a lack of un-
derstanding of requirements and preferences in the model.
These hidden requirements raise the need for iterative re-
modeling and tuning process. In some applications, finding
an agreement or a pattern among emerging requirements is
an arduous task (Jónsson 2009), making re-modeling a non-
trivial process.

A fundamental step in the modeling cycle is the analysis
of generated plans with respect to the requirements and qual-
ity metrics. Plan analysis naturally leads to feedback and the
discovery of hidden requirements for refining the model. We
call ‘post-design analysis’ the process performed after plan
generation, in which we have a base model and a set of plan-
ners that provide the solutions to be evaluated. In fact, liter-
ature on plan analysis has shown interesting tools and tech-
niques for plan animation (McCluskey and Simpson 2006;
Vaquero et al. 2007), visualization (e.g. Gantt charts), vir-
tual prototyping (Vaquero, Silva, and Beck 2010), and plan
querying and summarization (Myers 2006).

Unfortunately, visualization and simulation approaches,
such as the virtual prototyping used in our previous work
(Vaquero, Silva, and Beck 2010), can not assure that all
missing knowledge will emerge, specially in real planning
problems. In many real cases, user feedback and rationales
are hard to understand and compile; they are captured in
pieces over time, making patterns hard to be identified. An-
alyzing plans individually in such real cases will probably
not correctly emphasize the hidden requirements; they must
be captured, pieced together and recognized. The accumu-
lation of data from plan evaluation and their respective ra-
tionales can serve as a foundation for the identification of
domain knowledge that cannot clearly or easily be detected
during the first plan analysis interactions with visualization
techniques. In this work, we want to go a step further on
such investigation of post-design. We focus on studying the

capture, representation of human-centric feedback from plan
evaluation, in the form of rationales, and the reuse of such
rationales for further evaluations.

Rationales in Planning
In software engineering, a design rationale is essentially the
explicit recording of the issues, alternatives, tradeoffs, deci-
sions and justifications that were relevant to the elements in
the design. Rationales can be used in a number of ways in
the design of an artifact:

• to explore and evaluate the various design alternatives dis-
cussed during the design process.

• to determine the changes that are necessary to modify a
design.

• to facilitate better communication among people who are
involved in the design process.

• to assist in making decisions during the design process.

• in design verification, to check if the artifact/product re-
flects what the designers and the users actually wanted.

• to re-use past experiences and to avoid the same mistakes
made in the previous design.

Requirements engineering research has already reported
the importance of rationale-based approaches; they have
provided improvements in quality and reduction in costly
errors that outweigh the costs of capturing rationales (Ra-
maesh and Dhar 1994).

In planning literature, rationale has been generally re-
ferred to the “why a plan is the way it is”, and to “the rea-
son as to why the planning decisions were taken” (Polyank
and Austin 1998). These rationales, usually called plan ra-
tionales, have been recognized as an important type of infor-
mation (Wickler, Potter, and Tate 2006; Polyank and Austin
1998) that can influence not only the plan synthesis process
but the whole life cycle of a plan. In such life cycle, plan ra-
tionales can be acquired and used in the plan synthesis pro-
cess itself, or in plan analysis, evaluation, explanation, plan
indexing and retrieval, failure recovery, and plan communi-
cation.

Most of the work on plan rationales focuses on capturing
and using them to improve the plan generation. The exist-
ing approaches of capturing plan rationales are related to
the identification of planning decisions made by the plan-
ners (e.g., rationales in the form of causality, dependency)
that stem from the planning process itself (planning trace).
As an example of plan rationale related to a planner decision
might be “action A is chosen at the state S because it achieves
goal g” or “because A’s effects match an open condition of
partial plan p”. These planning decisions are usually ana-
lyzed and re-used for making further similar decisions. For
example, the usefulness of storing plan rationales to help
future planning has been demonstrated by several types of
case-based planners (Upal and Elio 1999). The case-based
approach proposes that each planning decision within a plan
be annotated with a rationale for making that decision. In
this case, the planners remember past planning solutions and
failures so they can be re-used or avoided in the future. The

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

16

idea behind storing these types of rationales is that a pre-
viously made and retrieved planning decision will only be
applied in the context of the current planning problem if the
rationales for it also holds in the current problem (Upal and
Elio 1999). The work of Wickler, Potter, and Tate (2006)
describes a recording process of rationales into a plan on-
tology in which a planner can record the justifications for
including components into the plan represented in the <I-
N-C-A> ontology within the framework called I-X. In addi-
tion, research on plan rationales has also focused on learning
and using such information to produce control knowledge or
plan-refinement strategies, which would, as a result, improve
the plan quality. A good review of plan rationales is provided
in (Polyank and Austin 1998).

Design and decision rationales coming from people have
received the least amount of attention in the planning liter-
ature. Differently from existing work on rationales in plan-
ning, we focus on acquiring human-centric rationales that
emerge from user feedback, observations and justifications
during plan evaluation. Based on general and individual cri-
teria, interests, feelings and expectations, the rationales from
plan evaluation generate explanations and justifications as to
why a plan was classified into a specific quality level. There-
fore, we extend here the concept of plan rationales with ra-
tionales that encompass “why a certain plan element does
or does not satisfy a criterion” or “why a certain plan does
or does not satisfy a preference”. Moreover, these rationales
could explain “why a certain metric does or does not satisfy
a given criterion” and “what is the effect of a given plan char-
acteristic or element in the plan quality” (e.g., it decreases or
increases the quality). As an example of plan rationale, one
might say that “the plan has a decreased quality because the
robot left a block too close to the edge of the table” or “the
plan has a high quality because the robot avoided repeatedly
passing through the two most crowded areas of the building
while cleaning it”. We call these explanations plan evalua-
tion rationales.

In this paper we focus on the implementation of the
processes related to plan evaluation and the acquisition
and re-use of rationales. We have designed a framework
called Post-Design Application Manager (postDAM) that
integrates itSIMPLE and a reasoning system called tuPro-
log1 (a Java implementation of the Prolog engine). The im-
plemented framework supports users on the following pro-
cesses: classification of metrics and plans (plan evaluation),
and the acquisition and re-use of rationales. In this paper we
focus on the acquisition and re-use of rationales processes to
support plan analysis.

Acquiring Rationales for Plan Evaluations
One of the main goals of this work is to capture the knowl-
edge behind the classifications made upon the metric values
and the plans. Rationales for plan evaluation may refer to el-
ements and properties of the plan, including the plan struc-
ture itself. Therefore, it is necessary in the first place to con-
sider a formal foundation of terms, concepts, relations and
axioms to provide the base vocabulary of plan elements that

1tuProlog: see http://alice.unibo.it/xwiki/bin/view/Tuprolog/.

can be used to specify a rationale. In this work, such a formal
foundation is the Plan Ontology. Before introducing how ra-
tionales are captured and represented, we first describe the
plan ontology utilized in the postDAM.

Representation of Evaluated Plans
As mentioned by Tate (Tate 1996), a richer plan represen-
tation could provide the following: a common basis for hu-
man and system communication about plans; a shared model
of what constitutes a plan; mechanisms for automatic ma-
nipulation and analysis of plans; a target representation for
reliable acquisition of plan information and feedback; for-
mal reasoning about plans and re-use mechanisms. Such a
representation is often based on an ontology - a plan ontol-
ogy - which explicitly specifies the intended meanings of
the terms being used, such as processes, activities, the con-
straints over their occurrences, or the meaning of the plan-
ning problem itself (Grüninger and Kopena 2005).

Among different ontologies for representing plans, we
have chosen the Process Specification Language (PSL)
(Schlenoff, Knutilla, and Ray 1996; Grüninger and Menzel
2003; Grüninger and Kopena 2005). PSL is an expressive
ontological representation language of processes (plans), in-
cluding activities and the constraints on their occurrences.
PSL has been designed as a neutral interchange ontology to
facilitate correct and complete exchange of process informa-
tion among manufacturing systems such as scheduling, pro-
cess modeling, process planning, production planning, sim-
ulation, project management, workflow, and business pro-
cess applications (Grüninger and Kopena 2005). An inter-
esting aspect of the PSL architecture is that it supports a set
of extensions. A designer can extended PSL precisely to fit
their expressive needs. We use PSL as the base for the plan
ontology utilized in the postDAM framework.

Two of the most important terms in the core of PSL On-
tology are the activity and its occurrence. As described in
(Grüninger and Menzel 2003), an activity is a repeatable pat-
tern of behavior, while an activity occurrence corresponds
to a concrete instantiation of this pattern. For example, the
term pickup(r,x) can denote the class of activities for pick-
ing up some object x with robot r, and the term move(r,x,y)
can refer to the class of activities for moving robot r
from location x to location y. The ground terms such as
pickup(Robot1,BlockA) and move(Robot1,LocA,LocB) are
instances of these classes of activities, and each instance can
have different occurrences (e.g., two different occurrences
of move(Robot1,LocA,LocB) can appear in plan). In fact, ac-
tivities may have several or no occurrences. The relationship
between activities and activity occurrences is represented by
the occurrence of(o,a) relation. Any activity occurrence cor-
responds to a unique activity. Object is also a term in PSL-
core ontology. An object might be an argument of activities
or fluents. Fluents are used to describe facts. For example,
at(Robot1,LocA) is a fluent in PSL while Robot1 and LocA
are objects. Moreover, the term State is also used in PSL
ontology, in its extensions. States may refer to a particular
situation of the domain or to a fluent. Relationships such
as prior(f,o) and holds(f,o) denote, respectively, a fluent (or
state) f that holds prior to the activity occurrence o and af-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

17

ter such occurrence. The complete lexicon of the language
is detailed in the PSL website.2

As opposed to most applications of the PSL ontology, in
this work we focus on the representation of plans generated
by automated planners. Therefore, additional semantics and
vocabularies must be considered. We have extended the PSL
lexicon to include the terms, characteristics and vocabulary
of AI planning, including domain, problem, operators, pre-
and post-conditions, objects, fluents that define states, plan,
metrics, and plan quality. Table 1 summarizes such addi-
tional terms and vocabulary used in the postDAM frame-
work to represent a plan and its quality.

domain(d) d is a domain

problem(i) i is a problem instance

problem of(i,d) i is a problem instance of d

problem solving acti- a the problem-solving activity of problem

vity of(a,i) instance of i

plan(p) p is a plan

solution of(p,d,i) p is a solution to the problem i of domain d

fluent of(f,s) f is a fluent of the state s. A set of fluents

defines a state

numeric fluent of(f,v,s) f is a numeric fluent with value v in the state s

positive precondition(a,f) f is a precondition of a

negative precondition(a,f) f is a negative precondition of a

effect(a,f) f is a effect of a

negative effect(a,f) f is a negative effect of a

metric(m) m is a metric

metric value(p,m,v) m has value v in plan p

metric quality(p,m,q) m has quality value q in plan p

quality(p,q) p has quality value q

Table 1: Addition terms and relations to PSL Ontology used
in postDAM

As an example of the ontological representation of plans
in postDAM, let us suppose a simple planning problem from
the classical blocks world domain in which block B must
be unstacked from block A and put on the table. A plan
with two actions solves the problem. In such example, the
plan structure is represented along with the basic informa-
tion about domain and problem, as well as the initial state.
Figure 1 illustrates the two blocks example, along with basic
concepts and elements of the proposed PSL extension (some
of the terms are omitted in the figure to provide a clear view
of ontology structure). The top area of Figure 1 illustrates the
terms of the domain of application and the problem, whereas
the bottom illustrates the plan structure.

Reasoning about a given plan would require the proper
encoding of the PSL ontology, including the plan represen-
tation, action specifications and propagation rules. Such rea-
soning could be used to infer or check plan properties and
characteristics (e.g. to infer in which state a given goal or
fluent is achieved). We use Prolog for encoding the ontology
in the postDAM framework.

2PSL is available at http://www.mel.nist.gov/psl/ontology.html.

Figure 1: An illustration of the plan structure in the plan
ontology used in postDAM

Representation of Rationales for Plan Evaluations
We aim at rationales that explain what affects the quality
of plans (positively and negatively) and consequently why
a plan has a given classification (including factual reasons
or preferences). Conceptually, plan evaluation rationales in
postDAM have the following straightforward format:

if < condition > then < effect on plan quality >
(1)

The condition of the rationale can be any logical sentence
involving the properties of a plan, while the effects are pre-
defined terms that specify whether the condition increases
or decreases the quality of the plan. A rationale may refer to
the effect on plan quality or on a particular metric quality.
For example, one may have the following evaluation ratio-
nale: “if (action1 occurs after action2 AND action3 is the
last action in the plan) then (plan quality decreases)”.

In order to represent rationales, we use the plan on-
tology described above along with a new vocabulary to
capture the concepts of plan evaluation rationale. The vo-
cabulary includes an important term called rationale(r)
to represent an evaluation rationale. The relation qual-
ity rationale of(r,p,j) denotes the relationship between a ra-
tionale r and the plan p along with a user justification
j. Depending on the ontology encoding, the justification
might be a string object such as in the following exam-
ple: quality rationale of(r1,p1,“when action1 occurs after
action2 and action3 is the last action in the plan the qual-
ity is decreased”). The effects on plan quality are repre-
sented using the relations affect plan quality(r,p,e) and af-
fect metric quality(r,p,m,e) where e can be either increase or
decrease. The former refers to the direct effect on the quality
of a plan, while the latter refers to the effect on a particular
metric m. The following sentences represent the conceptual
format of the rationale (sentence 1) using the above extended
vocabulary:

< condition >→ quality rationale of(r, p, j).
quality rationale of(r, p, j) →
affect plan quality(r, p, e).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

18

In the first sentence, if condition is satisfied then relation
quality rationale of becomes true, and consequently rela-
tion affect plan quality also becomes true according to the
second sentence. The rationale’s condition is represented us-
ing the vocabulary defined in the plan ontology.

We also consider different abstraction levels of ratio-
nales in the extended ontology. Rationales can be classi-
fied as problem-dependent, domain-dependent or domain-
independent. Problem-dependent rationales are those that
are only applied in the context of a particular problem in-
stance (e.g., “if a robot moves to location 7 the plan has a
low quality”). Domain-dependent rationales are those that
are applicable in all problem instances of a particular do-
main (e.g., “if any robot performs a loop in its path the re-
sulting plan quality is low”). Finally, domain-independent
rationales are those applied to any planning domain or set of
domains (e.g., “if a vehicle performs a loop of movements
then the quality of the plan will be decreased”). The relation
used to represent these concepts is the abstraction level(r,l),
where l refers to one of the three levels of abstraction. The
level of abstraction of rationales assists their re-use as will be
discussed in th next section. Table 2 summarizes the terms
and relations for representing rationales in postDAM.

rationale(r) r is a rationale

quality rationale of(r,p,j) r is a rationale of plan p with justification j

affect plan quality(r,p,e) r describes the effect e on quality of p

affect metric quality(r,p,m,e) r describes the effect e on quality of metric

m of p

abstraction level(r,l) l is the abstraction level of r

Table 2: Rationales terms and relations in postDAM

The following examples represent two rationales using
the vocabulary in Table 2.

rationale(r1).
abstraction level(r1, problem− dependent).
∀p, o, sg · leaf occ(o, p) ∧ holds(sg, o)∧
fluent of(at(robot1, loc1), sg) →
quality rationale of(r1, p, j1).

∀p · quality rationale of(r1, p, j1) →
affect plan quality(r1, p, increase).

rationale(r2).
abstraction level(r2, problem− dependent).
∀p, o, sg, v · leaf occ(o, p) ∧ holds(sg, o)∧
numeric fluent of(traveleddistance(robot1, v), sg)∧
v > 50 → quality rationale of(r2, p, j2).

∀p · quality rationale of(r2, p, j2) →
affect metric quality(r2, p, fuelused, decrease).

The above example represents two rationales, r1 and r2.
The first rationale can be interpreted as follows: “The qual-
ity of a plan increases whenever the robot1 is at loc1 in the
state generated by the last activity occurrence in the plan
(leaf occ(o,p)), and the goal state is still sg”. The second ra-
tionale has the following meaning: “The quality of the met-
ric fuelused decreases whenever the traveled distance of the
robot1 (variable v) is greater than 50 to the goal state”. These
rationales are manually inserted and maintained by users us-
ing itSIMPLE’s interface.

Re-using Rationales for Plan Evaluation
During the plan evaluation, stored rationales can be re-used
to support classification and justification. When a new plan
is created, we can use past evaluations to identify the good
and bad characteristics of the plan. In postDAM, the re-use
process involves the tool itSIMPLE, the reasoning interface
tuProlog and the Plan Analysis Database. The information
from the abstraction level of rationales is essential to the re-
use process. Supposing a new plan pn is generated to solve
a problem instance i in the domain d, the process of re-using
existing rationales is as follows:

1. itSIMPLE first translates the domain operators, the ob-
jects, the problem instance, and the new plan pn to the
PSL plan ontology.

2. itSIMPLE accesses the plan analysis database to select
the following rationales: (1) problem-dependent ratio-
nales that are applied specifically to the problem i; (2)
domain-dependent rationales that are applied to any prob-
lem instance in domain d; and (3) domain-independent
rationales that are applied to any planning domain.

3. The translated plan and selected rationales are put to-
gether with the PSL-Core and core theories forming a
knowledge base to the plan.

4. The knowledge base is then read by the tuProlog for in-
ference requests.

5. itSIMPLE accesses tuProlog to check which rationales are
applied to plan pn. itSIMPLE requests the inference of
quality rationale of(R,p1,J), where R and J are variables
to be instantiated by the Prolog engine.

6. The list of applied rationales (instantiated values of vari-
able R), along with their respective justification (instanti-
ation values of variable J), is read by itSIMPLE and at-
tached to the new plan pn (in the XML format).

The re-used rationales can be seen in the evaluation sum-
mary provided by itSIMPLE.

Case Study
In this section, we present a case study using a benchmark
domain from the International Planning Competitions (IPC)
to evaluate the acquisition process of plan evaluation ratio-
nales in a post-design domain adaptation: the Gold Miner
domain. This domain was chosen from a recent KE compe-
tition, because it is intuitive and has a clear correspondence
between objects in the real and virtual world.

The procedure used for the case study is as follows:

1. We gather all rationales found and observations made
during a virtual prototyping phase of plans generated by
eight state-of-the-art planners: SGPlan5, MIPS-xxl 2006,
LPG-td, MIPS-xxl 2008, SGPlan6, Metric-FF, LPG 1.2,
and hspsp. For more details about the virtual prototyping
phase see (Vaquero, Silva, and Beck 2010)

2. We represent the rationales in itSIMPLE using the pro-
posed extension of the PSL ontology and the acquisition
process described above.

3. We then analyze the rationales regarding their applicabil-
ity, re-use and generality.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

19

The Gold Miner Domain
The Gold Miner is a benchmark domain from the learning
track of IPC-6 (2008). In this domain, a robot is in a mine
and has the objective of reaching a location that contains
gold. The mine is represented as a grid in which each cell
contains either hard or soft rock. There is a special location
where the robot can either pickup an unlimited supply of
bombs or pickup a single laser cannon. The laser cannon
can be used to destroy both hard and soft rock, whereas the
bomb can only penetrate soft rock. If the laser is used to
destroy a rock that is covering the gold, the gold will also
be destroyed. However, a bomb will not destroy the gold,
just the rock. This particular domain has a simple optimal
strategy3 in which the robot must (1) get the laser, (2) shoot
through the rocks (either soft of hard) until it reaches a cell
neighboring the gold, (3) go back to get a bomb, (4) explode
the rock at the gold location, and (5) pickup the gold. In
this case study we used the propositional typed PDDL model
from the testing phase of IPC-6.

During the virtual prototyping and model refinement cy-
cles performed with the Gold Miner domain described in
(Vaquero, Silva, and Beck 2010), a set of observations were
made. We summarize these observations as follows:

• One planner generated invalid solutions in which the
robot used the laser at the gold location, destroying the
gold (Vaquero, Silva, and Beck 2010).

• Some planners provided (valid) plans in which the laser
cannon was fired at an already clear location.

• The laser cannon was left in a different position from the
initial one. It would be better if the robot could leave the
laser only at the same spot as the bomb source.

• Unnecessary move actions were present in some plans.

In this case study, we address each one of the above ratio-
nales in the postDAM framework.

The undesirable firing behavior of the laser cannon nat-
urally decreases the quality of the plan, and specifically to
the laserusage metric. The following rationale rGM1 de-
notes the issue of firing to an already clear position (the el-
ement jGM1 represents the user’s justification of rationale
rGM1):

rationale(rGM1).
∀p, o, t, x, y, s · subactivity occurrence(o, p)∧
occurrence of(o, firelaser(t, x, y))∧
prior(s, o) ∧ fluent of(clear(y), s) →
quality rationale of(rGM1, p, jGM1).
∀p · quality rationale of(rGM1, p, jGM1) →
affect plan quality(rGM1, p, decrease).

The justification jGM1 could be encoded as a string like
jGM1 = ’Laser fired to nowhere (clear position), at ’ + y.
Such a justification will be instantiated with every possibil-
ity of firing the laser cannon to a clear position y. itSIM-
PLE captures and records these instantiations in the XML
representation of the plan as well as in the database. The
evaluations summary provided by the tools shows such jus-
tifications to the users.

3IPC-6 2008. http://eecs.oregonstate.edu/ipc-learn/

The above rationale is applicable to plans of any prob-
lem instances in the Gold Miner domain and, therefore,
can be considered in this work as a domain-dependent ra-
tionale (abstraction level(rGM1, domain-dependent)).
However, one might consider it as a domain-independent
rationale, applicable to a class of domains in which action
firelaser(t, x, y) exists and fluent clear is used as one of
the effects.

A specific undesirable firing behavior was also detected in
some of the plans generated for the problem instance gold-
miner-target-5x5-01 from IPC. In this case, two laser can-
non shots were made at rock locations that did not belong to
a reasonable path to the gold position, consequently decreas-
ing plan quality. The following rationale rGM2 represents
such situation (the objects node2i1 and node3i1 represent
the specific locations where the laser was fired):

rationale(rGM2).
∀p, o1, o2, t · occurrence of(p, plangoldminertarget-
5x501) ∧ subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
occurrence of(o1, firelaser(t, node2i0, node2i1))∧
occurrence of(o2, firelaser(t, node3i0, node3i1)) →
quality rationale of(rGM2, p, jGM2).

∀p · quality rationale of(rGM2, p, jGM2) →
affect plan quality(rGM2, p, decrease).

The condition of the rationale rGM2 checks the
existence of two specific firing occurrences. Note
that rationale rGM2 is restricted to solutions of the
problem gold-miner-target-5x5-01 by the condition
occurrence of(p, plangoldminertarget5x501) (where
plangoldminertarget5x501 is the activity of solving problem
gold-miner-target-5x5-01). Therefore, this is a problem-
dependent rationale (abstraction level (rGM2,problem-
dependent)).

During the virtual prototyping phase, we raised the issue
of the position in which the laser cannon was left at the
goal state. Leaving the cannon at the same position as the
bomb source was preferred. The following rationale rGM3
denotes such a preference and expectation:

rationale(rGM3).
∀p, o, sg, x · leaf occ(o, p) ∧ holds(sg, o)∧
fluent of(bombat(x), sg)∧
fluent of(laserat(x), sg) →
quality rationale of(rGM3, p, jGM3).

∀p · quality rationale of(rGM3, p, jGM3) →
affect plan quality(rGM3, p, increase).

The condition of rGM3 checks the existence of both flu-
ents bombat(x) and laserat(x) (where x is a location) at
the goal state sg. In this case study, the rationale rGM3 is
considered domain-dependent since it is applicable for all
synthesized solutions for the Gold Miner domain.

In all refined models resulted from the virtual prototyp-
ing phase, unnecessary move actions appear in their respec-
tive plans. During the experiment, the rationales for detect-
ing and explaining such undesirable characteristic evolve
from a specific approach to a more general one (reaching a
reusable representation). Due to limited space, we will focus
on an example of rationale that referred to some loops in the

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

20

robot’s path. This rationale captured during the experiment
has the following representation:

rationale(rGM4).
∀p, o1, o2, a, t, x1, x2 · subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
next subocc(o1, o2, a)∧
occurrence of(o1,move(t, x1, x2))∧
occurrence of(o2,move(t, x2, x1)) →
quality rationale of(rGM4, p, jGM4).

∀p · quality rationale of(rGM4, p, jGM4) →
affect plan quality(rGM4, p, decrease).

Rationale rGM4 refers to all sequences of move actions
that take a robot from location x1 to x2 and then back to
x1 immediately after that. As the re-modeling process pro-
gressed, more sophisticated explanations can be constructed
manually (Vaquero 2011). For example, a rationale could be
defined to detect any complex loop (x1, x2, ... , xn, x1) per-
formed by a robot. The following rationale representation
captures any outer loop in a single robot’s path:

rationale(rGM5).
∀p, o1, o2, x, y, z, a · subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
occurrence of(o1,move(t, x, y))∧
occurrence of(o2,move(t, y, z))∧
next subocc(o1, o2, a) →
consecutive move(o1, o2, t, p).
∀p, o1, o2, o3, x, y, z, w, h, a·
subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
subactivity occurrence(o3, p)∧
occurrence of(o1,move(t, x, y))∧
occurrence of(o2,move(t, z, w))∧
occurrence of(o3,move(t, h, z))∧
min precedes(o1, o2, a) ∧ next subocc(o3, o2, a)∧
consecutive move(o1, o3, t, p) →
consecutive move(o1, o2, t, p).

∀p, o1, o2, x, y, z, a · subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
occurrence of(o1,move(t, x, y))∧
occurrence of(o2,move(t, z, x))∧
min precedes(o1, o2, a)∧
consecutive move(o1, o2, t, p) →
loop of move(o1, o2, t, p).

∀p, o1, o11, o2, o22, x, y, l, h, a·
occurrence of(o1,move(t, x, l))∧
occurrence of(o2,move(t, h, x))∧
min precedes(o1, o2, a) ∧ next subocc(o11, o1, a)∧
next subocc(o2, o22, a)∧
occurrence of(o11,move(t, y, x))∧
occurrence of(o22,move(t, x, y) →
has previous loop move(o1, o2, t).

∀p, o1, o2, t, x, y, z · subactivity occurrence(o1, p)∧
subactivity occurrence(o2, p)∧
occurrence of(o1,move(t, x, y))∧
occurrence of(o2,move(t, z, x))∧
¬has previous loop move(o1, o2, t)∧
loop of move(o1, o2, t, p) →
quality rationale of(rGM5, p, jGM5).

∀p · quality rationale of(rGM5, p, jGM5) →
affect plan quality(rGM5, p, decrease).

In the above rationale, we define new relations to as-
sist the identification of outer loops (for this context only)
such as consecutive move(o1,o2,t,p), loop of move(o1,o2,
t,p) and has previous loop move(o1,o2,3). The relation
consecutive move(o1,o2,t,p) and loop of move(o1,o2,t,p)
together capture any consecutive sequence of move
occurrences that constitutes a loop, whereas relation
has previous loop move(o1,o2,t) filters the outer loops. It
is indeed possible to capture the existing inner loops per-
formed by the robot, but we see them as redundant informa-
tion when we capture the outer ones. The interesting point
here is that we can design and create any supporting concept,
relations and axiom for defining a rationale condition.

The rationales represented in this case study can be re-
used and applied in a new plan evaluation process. Using
the integration between itSIMPLE and the reasoning system
(tuProlog) we can automatically generate some justifications
to the initial plan evaluation made by itSIMPLE. All justifi-
cations are based on the rationales acquired and inserted in
the Plan analysis Database in this case study. For example,
if a plan has a loop in the robot’s path, the framework will be
able to detect such a loop and pinpoint where it is happening
to the user, as well as how it is affecting the plan quality (in
this case negatively).

Discussion
The proposed acquisition process of human-centered ratio-
nales has shown to be feasible using an ontological ap-
proach. The case study provides an indication that these ra-
tionales can be an important source of essential knowledge
such as user preferences. The reuse of past evaluation ex-
perience gives an important starting point in any analysis of
a newly generated plan. Such re-use not only supports the
knowledge acquisition process but also the decision process
on already built applications. In the latter case, rationales
can be applied to identify the trade-offs of plans selected for
execution, knowing beforehand their advantages and disad-
vantages.

The case study has also shown that rationales can evolve
during design and over time. As designer becomes familiar
with the observations and users’ intention, the representation
of the collected rationales becomes more accurate, encom-
passing the exact envisaged situations. Therefore, rationales
have their own maturity process in the design cycle.

Although we have not implemented the cross-project re-
use of rationales in this work, it is possible to infer from the
case study some examples about what could be enhanced
in planning design patterns. In the Gold Miner domain ex-
periment, the rationale related to the undesirable movement
loops is a potential candidate for being attached to design
patterns such as the transportation described in (Long and
Fox 2000). Moreover, metrics utilized in the experiments
could enhance the design patterns; some of them can be used
in a number of planning applications such as the travel dis-
tance (a common quality measure in transportation and nav-
igation benchmark domains).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

21

We believe that the matching process between past eval-
uations and design patterns can speed up the design process
itself, improve quality, reduce cost, and decrease problem
fixing issues in real planning applications.

Conclusion
We have described a post-design framework that integrates
a number of tools to assist the discovery of missing require-
ments, to support evaluation rationale acquisition and re-use,
and to guide the model refinement cycle. In previous work
we demonstrated that following a careful post-design analy-
sis, we can improve not only plan quality but also solvabil-
ity and planner speed (Vaquero, Silva, and Beck 2010). In
this paper we demonstrated how evaluation rationales can
be captured, represented and re-used. We discuss that this
type of human-centric feedback can be useful and reusable
in further plan evaluations and in other planning domains. In
a real planning application, the analysis process that follows
design becomes essential to have the necessary knowledge
represented in the model.

References
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2008. Validation and verification issues in a timeline-based
planning system. In Proceedings of the ICAPS 2008 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Daughtry, J. M.; Burge, J. E.; Carroll, J. M.; and Potts, C.
2009. Creativity and rationale in software design. ACM
SIGSOFT Software Engineering Notes 34:27–29.

Grüninger, M., and Kopena, J. B. 2005. Planning and
the Process Specification Language. In Proceedings of the
ICAPS 2005 Workshop on the Role of Ontologies in Plan-
ning and Scheduling, 22–29.

Grüninger, M., and Menzel, C. 2003. The Process Specifica-
tion Language (PSL) theory and applications. AI Magazine
24(3):63–74.

Hatzi, O.; Vrakas, D.; Bassiliades, N.; Anagnostopoulos, D.;
and Vlahavas, I. P. 2010. A visual programming system for
automated problem solving. Expert Systems With Applica-
tions 37:4611–4625.

Jónsson, A. K. 2009. Practical Planning. In ICAPS 2009
Practical Planning & Scheduling Tutorial.
Long, D., and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. In In Artificial Intelligence
Planning and Scheduling AIPS-00, 196–205. Breckenridge,
CO: AAAI Press.

McCluskey, T. L., and Simpson, R. M. 2006. Tool support
for planning and plan analysis within domains embodying
continuous change. In Proceedings of ICAPS 2006 Work-
shop on Plan Analysis and Management.
McCluskey, T. L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning. Toulouse, France 1–4.

Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-06).
Cumbria, UK: AAAI Press.

Polyank, S., and Austin, T. 1998. Rationale in Planning:
Causality, Dependencies and Decisions. Knowledge Engi-
neering Review 13(3):247–262.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
generic preferences to incrementally improve plan quality.
In Proceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning and Scheduling. Breckenridge,
CO.: AAAI Press.

Ramaesh, B., and Dhar, V. 1994. Representing and main-
taining process knowledge for large-scale systems develop-
ment. IEEE Expert: Intelligent Systems and Their Applica-
tions 9(2):54–59.

Schlenoff, C.; Knutilla, A.; and Ray, S. 1996. Unified
process specification language: Functional requirements for
modeling processes. In National Institute of Standards and
Technology.

Simpson, R. M. 2007. Structural Domain Definition us-
ing GIPO IV. In Proceedings of the Second International
Competition on Knowledge Engineering for Planning and
Scheduling.

Studer, R.; Benjamins, V. R.; and Fensel, D. 1998. Knowl-
edge Engineering: Principles and Methods. Data and
Knowledge Engineering 25(1-2):161–197.

Tate, A. 1996. Representing plans as a set of constraints
- the I-N-OVA model. In Proceedings Third International
Conference on AI Planning Systems (AIPS-96). Edinburgh:
AAAI Press.

Upal, M. A., and Elio, R. 1999. Learning rationales to gen-
erate high quality plans. In Proceedings of the Twelfth In-
ternational FLAIRS Conference, 371–377. Menlo Park, CA,
USA: AAAI Press.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA: AAAI Press.

Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From Requirements and Analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, ICAPS 2009, 54–61.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Improv-
ing Planning Performance Through Post-Design Analysis.
In Proceedings of the ICAPS 2010 Workshop on Scheduling
and Knowledge Engineering for Planning and Scheduling
(KEPS), 45–52.

Vaquero, T. S. 2011. Post-Design Analysis for AI Planning
Applications. Ph.D. Dissertation, Polytechnic School of the
University of São Paulo, Brazil.

Wickler, G.; Potter, S.; and Tate, A. 2006. Recording Ratio-
nale in <I-N-C-A> for Plan Analysis. In Proceedings of the
ICAPS 2006 Workshop on Plan Analysis and Management.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

22

The Challenge of Grounding Planning in Simulation
with an Interactive Model Development Environment

Bradley J. Clement*, Jeremy D. Frank**,
John M. Chachere***, Tristan B. Smith+ and Keith J. Swanson**

*Jet Propulsion Laboratory, California Institute of Technology ***SGT Inc, +MCT Inc., **NASA Ames Research Center
{FirstName.MiddleInitial.LastName}@nasa.gov

Abstract
A principal obstacle to fielding automated planning systems
is the difficulty of modeling. Physical systems are modeled
conventionally based on specification documents and the
modeler’s understanding of the system. Thus, the model is
developed in a way that is disconnected from the system’s
actual behavior and is vulnerable to manual error. Another
obstacle to fielding planners is testing and validation. For a
space mission, generated plans must be validated often by
translating them into command sequences that are run in a
simulation testbed. Testing in this way is complex and
onerous because of the large number of possible plans and
states of the spacecraft. Though, if used as a source of
domain knowledge, the simulator can ease validation. This
paper poses a challenge: to ground planning models in the
system physics represented by simulation. A proposed,
interactive model development environment illustrates the
integration of planning and simulation to meet the
challenge. This integration reveals research paths for
automated model construction and validation.

Introduction
There are several applications that have benefited from
using model-based planners. But, there are long-standing,
fundamental problems in applying automated planning to
physical systems: models are abstractions that are
disconnected from the physical system (reducing accuracy)
and limited in representation (increasing complexity).
Brooks remarked, “Explicit representations and models of
the world simply get in the way. It turns out to be better to
use the world as its own model” (1991). The successes of
model-based applications dull this point, but developing a
model that is sufficient for a real application can be a
painful struggle, especially if the modeling language is
missing basic features like numeric state variables, in
which case the language can seem to “get in the way.”
While languages have become more expressive, algorithms
that parse them do not scale well, and detailed modeling
may require too much effort. Abstraction has its
advantages! So, can existing planning systems somehow
use “the world” as their model?
 That is the challenge: to ground an automated planner in
system physics (“the world”) and thus simplify model

development, verification, and validation. Space missions
often develop simulation testbeds that serve as ground truth
for the system and can be automated to evaluate test cases
in batches. So, one approach to meeting the challenge is to
help automate model development and testing by
integrating the planner and simulator.
 We first describe a sample activity to show the
complexity of translating domain knowledge into different
elements of a declarative domain model. We then explain
how prior work in verification and validation does not
address this problem. We propose an Interactive Model
Development Environment (IMDE) to simplify the
construction, validation, and maintenance of automated
planning systems with help from a simulator. The majority
of the paper describes IMDE functions and architecture.
We discuss both current and near-term technologies that
can be used to build such an IMDE and mention progress
on a proof-of-concept implementation. We conclude with
research goals that could help produce valuable mission
planning technologies.

Model Development Challenges
As discussed above, fielding model-based planning
applications is challenging because typical modeling
processes are complex and error-prone and because the
combinations of possible test scenarios can seem as
overwhelming as testing the entire system being modeled.
 Originally planning languages and algorithms used only
Boolean state variables. Such variables are generally
impractical for representing time, location, and other
numerical states. Planning languages are more expressive
now (Howey et al. 2004, Fox and Long, 2003) but their
limitations still force inelegant workarounds that make
system models complex. Modeling choices can strongly
influence the performance of automated planning. So,
performance requirements can spur model revisions that
increase complexity further. This complexity compounded
by human error and lack of information about the modeled
system’s behavior can produce inconsistencies with the

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

23

model and the modeled system. Identifying and fixing
these inconsistencies can require significant work.
 To make the discussion concrete, consider the difficulty
of representing an activity for changing a spacecraft’s
attitude (its 3-dimensional orientation).

Example activity model of spacecraft slewing
 (:durative-action slew
 :parameters (?from – attitude
 ?to - attitude)
 :duration (= ?duration 5)
 :condition
 (and
 (at start (pointing ?from))
 (at start (cpu-on))
 (over all (cpu-on))
 (at start (>= (sunangle) 20.0))
 (over all (>= (sunangle) 20.0))
 (at start (communicating))
 (over all (communicating))
 (at start (>= (batterycharge) 2.0)))
 :effect
 (and
 (at start (decrease (batterycharge)2.0))
 (at start (not (pointing ?from)))
 (at end (pointing ?to))))
The PDDL above specifies a spacecraft attitude change
activity. The activity model is more abstract than a typical
simulator’s, which would use the spacecraft's command
set, lighting conditions (a function of the orbit), dynamics
of slewing the spacecraft, communication asset locations,
spacecraft power utilization, and battery performance.
Typically, extracting knowledge from the simulator to
configure the planning system is manual, inefficient and
error-prone. The modeler may have a lot of questions:
� How do planner model attitudes relate to real spacecraft

operations’ continuous attitudes? For example, does it
suffice to represent a deep-space craft with camera
directional sensors using a discrete valued attitude
variable with values such as to-Earth (for deep-space),
Earth-nadir (for Earth orbits), Sun-pointing (for solar
power generation), and others for sets of navigation
guide stars? How does data from the inertial
measurement unit map to these discrete directions?

� How does the planner model battery discharge? How
can the model conservatively estimate the battery energy
consumed by subsystems for different possible system
states? For example, does temperature affect power
usage? How is a cap on battery capacity modeled to
avoid overfilling? How is solar recharging modeled?

� What drives slew duration? Is it proportional with
angular slew distance? Will a slew always follow the
shortest rotation? Must it avoid pointing instruments at
the sun? What determines the choice of control system
(reaction wheels, thrusters, or torque rods)?

� How is reaction wheel momentum dumped?
� Along what axes can the spacecraft slew while

communicating? conducting science measurements?
recharging the battery? changing trajectory?

� What are the communication coverage requirements?
What information is needed about the spacecraft orbit,
availability of ground communication assets, and the
spacecraft antenna type and configuration? When do
ground stations require communications to monitor
trajectory changes or other related activities?

� How does the abstract slew correspond to one or more
sequences of spacecraft commands? Are there setup and
teardown activities? Is the slew for each axis performed
separately to avoid risk of concurrent interactions?

Before flight, the orbit, attitude, engineering subsystem
specification, and simulations can change frequently.
These changes require efficiently reconfiguring the activity
planner. For example:
� New targets or navigation aids require updating the set

of discrete attitudes.
� Changes in sequences can cause a change in attitude

control system performance, leading to activity changes.
� Any power-using subsystem that changes performance

(e.g., attitude control system or communication) will
change power consumption. If planning determines
mission objectives are infeasible, a need to slew faster
could also increase power consumption

� Changing orbit, communication coverage plan, or
antenna configuration may change the activity.

� Changing flight software (or the uses of major spacecraft
operating modes) might require changing the commands
that affect attitude.

Verification, validation, and model checking
Validating the planning model (not just a plan) is a central
challenge to automating model development. The planning
system is partly a plan verification system because it
checks constraints on system states that the plan’s activities
affect. However, validating the plan additionally requires
validating that the effects are realized as expected.
Validating the planning model requires validating all plans
that the planner generates or accepts as feasible.
 Model checking may detect violations of formal
properties by the planning model or individual plans “in
isolation” (e.g., Howey et al., 2004, Brat et al., 2008, Long
et al., 2009, Raimondi et al., 2009, Cesta et al., 2010), but
our goal is to validate the model against the simulator.
Simulation of activities in the planning model can directly
indicate problems, for example, an unrealized effect of an
activity or a system fault. Model checking cannot
substitute for this functionality without using a complete
model of the simulator. Current model checking systems
have the same representation and scaling problems as
planning, so a detailed model (which rarely exists anyway)
would likely be unusable.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

24

Interactive Model Development Environment
We now describe an approach that integrates planning and
simulation in order to help automate model development
and validation in the context of a hypothetical IMDE. We
make assumptions that simplify the discussion, describe
IMDE design features and architecture, and outline a
concept of operation for modeling with the IMDE.

Assumptions
The following assumptions simplify stating the challenge
in the IMDE context and also indicate additional
challenges addressed toward the end of the paper.
� The simulator input includes a list of time-tagged

commands.
� The simulator runs deterministically.
� The simulator reports any errors (undesirable behavior).
� The system (spacecraft) and simulator are defect-free.
� The simulator is a black box (the user can neither change

nor inspect its code and models)
� The simulator outputs time-tagged value samples of

system state variables.
� Formal flight rules define mission constraints that are

verifiable with the simulator output.
� Every plan that the planner sends to the simulator is

consistent with the planner’s model.
� An action in the plan corresponds to a list of time-tagged

commands.
� The planner is sound but not necessarily complete.

IMDE design features
The hypothetical IMDE could share many features of a
traditional programming language Integrated Development
Environment (IDE); An IMDE’s model corresponds to an
IDE’s code, plans correspond to test cases, and the
simulator corresponds to the computer. One distinctive
IMDE function is the generation of test cases to aid model
validation. Another is the generation of suggestions on
how to fix modeling errors. In the traditional IDE, this is
similar to suggesting code fixes for program run failures.
Following sections discuss validation and model fixes.
 Figure 1 shows the system architecture of the propsoed
IMDE. The Model Editor provides traditional IDE
functions. The Simulation API Browser provides model
creators access to the simulation API. With the Abstraction
Editor a user documents how plan model building blocks
(objects, states, timelines, actions, constraints) relate to
data and commands in the simulation API, thus providing
traceability for detecting model problems. These
abstractions are the semantic glue connecting the planner
to the “the world”/simulator. The Abstraction and
Refinement Engines integrate the planner and simulator.
The Refinement Engine transforms a plan into simulator

command input. The Abstraction Engine transforms
simulator output into an actual/simulated execution for
comparison with the expected/planned execution. These
executions are time-tagged actions and state variable
values in the language of the planner. The Validator
identifies discrepancies between the two executions, errors
reported by the simulator, and any planning model
constraint violations, some of which the simulator may not
check (e.g., flight rules). A Plan Viewer (not shown)
comparatively displays the simulated and planned
executions (e.g., in a Gantt chart). The Plan Viewer
(and/or an Error Viewer) visualizes discrepancies between
the executions and highlights those that indicate modeling
errors. Finally, the Fixer suggests model changes that may
eliminate one or more errors seen in the current and past
simulations of different plans. We explain how to detect
errors and make suggestions after describing the IMDE
concept of operation.

Figure 1: Hypothetical IMDE architecture.

Model�Editor

Planner

Simulator

Abstraction
Editor

Fixer

Refinement
Engine

Validator

model

plan

commands

state
timelines

simulated
execution

errorssuggestions

abstractions

Abstraction�
Engine

Simulator
API�Browser

commandsdata

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

25

Concept of operation
An IMDE user may start with an empty or existing
planning domain model. Depending on the modeling
language, an edit to the model may add, change, or remove
actions, state variables, constraints, and effects (or their
associated object types and sets). The user may create and
edit abstractions to ground the model in simulator
elements. A simulation interface exposes these elements,
including commands and system state variables. These
edits initiate the following basic workflow.

1. The user edits the model, or
2. the user edits abstraction by either

a. copying variables from the simulator interface to
the model (e.g. sunangle),

b. abstracting variables in the model (e.g.
(pointing Earth) is true in the planner if the
simulator’s xyz attitude is for each axis within 1
degree of the attitude to point directly at Earth),

c. copying a simulator command to the model as an
action (e.g. turn on CPU), or

d. abstracting a command sequence to model an
action (e.g. command sequence to slew spacecraft)

3. The IMDE generates possible initial states and plans
and tests each by
a. translating the initial state and plan into simulator

commands,
b. running the simulator with those commands,
c. translating simulator output to an execution,
d. checking the execution for violations of constraints

in the planning domain model, and
e. checking for discrepancies between planned and

simulated executions.
4. The IMDE analyzes test results to suggest changes to

the planning model that could fix discrepancies.
5. The user assesses planned and simulated executions,

their constraint violations, their discrepancies, and
suggested fixes.

6. Repeat.

 The idea is that when the user edits the model, in the
background the IMDE generates and simulates different
plans to search for discrepancies indicating modeling
errors. The user can be made aware of these errors even
while editing (much like syntax errors in an IDE), and
when the user is ready to see what is in error, the IMDE
may already have suggested fixes for the user to select.

Translating plan information as abstraction and
refinement
The previous workflow uses abstractions heavily. For
example, in step 3a the Refinement Engine may translate
one slew(?from,?to) action in the plan into three

ordered subsequences of simulator commands to rotate the
spacecraft around each of its three axes. In step 2c and 2d,
the user specifies this abstraction as an action
decomposition, similar to hierarchical plan decomposition
(Clement et al., 2007).
 Another abstraction type for data specifies how state
variables in the planning model relate to those in the
simulator output. For example, an abstraction could map
the simulator xyz spacecraft attitude to a discrete
(pointing ?target) planner predicate, with
?target either Earth, Sun, or SomewhereElse.
An abstraction function could specify that (pointing
Earth) is true if the simulator xyz attitude for each axis
is within 1 degree of pointing the transceiver to the Earth’s
center. In general, an abstraction could be any function of
a set of time-varying variables that calculates the time-
varying values of some variable.
 When the Refinement Engine translates initial state and
plan information into simulator commands using these
abstractions in steps 2a and b, some data abstractions may
need to be reversed. For example, translating a plan’s
slew(Sun,Earth) action into simulator commands
would translate the Sun and Earth symbols to the
corresponding xyz attitudes for pointing to the targets.
 The Abstraction Engine checks for discrepancies with
the planned execution and helps identify modeling errors
by translating simulation results into execution information
in the planner language using the abstractions in Step 3c.
The abstractions provide the time-varying planner state
values, but another step is needed to construct the
execution that explains these values. Our assumptions
make this relatively simple, but in general it can be a
difficult state estimation optimization problem.

Identifying modeling errors
Modeling errors are indicated by errors explicitly reported
by the simulator and by plan constraint violations on the
simulated execution that do not occur in the planned
execution (a discrepancy in constraint violations). For
example, in testing the slew(Sun, Earth) action, the
simulator might report an error from the fault management
system because the computer had not yet been booted
when commands were sent to the reaction wheels (a flight
rule violation). This is an error in the planning model
because the slew action lacked a necessary precondition
that the computer be booted. As another example, the plan
test case might include a goal (or constraint) (pointing
Earth) to check that the effect of a slew is achieved.
The simulator output could be error-free and translate back
to an execution where (pointing Earth) was never
achieved, failing the goal. This could be the result of the
plan containing another overlapping slew command that

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

26

commanded the spacecraft to retarget the slew. In this case
the modeling error was in allowing overlapping slews.
 This simple specification for identifying modeling errors
applies generally to different kinds of errors. For example,
how would an error in the timing of a slew be detected? If
the model specified a fixed duration for slew, the test plan
still only needs a constraint that (pointing ?to) be
true at the end of the slew activity. If the slew takes
longer than expected, then the constraint will be violated in
the simulated execution.
 Discrepancies between the planner and simulator need
not be modeling problems. Defining the planning states as
abstractions of the simulator’s states could naturally lose
information. For example, the planning model could
represent battery depletion as instantaneous while the
simulation represents depletion as gradual. Discrepancies
will probably manifest between the planned and simulated
battery levels. But, planning the battery levels
conservatively could avert simulation failures. The user
may choose to omit specific discrepancies from reporting
(as with waiving constraint violations in mixed initiative
planning systems, Aghveli et al. 2007). However, the
discrepancy might indicate an efficiency improvement
opportunity: a more detailed battery depletion model could
enable scheduling more activities.
 These discrepancies of inefficiency could be detected by
running plans that have constraint violations through the
simulator and seeing if the same violations occur in the
simulated execution.

Generating plans to validate the model
The reason for generating different plans to test (step 3) is
to validate that the model will work for all situations.
Validating the model requires validating all possible plans
that can be constructed from the model. In general, there
may be an infinite number of possible plans, but there may
be a manageable number that is enough to validate a single
part of the model.
 For example, if the user wants to ensure that the
(pointing ?to) effect is always satisfied at the end of
slew(?from,?to), then a complete space of plans to
test would combine all possible initial attitudes, slews for
all target attitudes (slew from each attitude to each other
attitude), all possible additional actions (slews from each
target to each other target), and the different temporal
orderings of those other actions with respect to
slew(?from,?to).
 It is possible to generate all of these plans with special
purpose code, but the planner itself may be leveraged to
accomplish this. Instead of generating all combinations,
incorporate this parameterization into a planning problem:
what initial state and ordering of instantiations of
slew(?from,?to) will achieve (pointing ?to) at

the end? The set of valid solutions to this planning problem
is the test suite.
 Now, it is expected that multiple simulations could map
to a single plan. For example, there are an infinite number
of xyz attitudes that translate to (pointing Earth).
So, why not test all possible simulations instead of all
possible plans? If plans are meant to be the only
mechanism for generating command sequences for the
spacecraft, the other simulations will never occur because a
plan only translates to one set of commands resulting in
one deterministic simulation. On the other hand, the initial
state is not dependent on actions in the plan, so the
complete space of test cases would include the infinite
number of attitudes that translate to (pointing
Earth). In this case, conventional test coverage
techniques may still be necessary.
 Another reason to generate simulations instead of plans
may be that the model has just been started, and many
actions have yet to be modeled, so the necessary plan-
based test cases to validate the first modeled action would
be insufficient. Thus, generating simulations based on the
simulator interface specification (using simulator
commands instead of planner actions) would be useful and
more robust to model changes. It may also be better to
generate simulator-based test cases when there are many
actions in the planning model. If activities are defined for
many combinations and orderings of simulator commands,
then the space of plans necessary to validate an action
could be greater than the space of simulations due to
repetition of simulator commands in a combination of
actions.
 Again, it may be possible to cleverly scope the
validation to reduce the number of sequences tested. For
example, test cases including two slews following the slew
to be validated should find the same errors as those test
cases with only a single following slew. Thus, a tractable
number of test cases may be identified for validating an
action in a model. This test coverage problem is known to
be quite difficult and, thus, part of the challenge.
 The tractability of validating the entire model depends
on that of individual actions. Validating each action in
isolation is enough to validate the entire model since the
soundness of the planner guarantees combinations of
actions.

Suggesting changes to the model
When the IMDE runs a batch of plans through the
simulator, some may result in simulator errors and some
may result in planning constraint errors. These indicate
that there are modeling errors, but the modeler may not be
able to deduce the actual mistake by looking at any one
execution. For example, suppose the slew was never
executed because the CPU was never turned on, resulting

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

27

in a simulation error flag. There would be a violation of
(pointing Earth) in the simulated execution, but no
information in the output ties these errors with the state of
the computer. So, the modeler would have to know the
spacecraft (and simulator) very well to guess the problem
after seeing it in a single run.
 By finding relationships between plan/state attributes
and simulator/discrepancy errors, the IMDE can generate
plausible suggestions for fixing the model. For example, if
a complete set of test cases showed that the slew failed
every time that the computer was not booted, a machine
learning classifier or data mining algorithm could identify
the pattern. Then, the IMDE could suggest abstracting the
computerMode variable in the simulator interface to a
cpu-on predicate in the planning model and add the
predicate as a precondition to slew. Other suggestions
include adding a constraint that a turnOnCpu action
always precedes slew or adding a simulator command to
the slew abstraction/decomposition to bootCpu. These
suggestions from the IMDE Fixer component (see Figure
1) could include changing constraints on an action, adding
state variables, or creating new actions.
 The challenge of generating suggestions may be in
framing the learning problem. Plans have variable
numbers of actions, so there is not an obvious feature set
over which to learn. In addition, the modeler may want
suggestions in terms of complex functional relationships of
multiple variables. For example, the desired fix may be to
avoid exhausting memory storage by adding a constraint
that the sum of durations of all communications activities
in a day must be greater than the sum of data collected
multiplied by a particular constant. The number of
functional relationships that may be part of a feature set of
a learning algorithm could easily be intractable. On a
positive note, the modeler may be able to deduce the
needed fix with the help of overly-specific suggestions
learned from a limited set of features.

Technology Foundations
While the ultimate vision of the IMDE has yet to be
achieved, many component technologies have been built.
This section describes some of these technologies as well
as research activities that enable the goal.
 The itSimple tool (Vaquero et al., 2007) is a plan
domain modeling environment very similar to the proposed
IMDE. Users of itSimple can build static models of
objects, actors, and relationships between them in a
specialization of UML and dynamic models of how states
of the objects are allowed to change using Petri Nets (an
encoding of state charts); the Petri Net model acts as a
simulation. The resulting models are automatically
translated by itSimple to PDDL, after which the users can

continue refining the resulting models. A distinct
difference from the IMDE approach is the assumed access
to the simulator model (white-box simulation).
 The Procedure Integrated Development Environment
(PRIDE) (Izygon et al., 2008) is a procedure authoring
technology prototype that can be used to create procedures
for execution by flight controllers and crew. PRIDE
presents procedure authors with a command and telemetry
database; users can drag commands and telemetry
references into a plan directly from the command and
telemetry database GUI. PRIDE provides access to either
state-chart simulations or high-fidelity simulations that the
procedure writer can use to manually check procedures for
correctness. Procedures can also be automatically verified
by means of translation to Java and the use of model
checking software (Brat et al., 2008). The use cases for
creating procedures are quite similar to the assumptions
made here. However, there is no abstraction mapping, and
procedures lack formalisms needed for planning.
 The Data Abstraction Architecture (DAA) (Bell et al.,
2010) is designed to address the problem of transforming
spacecraft or space system telemetry into useful
information for operators (be they flight controllers or
crew). The system allows system operators to write
common data transformations using a GUI; the
transformations are then executed by an engine that accepts
telemetry as input, and produces more intuitive information
as output. The DAA framework is well suited to editing
data abstractions for the IMDE, but it would need to be
extended to capture transformations of plan actions into
simulator commands.
 VAL takes steps toward the Fixer IMDE element by
validating that a specific plan is indeed a solution to a
planning problem that may be specified with continuous
effects, including limited forms of time-dependent change
on numerical state variables (Howey, et al., 2004). VAL
can also advise modelers how to fix a plan. The goal
explored here is how to validate that all plans execute as
intended and suggest fixes to the model, not just the plan.
Furthermore, the approach in VAL would have to apply to
simulated executions.
 The LOCM system (Cresswell et al. 2009) learns
planning domain models from sets of example plans. Its
distinguishing feature is that the domain models are
learned without any observation of the states in the plan or
about predicates used to describe them. This works
because the objects are grouped into sorts, and the behavior
available to objects of any given sort is described by a
single parameterized state machine. LOCM is the latest in
a number of plan domain learning systems that could be
employed to abstract black-box simulations into domain
models as part of the Fixer in our proposed IMDE.
However, doing so may require learning abstractions from

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

28

simulated command sequences, which plan domain
learning systems presently do not do.
 Techniques for ordering test cases to expose errors more
quickly can also be leveraged. Instead of generating test
plans by systematically trying each permutation of plan
features, test cases may be chosen that are believed to more
likely discover a flaw based on results of past cases. The
Nemesis test system has had success with this by using a
genetic algorithm to smartly choose test cases (Barltrop et
al., 2010). A complementary strategy is to use coverage
techniques to quickly sweep across the landscape of test
cases and learn combinations of features to more quickly
converge on a formula describing the conditions under
which a flaw appears (Barrett, 2009). This can be used to
converge quickly on suggestions to fix modeling errors.

Challenges in relaxing the assumptions
The usefulness of the described IMDE may still be
insufficient because of limiting assumptions. We describe
those we deem important and their associated challenges.
 It is possible that an action may correspond to multiple
commands, a loop, or any arbitrary function generating
commands. As long as this function is a legitimate
simulator input, then this is not a difficult problem.
 Many systems have uncertain behavior, for example,
stemming from attitude and temperature control. If the
simulation testbed can be invoked in a way that explores
different outcomes, then a single plan now corresponds to
multiple (possibly infinite) test cases for which the model
should be validated. This presents an additional difficulty
in determining a tractable number of test cases sufficient
for validating the model. It also presents a problem of how
to model the activity correctly; if the action duration varies
between 30 and 40 seconds, what is the best duration value
to use? Moreover, constructing the simulated execution
from state values may not be obvious and, in general, can
be a difficult state estimation problem!
 In addition, the spacecraft may be able to execute
sequences conditioned on the perceived system state. This
requires simulations that incorporate all possible perceived
states that could influence the plan outcomes.
 We have discussed some basic examples of modeling
errors on preconditions and effects. For expressive
language elements such as activity decomposition (as
opposed to the mapping of plan actions to simulator
command sequences) and parameter dependency functions,
how can errors and fixes be automatically identified? Does
this similarly extend to errors in abstraction specifications?
 Relaxing other assumptions may not pose difficult
research challenges but can change the nature of the
system capability. For example, if the simulator or system
(e.g. spacecraft) does have defects, then discrepancies that
are inconsistencies between planned and executed behavior

may now be (in addition to modeling errors) indications of
those system defects. So the IMDE now can identify
simulator and system defects and validate them against the
planner. Thus, the IMDE may more generally be designed
for validating multiple systems against each other. This
validation is especially important for interactions between
autonomous spacecraft subsystems (such as an onboard
planner or a guidance, navigation, and control system).
 Another assumption was that the simulator is a black
box. One option is to treat the effects of an action as
properties that are input to a model checker, which is used
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a
complete model of the system and its operation,
incorporating device, control, execution, and planning
models (Boddy et al., 2008). The conventional approach
of building a model only at an abstract level requires
extensive testing of different scenarios and could only be
guaranteed to work if all possible scenarios are tested.
SLATE only requires testing of individual behaviors
whose performance envelopes are incorporated into the
model. Since the model of the system is complete, SLATE
can prove system-level properties as model checking does.
 Another strategy for validating plan abstractions (in
particular, those of hierarchical plans) is to summarize the
potential constraints and effects of the potential
decompositions of each abstract action in the model
(Clement et al., 2007). A planner can use this summary
information to create a plan whose actions are detailed to
different levels necessary to conclude that all further
refinements of the plan are either valid or invalid. Like
SLATE, summary information validates higher level
actions composed of more detailed validated actions.
Summary information differs in that abstract actions retain
choices of refinement for flexibility of execution, while
abstract actions in SLATE are robust to uncertain system
behavior. Instead of validation through testing like SLATE
and the IMDE, summary information relies on an accurate,
detailed model and, thus, applies only to white box
simulation, similar to model checking approaches.
 A more aggressive approach is to automatically abstract
the simulation model to create the planner model, i.e.
augment the approach of itSimple (Vaquero et al. 2007) to
translate more expressive models to declarative planning
languages. Automating such translations requires a deep
understanding of the semantics of the simulation language
and may not be feasible for all simulation approaches.

Preliminary Proof of Concept
We have implemented a simple simulator and planner to
explore the challenges of building an IMDE. The system
provides a two-dimensional slew example and a simple

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

29

surface explorer (e.g., rover) example. The system
manages a simulator (implemented with ASPEN, Chien et
al., 2000) and a planner (EUROPA, Frank and Jónsson,
2003) using an enhanced Eclipse IDE. Simple file formats
are used for initial state, simulator commands, output, and
executions. A Java library translates these files, supports
abstraction specifications, and fulfills the Refinement and
Abstraction Engine roles. Currently, the system only
detects model errors from single plan simulations.

Conclusion
The maturation of model-based planning provides an
opportunity to improve the state of the art in planning
applications. But, the improvement requires spacecraft
engineers to build and validate planning models that
represent complex constraints derived from diverse
information sources. This paper hypothesizes that an
Interactive Model Development Environment could
overcome many of the associated challenges, providing
features to prevent, catch, and repair model errors. While
the technologies described above support the described
IMDE features, there remain significant research
challenges to achieve the overall vision:
� How can a complete but tractable space of test cases be

identified for activity model validation?
� Can a single test case contribute to the validation of

multiple model elements?
� How can errors in different modeling language features,

command refinement, and data abstraction be clearly
identified based on simulation output of these tests?

� What are the features of a learning problem for
classifying an error?

� How can suggested fixes be discovered for these errors?
� How can test cases be chosen strategically to converge

more quickly on modeling error and fix hypotheses?

Acknowledgements
We gratefully acknowledge the assistance and comments
of members of the MER, LCROSS and LADEE mission
operations and flight software teams, as well as members
of the Johnson Space Center Mission Operations
Directorate, in formulating this work. Some of the
research described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government, or the Jet
Propulsion Laboratory, California Institute of Technology.
© 2011 California Institute of Technology. Government
sponsorship acknowledged.

References
Aghevli, A., Bachmann, A., Bresina, J.L., Greene, J., Kanefsky,
R., Kurien, J.,McCurdy, M., Morris, P.H., Pyrzak, G., Ratterman,
C., Vera, A., Wragg. S., Planning Applications for Three Mars
Missions. Proceedings of the International Workshop on
Planning and Scheduling for Space. Baltimore, MD, 2007.
Barltrop, K., Clement, B., Horvath, G., and Lee, C. Automated
Test Case Selection for Flight Systems using Genetic Algorithms.
Proceedings of the AIAA Infotech@Aerospace Conference, 2010.
Barrett, A. and Dvorak, D. A Combinatorial Test Suite Generator
for Gray-Box Testing, IEEE SMC-IT 2009.
Scott Bell, David Kortenkamp, Jack Zaientz. A Data Abstraction
Architecture for Mission Operations. In Proc. of the International
Symposium on AI, Robotics, and Automation in Space, 2010.
Boddy, M., Carpenter, T., Shackleton, H., Nelson, K. System-
Level Autonomy Trust Enabler (SLATE), In Proc. of the U.S. Air
Force T&E Days, AIAA, Los Angeles, CA, Feb, 2008.
Brat, G., Gheorghiu, M, , Giannakopoulou, D., “Verification of
Plans and Procedures,” In Proc. of IEEE Aerospace Conf., 2008.
Brooks, R. A. Intelligence without representation. Artificial
Intelligence. 47, pp. 139–159, 1991.
Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.
Validation and Verification Issues in a Timeline-Based Planning
System. Knowledge Engineering Review, 25(3): 299-318, 2010.
Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt,
B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T.,
Stebbins, G., & Tran, D. ASPEN - Automating space mission
operations using automated planning and scheduling. In Proc.
SpaceOps, 2000.
Clement, B., Durfee, E., Barrett, A. Abstract Reasoning for
Planning and Coordination. Journal of Artificial Intelligence
Research, vol. 28, 453-515, 2007.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2012.
Acquiring planning domain models using LOCM. Knowledge
Engineering Review, to appear.
Fox, M. & Long, D. (2003), PDDL2.1: An extension of PDDL
for expressing temporal planning domains, Journal of Arti�cial
Intelligence Research 20, 61–124.
Frank, J. and Jónsson, A. Constraint-Based Interval and Attribute
Planning. Journal of Constraints, Special Issue on Constraints
and Planning, 2003.
Howey, R. and Long, D. and Fox, M. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), 15-17, Nov 2004.
Izygon, M., Kortenkamp, D., Molin, A., “A Procedure Integrated
Development Environment for Future Spacecraft and Habitats,”
Space Technology and Applications International Forum, 2008.
Long, D., Fox, M., and Howey, R. Planning Domains and Plans:
Validation, Verification and Analysis. In Proc. Workshop on
V&V of Planning and Scheduling Systems, 2009.
Raimondi, F., Pecheur, C., and Brat, G. PDVer, a Tool to Verify
PDDL Planning Domains. In Proc. Workshop on Verification and
Validation of Planning and Scheduling Systems, ICAPS, 2009.
Vaquero, T., Romero, V., Sette, F., Tonidandel, F., Reinaldo
Silva, J. ItSimple 2.0: An Integrated Tool for Designing Planning
Domains. Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling, 2007.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

30

Finding Mutual Exclusion Invariants in Temporal Planning Domains

Sara Bernardini
London Knowledge Lab

23-29 Emerald Street, London WC1N 3QS
s.bernardini@lkl.ac.uk

David E. Smith
NASA Ames Research Center
Moffet Field, CA 94035–1000

david.smith@nasa.gov

Abstract

We present a technique for automatically extracting
temporal mutual exclusion invariants from PDDL2.2
planning instances. Our technique builds on other ap-
proaches to invariant synthesis presented in the litera-
ture, but departs from their limited focus on instanta-
neous discrete actions by addressing temporal and nu-
meric domains. To deal with time, we formulate invari-
ance conditions that account for both the entire structure
of the operators (including the conditions, rather than
just the effects) and the possible interactions between
operators.

Introduction
A number of planning domain specification languages de-
signed and used to describe complex real-world planning
problems adopt a constraint-based representation centered
on multi-valued state variables. Examples of large temporal
systems based on such languages are: EUROPA2 (Frank and
Jónsson, 2003), ASPEN (Chien et al., 2000), IxTeT (Ghallab
and Laruelle, 1994), HSTS (Muscettola, 1994) and OMPS
(Fratini, Pecora, and Cesta, 2008).

In contrast, the majority of the benchmark domains cur-
rently used by the planning community were developed
for the International Planning Competitions (IPCs) and are
therefore encoded in the PDDL language, which is proposi-
tional in nature. Tools designed for translating propositional
representations into variable/value representations would fa-
cilitate the testing of application-oriented planners on these
benchmarks. Designing such tools is primarily concerned
with the generation of multi-valued state variables from
propositions and operators, which does not depend on the
target language of the translation.

This paper presents a technique for generating temporal
multi-valued state variables from a PDDL2.2 instance. More
specifically, we describe a technique for identifying tem-
poral mutual exclusion invariants, which state that certain
atoms can never be true at the same time, as a preliminary
step to synthesizing state variables. In fact, each identified
group of mutually exclusive atoms constitutes the domain of
a single state variable.

Our technique builds on the invariant synthesis pre-
sented in Helmert (2009) which is used to translate a sub-
set of PDDL2.2 into FDR (Finite Domain Representation),

a multi-valued planning task formalism used within the
planner Fast Downward (Helmert, 2006). Helmert’s invari-
ant synthesis is limited to non-temporal and non-numeric
PDDL2.2 domains (the so called, PDDL “Level 1”). In con-
trast, our technique addresses temporal and numeric do-
mains (PDDL – “Level 3”). Developing invariants for such
tasks is more complex than handling tasks with instanta-
neous discrete actions, because interference between con-
current operators complicates the identification of state vari-
ables. For this reason, a simple generalization of Helmert’s
approach does not work in temporal settings. In extending
the theory to capture the temporal case, we have had to for-
mulate invariance conditions that take into account the entire
structure of the operators (including the conditions, as op-
posed to the effects only) as well as the possible interactions
between them. As a result, we have constructed a signifi-
cantly more comprehensive technique that is able to find not
only invariants for temporal domains, but also a broader set
of invariants for non-temporal domains.

This paper is organized as follows. We first identify a set
of initial invariant candidates by inspecting the domain. We
then check these candidates against a set of properties that
assure invariance. If a candidate turns out not to be an in-
variant, we show that in some cases it is possible to refine it
so as to make it a real invariant. An experimental evaluation
of our approach and a presentation of conclusions and future
work close the paper.

Invariant Candidates
An invariant is a property of world states such that when
it is satisfied by a state s, it is satisfied by all states that
are reachable from s. Usually, we are interested in invari-
ants that are satisfied in the initial state. If an invariant holds
in the initial state, it holds in all the reachable states. Here,
we focus on mutual exclusion invariants, which state that
certain atoms can never be true at the same time. For ex-
ample, if we take the Logistics domain, a mutual exclusion
invariant for this domain states that two atoms indicating the
position of a truck trk0, such as at(trk0, loc0) and
at(trk0, loc1), can never be true at the same time. In-
tuitively, this means that the truck cannot be at two different
positions simultaneously.

More formally, let I = (D,P) be a PDDL instance, where
D is a planning domain and P a planning problem, an in-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

31

variant candidate is a tuple C = 〈Φ,F,V〉, where Φ is
a non-empty subset of the atoms in the domain D, and F
and V are two disjoint sets of variables. The atoms in Φ
are called the candidate’s components, while the two sets
F and V are respectively called fixed and counted variables.
They are both subsets of Var[Φ], which collects the variables
in Φ. For example, if we take the Logistics domain and the
predicate at(truck,loc), the following is a candidate:
Cat = 〈{at(truck,loc)}, {truck}, {loc}〉, where
at(truck,loc) is the only component of this candidate,
truck is the fixed variable and loc the counted variable.

An instance γ of the candidate C is a function that maps
the fixed variables in F to objects of the problem P . Assum-
ing we have a problem with two trucks trk1 and trk2, we
have two possible instances of Cat: γtrk1 : truck → trk1
and γtrk2 : truck → trk2.

The weight of an instance γ in a state s is the number of
ground instantiations of the variables in V that make some
φ ∈ Φ true under γ in s.1 Thus, considering the Logistics
domain and the instance γtrk1, if we have a state s where
the atom at(trk1,loc1) holds, then the weight of Cat is
one. Intuitively, the weight of γ in a state s is the number of
the candidate’s components that are true in s when the fixed
variables have been instantiated according to γ.

Given a cardinality set S = {x | x ∈ N}, the semantics of
a candidate C is: for all the possible instances γ of C, if the
weight of γ is within S in a state s, then it is within S in any
successor state s′ of s. Thus, if we prove that the candidate
C holds (i.e. C is an invariant) and is satisfied in the initial
state, we have that at most k = max(S) atoms in Φ are true
in any reachable state. Since we focus on finding mutually
exclusive sets of propositions, we are interested in cases in
which at most one atom in Φ is true in any reachable state.
Considering the Logistics domain again, the candidate Cat
means that, for each truck trk in the domain, if the number
of locations loc where at(trk,loc) is true is at most
one in a state s, then it is at most one in any successor state
s′ of s. If we prove that what is stated by the candidate is true
and each truck is at a maximum of one location in the initial
state, then each truck cannot be at multiple locations at the
same time in any reachable state. Hence, for each truck, we
can create a state variable that corresponds to the predicate
at and represents the position of the truck. The values of
this variable represent the presence of the truck in the vari-
ous locations that it can occupy.

In Helmert’s work, he considers only the cardinality set
S = {1}. However, we consider the set S = {0, 1} because,
with durative actions, it is common for a proposition to be
deleted at the beginning of an action (e.g. the location of an
object being moved), and replaced by a new proposition at
the end of the action (e.g. the new location of the object).
This corresponds to a decrease in the weight of γ to zero
at the beginning of the action, and an increase back to one
at the end. Allowing S = {0, 1} could be useful in non-
temporal domains as well, since it allows operators bringing
the weight from zero to one to be classified as safe for invari-

1The weight of γ is equal to the cardinality of the set of all
ground atoms that unify with some φ ∈ Φ under γ in s.

ance conditions. This approach therefore allows us to find
more invariants than the techniques using only S = {1}. Al-
though we focus here on S = {0, 1}, our technique for find-
ing invariants can be generalized to larger cardinality sets.

Invariance Conditions
In order to show that a candidate C is an actual invariant, we
need to guarantee that, for any instance γ of C, the weight
of γ is within the cardinality set S = {0, 1} in the initial
state and all the operators in the domain D keep the weight
within this set. When an operator satisfies this condition, we
say that it is safe and so it does not threaten the candidate C.

More formally, given an instance γ of a candidate C, an
operator op is safe if, for any situation where: i) the weight
of γ is less than or equal to one prior to executing op and
ii) it is legal to execute op, the weight of γ is guaranteed to
remain less than or equal to one through the execution of op
and immediately following op. A domain D is safe for C if
and only if all operators in D are safe for any instance γ of
C.

A sufficient condition for C to be an actual invariant is that
the domain is safe for C.

Given a candidate C and an instance γ, when can we en-
sure that an operator op is safe, i.e. maintains the weight of
γ within the cardinality set S = {0, 1}? Clearly, if the op-
erator does not change the weight of γ, then it is safe. On
the other hand, if an operator increases the weight of γ by
two or more at any time-point, it is definitely not safe. If the
operator increases the weight of γ by one, there might be
circumstances in which it is safe, depending on the structure
of the conditions and the effects of the operator itself and on
its interactions with other operators.

Given an instance γ of a candidate C, an operator op is
safe if and only if it falls in one of the following six cate-
gories:

1. Type N - Inert. The operator op does not affect the
weight of γ. Clearly, an inert operator is safe because
it preserves the weight of γ. Considering a simple
Logistics domain, the figure below shows an example
of such an operator with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

wash-truck(?truck)

(at ?truck ?loc)

(clean ?truck))

w=k

w=k

(not (clean ?truck)))

Type N

2. Type D: Decreasing. The operator op decreases the
weight of γ at some time-point, and does not increase it
at any time point. A decreasing operator may or may not
have a condition on γ, and the decrease may even be uni-
versally quantified. Like an inert operator, a decreasing
operator is safe because it does not cause an increase in
the weight at any time-point, and therefore maintains the
weight within the cardinality set S = {0, 1}. The figure
below shows one of several possible decreasing operators
with respect to the candidate C = 〈{at(truck,loc)},
{truck}, {loc}〉.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

32

destroy-truck(?truck)

(at ?truck ?loc)

w=1

w=0

(not (at ?truck ?loc))

Type Dx

3. Type I: Increasing. The operator op increases the weight
of γ from zero to one. We identify three possible sub-
cases:

• Types Is and Ie: The operator op increases the weight
of γ by one at some time-point (start/end) and its con-
ditions require that the weight of γ be zero at the same
time-point (start/end). Increasing operators of type Is
and Ie are safe because they bring the weight from
zero to one at just one time-point. The figure below
shows an increasing operator at start and an increas-
ing operator at end with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

build-truck(?truck ?yard)

w=0

w=1

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

w=1

(at ?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))

(at ?truck ?yard)

Type Is

Type Ie

• Type Ix: a condition at start guarantees that the weight
of γ is zero and an add effect at end increases the
weight by one. The figure below shows an example
of such an operator with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

(at ?truck ?yard)

Type Ix

w=1

An operator of type Ix is safe if it is mutex with all those
operators that may increase the weight of γ over its du-
ration. The following picture shows a simple example
of when this might happen.

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

(at ?truck ?yard)

Type Ix

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)

w=1

w=0

(not (at ?truck ?loc1)) (at ?truck ?loc2)

w=1

w=2

4. Type B: Balanced. The operator op preserves the weight
of γ by checking that the weight is one at some time-
point (start/end), decreasing the weight by one at that
time-point and then bringing back the weight to one at
that same time-point. Balanced operators are always safe
because they act at only one time-point (start/end) and
do not change the overall weight of γ. The figure below
shows a balanced operator at start (Type Bs) and a bal-
anced operator at end (Type Be) with respect to the can-
didate C = 〈{at(truck,loc)}, {truck}, {loc}〉.

w=1

instant-drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0 (not (at ?truck ?loc1))

Type Bs

Type Be

instant-drive(?truck ?loc1 ?loc2)

(at ?truck ?loc2)w=1

(at ?truck ?loc1)

w=0 (not (at ?truck ?loc1))

(at ?truck ?loc2)w=1

5. Type U: Temporarily Unbalanced. The operator op en-
sures that the weight of γ is one at start, brings the weight
from one to zero at start or at end and then restores the
weight to one at end.

We have two different configurations for a temporarily un-
balanced operator:

• Type Us: a condition at start guarantees that the weight
is one, a delete effect at start decreases the weight
from one to zero, and an add effect at end restores
the weight to one. The figure below shows an exam-
ple of such an operator with respect to the candidate
C = 〈{at(truck,loc)}, {truck}, {loc}〉.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)

w=1

w=0

(not (at ?truck ?loc1))

Type Us

(at ?truck ?loc2)

w=1

An unbalanced operator of type Us is safe if it is mutex
with all those operators that may increase the weight
of γ over its duration. The following picture shows a
simple example of when this might happen.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0

(not (at ?truck ?loc1)) (at ?truck ?loc2)

w=2

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

w=1

(at ?truck ?yard)

Type Us

Unbalanced operators of type Us are particularly com-
mon because they model the usage of renewable re-
sources. A renewable resource is needed during the ex-
ecution of the action, so the weight goes from one to
zero at start, but it is not consumed by the action, so the
weight returns to one at end.

• Type Ue: a condition at start guarantees that the weight
is one and a delete and an add effect at end bring the
weight from one to zero and then back to one. The fig-
ure below shows an example of such an operator with
respect to the candidate C = 〈{at(truck,loc)},
{truck}, {loc}〉.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

33

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)

w=1

w=0(not (at ?truck ?loc1))

Type Ue

(at ?truck ?loc2) w=1

An unbalanced operator of type Ue is safe if it is mu-
tex with all operators that may alter the weight during
its execution. Although this operator does not cause an
overall change in the weight of γ when executed in iso-
lation, it might give rise to problematic situations when
another operator opi capable of changing the weight is
allowed to take place over its duration. This is because
the application of opi may have the side effect of mak-
ing the delete effect of op no longer applicable, which
would in turn provoke an overall increase of the weight
by two instead of one. The figure below exemplifies this
situation.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

(not (at ?truck ?loc1))
(at ?truck ?loc2) w=2

tow(?truck ?loc1 ?loc3)

(at ?truck ?loc1)
w=1

w=0

(not (at ?truck ?loc1)) (at ?truck ?loc3)

w=1

Type Ue

One could argue that unbalanced operators of type Ue
originate from a faulty description of renewable re-
sources and so they should in reality be operators of
type Us. We have found a few examples of operators
of type Ue in the domains of previous IPCs, but none
resulted in provable invariants.

6. Type Q: Quantified Delete. The operator op sets the
weight of γ to zero at some time-point (start/end) through
a universally quantified delete effect and then brings back
the weight to one at the same time-point (start/end) or af-
ter that. We distinguish three possible sub-cases:

• Types Qs and Qe: a universally quantified effect sets
the weight to zero at some time-point (start/end) and
an add effect increases the weight by one at the same
time-point (start/end). Operators of type Qs and Qe
are safe because they ensure that only the single add
effect will be true. The figure below shows an ex-
ample of such operators with respect to the candi-
date C = 〈{in(package,truck)}, {package},
{truck}〉.

unload-all-load-one(?package ?truck)

forall (?tr) (when (not (= ?tr ?truck)))
(not (in ?package ?truck)))

w=0

w=1(in ?package ?truck)

Type Qs

unload-all-load-one(?package ?truck)

w=0

w=1 (in ?package ?truck)

Type Qe

forall (?tr) (when (not (= ?tr ?truck)))
(not (in ?package ?truck)))

• Type Qx: a universally quantified effect at start sets
the weight to zero and an add effect at end increases

the weight by one. The figure below shows an ex-
ample of such an operator with respect to the candi-
date C = 〈{in(package,truck)}, {package},
{truck}〉.

unload-all-load-one(?package ?truck)

w=0 w=1

(in ?package ?truck)

Type Qx

forall (?tr) (when (not (= ?tr ?truck)))
(not (in ?package ?truck)))

An unbalanced operator of type Qx is safe if it is mutex
with all those operators that may alter the weight during
its execution. The following picture shows an example
of when this might happen.

unload-all-load-one(?package ?truck)

w=0

(in ?package ?truck)

Type Qx

load(?package ?truck)

(at ?package ?loc)
w=1

w=0

(not (at ?package ?loc)) (in ?package ?truck)

w=1

w=2

forall (?tr) (when (not (= ?tr ?truck)))
(not (in ?package ?truck)))

Inert and balanced safe operators represent the tempo-
ral generalization of the non-threatening operators used in
Helmert’s invariant synthesis (Helmert, 2009). The criteria
for identifying increasing, decreasing and quantified delete
operators can be readapted for use in non-temporal planning
domains. They correspond to the use of the cardinality set
S = {0, 1} instead of S = {1}, which allows us to capture
a broader set of invariants than Helmert’s approach. In con-
trast, unbalanced operators are specific to temporal planning
and correspond to cases where the effects of an action are
not fully realized until the end. Such operators can still be
safe, as long as no other operator can disrupt the candidate
during the execution of the operator.

Temporal Mutex Conditions
We now clarify the exact nature of the temporal mutex con-
ditions that must hold in order to ensure the safeness of un-
balanced operators and operators whose effects are split over
time, such as operators of type Dx, Ix, and Qx.

In order to assess if an operator op is safe, we first need
to establish what kinds of operators may disrupt the weight
during the execution of op and then specify the exact mu-
tex relationships that must hold between op and the possibly
disrupting operators.

Let us consider the second issue first. In general, how can
we establish whether two durative PDDL operators are mu-
tex or not? Since in PDDL2.2, effects can only happen at the
start and end of the operators, and conditions can only be
specified at the start, end, and over all, there are nine types
of mutex. We refer the reader to (Smith and Jónsson, 2002)
for a discussion of mutex between actions with general con-
ditions and effects.

Given two durative operators op1 and op2, these nine
types of mutex operators are the following:

1. Start-Start: op1 and op2 cannot start at the same time if:

∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :

¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

34

2. End-End: op1 and op2 cannot end at the same time if:

∃p ∈ (Condend(op1) ∪ Condall(op1) ∪ Effend(op1)) :

¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

3. Start-End: op1 cannot start at the time that op2 ends if:

∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :

¬p ∈ (Condend(op2) ∪ Effend(op2))

4. Invariant-Start: op2 cannot start during op1 if:

∃p ∈ Condall(op1) :

¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

5. Invariant-End: op2 cannot end during op1 if:

∃p ∈ Condall(op1) :

¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

6. Invariant-Invariant: op1 and op2 cannot overlap if:

∃p ∈ Condall(op1) : ¬p ∈ Condall(op2)

In addition, we have: 7. mutex End-Start (dual to case 3),
8. mutex Start-Invariant (dual to case 4) and 9. mutex End-
Invariant (dual to case 5). For brevity, we refer to such mu-
tex as mutex-SS, mutex-EE, and so on.

As for identifying possibly disrupting operators, we need
to reason about the operators in the domain according to two
criteria: i) what type of legal weight change they produce
(from zero to one, from one to zero or from one to zero to
one); and ii) at what time-points the changes happen.

Following this reasoning, for each type of unbalanced op-
erator op, we identify a set of mutex constraints that involve
op and those operators that can possibly disrupt its weight.
If these constraints are satisfied, then op is safe.

• An increasing operator of type Ix is safe if it is:

1. mutex IS with any operator of type (I,Q)s

2. mutex IE with any operator of type Us, (I,Q)x, and
(I,Q)e

• An unbalanced operator of type Us is safe if it is:

1. mutex IS with any operator of type (I,Q)s

2. mutex IE with any operator of type Us, (I,Q)x, (I,Q)e

• An unbalanced operator of type Ue is safe if it is:

1. mutex IS with any operator of type (I,Q,B)s

2. mutex IE with any operator of type Us, (I,Q)x, and
(I,Q,B,U)e

• A quantified delete operator of type Qx is safe if it is:

1. mutex IS with any operator of type (I,Q)s

2. mutex IE with any operator of type Us, (I,Q)x, and
(I,Q,U)e

Decision Tree
In Figure 1, we show a binary decision tree T that can be
used to determine whether an operator op is safe w.r.t an in-
stance γ of a candidate C or not. The internal nodes of the
tree test the structure of the conditions and effects of the
operator. The abbreviations stand for: Add-s → add effect
at start, Del-s → delete effect at start, W=0-s → weight is
zero at start, UQ del-s → universally quantified delete effect
at start. Abbreviations for conditions and effects at end are

analogous. On the basis of the configuration of the condi-
tions and effects of the operator op, the leaf nodes assign a
classification: either op is safe or it is unsafe (respectively,
“OK” and “X” in the tree). The leaves of the tree marked
with “OK” represent all the possible cases in which we ac-
cept an operator as safe. Green labels in the figure link these
cases with the five categories of safe operators described
above. Close to the corresponding branches of the tree, we
also give a graphical representation of the configuration of
the operator’s conditions and effects. It is worth noting that a
few of the operators in the tree are quite bizarre and unlikely
to appear in practice. For example, operators of type 1 (such
as IsIe) could not even be executed without required concur-
rency – some other operator would have to reduce the weight
back to zero in the middle. Nevertheless, we have included
these operators in the tree for completeness.

Guess, Check and Repair Algorithm
As with other related techniques (Gerevini and Schubert,
2000; Helmert, 2009), our algorithm for finding invariants
implements a guess, check and repair approach. We start
from a simple set of initial candidates and use the decision
tree in Figure 1 to evaluate if each candidate C is an invariant.
If we reach a failure leaf for any operator op in the domain,
before discarding C, we identify what features of op threaten
C and exploit this knowledge for creating new candidates
that are guaranteed not to be threatened by the same opera-
tor op. These new candidates need to be checked against the
invariance conditions and might fail due to different threat-
ening operators. The tree in Figure 1 associates, whenever
possible, a set of fixes to dead leaves.

When we create the set of initial candidates, we ig-
nore constant predicates, i.e. predicates whose atoms have
the same truth value in all the states (for example, type
predicates). In fact, they are trivially invariants and so
are typically not interesting. Among the modifiable atoms,
we use initial predicates with the following characteris-
tics: the set Φ contains only one atom φ and the set V
contains only one counted variable. The candidate Cat =
〈{at(truck,loc)}, {truck}, {loc}〉 is an example of
an initial candidate. This choice comes from experience and
is the same as for other related techniques (Helmert, 2009).

Given an initial candidate, we test the safety of each oper-
ator in the domain by traversing the decision tree in Figure 1.
The main difficulty associated with traversing the tree is that
we can check the mutex constraints associated with some
branches of the tree only when we know the type of each
operator. The simplest way to handle this is to make two
iterations: the first to classify operators according to types
and the second to check the operators. However, we follow
a more efficient approach by checking most of the operators
during the first iteration, and just returning to do the mutex
checks for those operators that require them, after all of the
operators have been classified. We apply the following pro-
cedure:

1. Select a candidate invariant C and traverse the decision
tree T for each operator in the domain D.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

35

Add-s

Add-e

ok

Y N

N, D

W=0-oe
Y N

ok
Ie

UQ Del-e

ok

Qe

N

W=1-oe

Del-e

Y

N

Xok
Be

N

W=0-s

Y

mutex-IS (I,Q)s
mutex-IE Us-(I,Q)x-(I,Q)e

Y
N

Fix SS, EE, SE
X

N

ok
W=1-s

Del-s

Y N

Y

N
Y N

ok N

Fix EE
Y NDel-e

Y N

X

Y N

X

(19)

(20)

(17)

(18)
(21)

(22)

X

X

X

mutex-IS (I,Q)s

mutex-IS (I,Q,B)s
mutex-IE Us-(I,Q)x-(I,Q,B,U)e

mutex-IS (I,Q)s
mutex-IE Us-(I,Q)x-(I,Q,U)e

 ok

Ue

 Qx

ok

Y

Us

Ix

W=0-s

Y

UQ Del-s

Y N

NY

W=1-s
N

Fix SS

XDel-s
N

X

Y

Add-e

W=0-e ok

UQ Del-e

W=1-oe

Del-e

Y N

N

X

X

N

Y

ok

N

N

ok

Y

Y

Y

ok

Is

Qs

Bs

(I,Q,B)sIe

(1)

(I,Q,B)sQe

(2)

(I,Q,B)sBe
(3)

(4)

(I,Q,B)s

Y

(5)

(6)

(7)

(8)

(a)

(b)

(c)

N

(9)

(10)

(11)

(12)

(13)

(14)

(15)
(16)

(23)

Types:
N = Inert
D = Decreasing
I = Increasing
B = Balanced
U = Unbalanced
Q = Quantified

mutex-IE Us-(I,Q)x-(I,Q)e

w=0

add
.....

� del
.....

add

del
add

w=1
.....

w=0

add

� del
add

del
add

w=1

w=0

add

del add

w=1

del
add

w=1

� del add

w=0

add

......

del
add

w=1
......

� del
add

......

Fix
SS, EE, SE

Fix SS, EE, SE

UQ Del-s

Figure 1: Decision Tree T for checking whether an operator op is safe w.r.t an instance γ of a candidate C.

2. If a node requiring a mutex check is reached for an op-
erator op, save op in a bucket for that mutex check and
proceed as if the mutex check succeeded.

3. Run the corresponding mutex checks for the operators in
the buckets.

4. At any point in the process, if a failure leaf node is
reached, discard the candidate C.

5. At any point in the process, if a fix leaf node is reached,
generate a new candidate for each possible fix, and start
the process over.

Step 2 in the above procedure classifies the operators ac-
cording to the six types described in the previous section.

Refining Candidates
The choice of how to fix a failed candidate depends on
the features of the operators that threaten it. More specif-
ically, given a candidate C = 〈Φ,F,V〉 that has been re-
jected because it is threatened by an operator op, we refine
C by picking a new atom φ, which is chosen on the basis of
the structure of op as explained below, and adding it to the
components’ set Φ of C. So, we obtain the new candidate
C′ = 〈{Φ∪ φ},F′,V′〉, which will not fail for the same rea-
sons as C, but might fail for different reasons. The new atom
φ must involve only the variables in F and at most one other
variable and must satisfy one of the following three criteria:

1. Fix SS: the atom φ unifies with a positive condition at
start and a delete effect at start of op.

2. Fix EE: the atom φ unifies with a positive condition at
end (or over all) and a delete effect at end of op.

3. Fix SE: the atom φ unifies with a positive condition at
start and a delete effect at end of op.

Given a candidate C and an instance γ, we apply fixes SS,
EE and SE in the following cases:

1. Fix SS when C is threatened by an operator op such that:

• op has an add effect at start or at end increasing the
weight of γ, but no delete effects or conditions involv-
ing γ either at start or at end (respectively, Leaf 8 and
Leaf 22 in the decision tree in Figure 1);

• op has the same configuration as safe operators of type
Ix or Qx, but it is actually unsafe because it does not
satisfy the mutex conditions that ensure the weight re-
mains within the cardinality set S = {0, 1} during its
execution (respectively, Leaf 14 and Leaf 21).

2. Fix EE when C is threatened by an operator op such that:

• op is of type 14, 21 and 22 just described above;

• op has the same configuration as safe operators of type
Us, but it is actually unsafe because it does not satisfy
the mutex conditions that ensure the weight remains
within the cardinality set S = {0, 1} during its exe-
cution (Leaf 16);

3. Fix SE when C is threatened by an operator op of type
14, 21 and 22 just described above.

As an example, consider the Logistics domain with the op-
erator unload-truck, shown in the figure below. For the
candidate Cat = 〈{at(package,loc)}, {package},
{loc}〉, we see that operator unload-truck threatens
Cat because it increases the weight at end without decreasing

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

36

unload-truck(?package ?truck ?loc)

(in ?package ?truck)
w=1

w=0

(not (in ?package ?truck)) (at ?truck ?loc)

w=1

it or checking that the weight is zero. If we traverse the tree
in Figure 1 guided by the conditions and effects of the oper-
ator unload-truck, we reach leaf 22. Although this is a
failure leaf, it indicates that, before discarding Cat, we can
try to apply fixes SS, EE and SE. Fix SS can be used in this
case because the atom φ =in(?package ?truck) ap-
pears both in the positive conditions at start and in the delete
effects at start. Therefore, we add the candidate Cat/in =
〈{at(package,loc), in(package,truck)},
{package}, {loc, truck}〉 to the list of candidates to
check. By evaluating the new candidate Cat/in against the
invariance conditions, we will conclude that Cat/in is in fact
an invariant.

Experimental Results
In this section, we present some experimental results for
the invariant synthesis technique developed above. The cur-
rent version of the algorithm is implemented in the Python
language. The experiments were conducted by using a 2.53
GHz Intel Core 2 Duo processor with a memory of 4 GB.

Below, we present the invariants that the algorithm finds
for some temporal domains of the IPC-2008. Each invari-
ant is enclosed in braces where the predicate names indi-
cate the components of the invariant, numbers not enclosed
in square brackets indicate the position of the fixed vari-
ables in the list of arguments of the corresponding pred-
icate and numbers enclosed in square brackets indicate
the counted variables. For example, considering our run-
ning example, {at 0 [1], in 0 [1]} indicates the invari-
ant having {at(package,location)in(package,
vehicle)} as components, package as a fixed variable,
and {location,vehicle} as counted variables.

• Elevators-strips:
{passengers 0 [1]}

{lift-at 0 [1]}

{passenger-at 0 [1], boarded 0 [1]}

• Sokoban-strips:
{at 0 [1]}

{at 1 [0], clear 0}

{clear [0]}

• Openstacks-adl:
{stacks-avail [0]}

{waiting [0], started [0], shipped [0]}

{waiting 0, started 0, shipped 0}

{started [0], waiting [0]}

{started 0, waiting 0}

{waiting [0]}

{waiting 0}

Table 1 compares the number of invariants (# INV) found
by the Temporal Invariant Synthesis (TIS) just discussed
with those found by a Simple version of the Invariant Syn-
thesis (SIS) for the temporal domains of the IPC-6, IPC-5,

IPC-4 and IPC-3. The SIS represents a simple generaliza-
tion of Helmert’s invariant synthesis (Helmert, 2009) to the
temporal case.

Table 1 also reports the number of invariants obtained by
applying fixes (# FIX) and run time (RT) for generating in-
variants for the temporal domains. The computational time
is negligible; there is no significant delay associated with ei-
ther checking a broad set of configurations in the operators’
conditions and effects or performing the mutex checks.

For the invariants found by our algorithm, the most com-
mon operators are of type 23, which means that the operator
does not even potentially threaten the invariant because it is
inert or decreasing, and type 15, which corresponds to the
usage of a renewable resource. We also found operators of
types 6c, 11, 15, and 23. Additional operators of types 8,
12, 16, 17, 18, and 22 were found while examining invari-
ant candidates that were ultimately rejected. Based on our
discussions with Cushing (Cushing et al., 2007), these oper-
ators’ types appear to be consistent with his analysis.

Table 2 shows a comparison between the number of state
variables obtained by instantiating invariants for domains of
the IPC-6 coming from a Naive Invariant Synthesis (NIS),
which basically produces a state variable with two truth val-
ues (true and false) for each atom in the domain, the Sim-
ple Invariant Synthesis (SIS), and our Temporal Invariant
Synthesis (TIS). In many domains the TIS yields a signifi-
cant reduction in the number of state variables in comparison
with the other two techniques. In six instances of Elevators-
str, Sokoban-str, and Transport-Num the reduction is greater
than an order of magnitude.

Conclusions and Future Work
In this paper, we presented a technique for automatically
synthesizing invariants starting from temporal planning do-
mains expressed in PDDL2.2. Our technique builds on
Helmert’s invariant synthesis (Helmert, 2009), but extends
it to apply to temporal domains and also identifies a broader
set of invariants. This is achieved by considering the cardi-
nality set S = {0, 1} instead of S = {1} and by analyzing
the entire structure of an operator to assess its safety with
respect to an invariant. Finding a wider set of invariants al-
lows us to synthesize a smaller number of state variables to
represent a domain. All the temporal planners that use state
variables to represent the world greatly benefit from dealing
with a relatively small number of state variables.

Our technique can be incorporated in any translation
from PDDL2.2 to a language based on multi-valued state
variables. In particular, we have used the temporal in-
variant synthesis described here in our translator from
PDDL2.2 to NDDL, EUROPA2’s domain specification lan-
guage (Bernardini and Smith, 2008). The use of this trans-
lator, which includes the temporal invariant synthesis de-
scribed here as one of its core steps, has facilitated the test-
ing of EUROPA2 against domains of the IPCs originally ex-
pressed in PDDL2.2.

In the future, we intend to use information about types,
which are available in PDDL2.2 domains, for identifying
a more comprehensive set of invariants. As an example,
let us consider a domain in which we have a predicate

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

37

Domains # INV SIS # INV TIS # FIX TIS RT TIS

Crew Planning-IPC-6 0 3 0 0.0054

Elevators-Num-IPC-6 0 2 1 0.0025

Elevators-Str-IPC-6 0 3 1 0.0037

Modeltrain-Num-IPC-6 3 7 1 0.0089

Openstacks-Adl-IPC-6 2 7 4 0.0043

Openstacks-Num-IPC-6 4 10 6 0.0054

Openstacks-Num-Adl-IPC-6 2 6 4 0.0030

Openstacks-Str-IPC-6 4 11 6 0.0073

Parcprinter-Str-IPC-6 5 7 2 0.0126

Pegsol-Str-IPC-6 0 2 1 0.0008

Sokoban-Str-IPC-6 0 3 1 0.0033

Transport-Num-IPC-6 0 3 1 0.0030

Woodworking-Num-IPC-6 2 7 3 0.0167

Openstacks-IPC-5 2 7 4 0.0048

Pathways-IPC-5 0 0 0 0.0003

Pipesworld-IPC-5 0 8 7 0.0266

Rovers-IPC-5 4 9 0 0.0142

Storage-IPC-5 0 3 2 0.0071

TPP-IPC-5 0 1 0 0.0006

Trucks-IPC-5 0 2 2 0.0055

Airport-IPC-4 2 2 0 0.0399

Pipesworld-NT-IPC-4 0 4 4 0.0162

Pipesworld-T-IPC-4 0 8 7 0.0270

Satellite-IPC-4 0 2 1 0.0027

UMTS-4 0 0 0 0.0079

Depots-IPC-3 0 6 5 0.0113

DriverLog-IPC-3 0 2 2 0.0051

ZenoTravel-IPC-3 0 1 1 0.0031

Rovers-IPC-3 4 9 0 0.0137

Satellite-IPC-3 0 2 1 0.0027

Table 1: Number of invariants (# INV), number of invariants com-
ing from fixes (# FIX) and run time (RT) for generating invariants
for the temporal domains of the IPCs by using the Temporal Invari-
ant Synthesis (TIS) and the Simple Invariant Synthesis (SIS).

(pred ?arg1 - supertype ?arg2 - type)
and the types subtype1 and subtype2 are both
of type supertype. Given an invariant candidate
C = 〈{pred(arg1,arg2)}, {arg1 - supertype},
{arg2 - type}〉, suppose that no operator threatens C
when arg1 is bound to an object of type subtype1, but an
operator op threatens C when arg1 is bound to an object of
type subtype2. In this case, our algorithm rejects the can-
didate and, if no fix involving pred can be applied, the algo-
rithm encodes pred with binary state variables. However,
if we enrich the algorithm with the ability to use information
about types, it will consider two more specific candidates
C1 = 〈{pred(arg1,arg2)}, {arg1 - subtype1},
{arg2 - type}〉 and C2 = 〈{pred(arg1,arg2)},
{arg1 - subtype2}, {arg2 - type}〉. Now, the
algorithm will accept C1 as an invariant since it is not
threatened by any operator, while it will fail C2 since op
threatens it.

Acknowledgments
We thank Malte Helmert and Gabriele Röger for making
their code for translating PDDL into FDR available and
William Cushing for helpful discussions about the configu-

Domains # SV

NIS SIS TIS

Crew Planning - p10 112 112 106

Crew Planning - p20 305 305 261

Crew Planning - p30 510 510 498

Elevators-Str - p10 203 203 21

Elevators-Str - p20 592 592 34

Elevators-Str - p30 1240 1240 49

Openstacks-Num - p10 71 71 29

Openstacks-Num - p20 121 121 49

Openstacks-Num - p30 171 171 69

Modeltrain-Num - p10 397 205 191

Modeltrain-Num - p20 396 204 188

Modeltrain-Num - p30 910 418 390

Parcprinter-Str - p10 641 641 431

Parcprinter-Str - p20 1273 1273 673

Parcprinter-Str - p30 669 669 439

Pegsol-Str - p10 66 66 33

Pegsol-Str - p20 66 66 33

Pegsol-Str - p30 66 66 33

Sokoban-Str - p10 490 490 72

Sokoban-Str - p20 127 127 37

Sokoban-Str - p30 1131 1131 75

Transport-Num - p10 1292 1292 36

Transport-Num - p20 1292 1292 36

Transport-Num - p30 1772 1772 64

Woodworking-Num - p10 143 143 95

Woodworking-Num - p20 239 239 151

Woodworking-Num - p30 251 251 158

Table 2: Number of state variables (# SV) for temporal domains
of the IPC-6 that are obtained by instantiating invariants coming
from: (1) a Naive Invariant Synthesis (NIS); (2) a Simple Invariant
Synthesis (SIS); and (3) our Temporal Invariant Synthesis (TIS).

rations of temporal operators. We are grateful to the anony-
mous reviewers for their suggestions on earlier drafts of the
paper. This work has been supported by the London Knowl-
edge Lab and the NASA Exploration Systems Program.

References
Bernardini, S., and Smith, D. E. 2008. Translating pddl2.2. into a constraint-based variable/value

language. In Proc. of the Workshop on Knowledge Engineering for Planning and Scheduling,
18th International Conference on Automated Planning and Scheduling (ICAPS’08).

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, D.; Estlin, T.; B.Smith;
Fisher, F.; Barret, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated planning and
scheduling for space missions operations. In 6th International Conference on Space Operations.

Cushing, W.; Weld, D.; Kambhampati, S.; Mausam; and Talamadupula, K. 2007. Evaluating tem-
poral planning domains. In Proc. of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS-07), 105–112.

Frank, J., and Jónsson, A. 2003. Constraint based attribute and interval planning. Journal of
Constraints 8(4):339–364. Special Issue on Planning.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Planning and Scheduling as Timelines in a
Component-Based Perspective. Archives of Control Sciences 18(2):5–45.

Gerevini, A., and Schubert, L. 2000. Discovering state constraints in discoplan: Some new results.
In In Proc. of the 17th National Conference on Artificial Intelligence (AAAI-2000), 761–767.

Ghallab, M., and Laruelle, H. 1994. Representation and control in IxTeT, a temporal planner. In
Proc. of the Second International Conference on Artificial Intelligence Planning Systems (AIPS-
94), 61–67. AAAI Press.

Helmert, M. 2006. The Fast Downward planning system. Journal of Artificial Intelligence Research
26:191–246.

Helmert, M. 2009. Concise finite-domain representations for pddl planning tasks. Artificial Intelli-
gence 3(17):503–535.

Muscettola, N. 1994. HSTS: Integrating planning and scheduling. In Zweben, M., and Fox, M.,
eds., Intelligent Scheduling. Morgan Kauffmann. 451–469.

Smith, D., and Jónsson, A. 2002. The logic of reachability. In Proc. of the Sixth International
Conference on AI Planning and Scheduling (AIPS-02), 379–387.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

38

Using Planning Domain Features to Facilitate Knowledge Engineering∗

Gerhard Wickler
Artificial Intelligence Applications Institute

University of Edinburgh
Edinburgh, Scotland

Abstract

This paper defines a number of features that can be used to
characterize planning domains, namely domain types, rela-
tion fluency, inconsistent effects and reversible actions. These
features can be used to provide additional information about
the operators defined in a STRIPS-like planning domain. Fur-
thermore, the values of these features may be extracted au-
tomatically; efficient algorithms for this are described in this
paper. Alternatively, where these values are specified explic-
itly by the domain author, the extracted values can be used
to validate the consistency of the domain, thus supporting
the knowledge engineering process. This approach has been
evaluated using a number of planning domains, mostly drawn
from the international planning competition. The results
show that the features provide useful information, and can
highlight problems with the manual formalization of planning
domains.

Introduction

Specifying a planning domain and a planning problem in a
formal description language defines a search space that can
be traversed by a state-space planner to find a solution plan.
It is well known that this specification process, also known
as problem formulation (Russell and Norvig 2003), is es-
sential for enabling efficient problem-solving though search
(Amarel 1968).

The Planning Domain Definition Language (PDDL) (Fox
and Long 2003) has become a de-facto standard for speci-
fying STRIPS-like planning domains and problems with var-
ious extensions. PDDL allows for the specification of some
auxiliary information about a domain, such as types, but this
information is optional.

∗This work has been sponsored by the Air Force Office of Sci-
entific Research, Air Force Material Command, USAF, under grant
number FA8655-09-1-3090. The University of Edinburgh and re-
search sponsors are authorized to reproduce and distribute reprints
and on-line copies for their purposes notwithstanding any copy-
right annotation hereon. The views and conclusions contained
herein are those of the author and should not be interpreted as nec-
essarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific Research
or the U.S. Government.

Domain Features
In this paper we will formally define four domain features
that can be used to assist knowledge engineers during the
problem formulation process, i.e. the authoring of a plan-
ning domain which defines the state space. These features
may also be exploited by a planning algorithm to speed up
the search, but this possibility depends on the actual plan-
ning algorithm used and will not be evaluated in this paper.
The features defined here are: domain types, relation flu-
ency, inconsistent effects and reversible actions. These fea-
tures are not new, at least at an informal level. Their specifi-
cation is either already part of PDDL or could easily be added
to the language.

The values these features take for a given domain can also
be computed independent of their explicit specification. A
comparison of the computed features to the ones specified in
the formal domain definition can then be used to validate the
formalization, thus supporting the domain author in produc-
ing a consistent domain. Applying this approach to various
planning domains shows that the features defined here can
be used to identify certain representational problems.

Related Work
Amongst the features mentioned above, domain types have
been discussed most in the planning literature. A rigorous
method for problem formulation in the case of planning do-
mains was presented in (McCluskey and Porteous 1997).
In the second step of their methodology types are extracted
from an informal description of a planning domain. Types
have been used as a basic domain feature in TIM (Fox and
Long 1998). Their approach exploits functional equivalence
of objects to derive a hierarchical type structure. The dif-
ference between this approach and our algorithm will be ex-
plained in the relevant section below. This work has later
been extended to infer generic types such as mobiles and re-
sources that can be exploited to optimize plan search (Coles
and Smith 2006).

The distinction between rigid and fluent relations (Ghal-
lab et al. 2004) is common in AI planning and will be dis-
cussed only briefly. Inconsistent effects of different actions
are exploited in the GraphPlan algorithm (Blum and Furst
1995) to define the mutex relation. However, this is applied
to pairs of actions (i.e. fully ground instances of operators)

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

39

rather than operators. Reversible actions, as a domain fea-
ture, are not related to regression of goals, meaning this fea-
ture is unrelated to the direction of search (forward from the
initial state or regressing backwards from the goal). The
reversibility of actions (or operators) does not appear to fea-
ture much in the AI planning literature. However, in generic
search problems they are a common technique used to prune
search trees (Russell and Norvig 2003).

Preprocessing of planning domains is a technique that has
been used to speed up the planning process (Dawson and
Siklossy 1977). Perhaps the most common preprocessing
step is the translation of the STRIPS (function-free, first-
order) representation into a propositional representation. An
informal algorithm for this is described in (Ghallab et al.
2004, section 2.6). A conceptual flaw in this algorithm
(highlighted by the analysis of inconsistent effects) will be
briefly discussed in the conclusions of this paper.

Type Information
Many planning domains include explicit type information.
In PDDL the :typing requirement allows the specification
of typed variables in predicate and operator declarations. In
problem specifications, it allows the assignment of constants
or objects to types. If nothing else, typing tends to greatly
increase the readability of a planning domain. However, it is
not necessary for most planning algorithms to work.

In this section we will show how type information can
be inferred from the operator descriptions in the planning
domain definition. If the planning domain includes explicit
type information the inferred types can be used to perform
a consistency check, thus functioning as a knowledge engi-
neering tool. In any case, type information can be used to
simplify parts of the planning process. For example, if the
planner needs to propositionalize the planning domain, type
information can be used to limit the number of possible val-
ues for variables, or a ground backward searcher may use
this information to similar effect.

The formalism that follows is necessary to show that the
derived type system is maximally specific given the knowl-
edge provided by the operators, that is, any type system that
further subdivides a derived type must necessarily lead to a
search space that contains type inconsistent states.

Type Consistency
The simplest kind of type system often used in planning is
one in which the set of all constants C used in the planning
domain and problem is divided into disjoint types T . That is,
each type corresponds to a subset of all constants and each
constant belongs to exactly one type. This is the kind of type
system we will look at here.
Definition 1 (type partition) A type partition P is a tuple
〈C, T, τ〉 where:
• C is a finite set of n(C) ≥ 1 constant symbols C =
{c1, . . . , cn(C)},

• T is a set of n(T) ≤ n(C) types T = {t1, . . . , tn(T)},
and

• τ : C → T is a function defining the type of a given
constant.

A type partition divides the set of all constants that may
occur in a planning problem into a set of equivalence classes.
The availability of a type partition can be used to limit the
space of world states that may be searched by a planner. In
general, a world state in a planning domain can be any subset
of the powerset of the set of ground atoms over predicates P
with arguments from C.
Definition 2 (type function) Let P = {P1, . . . , Pn(P)}
be a set of n(P) predicate symbols with associated ar-
ities a(Pi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for predicates is a function

argP : P × N→ T
which, for a given predicate symbol Pi and argument num-
ber 1 ≤ k ≤ a(Pi) gives the type argP (Pi, k) ∈ T of that
argument position.

This is the kind of type specification we find in PDDL do-
main definitions as part of the definition of predicates used
in the domain, provided that the typing extension of PDDL is
used. The type function is defined by enumerating the types
for all the arguments of each predicate.
Definition 3 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Pi ∈ P be a predicate symbol and let
c1, . . . , ca(Pi) ∈ C be constant symbols. The ground first-
order atom Pi(c1, . . . , ca(Pi)) is type consistent iff τ(ck) =
argP (Pi, k). A world state is type consistent iff all its mem-
bers are type consistent.

Thus, for a given predicate Pi there are |C|a(Pi) possible
ground instances that may occur in world states. Clearly, the
set of type consistent world states is a subset of the set of all
world states. The availability of a set of types can also be
used to limit the actions considered by a planner.
Definition 4 (type function) Let O = {O1, . . . , On(O)}
be a set of n(O) operator names with associated ar-
ities a(Oi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for operators is a function

argO : O × N→ T
which, for a given operator symbol Oi and argument num-
ber 1 ≤ k ≤ a(Oi) gives the type argO(Oi, k) ∈ T of that
argument position.

Again, this is exactly the kind of type specification that
may be provided in PDDL where the function is defined by
enumeration of all the arguments with their types for each
operator definition.
Definition 5 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Oi(v1, . . . , va(Oi)) be a STRIPS opera-
tor defined over variables v1, . . . , va(Oi) with precondi-
tions precs(Oi) and effects effects(Oi), where each pre-
condition/effect has the form Pj(vPj ,1, . . . , vPj ,a(Pj)) or
¬Pj(vPj ,1, . . . , vPj ,a(Pj)) for some predicate Pj ∈ P . The
operator Oi is type consistent iff:
• all the operator variables v1, . . . , va(Oi) are mentioned in

the positive preconditions of the operator, and
• if vk = vPj ,l, i.e. the kth argument variable of the op-

erator is the same as the lth argument variable of a pre-
condition or effect, then the types must also be the same:
argO(Oi, k) = argP (Pj , l).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

40

The first condition is often required only implicitly (see
(Ghallab et al. 2004, chapter 4)) to avoid the complication of
“lifted” search in forward search. We will use this condition
shortly to show that a type consistent system is closed.

Given a type partition 〈C, T, τ〉 and type functions argP

and argO, we can define a most general state-transition sys-
tem over all type consistent states as follows:

Definition 6 (state-transition system Σ∗) Let 〈C, T, τ〉 be
a type partition. Let P = {P1, . . . , Pn(P)} be a set of pred-
icate symbols with associated type function argP and let
O = {O1, . . . , On(O)} be a set of type consistent operators.
Then Σ∗ = (S∗, A∗, γ) is a (restricted) state-transition sys-
tem, where:

• S∗ is the powerset of the set of all type consistent ground
atoms with predicates from P and arguments from C,
• A∗ is the set of all (type consistent) ground instances of

operators from O, and
• γ is the usual state transition function for STRIPS actions:

γ(s, a) = (s− effects−(a))∪ effects+(a) iff action a is
applicable in state s1.

This state-transition system forms a super-system to a
state-transition system defined by a planning problem con-
taining a type consistent initial state, and a set of type con-
sistent operator definitions, in the sense that the states of that
system (the reachable states from the initial states) must be
a subset of S∗ and the actions must be a subset A∗. It is
therefore interesting to observe that Σ∗ is closed:

Proposition 1 (closed Σ∗) Let s ∈ S∗ be a type consistent
state, i.e. a type consistent set of ground atoms. Let a ∈ A∗

be a type consistent action that is applicable in s. Then the
successor state γ(s, a) is a type consistent state in S∗.

To show that the above is true, we need to show that ev-
ery atom in γ(s, a) is type consistent. Each atom in γ(s, a)
was either in the previous state, s, in which case it was type
consistent by definition, or it was added as a positive ef-
fect. Since the action is an applicable instance of a type con-
sistent operator Oi there must be a substitution σ such that
σ(precs+(Oi)) ⊆ s. Furthermore, this substitution grounds
every operator variable because type consistency requires all
of them to occur in the positive preconditions. Given the
type consistency of s, all arguments in σ(precs+(Oi)) must
agree with argP . Given the type consistency of Oi, all argu-
ments of a must agree with argO, and therefore so must the
effects σ(effects(Oi)). Hence, all positive effects are type
consistent, meaning every element of γ(s, a) must be type
consistent. �

Derived Types
The above definitions assume that there is an underlying
type system that has been used to define the planning do-
main and problems in a consistent fashion. We shall con-
tinue to assume that such a type system exists, but it may
not have been explicitly specified in the PDDL definition of

1See the definition of a STRIPS operator in (Ghallab et al. 2004,
page 28) and the discussion of inconsistent effects below.

the domain. We shall now define a type system that is de-
rived from the operator descriptions in the planning domain.

Definition 7 (type name) Let O = {O1, . . . , On(O)} be a
set of STRIPS operators. Let P be the set of all the predicate
symbols used in all the operators. A type name is a pair
〈N, k〉 ∈ (P ∪O)× N.

A type name can be used to refer to a type in a derived
type system. There usually are multiple names to refer to the
same type. The basic idea behind the derived types is to par-
tition the set of all type names into equivalence classes, and
then assign constants used in a planning problem to different
equivalence classes, thus treating each equivalence class as
a type.

Definition 8 (O-type) Let O = {O1, . . . , On(O)} be a set
of STRIPS operators over operator variables v1, . . . , va(Oi)

with conds(Oi) = precs(Oi)∪ effects(Oi) and all operator
variables mentioned in the positive preconditions. Let P be
the set of all the predicate symbols used in all the operators.
An O-type is a set of type names. Two type names 〈N1, i1〉
and 〈N2, i2〉 are in the same O-type, denoted 〈N1, i1〉 ≡O

〈N2, i2〉, iff one of the following holds:
• N1(v1,1, . . . , v1,a(N1)) is an operator with precondition

or effect N2(v2,1, . . . , v2,a(N2)) ∈conds(N1) which share
a specific variable: v1,i1 = v2,i2 ,

• N2(v2,1, . . . , v2,a(N2)) is an operator with precondition
or effect N1(v1,1, . . . , v1,a(N1)) ∈conds(N2) which share
a specific variable: v1,i1 = v2,i2 , or

• there is a type name 〈N, j〉 such that 〈N, j〉 ≡O 〈N1, i1〉
and 〈N, j〉 ≡O 〈N2, i2〉.

Definition 9 (O-type partition) Let (si, g, O) be a STRIPS
planning problem. Let C be the set of all constants used in
si. Let T = {t1, . . . , tn(T)} be the set of O-types derived
from the operators in O. Then we can define the function
τ : C → T as follows:
τ(c) = ti : ∀R(c1, . . . , ca(R)) ∈ si : (cj = c)⇒ 〈R, j〉 ∈ ti

Note that τ(c) is not necessarily well-defined for every
constant mentioned in the initial state, e.g. if a constant is
used in two relations that would indicate different derived
types (which rely only on the operator descriptions). In this
case the O-type partition cannot be used as defined above.
However, if appropriate unions of O-types are taken then
this results in a new type partition for which τ(c) is defined.
In the worst case this will lead to a type partition consisting
of a single type. Given that this approach is always possible,
we shall now assume that τ(c) is always defined.

Definition 10 Let T = {t1, . . . , tn(T)} be the set of O-types
for a given set of operators O and let P = {P1, . . . , Pn(P)}
be the predicates that occur on operators from O. We can
easily define type functions argP and argO as follows:

argP (Pi, k) = ti : 〈Pi, k〉 ∈ ti and
argO(Oi, k) = ti : 〈Oi, k〉 ∈ ti

Proposition 2 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. Then every state that is reachable from the initial
state si is type consistent.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

41

To show this we first show that the initial state is type
consistent. Since the definition of τ is based on the argument
positions in which they occur in the initial state, this follows
trivially.

Next we need to show that every action that is an instance
of an operator in O is type consistent. All operator variables
must be mentioned in the positive preconditions according to
the definition of an O-type. Furthermore, if a precondition
or effect share a variable with the operator, these must have
the same type since≡O puts them into the same equivalence
class.

Finally we can show that, if action a is applicable in a
type consistent state s, the resulting state γ(s, a) must also
be type consistent. Every atom must come either from s
in which case it must be type consistent, or it comes from a
positive effect, which, given the type consistency of a means
it must also be type consistent. �

This shows that the type system derived from the opera-
tor definitions is indeed useful as it creates a state space of
type consistent states. However, the question that remains
is whether it is the best or even only type system. Clearly,
there may be other type systems that give us type consistent
state space. The system that consists just of a single type is
a trivial example. A better type system would divide the set
of constants into more types though, as this reduces the size
of a type consistent state space. We will now show that the
above type system is maximally specific given the knowl-
edge provided by the operators.

Theorem 1 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. If two constants c1 and c2 have the same type
τ(c1) = τ(c2) then they must have the same type in every
type partition that creates a type consistent search space.

The first step towards showing that the above holds is the
insight that operators can be used to constrain types in both
directions, forward and backward. If an operator variable vi

appears in a precondition and an effect, then the type of the
position of the predicate in the effect must be subset of the
type of the position in the precondition or the application of
the operator may lead to a state that is not type consistent.
Since types are defined by an equivalence relation, however,
the two types must actually be the same type. Hence the type
in the effect also constrains the type in the precondition.

Now, for two type names to be in the same O-type, there
must be a connecting chain 〈R0O1R1 . . . OnRn〉 of alter-
nating first order literals and operators such that Ri−1 and
Ri are conditions of Oi which share an operator variable as
the ji−1th and jith argument respectively. The variable that
is shared may vary along the chain. For each step along the
chain, if a constant may occur in the ji−1th position in Ri−1

it may also occur in the jith position in Ri. Thus, there may
be two type consistent states that are connected by Oi and
which contain instances of Ri−1 and Ri. Since both states
are type consistent, both instances must be type consistent,
too.

Now let us assume that c1 appears as j0th argument in R0

and let c2 appears as jnth argument in Rn. Furthermore, let
us assume these exists a type partition that assigns c1 and c2

to different types. Since c1 is the j0th argument in R0 there
may be another state in which c1 appears as jnth argument
in Rn. Thus it appears in the same position of the same
predicate as c2, which means it must have the same type to
be type consistent. �

An Efficient Algorithm

The algorithm to derive domain types td treats types as sets
of predicate and argument-number pairs. That is td ⊆ 2P×N.
Each domain type td corresponds to exactly one type t ∈
T . The only argument taken by the algorithm is the set of
operator definitions O.

function extract-types(O)
pTypes← ∅
vTypes← ∅
for every op ∈ O do

extract-types(op, pTypes, vTypes)
return pTypes

The variable pTypes contains the O-types that have been
discovered so far. Initially there are no O-types and the set
is empty. vTypes is a set of pairs of variables (used in op-
erator definitions) and O-types, best implemented as a map
and also initially empty. The procedure then analyzes each
operator in the given set, thereby building up the type system
incrementally.

function extract-types(op, pTypes, vTypes)
for every p ∈ pre(op) ∪ eff(op) do

for i = 1 to a(p) do
tpi ← td ∈ pTypes : 〈rel(p), i〉 ∈ td
〈v, tv〉 ← vt ∈ vTypes : ∃td : vt = 〈arg(i, p), td〉
if undef(〈v, tv〉) do

if undef(tpi) do
tpi ← {〈rel(p), i〉}
pTypes← pTypes ∪ tpi

vTypes← vTypes ∪ 〈arg(i, p), tpi〉
else

if undef(tpi) do
tv ← tv ∪ {〈rel(p), i〉}

else
merge-types(tv, tpi, pTypes, vTypes)

The analysis of a given operator goes through every
precondition and effect of the operator, looking at every
argument position in turn. The next steps of the algo-
rithm depend on whether the predicate-position combination
has been used before (in which case it will appear in the
pTypes) and whether the variable at that position has been
used before (in which case it will be a key in the vTypes).
If only one or neither have been used, the algorithm simply
adds the relevant elements to the pTypes and the vTypes.
If both have been used it may be necessary to merge the re-
spective O-types.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

42

function merge-types(t1, t2, pTypes, vTypes)
if t1 = t2 do

return
pTypes← pTypes− {t1, t2}
tnew ← t1 ∪ t2
pTypes← pTypes ∪ {tnew}
for every 〈v, tv〉 ∈ vTypes do

if (tv = t1) ∨ (tv = t2) do
vTypes← vTypes− 〈v, tv〉
vTypes← vTypes + 〈v, tnew〉

Of course, no action is required if the type of the variable
and the type for the predicate-position combination is the
same. Otherwise we replace the two sets representing the
(previously different) types in pTypes with a new type that
is the union of the two sets. Also we need to update the pairs
in vTypes to ensure that keys that previously had one of the
now removed types as value will now get the new type as
their new value.

It is easy to see that the algorithm runs in polynomial time.
Furthermore, the analysis performed by the algorithm uses
only the operator descriptions, and thus its run time does not
depend on the problem size.

This algorithm shares the input with TIM (Fox and Long
1998), namely the operator specifications. Both algorithms
use the argument positions in which parameters occur in pre-
conditions and effects as the basis for their analysis. TIM
uses this information to construct a set of finite state ma-
chines to model transitions of objects, whereas our algo-
rithm builds the equivalence classes directly. The result pro-
duced by TIM is a hierarchical type system that is used to
derive state invariants. In contrast, the type system derived
by our algorithm is flat, meaning it may be less discriminat-
ing than the structure derived by TIM. However, we could
show that the types derived by our algorithm are maximally
specific for given operator descriptions. In addition, a flat
type system can be used to enrich the operator definitions
explicitly by simply adding unary predicates as type precon-
ditions.

Evaluation
To evaluate the algorithm we have applied it to a small num-
ber of planning domains. To avoid any bias we used only
planning domains that were available from third parties,
mostly from the international planning competition. Since
the algorithm works on domains and the results have to be
interpreted manually only a limited number of experiments
was possible. Random domains are not suitable as they can-
not be expected to encode an implicit type system. The al-
gorithm has been used on random domains, but this did not
result in any useful insights.

A planning domain on which the algorithm has been used
is the DWR domain (Ghallab et al. 2004). In this domain
types are defined explicitly, so it was possible to verify con-
sistency with the given types. The algorithm produced the
following, listing the argument positions in predicates where
they are used (the pTypes):

type: [loaded-0, unloaded-0, at-0]
type: [attached-0, top-1, in-1]
type: [occupied-0, attached-1, belong-1,
adjacent-1, adjacent-0, at-1]

type: [belong-0, holding-0, empty-0]
type: [loaded-1, holding-1, on-1, on-0,
in-0, top-0]

The first type states that it is used as the first argument
in the loaded, unloaded and at predicate. This cor-
responds exactly to the robot type in the PDDL specifica-
tion of the domain. Similarly, the other types correspond to
pile, location, crane and container, in this order.
The main difference is that the derived types do not have
intelligible names.

The other domains that were used for testing did not
come with type information specified in the same way as
the DWR domain. However, they all use unary predicates
to add type information to the preconditions (but not ev-
ery unary predicate is a type). The domains used are the
following STRIPS domains from the international planning
competition: movie, gripper, logistics, mystery,
mprime and grid. The algorithm derives between 3 and
5 types for each of these domains which appears consistent
with what the domain authors had in mind. The only do-
main that stands out is the first, in which each predicate has
its own type. However this appears to be appropriate for this
very simple domain.

Static and Fluent Relations
Another domain feature that is useful for the analysis of
planning domains concerns the relations that are used in the
definition of the operators. The set of predicates used here
can be divided into static (or rigid) relations and fluent (or
dynamic) relations, depending on whether atoms using this
predicate can change their truth value from state to state.

Definition 11 (static/fluent relation) Let O =
{O1, . . . , On(O)} be a set of operators and let
P = {P1, . . . , Pn(P)} be a set of all the predicate
symbols that occur in these operators. A predicate Pi ∈ P
is fluent iff there is an operator Oj ∈ O that has an effect
that uses the predicate Pi. Otherwise the predicate is static.

The algorithm for computing the sets of fluent and static
predicate symbols is trivial and hence, we will not list it here.

There are at least two ways in which this information can
be used in the validation of planning problems. Firstly, if
the domain definition language allowed the domain author
to specify whether a relation is static or fluent then this could
be verified when the domain is parsed. This might highlight
problems with the domain. Secondly, in a planning problem
that uses additional relations these could be highlighted or
simply removed from the initial state.

The computation of static and fluent relations has been
tested on the same domains as the derived types. As is to
be expected, nothing interesting can be learned from this ex-
periment.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

43

Inconsistent Effects
In a STRIPS-style operator definition the effects are specified
as and add- and delete-lists consisting of a set of (function-
free) first-order atoms, or a set of first-order literals where
positive elements correspond to the add-list and negative el-
ements correspond to the delete-list. Normally, the defini-
tion of an operator permits potentially inconsistent effects,
i.e. a positive and a negative effect may be complementary.

Operators
Definition 12 (potential inconsistency) Let O be a plan-
ning operator with positive effects ep

1, . . . , e
p
n(ep) and neg-

ative effects en
1 , . . . , en

n(en), where each positive/negative ef-
fect is a first-order atom. O has potentially inconsistent ef-
fects iff O has a positive effect ep

i and a negative effect en
j for

which there exists a substitution σ such that σ(ep
i) = σ(en

j).

It is fairly common for planning domains to define oper-
ators with potentially inconsistent effects. For example, the
move operator in the DWR domain is defined as follows:
(:action move

:parameters (?r ?fr ?to)
:precondition (and (adjacent ?fr ?to)

(at ?r ?fr) (not (occupied ?to)))
:effect (and (at ?r ?to) (occupied ?to)

(not (occupied ?fr)) (not (at ?r ?fr))))

This operator has a positive effect (at ?r ?to) and a
negative effect (at ?r ?fr). These two effects are unifi-
able and represent a potential inconsistency. Since this is
a common feature in planning domains there is no need to
raise this to the domain author. Effects that are necessarily
inconsistent may be more critical.

Definition 13 (necessary inconsistency) Let O be a plan-
ning operator with positive effects Ep = {ep

1, . . . , e
p
n(ep)}

and negative effects En = {en
1 , . . . , en

n(en)}, where each
positive/negative effect is a first-order atom. O has neces-
sarily inconsistent effects iff O has a positive effect ep

i and
a negative effect en

j such that ep
i = en

j .

None of the domains used in the experiments above
specified an operator with necessarily inconsistent ef-
fects. Given the definition of the state-transition func-
tion for STRIPS operators (Ghallab et al. 2004) as

γ(s, a) = (s− En) ∪ Ep

it should be clear that the negative effect en
j can be omitted

from the operator description without changing the set of
reachable states. If en

j /∈ s then its removal from s will not
change s, and the addition of ep

i ensures that en
j ∈ γ(s, a)

because ep
i = en

j . If en
j ∈ s it will be removed in γ(s, a),

but it will subsequently be re-added. Thus, the presence of
the negative effect does not change the range of the state-
transition function.

From a knowledge engineering perspective this means
that an operator with necessarily inconsistent effects indi-
cates a problem and should be raised to the domain author.
However, this is only true for simple STRIPS operators where
actions are instantaneous and thus, all effects happen simul-
taneously. If effects are permitted at different time points

then only those that are necessarily inconsistent at the same
time point must be considered a problem.

Actions
Since actions are ground instances of operators, there is no
need to distinguish between necessarily and potentially in-
consistent effects. All effects must be ground for actions
and therefore inconsistent effects are always necessarily in-
consistent. Even if necessarily inconsistent operators are not
permitted in a domain, actions with inconsistent effects may
still occur as instances of operators with potentially incon-
sistent effects.

Whether it is desirable for the planner to consider such
actions depends on the other effects of the action. For exam-
ple, in the DWR domain no action with inconsistent effects
needs to be considered. However, if an action has side ef-
fects then it may make sense to permit such actions. For
example, circling an aircraft in a holding pattern does not
change the location of the aircraft, but it does reduce the
fuel level. If such side effects are important actions with in-
consistent effects may need to be permitted. And, of course,
every action has the side effect of taking up a step in a plan.

If actions with inconsistent effects are considered by the
planner, this may lead to further complications. This is be-
cause the definition of the state-transition function first sub-
tracts negative effects from a state and then adds positive
effects. For actions that have no inconsistent effects this
order is irrelevant. However, if actions with inconsistent
effects are permitted the result may be surprising. For ex-
ample, returning to the move operator in the DWR domain,
this has been defined with a positive effect (occupied
?to) and a negative effect (occupied ?fr). Thus,
the action (move r loc loc) will result in a state in
which (occupied loc) holds. Now suppose the do-
main had been defined using the predicate free instead
of occupied. In this case the result of (move r loc
loc) would result in a state in which (free loc) holds.
This problem occurs only with inconsistent effects.

None of the domains used in the tests above require ac-
tions with inconsistent effects and thus, they can be ignored
by the planner. The following algorithm can be used to
find the applicable actions (without inconsistent effects) in
a given state.

function addApplicables(A, o, p, σ, s)
if not empty(p+) then

let pnext ∈ p
for every sp ∈ s do

σ′ ← unify(σ(pnext), sp)
if valid(σ′) then

addApplicables(A, o, p− pnext, σ
′, s)

else
for every pnext ∈ p− do

if falsifies(s, σ(pnext)) then return
for every ep ∈ effects+(o) do

for every en ∈ effects−(o) do
if ep = en then return

A← A + σ(o)

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

44

The algorithm adds all instances of operator o that are ap-
plicable in state s to the set of actions A. The parameter p
represents the remaining preconditions (initially empty) and
a substitution σ (also initially empty) will be built up by the
algorithm. It first deals with the remaining positive precon-
ditions and uses those to construct the substitution for all the
parameters of the operators. Note that we require an oper-
ator to mention all its parameters in the positive precondi-
tions. When the positive preconditions have been tested, the
algorithm checks the negative preconditions under σ which
must now be fully ground. Finally, the algorithm tests for in-
consistent effects by doing a pairwise comparison between
positive and negative effects. This algorithm can also be
used to generate the actions for the next action layer in a
planning graph. A goal regression version is slightly dif-
ferent as it is no longer guaranteed that all the operator pa-
rameters will be bound after the unification with a goal (and
possibly static preconditions).

Reversible Actions
A common feature in many planning domains (and in many
classic search problems) is that they contain actions that can
be reversed by applying another action. There is usually no
need to consider such actions during the search process.

Reversible Operators
The idea here is to apply the concept of reversibility to op-
erators: an operator may be reversed by another operator
(or the same operator), possibly after a suitable substitution
of variables occurring as parameters in the operator defini-
tion. Note that this definition is somewhat narrow as it de-
mands this pattern to be consistent across all instances of the
two operators, i.e. it excludes the possibility of an operator
sometimes being reversed by one operator, and sometimes
by another, depending on the values of the parameters.

Definition 14 (reversing operators) An action a that is ap-
plicable in a state s is reversed by an action a′ if the state
that results from applying the sequence 〈aa′〉 in s results in
s, i.e. the state remains unchanged. An operator O is re-
versed by an operator O′ under substitution σ′ iff for every
action a = σ(O) that is an instance of O:

• if a is applicable in a state s then a′ = σ(σ′(O′)) is ap-
plicable in γ(s, a) and

• γ(γ(s, a), a′) = s.

For example, consider the (move ?r ?l1 ?l2) op-
erator from the DWR domain. This can be reversed by
another move operation with different parameters, as de-
fined by the substitution σ′ = {?l1←?l2,?l2←?l1},
i.e. (move ?r ?l1 ?l2) is reversed by σ′((move ?r
?l1 ?l2)) =(move ?r ?l2 ?l1).

While this definition captures the idea of a reversing oper-
ator, it is not very useful from a computational point of view.
Another way to avoid exploring states that are the result of
the application of an action followed by its reverse action is
to store all states in a hash table and test whether the new
state has been encountered before, an approach that is far

more general than just testing for reversing actions. Com-
putationally, it is roughly as expensive as the test suggested
by the above definition. The key here is that both are state
specific. A definition of reversibility that does not depend
on the state in which an action is applied would be better.

From a domain author’s perspective, it is often possible to
specify which operators can be used to reverse another op-
erator, as we have shown in the DWR move example above.
If this information is available during search then there is
no need to apply the reverse action, generate the state, and
compare it to the previous state. Instead a relatively simple
substitution test would suffice: a′ = σ(σ′(O′)).

Proposition 3 Let O1 be an operator with positive effects
Ep

1 and negative effects En
1 that is reversed by O2 with pos-

itive effects Ep
2 and negative effects En

2 under substitution
σ′. Then the two sets of positive/negative effects must cancel
each other:

Ep
1 = σ′(En

2) and En
1 = σ′(Ep

2)

Suppose there is a positive effect in Ep
1 that is not in

σ′(En
2). Now suppose an instance of O was applied in a

state in which the effect in question does not already hold.
The effect would then be added by the instance of O but it
would not be deleted by the reversing action, and thus the
original state and the state resulting from the two actions in
sequence would not be the same. A similar argument holds
for an effect in En

1 that is not in σ′(Ep
2). �

This means we can let the domain author specify revers-
ing operators and then use the above necessary criterion for
validation. Or we could treat the above criterion as sufficient
and thus exclude a portion of the search space. This may
lead to an incompleteness in the search, but the domains we
have used for our evaluation do not show this problem.

Unique Reversibility
In fact we have made an even stronger assumption to carry
out some experiments with the domains mentioned above:
we have assumed that there is at most one operator that re-
verses a given operator. We have then, for each domain,
done a pairwise test on all the operators defined in the do-
main to see whether the necessary criterion holds. This re-
sulted in discovering that the move operator can be reversed
by itself with a substitution automatically derived from the
operator definition, and similarly it discovered the reversibil-
ity between the take and put operators and the load and un-
load operators in the DWR domain.

Perhaps surprisingly, the unique reversibility was not
given for all domains. The logistics domain contains
load and unload operators for trucks and airplanes. These
are specified as four distinct operators. However, in terms of
their effects the two load operators and the two unload op-
erators cannot be distinguished. The only difference lies in
the preconditions where the ?truck parameter is required
to be a truck and the ?airplane parameter is required to
be an airplane.

This result can be interpreted in two ways: one could ar-
gue that the necessary condition may not be used as suffi-
cient in this domain. Or one could argue that this domain
contains redundancy that can be removed by merging the

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

45

two load and unload operators, which would not change the
set of reachable states in this example but means the plan-
ner has fewer actions to consider. Either way, testing for the
necessary reversibility condition has highlighted this domain
feature.

Conclusions
This paper has defined four planning domain features that
can be used by knowledge engineers to provide information
about the domain they are encoding. The formal definition
of the features was used to design algorithms that can ex-
tract the actual feature values from the domain description.
The algorithms are based on the domain description only,
i.e. they do not require a planning problem as input. The ex-
tracted features can then be compared to the feature values
specified by the domain author to validate the domain de-
scription. This approach has been evaluated using domains
taken mostly from the international planning competition.
The result shows that features were consistent with those
available in the domains, where explicitly specified. Those
features that were not specified were extracted and manually
verified, to ensure they are consistent with the given set of
operators.

The first feature, the type system, is a rather simple, flat
division into equivalence classes. This may not be suitable
for very complex planning domains, but the domains we
have analyzed do not exhibit much hierarchical structure.
The advantage of such a type system is that it can be eas-
ily added to the operator descriptions in the form of unary
preconditions. Furthermore, we showed that the type system
derived by our algorithm is the most specific type system of
its kind based solely on the operator descriptions. An open
question is whether this is identical to the least general gen-
eralization (Plotkin 1969) used in machine learning. The al-
gorithm could be refined to derive a hierarchical type system
if one takes into account the directionality of the operators,
but for a type system consisting of equivalence classes this is
irrelevant. Also, the algorithm described in this paper should
also be applicable to hierarchical task network domains, but
this has not yet been implemented.

Actions with inconsistent effects are another feature we
have defined. For most domains, such actions are proba-
bly not desirable. In fact, the admission of such actions
leads to a different planning problem as the state spaces
with or without such actions may be different for the same
planning domain and problem. Also, planners that trans-
late a STRIPS planning problem (with negative precondi-
tions) into a propositional problem (without negative pre-
conditions) need to be more careful if actions with inconsis-
tent effects are permitted. The translation method described
in (Ghallab et al. 2004, section 2.6) does not work in this
case as it introduces independent predicates for a predicate
and its negations, which can become true in the same state
if an action with inconsistent effects is applied. This would
render the planner potentially unsound.

The final feature which defines reversible actions is some-
what different as it can only be usefully used as a necessary
criterion to test whether one operator is the reverse of an-
other. The more strict, sufficient definition does not pro-

vide any computational advantage. The difference is simply
that the necessary criterion can be computed on the basis
of the operator descriptions, whereas the sufficient test re-
quires knowledge of the state in which an action is applied.
The difference is quite subtle though, and may not matter
in practice. The necessary criterion requires the positive and
negative effects to cancel each other. However, if a state con-
tains an atom that is also added by the first action, but then
deleted by the second action, then the state will be changed.
If an operator listed all the relevant atoms also as precondi-
tions, this exception would not hold.

Implementations of the algorithms described in this paper
(in Java) exist. They are currently being ported to PHP where
they can be used as part of an extension to MediaWiki that
allows the semi-formal specification of planning knowledge
to support distributed development and sharing of procedu-
ral knowledge.

References
Saul Amarel. On representations of problems of reasoning
about actions. In Donald Michie, editor, Machine Intelli-
gence 3, pages 131–171. Elsevier/North-Holland, 1968.
Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1636–
1642. Morgan Kaufmann, 1995.
Andrew Coles and Amanda Smith. Generic types and their
use in improving the quality of search heuristics. In Proc.
25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2006), 2006.
Clive Dawson and Laurent Siklossy. The role of preprocess-
ing in problem-solving systems. In Proc. 5th International
Joint Conference on Artificial Intelligence (IJCAI), pages
465–471. Morgan Kaufmann, 1977.
Maria Fox and Derek Long. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research, 9:367–421, 1998.
Maria Fox and Derek Long. PDDL2.1 : An extension to
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20:61–124, 2003.
Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning. Morgan Kaufmann, 2004.
T.L. McCluskey and J.M. Porteous. Engineering and com-
piling planning domain models to promote validity and effi-
ciency. Artificial Intelligence, 95:1–65, 1997.
Gordon Plotkin. A note on inductive generalization. In
Bernard Meltzer and Donald Michie, editors, Machine In-
telligence 5, pages 153–164. Edinburgh University Press,
1969.
Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition, 2003.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

46

Fluent Merging for Classical Planning Problems

Jendrik Seipp and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{seipp, helmert}@informatik.uni-freiburg.de

Abstract

Fluent merging is a reformulation technique for classical
planning problems that can be applied automatically or semi-
automatically. The reformulation strives to transform a plan-
ning task into a representation that allows a planning algo-
rithm to find solutions more efficiently or to find solutions of
better quality. This work introduces different approaches for
fluent merging and evaluates them within a state-of-the-art
planning system.

Introduction
In classical planning we try to find plans in a fully observ-
able world. While searching for a plan we move from one
state to another. Each state is a function that assigns values
to a number of variables. The set of values a variable can
have is called its domain.

In the original definition of planning problems in PDDL
notation (McDermott et al. 1998) there are only Boolean
variables. Recent research has shown that combining sev-
eral such variables into more general finite-domain vari-
ables, a process that has been called fluent merging (van den
Briel, Kambhampati, and Vossen 2007), can make plan
search more efficient. Helmert (2009) discusses a substan-
tial number of planning approaches that benefit from such
a conversion. Success stories include a SAT-based planner
(Chen, Zhao, and Zhang 2007), a planner based on inte-
ger programming (van den Briel, Vossen, and Kambham-
pati 2005), symbolic planning with BDDs (Edelkamp and
Helmert 2001) and heuristic search planners using pattern
databases (Edelkamp 2001; Haslum et al. 2007), merge-and-
shrink abstractions (Helmert, Haslum, and Hoffmann 2007),
the causal graph heuristic (Helmert 2004) or the context-
enhanced additive heuristic (Helmert and Geffner 2008). In
all these cases, finite-domain fluents are derived by combin-
ing groups of Boolean variables that cannot be true simulta-
neously (i. e., which are mutex).

In this paper, we examine additional ways of merging flu-
ents in order to facilitate planning, using a representation
where mutex propositions have already been combined as a
starting point. Our work is inspired by an article by van den
Briel, Kambhampati, and Vossen (2007), in which the au-
thors describe the possible benefits of general fluent merg-
ing for planning. They claim that only combining mutex

propositions is too conservative and propose the combina-
tion of finite-domain variables that have “strong dependen-
cies”. They mention two possible methods for discovering
such dependencies. The first method merges variables with
the property that all operators that change one of the vari-
ables also mention the other variable in a precondition or
effect. The second method merges variables with the prop-
erty that at least one operator has a precondition but no ef-
fect on the first variable and an effect on the second variable.
(However, this is a very general criterion and is often satis-
fied by thousands of variable pairs in a planning task, not all
of which can be merged within practical resource limits.)

Van den Briel et al. present examples that indicate that
their ideas could lead to improved planner performance, but
do not report experimental results or provide a precise al-
gorithm. They suggest that further research on the topic is
necessary.

Formal Semantics
We formalise finite-domain planning tasks using the SAS+

formalism (Bäckström and Nebel 1995), largely following
the notation of Helmert, Haslum, and Hoffmann (2007).
(We briefly remark that our implementation has been ex-
tended to cover finite-domain representations allowing con-
ditional effects, but we limit ourselves to the easier SAS+

case here for simplicity of presentation.)

Definition 1 (SAS+ planning task)
An SAS+ planning task or SAS+ task for short is a 4-tuple
Π = 〈V,O, s0, s�〉 with the following components:

• V = {v1, . . . , vn} is a set of state variables or fluents,
each with an associated finite domain Dv . If d ∈ Dv we
call the pair v = d an atom.
A partial variable assignment over V is a function s on
some subset of V such that s(v) ∈ Dv wherever s(v) is
defined. If s(v) is defined for all v ∈ V , s is called a state.

• O is a set of operators, where an operator is a triple
〈name, pre, eff〉 where name, the name of the operator
is a unique symbol that distinguishes this operator from
others, and pre and eff are partial variable assignments
called preconditions and effects, respectively.

• s0 is a state called the initial state, and s� is a partial
variable assignment called the goal.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

47

We assume that the reader is familiar with the semantics
of planning tasks (operator application, plans, etc.) and re-
fer to the literature for details (e. g., Helmert, Haslum, and
Hoffmann 2007). To clarify notation, we only recall one im-
portant definition, that of transition systems.

Definition 2 (transition systems)
A transition system is a 5-tuple T = 〈S,L, T, s0, S�〉 such
that

• S is a finite set called the set of states of T ,
• L is a finite set called the set of transition labels or labels

of T ,
• T ⊆ S × L× S is the set of transitions of T ,
• s0 ∈ S is the initial state of T , and
• S� ⊆ S is the set of goal states of T .

We write (s
l−→ s′) ∈ T or simply s

l−→ t when T is clear
from context to denote that T has a transition from s to s′
with label l, i. e., to denote 〈s, l, s′〉 ∈ T .

Planning semantics are defined in terms of transition sys-
tems. Put briefly, each planning task Π defines a transition
system whose states are the states of Π (i. e., the complete as-
signments to the fluents of Π), whose initial and goal states
match the initial and goal states of Π, and whose transitions
are defined by the semantics of operator application for the
operators of Π, with transition labels corresponding to oper-
ator names.

In addition to the transition system of the complete plan-
ning task Π, for the purposes of fluent merging we are also
interested in more localised views that only capture the se-
mantics of planning tasks with respect to a particular fluent.
This can be achieved by considering transition systems in-
duced by atomic abstractions. Again, we only provide the
definition for the limited case that is important for this work
and refer to the literature for more general definitions of ab-
stractions and induced transition systems (Helmert, Haslum,
and Hoffmann 2007).

Definition 3 (atomic abstractions)
Let Π = 〈V,O, s0, s�〉 be an SAS+ task, and let v ∈ V
be one of its state variables. The transition system in-
duced by the atomic abstraction to v, or more succinctly
the transition system for v, is the transition system Tv =
〈Sv, Lv, T v, sv0, S

v
� 〉 such that:

• Sv = Dv (i. e., the domain of v forms the states of Tv),
• Lv is the set of operator names in O,

• there is a transition d
l−→ d′ whenever the transition sys-

tem defined by Π has a transition s
l−→ s′ with states s and

s′ such that s(v) = d and s′(v) = d′,
• sv0 = s0(v) (i. e., the initial state in Tv is the value of v in

the initial state of Π), and
• Sv

� consists of all possible values d ∈ Dv that can occur
in goal states of Π.

Even though they are defined semantically, based on the
exponentially large transition systems of planning tasks,
transition systems induced by atomic abstractions in SAS+

tasks can be computed syntactically, i. e., using efficient op-
erations directly on the compact task representation Π. In
particular, an operator 〈name, pre, eff〉 induces a transition

transition d
name−−−→ d′ in the transition system for v iff

• d is compatible with pre(v), i. e., pre(v) is undefined or
pre(v) = d, and

• d′ is compatible with eff(v), i. e., eff(v) is undefined or
eff(v) = d′.
Moreover, it is not necessary to iterate over all (possibly

exponentially many) goal states in order to determine Sv
� :

rather, the set of abstract goal states is simply the complete
domain Dv if s�(v) is undefined, and {s�(v)} otherwise.

A transition system for a variable v can be viewed as a la-
beled directed graph, and it shares many similarities with do-
main transition graphs (DTGs), introduced by Jonsson and
Bäckström (1998). Van den Briel et al. use DTGs as the
basis for defining fluent merging. However, there are some
semantic differences between the two kinds of graphs, which
make definitions of fluent merging based on DTGs slightly
more complicated. In particular, atomic abstractions for v
represent the behaviour of all operators with respect to v,
while DTGs only consider operators that change the value
of the represented variable.

Given only the DTGs of a planning task, it is not pos-
sible to reconstruct which operators have preconditions on
variables that they do not modify. Given only the transi-
tion systems for individual variables, however, it is possible
to reconstruct the complete transition system of an SAS+

task (Helmert, Haslum, and Hoffmann 2007, Theorem 8 and
following discussion). This is done through the operation
of computing synchronised products (Helmert, Haslum, and
Hoffmann 2007), which also provide the formal underpin-
nings of fluent merging.

Definition 4 (synchronised product)
Let T 1 = 〈S1, L, T 1, s10, S

1
�〉 and T 2 = 〈S2, L, T 2, s20, S

2
�〉

be transition systems with the same labels.
The synchronised product of T 1 and T 2 is defined as

T 1 ⊗ T 2 = 〈S,L, T, s0, S�〉, where
• S = S1 × S2,

• (〈s1, s2〉 l−→ 〈t1, t2〉) ∈ T iff (s1 l−→ t1) ∈ T 1 and (s2
l−→

t2) ∈ T 2,
• s0 = 〈s10, s20〉, and
• S� = S1

� × S2
� .

Synchronised products play an important role in the com-
putation of so-called merge-and-shrink abstractions; they
correspond to the merge steps in the abstraction computa-
tion (Helmert, Haslum, and Hoffmann 2007). They also pro-
vide a clean and direct semantics for fluent merging in SAS+

tasks. As discussed above, SAS+ tasks can be equivalently
represented through the set of all atomic transition systems,
{Tv | v ∈ V}. Fluent merging then means choosing two
fluents u, v ∈ V , removing their transition systems Tu and
Tv from the set, and replacing them with their synchronised
product, Tu ⊗ Tv . If we interpret this at the task level, this
can be seen as replacing fluents u and v with a product fluent
u⊗ v, a view which we will take on in the following.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

48

There is one small issue that makes this symmetry be-
tween state variables and transition systems imperfect: in
cases where a goal value is defined for one of u and v but
not the other, there is no clean way of defining a goal value
for the product fluent u⊗ v. However, this can easily be ad-
dressed by standard compilation techniques to compile away
disjunctive goals (Gazen and Knoblock 1997).

Fluent Merging in Fast Downward
Based on the theoretical definition of Fluent Merging we
briefly discuss how we implemented the technique by in-
tegrating it into the Fast Downward planning framework
(Helmert 2006). First we briefly explain the framework it-
self. In order to find a plan, Fast Downward proceeds in
three main stages (Helmert 2006):

• In the translation stage, a PDDL (McDermott et al. 1998)
problem is parsed, normalised, grounded and translated
into an SAS+ planning task.

• In the knowledge compilation stage a relevance analysis is
performed and some data structures are prepared for the
last stage.

• In the last stage the actual search is executed. For this
purpose many different heuristics and search methods are
available.

We integrate fluent merging between the first and second
stage. The fluent merging algorithm reads the SAS+ plan-
ning task that was written by the translator and outputs a new
SAS+ planning task with merged variables. The new com-
ponent can be integrated easily since none of the original
components have to be altered.

Fluent Merging Algorithm
The fluent merging algorithm is composed of two steps. In
the first step, we select groups of variables that are then
merged in the second step. We tested many different se-
lection methods and will discuss them later. This section
explains the second step, the generic merging procedure.

The merging procedure follows the definition of synchro-
nised products that provides the formal semantics of fluent
merging, but unlike that definition works directly on the task
description level.

Let Π = 〈V,O, s0, s�〉 be an SAS+ planning task and
a, b ∈ V the variables that we want to replace with a merged
variable a⊗ b.

Merged Variable The new variable is assigned the do-
main Da ×Db.

Initial State We set s0(a⊗ b) = 〈s0(a), s0(b)〉.
Operators Every operator that mentions a or b in its pre-
condition or effect needs to be updated. In some cases, a sin-
gle operator needs to be replaced by multiple new operators.
All new operators are assigned the same name as the original
operator, so that plans for the modified problem (described
as sequences of operators represented by their names) can
be used verbatim as plans for the original problem. The al-
gorithm for adapting an operator is shown in Figure 1. The

procedure adapt-operator(ops O, op o, var a, var b)

1. 〈name, pre, eff〉 := o

2. if o mentions neither a nor b then
3. return
4. if eff(a) and eff(b) are defined and

pre(a) and pre(b) are undefined then
5. eff(a⊗ b) := 〈eff(a), eff(b)〉
6. return
7. possa := {pre(a)} if defined, else Da

8. possb := {pre(b)} if defined, else Db

9. foreach apre ∈ possa do
10. foreach bpre ∈ possb do
11. aeff := eff(a) if defined, else apre

12. beff := eff(b) if defined, else bpre

13. prenew := pre

14. effnew := eff

15. prenew(a⊗ b) := 〈apre, bpre〉
16. effnew(a⊗ b) := 〈aeff, beff〉
17. onew := 〈prenew, effnew〉
18. O := O ∪ {〈name, prenew, effnew〉}
19. O := O \ {o}

Figure 1: Algorithm that adapts an operator o ∈ O during
the merge of variables a and b.

special cases in lines 2–6 are not strictly necessary, but speed
up the computation and lead to a more compact result in
common cases.

Goal We have to distinguish three cases:

• s�(a) and s�(b) undefined:
Nothing to do.

• s�(a) and s�(b) both defined:
Set s�(a⊗ b) = 〈s�(a), s�(b)〉.

• Exactly one of s�(a) and s�(b) is defined:
Without loss of generality, we assume that s�(a) is de-
fined. Then any of the values in the set {〈s�(a), d〉 |
d ∈ Db} should be treated as a possible goal value for

a⊗ b. Since SAS+ cannot represent goals of this form di-
rectly, we use a standard compilation technique for first
compiling the actual goal into an operator (Gazen and
Knoblock 1997) and then adapt this operator as described
previously.

After these steps, all references to the old variables a and
b can be removed from the task description.

While the algorithm as described only merges two vari-
ables at a time, it can be invoked repeatedly to merge
“groups” or “clusters” of more than two variables. For ex-
ample, to merge variables a, b and c into a single group, we
would first merge a and b into a ⊗ b and then a ⊗ b and c

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

49

into (a⊗ b)⊗ c. Synchronised product operations are asso-
ciative and commutative modulo isomorphism of transition
systems, so the precise merge order does not matter.

Variable Selection
There are many possible criteria for finding variables to
merge. In this section we present the methods that we have
implemented in the course of this work. A selection method
is an algorithm that has the following input:

• An SAS+ planning task Π = 〈V,O, s0, s�〉
• m, the number of variables that should be merged into a

single “group” or “cluster”

• n, the maximum number of such groups to form

It returns a set of variable groups to be merged by the
combination algorithm. Usually it will produce m groups of
size n each, unless this is not possible because m · n > |V|.
A selection method may also opt to produce smaller or fewer
groups if it cannot find a sufficient number of suitably large
promising candidate groups to merge, but this is not the case
for the simpler methods described in this section.

The first set of experiments was conducted with the se-
lection methods below. In these methods, each group is as-
signed a score that represents its suitability to be merged.
This assignment is done by an evaluation function e : V ×
V → R that assigns a numerical value to all pairs of vari-
ables in the planning task. If m ≥ 3, i. e., we seek to merge
groups of three or more variables, variable groups G of size
m are scored by computing the sum of all pairwise scores for
pairs of variables in G. In the last step of the selection al-
gorithm all groups are sorted in descending order of scores
and we repeatedly pick the first group in the list until the
maximum number of merges n has been reached. Groups to
be merged are not allowed to overlap: once a variable has
formed part of a merge, all groups that contain it are elimi-
nated from further consideration.

We experimented with the following evaluation functions:

• Random variables (rand)
Randomly select variable groups.

e(a, b) = random()

• Mutex variables (mutex)
Prefer groups with variables whose domains are maxi-
mally mutex, i. e., contain as many value pairs as possible
that cannot be simultaneously true according to the mutex
information generated by Fast Downward’s translation al-
gorithm.

e(a, b) = |{(da, db) ∈ Da ×Db | da and db mutex}|
• Number of atoms (size)

Choose variables whose merging minimises the total
number of atoms of the planning task.

e(a, b) = −(|Da⊗b| − (|Da|+ |Db|))
• Connected variables (conn)

Prefer variable groups that are heavily connected in the
causal graph.

conn(a, b) = cg weight (a, b) + cg weight (b, a)

Domain no-merge rand mutex size conn cycles goals ops
blocks (35) 35 35 35 35 31 31 31 35

driverlog (20) 20 17 13 16 19 14 18 15

grid (5) 5 1 1 5 0 1 1 2

gripper (20) 20 20 15 20 20 20 20 20

logistics00 (28) 28 28 28 28 28 28 28 28

logistics98 (35) 35 28 35 35 20 20 21 11

miconic (150) 150 150 150 150 150 150 150 150

mprime (35) 35 30 35 35 34 29 35 20

psr-small (50) 50 49 48 48 47 48 47 49

zenotravel (20) 20 20 16 16 20 20 19 15

depot (22) 17 11 14 12 15 15 13 14

freecell (80) 78 75 77 76 72 72 57 37

pathways (30) 15 14 16 17 14 14 13 15

pipes-nt (50) 38 5 8 16 14 14 9 16
pipes-t (50) 24 9 3 17 11 8 9 15

rovers (40) 34 31 34 35 34 34 34 24

schedule (150) 60 58 59 59 54 52 39 60
tpp (30) 28 20 24 24 22 24 23 16

trucks (30) 17 15 14 16 14 14 16 6

Total (880) 709 616 625 660 619 608 583 548

Table 1: Comparison of solved tasks for different fluent
merging methods with the hcea heuristic, n = 5 and m = 2.
Number of tasks in each domain is shown in parentheses.
In the domains above the separator line no-merge already
solves all instances, so no improvement is possible. Below
the separator the best results among the different selection
methods are highlighted in bold and cases where the perfor-
mance of the no-merge method is exceeded are underlined.

e(a, b) = conn(a, b)

Here, the cg weight of a causal graph edge is the number
of operators that induce it (Helmert 2006).

• Two-cycle pairs (cycles)
Prefer variables that form a two-cycle in the causal graph.

e(a, b) =

⎧⎨
⎩

conn(a, b) if 〈a, b〉 ∈ E

and 〈b, a〉 ∈ E

conn(a, b)− 109 else

Here E is the set of directed edges of the causal graph.

• Goal variables (goals)
Prefer variables that appear in the goal description.

e(a, b) =

{
conn(a, b) if s�(a) or s�(b) defined

conn(a, b)− 109 else

• Variables minimizing number of operators (ops)
Prefer variable groups whose merging minimise the num-
ber of new operators.

e(a, b) = |O| − |Onew|
Here Onew is the set of operators that would result from
merging a and b.

Table 1 shows the number of tasks solved by a greedy
best-first search with deferred evaluation (Richter and
Helmert 2009) and the hcea heuristic in a number of IPC do-
mains after applying fluent merging with the selection meth-
ods mentioned above. For the experiments we allowed the

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

50

search component of the planner to run for at most 30 min-
utes and use 2 GB of memory. The column no-merge reports
results without performing fluent merging. The maximum
group size m is set to 2 in these experiments, while the max-
imum number of groups n is set to 5. Other experiments
(n ∈ {10, 20, . . . , 100, 125, 150, 175, 200, 250, 300},m ∈
{3, 4, 5, 6, 7}) all led to worse performance, i. e., fewer plans
found in more time.

Although some of the entries in the table show improve-
ments by performing fluent merging, we were not satisfied
with the overall results. While looking for a smarter selec-
tion method we found the same object method, which per-
formed significantly better in the Schedule and Pathways
domains. (Unfortunately, other domains were not tested at
the time.) Between the initial tests with the above men-
tioned methods and the experiments with the same object
method, the implementation of the hcea heuristic in Fast
Downward was improved, making a direct comparison to
the other methods’ results difficult. We are currently rerun-
ning all experiments with the improved hcea version.

Same Object Method
The “same object method” exploits the fact that planning
tasks are typically not given directly in a grounded repre-
sentation like SAS+, but instead use a first-order PDDL
representation based on logical predicates and objects. As
a first approximation, it is not entirely unreasonable to as-
sume that SAS+ fluents that stem from PDDL propositions
that talk about the same object are more closely related than
ones which do not. For example, even without looking
at any operator definitions, a human problem solver might
suspect that the two grounded propositions (painted
chair1) and (polished chair1) are more closely
related to each other than the two grounded propositions
(painted chair1) and (polished table3) be-
cause they speak of the same object, chair1.

The same object method starts by associating exactly
one object from the input PDDL representation with each
SAS+ fluent. Recall that each SAS+ fluent v (before
we apply our fluent merging algorithm) is formed from a
group Av of mutually exclusive PDDL atoms. The object
associated with v is simply the object that occurs most
frequently as a term in the atoms Av . (Tie-breaking rules are
applied when there is no unique such atom.) For example,
variable v might be derived from mutex group Av =
{(at c2 loc1),(at c2 loc2),(at c2 loc3)},
which mentions the objects c2, loc1, loc2 and loc3. Of
these objects, c2 is mentioned most frequently and hence
becomes the object associated with v.

We only allow merges of fluents that are associated with
the same object. However, since this can still lead to merged
fluents with very large domains, we again limit the number
of variables to be merged into a single group and the num-
ber of groups to merge, as in the previous algorithms. Af-
ter some experimentation and following the comparatively
good performance of the “size” method in the previous ex-
periment, we decided to use the combined domain size of a
group, i. e., the product of the domain sizes of the involved
variables, as the quality measure for a merge, preferring

groups whose combined domain size is as low as possible.

Experiments
In our initial experiments, the same object method signif-
icantly outperformed the other variable selection methods
we tried, so all our subsequent experiments were based on
this approach. After discouraging initial results with the
merge-and-shrink heuristic (Helmert, Haslum, and Hoff-
mann 2007) and the landmark-cut heuristic (Helmert and
Domshlak 2009), we concentrated our further experiments
on satisficing configurations of Fast Downward. We again
used greedy best-first search with deferred evaluation and
tested three different heuristics:

• hcea: the context-enhanced additive heuristic (Helmert
and Geffner 2008)

• hFF: the FF/additive heuristic (Hoffmann and Nebel 2001;
Keyder and Geffner 2008)

• hCG: the causal graph heuristic (Helmert 2004)

In all our experiments, forming groups of only two flu-
ents (m = 2) produced better results than using larger
clusters, so we only present results for this case. For the
second fluent merging parameter, the number n of groups
to form, the picture is more varied and differs signifi-
cantly from domain to domain. Therefore, we report re-
sults for different values of this parameter, taken from the
set {0 (no merges), 2, 5, 10, 15, 20, 30}. For all experiments
we used a 30 minute timeout for the search component of
the planner.

The hcea heuristic could not be significantly improved by
fluent merging. Here only three more planning tasks could
be solved by combining variables, and the overall coverage
never improved.

The other two heuristics however showed some stronger
potential benefits from fluent merging. As Table 2 shows,
a total of 6 problem instances for hFF and 12 instances for
hCG could be solved by some variation of fluent merging that
eluded the same algorithm in the original problem represen-
tation. We should note that those two heuristics are already
highly competitive planning methods. For hFF, some pa-
rameter settings also achieve better overall performance in
the tested domains. Table 3 provides detailed results for a
particularly positive case, the challenging Sokoban domain,
in which fluent merging increases the coverage of hFF from
24 to 29 (out of 30) solved instances.

Conclusions and Future Work
We have provided the first general implementation and ex-
perimental evaluation of fluent merging for classical plan-
ning. Our results show that the approach holds promise: in
some domains and with some combination methods, simply
reformulating a problem instance by merging certain pairs
of fluents improved problem solving performance.

However, our results also make it obvious that fluent
merging does not improve heuristic accuracy across the
board, and that further research is needed to find out which
and how many fluents to merge, and whether fluent merging
is useful for a given planning task at all.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

51

Merges hFF Merges hCG

Domain 0 2 5 10 15 20 30 0 2 5 10 15 20 30
airport (50) 25 25 25 25 25 25 25 21 21 21 21 21 20 20
assembly (30) 30 30 30 30 30 30 30 6 7 7 7 7 7 7
depot (22) 19 18 19 20 20 20 20 12 12 12 12 13 13 13
driverlog (20) 20 20 20 20 20 20 20 20 20 18 18 18 18 18
freecell (80) 76 80 78 77 79 78 75 72 70 70 75 74 74 72
miconic (150) 150 150 150 150 150 80 80 150 150 150 150 150 80 80
pprinter (30) 23 22 22 22 22 22 22 24 23 23 22 22 22 22
pipes-nt (50) 43 41 42 42 43 42 42 24 23 24 25 25 25 26
pipes-t (50) 38 39 38 37 39 37 37 17 18 17 15 16 15 15
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 40 40 40 40 40 40 37 32 31 32 31 31 32 32
satellite (36) 34 34 34 34 34 34 34 34 34 34 34 34 34 34
schedule (150) 150 149 149 149 149 149 148 149 149 149 149 149 149 149
sokoban-sat (30) 24 28 29 28 28 28 28 27 26 24 25 25 25 25
storage (30) 20 20 20 20 19 19 19 20 20 20 20 20 20 20
tpp (30) 30 30 30 30 30 30 30 27 27 27 27 27 27 26
trucks (30) 19 17 17 18 18 18 18 10 11 11 11 11 12 11
wood-sat (30) 29 29 28 28 28 28 29 11 11 11 11 11 14 12
Total (908) 820 822 821 820 824 750 744 706 703 700 703 704 637 632

Table 2: Comparison of solved tasks for different maximum numbers of merges using the heuristics hFF and hCG. The maximum
group size is set to 2 in this experiment. Number of tasks in each domain is shown in parentheses. Best results for each heuristic
are highlighted in bold.

hFF 0 Merges hFF 2 Merges hFF 5 Merges
Inst. Cost Exp. Time Cost Exp. Time Cost Exp. Time
Sokoban

#16 345 29682 4.18 329 21743 3.97 371 24656 5.39
#17 114 8543 1.27 215 29104 5.31 247 38733 8.51
#18 497 2421586 314.03 275 1033770 172.36 301 752976 152.67
#19 93 351433 182.57 52 776873 476.85
#20
#21 256 75853 11.23 224 41600 8.62 236 81226 19.9
#22 389 4024596 767.93 409 3824691 833.27
#23 343 24924 2.98 311 31248 5.46 299 27809 5.68
#24 137 173933 26.48 165 219517 40.26 137 139241 30.57
#25 221 71862 12.14 185 74991 14.67 245 89785 20.78
#26 402 577660 110.98 320 794300 200.1 434 1404490 420.94
#27 113 529446 197.51 97 923336 412.6
#28 536 1983688 557.24 486 3858328 1287.57
#29 779 4673208 914.51
#30 502 886401 134.08 494 719545 116.84 470 677857 127.8

Table 3: Detailed results for the sokoban-sat08-strips domain (15 smallest tasks omitted), using greedy best-first search with
deferred evaluation and hFF. The maximum group size was set to 2. For each number of merges we report the plan cost, number
of expansions and search time in seconds. Best results are highlighted in bold.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

52

Additionally, it can be expected that the parameters for
the maximum number of merges and the maximum group
size were not optimally set in our experiments. With cur-
rent planning systems obtaining more and more knobs to
tweak, the automatic parameter tuning methods like the ones
found in the ParamILS framework appear worth investigat-
ing (Hutter et al. 2009).

Finally, we remark that in this work, we used the finite-
domain representations generated by Fast Downward’s
translation component as a starting point. As van den Briel,
Kambhampati, and Vossen (2007) observe, the reformula-
tion performed by this translator is already a form of flu-
ent merging (based on mutexes of the planning instance at
hand), and it is far from clear whether the particular merg-
ing choices performed by the translation algorithm are ideal.
Hence, another interesting question is whether we can derive
a general fluent merging algorithm that starts from a regular
Boolean encoding of a planning task and leads to a better
representation than the one found by Fast Downward’s de-
fault algorithm.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.

Chen, Y.; Zhao, X.; and Zhang, W. 2007. Long-distance mu-
tual exclusion for propositional planning. In Veloso, M. M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007), 1840–1845.

Edelkamp, S., and Helmert, M. 2001. The model checking
integrated planning system (MIPS). AI Magazine 22(3):67–
71.

Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Pre-proceedings of the Sixth
European Conference on Planning (ECP 2001), 13–24.

Gazen, B. C., and Knoblock, C. A. 1997. Combining the
expressivity of UCPOP with the efficiency of Graphplan. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning. 4th European Conference on Planning (ECP 1997),
volume 1348 of Lecture Notes in Artificial Intelligence, 221–
233. Springer-Verlag.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.

Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004),
161–170. AAAI Press.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.

Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and complex-
ity. Artificial Intelligence 100(1–2):125–176.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
588–592.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language – Ver-
sion 1.2. Technical Report CVC TR-98-003, Yale Center for
Computational Vision and Control.

Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.

van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007.
Fluent merging: A general technique to improve reachability
heuristics and factored planning. In ICAPS 2007 Workshop
on Heuristics for Domain-Independent Planning: Progress,
Ideas, Limitations, Challenges.

van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI planning:
A branch-and-cut framework. In Biundo, S.; Myers, K.; and
Rajan, K., eds., Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS
2005), 310–319. AAAI Press.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

53

Heuristic Search-Based Planning for Graph Transformation Systems

H.-Christian Estler1 and Heike Wehrheim2
1ETH Zurich, christian.estler@inf.ethz.ch

2University of Paderborn, wehrheim@uni-paderborn.de

Abstract
Graph notations have proven effective in modeling
complex systems. In recent years, it has therefore been
proposed that graphs could also be used for modeling
planning problems, i.e. using graphs to express states
and actions. Translating these graphs into PDDL
would be desirable since today’s Graph Transforma-
tion tools are not as efficient as modern planning tools.
Unfortunately, such a translation is not always possible
as the formalisms have different expressiveness. In this
work, we present an extension of a Graph Transforma-
tion tool with classic planning algorithms. Using two
case studies, we show that this extension makes plan-
ning with graphs more feasible – without the need of
translating into PDDL. Furthermore, we demonstrate
how typical modeling artifacts, like meta-models, can
be leveraged to semi-automatically develop heuristics
for the planner.

Introduction
Graphical notations are widely used in computer sci-
ence to model complex systems. Their depiction of-
ten allows for an easier and faster understanding of the
structure of a system and they can be more accessi-
ble to non-experts compared to purely text-based no-
tations. A well know example of such a notation is the
Unified Modelling Language (UML) (OMG 2010) which
has widespread use in industry and academia.
To leverage the advantages of graphical notations in

the area of planning, researchers are investigating how
such notations could be used to model planning prob-
lems. Tools like ItSimple (Vaquero, Tonidandel, and
Silva 2005) allow the user to model a planning prob-
lem using different types of UML diagrams and subse-
quently generate planning problems in PDDL (Ghallab
et al. 1998) which can be solved using off-the-shelf plan-
ning tools.
In this paper, we explore another approach towards

solving planning problems which are modeled using
UML diagrams. Rather than transforming the dia-
grams – which represent states and actions – into an-
other language, we use them as-is when searching for

Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

a plan. The diagrams themselves are (directed labeled)
graphs and we can thus use a graph transformation tool
for applying actions to states, thereby generating the
search space. The advantage of this approach is that
we can use the full expressiveness of the graph formal-
ism which, in our case, is different from the expressive-
ness of PDDL. However, as graph transformations are
in general computationally expensive, we are facing the
fundamental problem of planning tools: the need to
minimize the number of states in the search space (i.e.
the number graph transformations).
We have built a planning framework that uses heuris-

tic search algorithms (currently A∗ or Best First) to
direct the search in a state space where new states are
generated using a graph transformation tool. To the
best of our knowledge, this is the first tool to experi-
ment with such a combination. While it does not come
as a surprise that a heuristic-driven approach typically
uses less transformations than a non-heuristic approach,
the evaluation of our framework yields insight of how
efficient such a tool can perform in practice. Using
our planning framework and two case studies, we will
demonstrate i) that planning with graph transformation
tools becomes more feasible when using heuristic search
strategies instead of non-heuristic approaches, ii) how
users can be enabled to write domain-specific heuristics
for graph based planning problems and iii) how mod-
eling artifacts, such as a meta-model, can be used to
semi-automatically learn domain-specific heuristics.

Case Studies
The first case study we present in this paper is the n-
puzzle problem. n numbered tiles are positioned on
a square board. The objective is to place the tiles in
order, using only slide moves, i.e. only a tile adjacent
to the empty field can slide onto that field.
The second case study has more of a “real-world prob-

lem” character. It is based on the research project
Neue Bahntechnik Paderborn (NBP) at the University
of Paderborn. NBP aims at the development of a future
railway system where small, driverless vehicles act com-
pletely autonomously with respect to individual goals.
The vehicles are called RailCabs, referring to the idea
that the transport of passengers or goods is demand

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

54

driven, as it is with regular cabs.
A typical planning problem for the NBP case study is

the following (see Fig. 2): passengers and cargo needs to
be transported from Paderborn to Berlin. Furthermore,
passengers need to be transported from Paderborn to
Leipzig. The RailCabs (RC1, RC2, RC3) which are
needed to satisfy these request share part a part of their
route. Whenever possible, the RailCabs should build a
convoy by driving close together, therewith minimizing
energy consumption. Furthermore, every RailCab is re-
quired to be in contact with a Base Station (BS1, BS2,
. . .) to enable communication. Safety requirements
such as “a RailCab with dangerous cargo is not allowed
in a convoy” have to be met.

�������

��	
��

���	��	�

����
����

����

��� ���

���

���

Fig. 2: Coordinating RailCabs constitutes a planning
problem.

In total, the NBP planning problems consists of 15
possible actions (e.g. move RailCab, create convoy,
change Base Station) and five rules which define safety
requirements.

Graphs and Graph Transformations
The graphs we use to model planning problems are
called story patterns (Fischer et al. 2000). They were
developed as part of an extension of UML activity dia-
grams.
In its most simple form, a story pattern equals an

UML object diagram. We use this simple form to model
the start state of a planning problem. Fig. 1 shows a
start state of a NBP planning problem. Nodes and
edges of the graph are labeled, where a label consists
of two strings which are separated by a colon. The

front-string is the object name, whereas the rear-string
defines the type of the object.
Story patterns are also used to define the actions of a

planning problem. They describes how a graph can be
transformed into another graph and are therefore also
call it a graph transformation rule. An example for the
“move” action of a RailCab is shown in Fig. 3.

������� �������

��	�
���

����������
��

�����
���
��

�������� ���
�����������
���
��

���������

�	��
����
�

�����
��
�

���
���

���������

���
�����
 ���
�����

	��
����
��

Fig. 3: Story pattern for the action move.

In addition to the nodes and edges of a regular ob-
ject diagram, a graph transformation rule can use the
special annotations <<create>> and <<destroy>> for
nodes and edges. Furthermore, nodes and edges can
be crossed out to define that the rule is only applicable
to graphs which do not contain certain nodes or edges
(called Negative Application Conditions (NACs)). In
contrast to the start state graph from Fig. 1, the node
labels omit a string in front of the colon. This omission
defines that only the type of a node is of interest, not
its specific object-name.
The execution of a transformation rule is performed

in two steps: First, the graph to be changed (e.g.
the one from Fig. 1) is searched for a subgraph which
equals the graph of the transformation rule except for
crossed out elements or those which are annotated with

������������
�����

�����������
��

�����������
��

�������� �������� �������� ��������
 �������

!�������

����
�������
��

"�
#$
%������
��

&�������

'�������

�����������
��
����	�
��� ����	�
���

��������������
��

���
������
��� ���
���

���
���
���
��� ���
��� ���
���

���
������
������
��� ���
���

���������

���
��� � �

��������� ��������� ���������

���������
���������

��������� ���
���

���
���

���
���

���
���

Fig. 1: Story pattern modeling a start state of a NBP planning problem.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

55

<<create>>. If such a subgraph exists, then we have
found a matching. Secondly, the subgraph will be mod-
ified by creating and deleting those elements which are
annotated accordingly in the transformation rule.
Modeling goal states or states which are forbidden

(e.g. due to safety requirements) is similar to modeling
actions. The only difference is that we use story pat-
terns without <<create>> or <<delete>> annotations.
NACs, however, are allowed. The idea is to state only
the properties that are of interest for a state, in order to
be considered a goal state or a forbidden state. Fig. 4
shows an example of a goal state for the NBP problem.

: Track Berlin: Station

r1: RailCab

: Track

r2: RailCab

Leipzig: Station

part of

on

part of

on

Fig. 4: Story patterns are used to define goal states.

The tuple (G, R), where G is a set of graphs and R
is a set of graph transformation rules is called a Graph
Transformation System (GTS).
It is worthwhile to mention the complexity of graph

transformations: Establishing a matching between a
transformation rule and a graph implies that one has
to find graph homomorphisms. Deciding if a homomor-
phism exists is N P-complete. Furthermore, we need to
check if a newly generated state is already present in
the search space, i.e. for every new graph, we check if
there exists a graph isomorphism to a graph already in
the search space. Deciding graph isomorphism is known
to be in N P.
Though story patterns alone are sufficient to model

a GTS planning problem, our framework additionally
requires the user to model a UML class diagram. This
class diagram defines the types (classes), labeled edges
(associations) and possible node connections (multiplic-
ity constraints) in a planning problem. The class dia-
gram needs to be provided before modeling the story
patterns. It serves as a meta-model, i.e. only nodes
and edges which are declared in the class diagram can
be used in a story pattern, ensuring consistency be-
tween different story patterns. An example of a class
diagram for the NBP case study is shown in Fig. 5.

The Planning Framework
Our planning framework utilizes two other tools. The
first one is Fujaba1 (From UML to Java and back
again), an open-source tool for model-based software

1http://www.fujaba.de

RailCab

move ()

cPublication ()

dPublication ()

cConvoy ()

dConvoy ()

moveConvoy2 ()

moveConvoy3 ()

joinConvoy ()

leaveConvoy ()

fallBackConvoy3 ()

fallBackConvoy2 ()

changeBS ()

cDistanceCoord ()

dDistanceCoord ()

moveDistanceCoord ()

Track

BaseStation
BaseStationNet

Convoy

DangerousCargo

DistanceCoordination

Publication

Forbidden

collision()

wrongPublication ()

hazard ()

dangerInConvoy ()

dangerDistanceCoord ()

Instances

start ()

goal ()

Station

1 *

on

2

0,1

participant

1 0,1

carrier

2,*

0,1

participant

1

*

publisher

*
*

successor

0,1

1,*

part of

1,*

1,*

monitors

1 1,*

part of

1 *

distributor

Fig. 5: UML class diagram for the NBP case study.

engineering. We use it as a front-end for the user in-
put, i.e. a user models the story patterns and the class
diagram within Fujaba.
The second tool is Groove2 (Rensink 2004). The

main feature of Groove is its simulator which allows
for generating and analyzing graph transition systems.
While Groove also incorporates an editor to define
graphs and transformation rules, we use it as a back-end
only, i.e. we rely on it for graph transformations and
isomorphism checks but we apply our own algorithms
to control the generation of the state space.
The graph formalisms used by Fujaba and Groove

are very similar but not identical. Therefore, we use
a translation procedure presented by Röhs et al. in
(Röhs 2009; Röhs and Wehrheim 2010). In principal,
our framework can work without Fujaba in case a user
prefers to model a GTS directly in Groove. Further-
more, we designed the planning framework to be as in-
dependent of a specific graph transformation tool as
possible. For example, none of the original Groove
source code has been modified. While it is not possible
to simply exchange Groove for another graph transfor-
mation tool (some parts of the framework’s implemen-
tation are Groove specific), large parts of the frame-
work, could be reused as-is in case Groove should be
replaced.

Writing Heuristics
The heuristic search algorithms of our framework – A∗
and Best First – rely upon heuristics in order to perform
efficiently. From a knowledge engineering standpoint it
is desirable that users can define heuristics with the
same notation they use to define the planning problem.
As a first step, however, we have to identify the prop-
erties and functionalities which such a notation should
provide. Therefore, we currently only provide an API
with about 30 methods that ease the development of
heuristic functions for GTS.

2http://groove.cs.utwente.nl

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

56

The design of the API was driven by the following
observations:
• We think about graph nodes in terms of their types
and their object names. For example, a node that
represents a particular RailCab has the type “Rail-
Cab” and the object name “r1”.

• The object name and the type are both labels of a
node. Furthermore, a node has incoming and outgo-
ing edges. These edges can have labels themselves.
Source and target of an edge are nodes again.

• A node should allow us to easily access and analyze
its close-by neighbors, i.e. the nodes which are at
the source of an incoming edge or at the target of an
outgoing edge.

• Checking reachabilty between nodes is crucial when
developing heuristic functions for graphs. For exam-
ple, we need to be able to check, if a RailCab node
can reach a node that represents a station. The check
should return the distance between the nodes or the
list of nodes along the path. Furthermore, a reacha-
bility check should (optionally) take into account that
edges are directed. It is also important that we can
restrict the check in a way that only certain nodes
are taken into account. For example, if we want to
check reachability between a RailCab and a station,
this check should use tracks but not Base Stations.
The API hides the internals of Groove’s graph data

structures. For example, nodes and edges are assigned
unique identifiers internally but such identifiers are of
no use to us as we do not know their meaning. We must
also not forget that a user models a planning problem
within Fujaba and thus might not even know anything
about Groove and its internal graph representations.
In this paper, we evaluate four different heuristics

which have been implemented using the API. Two well-
known heuristics are for the 8-puzzle:
• h1

P uz = the number of misplaced tiles, i.e. the num-
ber of tiles which are not in their goal position.

• h2
P uz = the sum of the Manhattan distances of every
misplaced tile.
Furthermore, two heuristics for the NBP problem:

• h1
NBP = the sum of the shortest distance from the
current position to the goal position for every Rail-
Cab; That is, we measure for each RailCab the mini-
mal number of tracks between its current position
and its goal position. Then, we add up all those val-
ues.

• h2
NBP = ∞ if any RailCab can no longer reach its
goal position from its current position. Otherwise
return 0.
To give the reader an idea of how the API is used

in practice, we provide an example for h1
NBP in list-

ing 1. Though the source code may not be completely
self-explanatory, we do not explain the details in this
paper. Rather, we provide the key observation from our

experiments with the API: many properties of heuristic
functions for GTS planning problems can be expressed
using reachability tests between nodes in the graph.
We experimented with more sophisticated heuristics

which, for example, take into account the possibility
of building convoys and having different costs for dif-
ferent sorts of move actions (regular move, move in a
2-convoy, move in 3-convoy). We found that it quickly
becomes quite cumbersome to write such heuristics by
hand. Therefore, we developed a semi-automatic ap-
proach to writing heuristics that free the user from this
burden.

Learning Heuristics
Using our API for writing heuristics, we can easily im-
plement methods that extract feature values, e.g. the
number of RailCabs or the number of tracks, from a
given graph. Not having to decide how such feature
values relate to the costs of solving a planning prob-
lem simplifies the development of a heuristic. For our
framework, we developed an experience-based learn-
ing approach, i.e. we solve many problem instances
and learn a heuristic estimate from experience. For in-
stance, we define a set of features and store the values
of such features in a so called feature vector. By provid-
ing many feature vectors together with the cost value
of solving the corresponding problem, a learning algo-
rithm can derive a function (a regression function to
be precise) that predicts the costs based on a feature
vector only. The approach we use for learning a regres-
sion function is called Support Vector Machines (SVM)
(Boser, Guyon, and Vapnik 1992).
Instead of embedding a specific SVM implementation

directly within our planning framework, we utilize a
machine learning framework called Weka3 (Hall et al.
2009), which not only provides different SVMs but also
other learning techniques. This provides the flexibility
to experiment with different SVMs without the need to
modify any code and also allows for future experiments
with other learning approaches.
A learning algorithm can only yield meaningful re-

sults if it is trained on a sufficiently large data set.
Asking the user to provide hundreds or thousands of
different problem instances is undesirable and imprac-
tical. Our framework accounts for this by providing a
problem instance generator which can generate many
unique problem instances based on a single problem
specification.
The language we use to write such a problem spec-

ification is Alloy (Jackson 2002; 2006). It is based
on first-order relational logic which facilitates an au-
tomatic analysis. Alloy models can be executed and
analyzed with the Alloy Analyzer4. The Alloy Analyzer
translates an Alloy model into a boolean formula and

3http://www.cs.waikato.ac.nz/ml/weka/
4http://alloy.mit.edu

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

57

1 public double g e t H e u r i t i c W e i g h t (Graph stateGraph , Set<HSRule> goalRules , Set<HSRule> a c t i o n R u l e s) {
2 Map<S t r i n g , S t r i n g > rai lCabStationMap = new HashMap<S t r i n g , S t r i n g >() ;
3 double f a c t o r = 0 ;
4 int d i s t a n c e = 0 ;
5
6 // f i n d o u t t h e c o s t s f o r t h e ”move” r u l e
7 for (HSRule r : a c t i o n R u l e s) {
8 i f (r . getRuleName () . e q u a l s (”move”)) {
9 f a c t o r = r . getWeight (” Cost ”) ; } }

10
11 // g e t t h e g o a l graph
12 Graph goalGraph = g o a l R u l e s . i t e r a t o r () . next () . getGrooveRule () . l h s () ;
13
14 // a c c e s s t h e g o a l graph and f i n d o u t where each Rai lCab s h a l l go
15 HSGraphAccess goalAcc = new HSGraphAccess (goalGraph) ;
16 Set<HSNode> goalRai lCabs = goalAcc . getAllNodesWithEdge (” RailCab ”) ;
17 for (HSNode goalRC : goalRai lCabs) {
18 HSNode goalTrack = goalRC . getSingleTargetOfEdgeLabel (”on”) ;
19 S t r i n g s t a t i o n I D = goalTrack . getSingleTargetOfEdgeLabel (” part o f ”) . getNodeID () ;
20 rai lCabStationMap . put (goalRC . getNodeID () , s t a t i o n I D) ; }
21
22 // d e t e r m i n e t h e d i s t a n c e be t we en t h e c u r r e n t Rai lCab p o s i t i o n s and t h e i r g o a l s
23 HSGraphAccess acc = new HSGraphAccess (stateGraph) ;
24 Set<HSNode> r a i l C a b s = acc . getAllNodesWithEdge (” RailCab ”) ;
25 Set<HSNode> t r a c k s = acc . getAllNodesWithEdge (” Track ”) ;
26
27 for (HSNode r c : r a i l C a b s){
28 S t r i n g g o a l S t a t i o n = railCabStationMap . g e t (r c . getNodeID ()) ;
29 HSNode g o a l t r a c k = acc . getNode (g o a l S t a t i o n) . ge tS i ng le So ur c eO fE dg eL ab el (” part o f ”) ;
30 int i = r c . getSingleTargetOfEdgeLabel (”on”) . canReach (g o a l t r a c k , t r a c k s , true) ; }
31 i f (i > 0) // i f i > 0 t h e n g o a l i s r e a c h a b l e
32 d i s t a n c e += i ;
33 }
34 return d i s t a n c e ∗ f a c t o r ;
35 }

Listing 1: Implementation of the heuristic h1
NBP , using the heuristics API of our planning framework.

uses an “off-the-shelf” SAT solver to find satisfying as-
signments for such a formula. By enumerating over
different satisfying assignments, we receive different in-
stances of an Alloy model. These instances can be
used as training problems for the SVM.
We use the UML class diagram, which describes

the general structure of a planning problem, to auto-
matically generate a skeleton of an Alloy specifica-
tion. This skeleton needs to be manually extended with
constraints such that an Alloy instance represents a
meaningful planning problem. Examples for such con-
straints would be: “Each RailCab can reach its goal
station using tracks” or “If a track is monitored by more
than one Base Station, than its successor and ancestor
tracks have different Base Stations”.
After generating a sufficient amount of Alloy in-

stances, the planning framework automatically trans-
lates each instance into a GTS planning problem. Then,
for each problem, a feature vector is created, based on
the features specified by the user. After solving the
problems optimally (e.g. by using A∗ with an admis-
sible heuristic), each resulting cost value is stored to-
gether with its corresponding feature vector in a Weka
input file. Based on this input file, we finally learn the
regression function and encode it – using the API – as
a heuristic for the planning framework.
An example of two different feature sets which we

used to learn heuristic functions are:

• f1
W eka: number of RailCabs; number of Tracks; num-
ber of stations in the goal rule; average distance to
the goal station

• f2
W eka: number of RailCabs not at their goal posi-
tion; average distance to the goal station; average
branching factor
Trained on 140 different planning problems, the SVM

learned the following heuristic functions:

h1
W eka = 5.4226∗j1+0.0769∗j2−0.8092∗j3+1.6148∗j4−2.5722

where j1 = number of RailCabs; j2 = number of tracks;
j3 = number of stations in the goal rule; and j4 =
average distance to the goal station.

h2
W eka = 6.3639 ∗ k1 + 1.9876 ∗ k2 − 1.2123 ∗ k3 − 4.2353

where k1 = number of RailCabs not at their goal po-
sition; k2 = average distance to the goal station; and
k3 = average branching factor.
The entire process of generating the training data and

learning the heuristic functions took about 35 minutes.

Related Work
Edelkamp and Rensink (Edelkamp and Rensink 2007)
described the similarities and differences between plan-
ning tools and graph transformation tools. They found
that “graph transformation systems provide a flexible,
intuitive input specification for systems of change with
a sound mathematical basis”. A performance compari-
son of the graph transformation tool Groove (Rensink
2004) and the heuristic search planner FF (Hoffmann
and Nebel 2001) demonstrated that planners can vastly
outperform the graph transformation tool. However,
the paper also describes why a GTS planning problem
might not be suited for translation into PDDL: PDDL

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

58

does not support the creation/deletion of objects nor
untyped domain objects.
Another paper by Edelkamp (Edelkamp, Jabbar,

and Lafuente 2006) proposes several heuristic functions
which can be used when performing heuristic search on
GTS. While these heuristics – which can be encoded
using our API – have the advantage of not being do-
main specific, they rely on the availability of a complete
graph which defines the goal state. For the planning
problem we are interested in, the goal states are typi-
cally defined using incomplete graphs which only state
the properties of interest.
Röhs and Wehrheim (Röhs and Wehrheim 2010) have

used Groove to solve planning problems using its
built-in model checker. Their approach consists of the
following steps: 1) modeling a planning problem us-
ing Fujaba, 2) translating the Fujaba graphs into
Groove graphs, 3) using the Groove simulator to
build a complete graph transition system, 4) finding a
valid path from the start state to a goal state (valid
means a path without forbidden states), 5) reporting
the action names used along the path back to the user.

Groove’s model checker (MC) is used to search for
a counterexample to the following statement: “there ex-
ists no path to a goal node without any forbidden states
along the way”. If a counterexample can be found, it
is a valid plan for the planning problem. The prob-
lem with the model checking approach is obvious: the
generation of the entire state space (step 3) is very ex-
pensive and not necessary to solve a planning problem.
We compare our heuristic search algorithms with the
MC approach in the next section. Note that Groove
allows to disable the exploration forbidden states using
rule priority. We show the results of the MC approach
with and without priorities.

Evaluation
We evaluated the implementation of our planning
framework on different planning problems. As a point
of reference, we used the model checking based planner
developed by Röhs (Röhs and Wehrheim 2010). Both
planners use Groove to perform the graph transforma-
tions and build the graph transition system. Consider-
ing the fact that our current implementation requires
additional bookkeeping due to implementation details,
we focus on the number of states and transitions rather
than the runtime. Our experiments were carried out
on a quadcore machine with an “Intel Core i7 Q820”
processor (3.06GHz core speed), 8 GB RAM, running
Windows 7 Professional 64 bit, Java 1.6.0 22 (32 bit)
with a JVM heap size of 1.2 GB.

N-Puzzle Problems
The first problem we used for the evaluation was the
n-puzzle. Remember that Best First (BF) returns the
first solution it finds, whereas A∗ returns an optimal
solution (given an admissible heuristic).
One of the 8-puzzle problems, 8puzzle-06, is specif-

ically modeled to be easily solvable. Only two slide

actions are necessary to reach the goal state. The pur-
pose of this problem instance is to demonstrate the dis-
advantage of checking for a goal state only after the
entire state space has been generated, as it is done with
the model checking planner (MC). The results of the
experiments are shown in table 1
We did not try to solve the 15-puzzle using the MC

planner or our planner with the h1
P uz heuristic. With a

state space of 1.3 trillion states, the problem is currently
not feasible. For the 8-puzzle, both our algorithms find
solutions for all problem instances. We observed that
the model checking planner was able to generate the
entire state space (approx. 180.000 states) but ran out
of memory while performing the search for a counterex-
ample.

NBP Problems
To evaluate the NBP case study, we used two differ-
ent problems (NBP-B and NBP-M) and created twelve
different problem instances. The instances vary in the
number of tracks and the number of RailCabs used.
The model checking planner was used a first time with-
out any rule priorities and a second time with a priority
of 1 for all rules which describe forbidden states. The
heuristic hEmpty simply returns the value 0, i.e. the
results show how the algorithms perform without any
heuristic estimate. The heuristic h1

NBP was modified to
measure the distance-to-goal only (rather than costs)
when used in combination with Best-Frist.
NBP-B Problems The first NBP problem models
the situation that RailCabs have to move from Pader-
born station to the stations Berlin and Leipzig, respec-
tively. A single problem instance has the name “NBP-
B-X-Y ”, where X represents the number of RailCabs
and Y represents the number of tracks. The results of
the experiments are shown in table 2.

NBP-M Problems In an NBP-M problem, Rail-
Cabs have to move from Paderborn station to Berlin
station and Munich station, respectively. The track
network allows to travel to Berlin directly or by taking
a detour over Munich. It is, however, not possible to
travel to Munich over the Berlin route. One RailCab is
carrying dangerous cargo, which prevents it from join-
ing a convoy.
Our findings for these problem instances are quite

similar to ones from the NBP-B problems. The BF
and A∗ algorithms outperformed both model checking
approaches. As we can see in table 2, the heuristic
h2

NBP performed very good for this particular problem,
as it is likely for a RailCab to move along a route from
which the goal station is unreachable.

Learned Heuristics Finally, we evaluated the
learned heuristics h1

W eka and h2
W eka and compared

them with the empty heuristic hEmpty and the manu-
ally written heuristics h1

NBP and h2
NBP . As the learned

heuristics were used to estimate the costs, we only com-
pared the results for the A∗ algorithm. Table 3 shows

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

59

#states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s)

8puzzle�01 * * * 1453 2432 2 1688 2778 3 10207 17727 89 662 1031 <1
8puzzle�02 * * * 1389 2333 2 251 404 <1 82159 164840 6462 903 1505 25
8puzzle�03 * * * 627 1040 <1 955 1550 1 5926 10140 32 1032 1723 1
8puzzle�04 * * * 1086 1810 1 117 187 <1 27457 50070 649 2153 3631 4
8puzzle�05 * * * 1409 2344 1 250 401 <1 5311 9053 23 583 965 <1
8puzzle�06 * * * 6 8 <1 6 8 <1 6 8 <1 6 8 <1

15puzzle�01 ~ ~ ~ ~ ~ ~ 25967 41225 336 ~ ~ ~ % % %
15puzzle�02 ~ ~ ~ ~ ~ ~ 4997 7717 22 ~ ~ ~ % % %
15puzzle�03 ~ ~ ~ ~ ~ ~ 3561 5468 13 ~ ~ ~ % % %

*�out�of�memory�exception
~�not�evaluated
%�premature�termination�after�4�hours

A*with�h 1
Puz A*�with�h 2

PuzMC BF�with�h 1
Puz BF�with�h 2

Puz

Table 1: Results for the n-puzzle problem. For each search strategy the number of states, transitions and solving
time is shown. The minimal number of explored states is highlighted in bold for each problem instance.

#states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s) #states #trans time�(s)

NBP�B�2�08 293 837 1 253 665 <�1 110 170 <1 51 74 <1 89 159 <1 268 642 <1 88 176 <1 204 457 <1
NBP�B�2�10 401 1011 1 315 797 <�1 77 108 <1 126 237 <1 177 312 <1 358 852 <1 117 217 <1 233 517 <1
NBP�B�2�15 776 1966 2 515 1247 1 200 377 <1 123 216 <1 138 193 <1 564 1326 <1 199 392 <1 293 647 <1
NBP�B�2�20 1301 3131 3 765 1797 2 202 320 <1 131 218 <1 135 196 <1 817 1892 1 78 132 <1 352 777 <1

NBP�B�3�08 7615 34182 59 4647 15773 21 291 610 <1 550 1473 1 271 432 <1 5782 19009 29 233 514 <1 3502 10136 13
NBP�B�3�10 12426 53300 132 6381 21029 29 908 2437 2 206 446 <1 535 855 <1 8249 25780 50 356 864 <1 3891 11020 15
NBP�B�3�15 34956 134530 234 13713 45017 50 234 244 <1 1689 5137 7 1587 3167 5 16706 53554 201 2344 6935 43 5031 14520 24
NBP�B�3�20 78052 277431 837 24795 80813 104 4428 13228 46 1232 3584 5 346 485 <1 29068 94063 638 693 1751 5 6171 18020 36

NBP�M�3�08 9332 54647 61 5329 23670 24 685 2945 2 3594 17526 30 263 443 <1 5281 22346 26 2252 7691 8 1788 6840 6
NBP�M�3�10 14008 78031 71 7570 32439 26 2409 10365 16 4557 21681 42 737 1655 1 8041 36001 57 2418 9826 11 2541 9558 10
NBP�M�3�15 39584 194855 * 17667 65815 281 6810 24655 107 5595 20744 52 751 1277 1 19877 75207 274 8943 31727 151 5087 15969 27
NBP�M�3�20 48587 227263 * 23477 83978 95 15662 55782 500 10220 36913 106 2048 4149 8 27191 99387 485 10253 33918 140 5678 17674 35

*�Exception�while�executing�Dijkstra's�algorithm.

A*�with�h 1
NBP A*�with�h 2

NBPMC�without�Prio MC�with�Prio BF�with�h Empty BF�with�h 1
NBP BF�with�h 2

NBP A*�with�h Empty

Table 2: Results for the NBP-B and NBP-M problem instances. For each search strategy the number of states,
transitions and solving time is shown. The minimal number of explored states is highlighted in bold for Best-First
and A∗, respectively.

the number of states, transitions and the cost-value of
the resulting plan.
We observe that h2

W eka performed above the average.
For 6 out of 12 problems it used the fewest number of
states to find a solution. Also, for 6 out of 12 problems
it used the fewest number of states while returning an
optimal solution. It worked particularly well on prob-
lems of category NBP-M and was otherwise only out-
performed by h1

NBP , which – on average – had higher
cost values.
It may seem surprising that h1

W eka performed very
similar to h2

NBP . We explain this with the fact that
the “average distance” calculation within h1

W eka also re-
turns a very high value in case a RailCab can no longer
reach its goal. This equals the implementation of h1

NBP .
Taking this detail into account, we can conclude that
h1

W eka only performs as a cut-off heuristic and is oth-
erwise as ineffective in estimating the costs as h2

NBP
(which estimates 0).
The findings of the experiments demonstrates that a

learned heuristic should cover dynamic aspects of the
problem, as it is done with h2

W eka. If we learn functions
based on static feature like “number of RailCabs”, the
resulting function is of little use. Trained with the right
features, however, a learned heuristic can be effective.

Conclusion
In this paper, we presented a framework for heuris-
tic search-based planning for graph transformation sys-
tems. The planning framework uses the Groove graph
transformation tool to perform the necessary graph
transformations. Planning problems are modeled in
Fujaba, using a graphical notation called story pat-
terns. We developed an API that enables users to
easily write heuristic functions for GTS planning prob-
lems. Furthermore, we presented an approach to semi-
automatically learn heuristic functions using Support
Vector Machines and constraint-based problem instance
generation. The efficiency and effectiveness of the
heuristic search-based planner was compared to a pre-
viously proposed model checking based planner. The
results indicate that our planner is superior with re-
spect to the number of states that need to be explored
in order to find a solution.
The observation that a heuristic search algorithm ex-

pands less states than a model checker, in order to find
a plan, does not come as a surprise. At the beginning
of our research, however, we were confronted with the
situation of not being able to encode heuristic informa-
tion that would improve the solving of a GTS planning
problem. Having overcome the technical issues, we were
surprised by the actual performance improvements us-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

60

#states #trans Costs #states #trans Costs #states #trans Costs #states #trans Costs #states #trans Costs

NBP�B�2�08 268 642 17 88 176 21 204 457 17 185 404 17 74 114 21
NBP�B�2�10 358 852 23 117 217 23 233 517 23 226 488 23 92 135 23
NBP�B�2�15 564 1326 38 199 392 38 293 647 38 288 628 38 255 544 38
NBP�B�2�20 817 1892 53 78 132 53 352 777 53 348 758 53 315 674 53

NBP�B�3�08 5782 19009 26 233 514 31 3502 10136 26 3500 10210 26 604 1210 27
NBP�B�3�10 8249 25780 32 356 864 33 3891 11020 32 3891 11020 32 2660 6762 33
NBP�B�3�15 16706 53554 47 2344 6935 48 5031 14520 47 5032 14520 47 4462 12308 47
NBP�B�3�20 29068 94063 62 693 1751 63 6171 18020 62 6171 18020 62 5602 15808 62

NBP�M�3�08 5281 22346 19 2252 7691 21 1788 6840 19 1749 6584 19 965 3469 21
NBP�M�3�10 8041 36001 27 2418 9826 27 2541 9558 27 2583 9520 27 1776 6004 27
NBP�M�3�15 19877 75207 40 8943 31727 45 5087 15969 40 4978 15532 40 4044 12274 40
NBP�M�3�20 27191 99387 51 10253 33918 51 5678 17674 51 5672 17660 51 5443 16836 51

A*�with�h Empty A*�with�h 1
NBP A*�with�h 2

NBP A*�with�h 1
WEKA A*�with�h 2

WEKA

Table 3: Results for the learned heuristics. The third column of each search strategy shows the costs of the solution.
A∗ with hEmpty is optimal. The fewest number of states is highlighted in bold. The fewest number of states while
being optimal is highlighted using underlining.

ing even simple heuristics as the ones described above.
Furthermore, we found that the encoding of a planning
problem using a GTS not only gives the advantage of
having a graphical notation. It also aids the develop-
ment of heuristics as one mostly thinks about the plan-
ning problem in terms simple properties such as nodes,
neighbor-nodes or reachabilty between nodes.
As future work, we plan to analyze additional plan-

ning problems to further test our heuristics API. Once
the API has reached a stable state, one can investi-
gate how to write heuristics using the same graphical
notations that are used to model the planning prob-
lem. Furthermore, we would like to explore potential
performance benefits of using other graph transforma-
tion tools and changing our framework to account for
multi-core architectures.

References
Boser, B. E.; Guyon, I. M.; and Vapnik, V. N. 1992.
A Training Algorithm for Optimal Margin Classifiers.
In COLT ’92: Proceedings of the fifth annual workshop
on Computational learning theory, 144–152. New York,
NY, USA: ACM.
Edelkamp, S., and Rensink, A. 2007. Graph Trans-
formation and AI Planning. In Edelkamp, S., and
Frank, J., eds., Knowledge Engineering Competition
(ICKEPS). Canberra, Australia: Australian National
University.
Edelkamp, S.; Jabbar, S.; and Lafuente, A. 2006.
Heuristic Search for the Analysis of Graph Transition
Systems. In Corradini, A.; Ehrig, H.; Montanari, U.;
Ribeiro, L.; and Rozenberg, G., eds., Graph Transfor-
mations, volume 4178 of Lecture Notes in Computer
Science, 414–429. Springer.
Fischer, T.; Niere, J.; Torunski, L.; and Zündorf, A.
2000. Story Diagrams: A New Graph Rewrite Lan-
guage Based on the Unified Modeling Language and
Java. In TAGT’98: Selected papers from the 6th Inter-
national Workshop on Theory and Application of Graph
Transformations, 296–309. London, UK: Springer.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilins, D. 1998.
PDDL - the Planning Domain Definition Language, ver-
sion 1.2. Cvc tr-98-003/dcs tr-1165, Yale Center for
Computational Vision and Control.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reute-
mann, P.; and Witten, I. H. 2009. The WEKA data
mining software: an update. SIGKDD Explorations
11(1):10–18.
Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research 14:253–302.
Jackson, D. 2002. Alloy: A Lightweight Object Mod-
elling Notation. ACM Transactions on Software Engi-
neering and Methodology 11(2):256–290.
Jackson, D. 2006. Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press.
OMG. 2010. OMG Unified Modeling Language (OMG
UML) Infrastructure Version 2.3. Technical Report
formal/2010-05-03.
Rensink, A. 2004. The GROOVE Simulator: A Tool
for State Space Generation. In Pfalz, J.; Nagl, M.;
and Böhlen, B., eds., Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE), volume
3062 of Lecture Notes in Computer Science, 479–485.
Springer.
Röhs, M. 2009. Sichere Konfigurationsplannung adap-
tiver Systeme durch Model Checking. Master’s thesis,
Universität Paderborn.
Röhs, M., and Wehrheim, H. 2010. Sichere Kon-
figurationsplanung selbst-adaptierender Systeme durch
Model Checking. In Gausemeier, J.; Rammig, F.;
Schäfer, W.; and Trächtler, A., eds., Entwurf mecha-
tronischer Systeme, volume 272, 253–265.
Vaquero, T.; Tonidandel, F.; and Silva, J. 2005. The
itSIMPLE tool for Modeling Planning Domains. In
Proceedings of the First International Competition on
Knowledge Engineering for AI Planning and Schedul-
ing (ICKEPS).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

61

�

�

�

�

Poster�Presentations�

�

�

�

�

�

�

JPDL: A fresh approach to planning domain modeling

Michael Jonas
The IMPACT Laboratory
Arizona State University
Tempe, AZ 85287, USA

Abstract

In our recent work developing autonomous agents we at-
tempted to apply off the shelf technologies such as PDDL
and a variety of planners from the planning competitions to
our domain to serve as a baseline for evaluation of our do-
main specific solutions. Unexpectedly, our efforts were met
with resistance by the team we were integrating this work
with once they saw the format of academic solutions. Fur-
thermore, as the project evolved we became increasingly frus-
trated by the infeasability of developing sufficiently large do-
mains. In response to the feedback of our partner developers
outside of the planning communities we developed a new ap-
proach to domain modeling that is compatible with the trends
of the software development world. This paper introduces
this approach, JPDL (Java Planning Description Language),
which takes into account these lessons and the practical re-
quirements of the developers of real autonomous systems.

Introduction
Standardized domain representation languages have done
great things for knowledge representation (KR) and the plan-
ning and scheduling (PS) communities hereafter referred to
as the community. Languages like PDDL have driven the
community forward by giving a standard semantic mean-
ing to problems and have allowed planners to compete
solely on their own merit by removing individual program-
mer skill from planner evaluation (McDermott et al. 1998;
Fox and Long 2003). Over time the complexity of these
languages has grown, their expressiveness has increased and
they have on occasion diverged to create new languages such
as SHOP and GoLog (Nau et al. 1999; Levesque et al. 1997).
Each new language has focused on some new aspect of plan-
ning such as HTN. What we feel is lacking from the com-
munity is a domain modeling language with a strong focus
on usability that would be attractive to developers.

In response to this we have developed a new domain rep-
resentation language and created a proof of concept imple-
mentation of this language in Java alongside a domain spe-
cific planner that uses it. This language, JPDL (Java Plan-
ning Description Language), uses a subset of the existing
Java syntax and is therefore Java compilable. The seman-
tic meaning is precisely defined and checkable via the JVM.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Because JPDL is Java compilable, it is also Java executable,
and the JVM can be used to do plan validation in a precise
unambiguous way. We feel this provides a modeling lan-
guage that benefits from advances in language usability in
recent decades.

Our motivation for JPDL came from our personal expe-
rience developing cognitive architectures for embodied sys-
tems. Our experience has shown us how impractical it can
be to convince a company to train its developers on an en-
tirely new language, especially once they see the form of
languages such as PDDL. The software development world
has made great, valuable strides in language usability in re-
cent decades. Trends have arisen and certain languages have
gained popularity for their usability. We find that many of
these trends have received little to no focus in the family of
domain modeling languages and we find this to be to the
detriment of both academia and industry.

The first such trend is the rise of development environ-
ments such as Eclipse and Visual Studio. Many develop-
ers prefer IDE’s because of the benefits they provide such
as real time feedback in code correctness. Languages that
are so entirely different from what IDE’s today support lose
access to these benefits. Additionally, developers lose ac-
cess to the rich feedback compilers provide for well sup-
ported languages for syntactic errors. From our experi-
ence using planners from the planning competition like FF,
LAMA, and SGPlan we have found that the feedback pro-
vided by existing planners on code errors to be more sparse
and less informative than those provided by Visual Stu-
dio or Javac (Hoffmann 2001; Richter and Westphal 2008;
Hsu and Wah 2008). Losing access to these benefits hinders
the usability of academic domain representation languages.

Another trend is the decline of Lisp-like syntax. Lan-
guages like Java and C++ have been the mainstay for long
enough that we should consider providing at least one lan-
guage of similar form to developers who prefer these fam-
ilies. One reason for this change of popularity may be that
due to the syntax differences, a compiler is fundamentally
more able to diagnose certain syntactic errors in Java or C++
than Lisp. Forcing developers to develop using Lisp-like
syntaxes hinders the usability of academic domain represen-
tation languages.

One last trend is the advancement of newer programming
paradigms such as object-oriented code. We feel this indi-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

63

cates at the least a preference of many programmers. Ig-
noring such a trend further alienates those programmers, yet
again hindering the usability of academic domain represen-
tation languages.

The repetition above is pointed in that reinforces our mo-
tivation. The main thrust of this paper is that the usability
of academic domain representation languages is hindered
by their current form which has ignored beneficial trends
of the software development world and as a result has made
the solutions provided unnecessarily unattractive to those it
was intended to benefit. Our experiences attempting to apply
academic solutions to real large scale systems has proved to
us how unattractive these can be to those outside our com-
munity and how completely infeasible representing certain
domains can be if even possible at all. JPDL is our response
to these frustrations. It is our attempt at merging the gap be-
tween what is desired by developers and what is provided by
academia.

The rest of this paper focuses on the JPDL language
specifics. Section 2 formally introduces JPDL terms. Sec-
tion 3 shows an example Blocksworld domain and a straight-
forward representation in JPDL. Section 4 discusses the lim-
itations of this work and future work potential.

symbol meaning
SL State List
EL pending Effect list
CL constraint list

s State
V State Variable set
P primitive set
t time
v State Variable
i identity of a State Variable

Iv Identity set on a State Variable
Pv Primitive set on a State Variable
f function
E Effect set

Preliminaries
First we provide a brief summary of the components of
JPDL. Then we expand upon these definitions in each fol-
lowing subsections in the order they are introduced.

The primary function of JPDL is to describe a predic-
tive model of the world that can be used for planning and
meta-planning. The core structure of JPDL is the State List
which holds time continuous description of all recognized
facts. The State List encodes time dependent knowledge
about the world into States. A domain programmer cre-
ates a domain specific State definition called a World Model
which contains all of the State Variables specific to that
domain. A plan is represented by a time stamped list of
Effects, which describe instantaneous changes to the State
List. To perform plan validation all one must do is build an
initial State List, apply the pending Effect list in time order,
and check whether the resulting timeline is consistent and
meets the goal criteria. To the domain programmer all of
the above structures form a library that is as precise and is

easier to learn and debug than other existing world modeling
languages.

State List Structure
Informally, a State List is a timeline of features of the world.
A State List consists of a time ordered list of States that are
strung along continuously in time from a starting time to an
eventual time point.

Formally these features of the world are encoded into a
set of State Variables V which individually consist of an un-
changing identity i, an ordered set of identifies of other State
Variables Iv , and an ordered set of primitive values Pv . A
State s consists of an ordered set of State Variables V an
ordered set of primitives P , and two time bounds tl and tr
which define the period of time for which this mapping of
Iv and Pv on V holds. A State List consists of a time or-
dered set of States S such that time is defined continuously
from some initial time ti. When the values of Iv and Pv on
a State are subject to no further changes that State is said to
be finalized. After the finalized States is the current State, a
single State at the tail of the State List whose values are still
being defined.

Effects, Actions, and Constraints
Effects are the mechanism by which the State List is up-
dated. A primitive Effect describes some instantaneous
change to a State List. When these changes are made the
Effect is said to have been applied. Formally, a primitive Ef-
fect is an operator S′L = E(fe, Ie, Pe, t, SL, EL, CL). The
function fe uses the State List SL with States finalized up
to immediately before time t to create a new State List S′L
by changing Iv and Pv for the State at time t. This may re-
quire creating a new State so that no values of Iv and Pv are
changed at any time before t. Using the identities from I
the function fe can usefully access V on all states from ti to
t thereby allowing non-Markovian descriptions that utilize
State Variable values on previous States.

In contrast to primitive Effects a complex Effect instanti-
ates other Effects and adds them to the pending Effect list,
EL. When the Effect being instantiated is for any time after
t the action is said to be temporal. This immediately facil-
itates HTN planning by allowing each Effect to form a tree
with child Effect nodes. An action is a more abstract term
referring to all Effects included in a tree. A plan can be de-
scribed minimally by the set of root nodes of actions.

Effects can in principle be conflicting if written improp-
erly. This is the case whenever the State List S′L is different
depending on the order of application of Effects. Well writ-
ten Effects will either self govern their results depending on
the order of application, or they will use constraints. A
constraint C is an operator T/F = C(fc, I, tl, tr, SL) that
determines if a State List is consistent as states are finalized
between states tl and tr. A State List is found to be consis-
tent with respect to a constraint if the values Iv and Pv on
State Variables with identifiers I on all States from time tl
to tr match some pattern determined by fc. If a State List is
consistent with respect to every constraint up to some time
the State List is consistent up to that time. Effects that can
conflict should as part of their application add constraints to

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

64

the constraint list to validate that the results of their appli-
cation were in fact maintained on the finalized State List. If
a constraint returns false the State List is said to be incon-
sistent starting with the first State that a constraint fails to
match this pattern to.

In contrast to Effects, constraints are executed on finalized
states. This implies that they should make no changes to the
State List. Because of this their order of execution should
be irrelevant. This characteristic allows them to resolve any
Effect conflicts mentioned above. However, being unable
to modify States does not prevent constraints from adding
more constraints to the constraint list as part of their execu-
tion. This allows constraints to be a fairly powerful and ro-
bust means of consistency checking over continuous spans
of time, at intervals through time, and even with intervals
and patterns dependent on the values of State Variables en-
countered specific to a plans result. Effects and constraints
are used both for domain description and problem descrip-
tions as covered next.

Problem Description
Describing a planning problem requires three things:

1. A description of the world in its initial State.

2. A description how the world will change over time depen-
dent or independent of agent choices.

3. A description of whether a solution is satisfactory.

Each of these criteria is satisfied by an initialization op-
erator responsible for creating SL, EL, and CL. Formally,
a problem description consists of a State List initialization
operator SL = Is(fi), a pending Effect list initialization op-
erator EL = Ie(fe), and a constraint list initialization oper-
ator CL = Ic(fc). These together with the State and Effect
descriptions form a complete planning domain and problem.

Example Domain
Above we provided a syntax independent functional descrip-
tion of JPDL. We have created a library implementation of
JPDL in Java and in this section we show specific syntac-
tic examples of a well established AI domain converted to
JPDL syntax as well as provide an algorithm for plan val-
idation. As was motivated in the introduction, JPDL uses
a subset of Java syntax and is therefore compilable and the
JVM can be used to check correct semantic interpretation.

Inferring from above, to provide a complete JPDL de-
scription this section needs to contain a structure for State
Variables important to this domain, an organization of those
State Variables onto a State, the set of known Effects that
can modify the State, and initialization functions to setup
the State List, pending Effect list, and constraint list.

State Variables and States
For demonstration purposes we translate the Blocksworld
domain popular in the planning competition and ever since
STRIPS (Fikes and Nilsson 1971). Because of its age and
persistence there has been much scrutiny of this domain and
at this point many different representations exist (Slaney and

Thiebaux 2001). For brevity and clarity we are using a rep-
resentation with 1 action which requires conditional effects.
In PDDL the predicates consist of:

(:predicates
(on ?x ?y)
(clear ?x)
(block ?b)

)

To represent the equivalent in JPDL we need to write a Block
class.

public class Block extends StateVariable
{

Block on;
boolean clear;

}

Note that the Block class must extend the StateVariable class
for it to be properly utilized. This State Variable class has
an id field that serves to provide a State Variable with a
persistent identity across States as well as a constructor to
initialize a unique value for this field. Unless an identifier
is manually specified in the constructor our implementation
assigns a value for the id field that is the class name of the
State Variable followed by a static number that counts the
total number of State Variables instantiated this way so far.
This gives us reasonably intuitive id’s for debugging such as
Block1 and the manually specified id Table.

Now that our State Variables are defined we must organize
them onto a State to make them accessible to both an initial-
ization function and non-Markovian actions as desribed in
the previous section. The name of this class is arbitrary but
customarily we named this class WorldModel. The only re-
quirement of this class is that it has at least one StateVariable
on it and that it extends the State class.

public class WorldModel extends State
{

Block[] blocks;
}

To demonstrate how everything so far is used we introduce
the State List initialization function of the problem. There
are three initialization functions which are responsible for
initializing the State List, Pending Effect List, and Con-
straint List. The initialization function below is the first of
these on the problem class being defined. Fig 1 shows a pic-
toral representation of the results of this initialization.

public class Example extends Problem
{
public static void initStateList()
{

State initState = new WorldModel();
stateList.add(initState);

initState.blocks = new Block[4];

Block table = new Block("table");
initState.blocks[0] = table;
Block block1 = new Block();

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

65

Figure 1: A pictoral representation of the results of our
BlocksWorld initialization function.

initState.blocks[1] = block1;
Block block2 = new Block();
initState.blocks[2] = block2;
Block block3 = new Block();
initState.blocks[3] = block3;

block3.on=table;
block2.on=block3;
block1.on=block2;
block1.clear=true;

}
}

Note that problem definition must extend the Problem class
and overload its init methods. This class contains fields for
stateList, pendingEffectList, and constraintList and its con-
structor instantiates each. The add method associated with
these lists is a reserved word associated with all three fields
used primarily for initialization. The add function is equiva-
lent to Java’s List interface semantically.

All State Variables that can appear as member variables
in Effects should also be in a shallow list on each State. This
is important for State Variables on Effects to be properly
updated prior to application to reflect State Variables on the
current State.

Effects and the Pending Effect list
As mentioned above the Blocksworld sample domain only
has one action. This action moves a block from being on top
of one block to the table or another block. There are three
parameters in its header. In order they are the block to be
moved, the block it was moving to (or the table), and the
block it is moving from (or the table).

(:action puton
:parameters (?X ?Y ?Z)
:precondition (and (on ?X ?Z)

(clear ?X)
(clear ?Y)
(not (= ?Y ?Z))

(not (= ?X ?Z))
(not (= ?X ?Y))
(not (= ?X Table)))

:effect (and (on ?X ?Y) (not (on ?X ?Z))
(when (not (= ?Z Table))

(clear ?Z))
(when (not (= ?Y Table))

(not (clear ?Y))))))

What follows is a fairly straightforward translation.

public class PutOn extends Effect
{

Block x,y,z;

public void apply(StateList sl)
{

if(x.on==z&&x.clear&&y.clear&&
y!=z&&x!=z&&x!=y&&x.id!="table")

{
x.on=y;
if(z.id!="table")

z.clear=true;
if(y.id!="table")

y.clear=false;
}

}
}

When the apply method is called the State List is assumed
to be finalized up to just before the Effect time. This implies
that the last State in the State List is the State currently be-
ing defined, a.k.a. the current State. Prior to this method call
any State Variables of the Effect will be synchronized to the
current State using their id field. This is accomplished via
a pre-apply method that is called in plan validation prior to
each Effect. This method uses the id field of each State Vari-
able on the Effect to change the pointer of that State Variable
to the State Variable with the same id on the current State.
This removes the need for programmers to search the current
State and fetch those variables manually and more generally
this allows us to have State Variable fields rather than String
id fields on the Effect.

In order to do plan validation the desired plan must be
built as Effects and added to the pending Effect list. Our
libraries contain a parser that reads a file containing the plan
to be validated. Rather than get into the parsing and file
format details we simply build the plan directly in the init
method here for brevity. What this plan will do is to unstack
the blocks so they are all on the table.

public class Example extends Problem
{
...
public static void initPendingEffectList()
{

Puton unstack1 = new Puton(0);
unstack3.x = new Block("Block1");
unstack3.y = new Block("Table");
unstack3.z = new Block("Block2");
pendingEffectList.add(unstack1);

Puton unstack2 = new Puton(1);
unstack2.x = new Block("Block2");

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

66

Figure 2: A setup for an inconsistent world. Whichever Ef-
fect is applied first would prevail, resulting in the block it is
moving being stacked on Block3. Since these are supposed
to be simultaneous this results in an inconsistent State List.
This should be detected by properly written Effects and con-
straints.

unstack2.y = new Block("Table");
unstack2.z = new Block("Block3");
pendingEffectList.add(unstack2);

}
}

The single parameter in the Effect constructor is the time
of the Effect. This can be set using the t field during con-
structors as well. After initialization the Effect list is sorted
in ascending order by time.

Goal Constraints
All that remains is to describe patterns that need to match
to check whether a State List is consistent and whether the
goals have been met. Even in this simple domain inconsis-
tency is possible. Consider the case shown in Figure 2 where
every block is on the table and there are two simultaneous
pending PutOn Effects as indicated. The resulting State List
is dependant on the application order of the pending Effects.
What should the result be? Our answer is that neither result
should dominate and that in fact the plan produces an incon-
sistent world and so either the Effect descriptions or the plan
needs reworking.

This problem can be fixed in a number of ways using con-
straints. We will show the most general solution here. We
can detect if any condition of applying the Effect was not
met when it was applied and set a catch-all error variable on
the State when this happens. In this case we will need a con-
straint to detect this variable and if it is true declare the State
List to be inconsistent.

From class PutOn:
...
public void apply(StateList sl)
{

if(...)
...

else sl.getCurrentState().error=true;
}

public class ErrorCheck extends Constraint
{
public boolean check(StateList sl)
{

return !sl.getCurrentState().error;
}
}

What makes this solution so general and attractive is its scal-
ability to additional Effects in the domain description. Also,
this provides precision to the domain programmer to de-
scribe when the world is consistent but the action has done
nothing versus when the action has created an inconsistent
world by its inapplicability to a State List.

The last missing piece is the constraint list initialization
method. This is very similar to the initialization method for
Effects.

public class Example extends Problem
{
...
public static void initConstraintList()
{

FlagCheck c1 = new FlagCheck(ti, te);
constraintList.add(c1);
Goal c2 = new Goal(te, te);
constraintList.add(c2);

}
}

The code above introduced two new things. First there are
reserved symbols on the problem class to hold values for
the initial and eventual time, ti and te respectively. De-
fault values for these variables are 0 for the initial time and
Double.MAX V ALUE for eventual time. These variables
are used in the ErrorCheck constructor as the left and right
hand closed bounds of the constraint. During plan validation
the check method of the ErrorCheck constraint we have in-
stantiated will be executed on the State List each time a new
State is finalized. The second constraint we have instanti-
ated is a typical goal. When the left bound of a constraint
is the eventual time it is checked once the pending Effect
list is empty. In practice in our implementation they are also
checked after the State List has been finalized to a reason-
able time to handle a domain where the pending Effect list
is perpetuating itself. The goal constraint we instantiated is
shown below.

public class Goal extends Constraint
{
public boolean check(StateList sl)
{

State current = sl.getCurrentState();
for(Block block : current.blocks)
{

if(block.on.id!="Table")
return false;

}
return true;

}
}

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

67

Init(SL, EL, CL)
tc ← ti
sc ← SL(ti)
while EL.hasNext()&&tc < e.t do

e ← EL.getNext()
if tc! = e.t then

finalize(sc)
if !checkConstraints(sc) then

return false
end if
SL.split(tc)
tc ← e.t
sc ← SL(tc)

end if
e.preApply(sc)
e.apply(SL)

end while
if checkConstraints(SL(te)) then

return true
else

return false
end if

Figure 3: Plan validation algorithm pseudocode.

This continues our ongoing problem description that coin-
cides with the plan created on the pending Effect list. For-
each loops are the approximate equivalent to the for-each
and for-all operators in PDDL. The above constraint returns
true if and only if all blocks that are not the table itself are on
the table. Because the plan we added to the pending Effect
list unstacks the blocks for the world we constructed on the
initial State List, this constraint should be satisfied if plan
validation is working properly. The next section shows how
this is accomplished.

Plan Validation
In order to demonstrate a consistent semantic meaning to
JPDL we now walkthrough the plan validation steps of our
ongoing Blocksworld Example. The JPDL libraries we pro-
vide are written in Java which allows us to use the JVM to
enforce semantic meaning, but the definitions above could
be interpreted successfully by a planner in any language so
long as the same syntax is used and semantic meaning is
enforced.

The plan validation method accepts as a parameter the
name of a problem class. The algorithm returns true if all
constraints are met on each finalized state or false otherwise.
This class as well as the State and Effect descriptions should
be in the classpath so they can be found using reflectance.
The pseudocode for our plan validation algorithm is shown
in Figure 3.

The algorithm in Figure 3 introduces several unique sym-
bols. tc refers to the current time, sc the current State, e.t the
time of effect e, and a handful of methods referred to in our
example domain section. Two methods we wish to specif-
ically address are the split and pre-apply methods. In the
former case a time is specified and the State at that time is

Figure 4: A primitive State List and the result of applying an
Effect that requires State splitting.

Figure 5: The State List of our ongoing Blocksworld exam-
ple at the end of plan validation.

deep cloned. Following this the time bounds on both copies
are set such that there is a continuous timeline with a new
State starting at [t.

Figure 4 demonstrates this concept by introducing a visu-
alization of a State List and an example Effect modifying it.
In this figure and Figure 5 each rectangle represents a single
State. The span of time for which each State is valid is in the
upper left and upper right corner just outside the rectangle
with time progressing from left to right. A [or] indicates
an inclusive bound, a (or) indicates an exclusive bound. In-
side each rectangle is information about the State Variables
we wish to show, either in list form or a pictoral representa-
tion. As shown in Figure 4, when an Effect is executed, if
there is not already a State with starting time (e.t the State
List is split before the Effect is applied.

Once the State to which an Effect will be applied is in
hand pre-apply is called to synchronize that Effect with that
State. The pre-apply method maps each State Variable field
of the Effect to point to the State Variable on the State with
a lexographically matching id value if such a State Variable
exists. This significantly reduces programmer burden by
eliminating the need to match these variables manually in-
side each apply method. If State Variables are desired from
previous states they can be fetched using the synchronize
method. This method accepts a State and a State Variable
with an id value to search for. It returns true if a match was
found and updates the State Variable as a side effect. The
rest of the pseudocode should be simple to interpret.

Continuing with our Blocksworld example, after initial-
ization the State List consists of a single State previously
pictured in Figure 1. Additionally the pending Effect list
has been initialized such that the blocks should be unstacked
when all pending Effects are resolved and the constraint list
has been initialized to check that the blocks are unstacked at
the eventual time and that no inconsistent Effects were ap-
plied. Figure 5 shows the resulting State List when the plan
validation algorithm terminates.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

68

Limitations and Future Work
JPDL was developed due to necessity when existing ap-
proaches failed in our work. As the start of a new domain
modeling language we feel we have presented a solid foun-
dation that is satisfactory for many domains. This founda-
tion was sufficient to overcome the problems we encoun-
tered and we felt that the lessons learned could be of benefit
to the community. However it is hardly without its limita-
tions and we recognize there is plenty of room for expansion
even to catch up to all the capabilities of existing languages.
We felt it prudent to recognize these limitations in the appli-
cability of this work at present and close by noting areas that
we may expand on in future work.

First, JPDL does not support partially defined states. All
primitives must have a value, and missing State Variables
are assumed not to exist in a typical closed-world assump-
tion. This makes it unsuitable for comformant planning. For
similar reasons there is no support for stochastic or non-
deterministic actions in the library at present. These are all
features supported by languages such as PPDDL and are the
subject of entire planning competition tracks (Younes and
Littman 2004).

Effects in their present form only describe instantaneous
changes. Many domains have within them continuously
changing values. Language extensions such as PDDL+ were
created to support these domains (Fox and Long). We have
only created prototype solutions for continuous changes and
more work is required before this is added to the JPDL spec-
ification.

Existing research has shown the value of concepts such as
derived predicates (Thiebaux, Hoffmann, and Nebel 2005).
Entire architectures have been focused on using hierarchical
concept and breakdowns for planning (Langley et al. 1991;
Albus and Shoemaker 2002). We would like to add some
form of derived predicate to the JPDL specification. Doing
so has several benefits including adding scalability to the
language by reducing repetitive code in Effects, removing
constraints otherwise necessary to ensure consistency, and
increasing the functional independence of developers by in-
creasing code modularity.

The translation example shown in this paper is so straight-
forward one is naturally led to wonder whether it is possible
to translate all of JPDL to an existing format such at PDDL.
If such a translation was possible domain writers could use
JPDL to decrease domain programming burden and then
translate it to PDDL and use a variety of planners devel-
oped for the planning competitions. There are several very
detail oriented problems with such a translation. Among
them are are how to support order-based notions such as se-
quencing deletes and over-all constraints before adds from
arbitrary Java style code, supporting PDDL mutex locks on
Java primitive types, and translating numeric function calls
such as taking a square root. Nevertheless, our preliminary
work has shown that a subset of JPDL is weakly translat-
able. This leads to interesting conclusions as to what parts of
JPDL are infeasible to translate and why; even more so when
encountering fundamentally untranslatable JPDL elements.
Analysis needs to be done into which of these elements are
fundamentally problematic for general planners to use and

therefore should be excluded from JPDL or alternatively if
they are not fundamentally problematic what additional ex-
pressiveness and usability supporting them adds to a domain
modeling language.

It is worth noting that translating from PDDL to JPDL has
a different host of problems as well. Some of these prob-
lems are shared such as mutex locks, and some of them are
new such as representing multi-key multi-value associations
accurately. The latter would most likely require an exter-
nal library such as guava’s MultMap. There is a lot more
to say about computational costs of PDDL syntax and data
structures as well as the strengths and weaknesses of using
a declarative versus procedural language. Our preliminary
work on the topic is encouraging.

As was mentioned in the introduction we developed a do-
main specific planner alongside JPDL. This planner imple-
mented an A* search approach with backtracking and even-
tual brute force search for completeness. While not particu-
larly sophisticated, it is worth noting that within 2 hours of
effort our built from scratch planner was yielding satisfac-
tory solutions. It is our opinion that most project developers
would be willing to spend a similar effort coding domain
specific heuristics if it would lead to a performance increase
over domain independent planners.

Our planner did not parse and understand JPDL syntax
so much as execute it and reason about our specific domain.
In the future we would like to create a domain independent
planner that understands JPDL syntax and incorporates ex-
isting heuristics. Ideally the heuristic methods used should
be overloadable by domain programmers allowing for the
rapid development of other domain specific planners with a
fallback of the domain independent planner.

Finally, we intend to make the Java JPDL library imple-
mentation and the plan validation code available under the
GNU public license.

Acknowledgements
We’d like to acknowledge J. Benton for his support and feed-
back in the formation of this paper and our industry partners
without whom this work would not have happened.

References
Albus, J., and Shoemaker, C. 2002. 4d/rcs: A reference
model architecture for unmanned vehicle systems version
2.0. http://www.nist.gov/el/isd/rcs.cfm.

Fikes, R., and Nilsson, N. 1971. Strips: A new approach to
the application of theorem proving to problem solving. In
IJCAI-71.

Fox, M., and Long, D. Pddl+: Modelling continuous time-
dependent effects.

Fox, M., and Long, D. 2003. Pddl 2.1 : An extension to
pddl for expressing temporal planning domains. Journl of
Artificial Intelligence Research 20.

Hoffmann, J. 2001. Ff: The fast-forward planning system.
In AAAI.
Hsu, C.-W., and Wah, B. 2008. The sgplan planning system
in ipc-6. In Proceedings of IPC.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

69

Langley, P.; McKusick, K.; Allen, J.; Iba, W.; and Thomp-
son, K. 1991. The icarus cognitive architecture. ACM Sigart
Bulletin.

Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scheri, R. B. 1997. Golog: A logic programming language
for dynamic domains. Elsevier.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl
- the planning domain definition language. In AIPS1998.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In IJCAI-99.

Richter, S., and Westphal, M. 2008. The lama planner using
landmark counting in heuristic search. In Proceedings of
IPC.

Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
Elsevier.

Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of pddl axioms. Elsevier.

Younes, and Littman. 2004. Ppddl 1.0: The language for the
probabilistic part of ipc-4. In International Planning Com-
petition.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

70

Cooperated Integration Framework of Production Planning and
Scheduling based on Order Life-cycle Management

Shigeru Fujimura
WASEDA University

2-7 Hibikino, Wakamatsu-Ku, Kitakyushu, Fukuoka, 808-0135, Japan
fujimura@waseda.jp

http://www.fujimura-lab.org/

Abstract
Order Life-cycle Management (OLM) is to manage
information changing in the life cycle of many kinds of
orders utilized in manufacturing companies. It improves the
smart and prompt decision-making in dynamically changing
situations. In addition, customer satisfaction can be obtained
with an exact information presentation to customers. In this
paper, the novel approach integrating many kinds of
production planning and scheduling modules with an OLM
system to realize the high performance Supply Chain
Management (SCM) is proposed. The database for an OLM
system according to Order Transition Model utilizes past
records of order information with influence relations
between orders. Many kinds of information are extracted
from it and transferred to a production planning and
scheduling module as a processing module in a multi-stage
scheduling system. In this paper, a design of the cooperated
integration framework of production planning and
scheduling based on OLM is described.

Introduction
An Order Life-Cycle Management (OLM) system manages
several states of orders from creation to termination in the
order life cycle through many kinds of changes in phases
as receiving customer orders, production, inspection,
delivery and so on. The purpose to use an OLM system is
to visualize the information to promote quick decision
making depending on dynamically changing situations.
Many vendors of Enterprise Resource Planning (ERP)
systems realize OLM features as one of original parts in
their own systems. However, OLM features provided by
these venders are a sort of mechanism that is oriented
towards state changes of orders after receiving from
customers (hereinafter referred to as narrow sense OLM:
nOLM). Management of order information that is obtained
before receiving from customers is very important and
effective for production planning and scheduling, however
it is not applicable for these systems.

On the other hand, the purpose of Supply Chain
Management (SCM) systems is to minimize inventory

fluctuation at each element in a supply chain by achieving
the smooth information flow between elements. Using it,
the infrastructure for information communication is
covered widely; however, it cannot improve the
performance of a supply chain, because it also uses no
forecasted or intangible tentative order before receiving
exact orders from customers. It contains information, such
as some uncertainty of amount, detailed specification,
and/or other data. By using tentative orders, decision
making of worker capability, order control, high precise
available-to-promise, and lead time reduction by early
procurement of raw materials will be enabled.

To realize such SCM, it is very important not only using
tentative orders but also integrating production planning
and scheduling. In production planning for the long-term
strategic and middle-term tactics levels, order information
is generally utilized as aggregated information, and in
production scheduling for the short-term operational level,
the aggregated information is mapped to the separated
detailed information and it is utilized. Furthermore, in
production scheduling, there are many cases in which the
partial aggregation is necessary and plural production
planning and scheduling mechanisms should be combined
each other to solve a problem efficiently. It is called multi-
stage production planning and scheduling. SCM vendors
offer many kinds of production scheduling mechanisms,
but do not support this feature. It is important to utilize
both aggregated and detailed information, because the
processing flow utilizing them is similar to the thinking
flow of human brain and the calculation performance will
be accelerated. Therefore, the framework of multi-stage
production planning and scheduling is required.

Research about OLM and multi-stage production
planning and scheduling is conducted from the following
viewpoints:
(1) Evaluation of influence for a supply chain construction

architecture by a multi-agent system for nOLM (Roy
2004, Chatfield 2007)

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

71

(2) Research of the adoptive holonic production system
featuring a multi-stage decision making mechanism in
each holon (Leitao 2006)

(3) Suggestion of modeling technique using multi-echelon
decision making mechanism (Vorst 2000)

However, in these papers related to this study, it is argued
about methods to use information treated in just only
nOLM. On the basis of the above-mentioned present
research, in this paper OLM is expanded to deal with
detailed widespread orders that are also handled before
receiving actual orders from customers (hereinafter
referred to as wide sense OLM (or just OLM)). In addition,
several processing modules, which are provided for
production planning or production scheduling, cooperate
each other combined with orders managed by OLM to
realize more effective SCM (see Figure 1).

By realizing such a cooperated integrated framework,
acceleration of decision making of work surrounding
production environment and smooth information flow in a
supply chain of the inside and outside of a company are
enabled, and this actualized supply chain can contribute to
a company profit increase. In this paper, a design of the
cooperated integration framework of production planning
and scheduling based on OLM is described.

Figure 1: Integration Framework of Production

Planning and Scheduling based on OLM

Order Life-cycle Management
Order Transition Model
An order is changed by various factors. An order treated as
a production order must be changed in synchronization
with changes of information from customers and changes
of present stock quantity. In addition, according to decision
of a human operator in charge of scheduling, it might be
changed. When detailed scheduling changes a detailed
order, an aggregated order of it should be also changed.
OLM is used to follow such changes of orders and to make
production planning and scheduling modules cooperate.

In OLM, the following three changes of orders are
handled and influence relations between orders are
managed.
(1) Create: It is a change to generate a new order.

 A generated order is managed until it is
 terminated in (3).

(2) Update: It is a change to update information of an
 order.

(3) Terminate: It is a change to terminate an order
 of which management becomes needless.

Through these changes, order information managed by
OLM is updated to the latest state. Between two orders, an
influence relation can be defined such as A affects B. The
following options are offered for these orders connected by
an influence relation.

If A changes, A notifies B upon the changed information.
B can refer to information of A.
If an influence relation is removed, B is notified upon it.

For orders managed in this way, the following accessing
methods are offered: a method to select the latest orders, a
method to extract the chain of order transition, and a
method to search orders which an order affects.
Processing Modules and Views

Orders managed by OLM can maintain various kinds of
information and OLM supports the framework in which
order information can be referred and changed through the
several sides of views. Various processing modules of
production planning and scheduling, use orders extracted
by one side of views. There are many types of processing
modules: a production planning module to fix aggregated
orders balancing product mix, an outline scheduling
module to set the starting time of operations for the bottle
necked process stage, a detailed scheduling module to fix a
detailed time schedule and so on. According to the purpose
of a processing module, applied orders are different. For
the production planning module, only total production
amount of aggregated order is used. For the outline
scheduling module, aggregated orders fixed by the
production planning module are needed. Based on the
above information, the detailed scheduling module decides
the starting time of all processes using detailed orders. In
addition, in accordance with a result of the detailed
scheduling module, the amount of aggregated order might
be changed and the production planning module might be
activated again, furthermore adjustment of the result of the
detailed scheduling module might be necessary. This kind
of information consistency between different views in the
same order and between different orders should be
maintained. For the former, the function that updates a
view with updating of the other view (view consistency
maintenance function) is necessary, and for the latter, the
updating function which uses influence relations between

procurement
detailed

create terminate…

Supplier Customer

Processing Module

Processing Module

Processing Module

Multi-stage Production Planning and Scheduling

Order Life-cycle Management

aggregated

g

…

available-to-promise

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

72

orders in OLM (relation consistency maintenance function)
is necessary.

Figure 2 shows the conception of order transition of
OLM. Each polyhedron (in this diagram it is cube) shows
information of an order, and each order is identified by ID.
Type expresses a type of a change of each order in Order
Transition Model. An arrow expresses a change of order
state, and a bolt arrow shows an influence relation (e.g.
from ID:9 to ID:10). In addition, figure 2 shows access of
information from two views, and visible views are drawn
with gray color. For each order, visible views are defined
individually. An order that polyhedron frame is drawn with
dotted lines, is already updated at least once (e.g. ID:1-7).
An order that polyhedron frame is drawn with solid lines,
will be used as the latest information by processing
modules (e.g. ID:8-10). An order that polyhedron is drawn
transparently is terminated (e.g. ID:11).

Figure 2: Order Transition Model of OLM

Visible Information from View
Processing modules of production planning and scheduling
refer or change information of orders, which are visible
from the designated view. Such order information includes
not only actual order information but also many kinds of
other information used in the processing module; for
example, for a detailed scheduling module, there are recipe
information for scheduling, which is used when it makes a
detailed schedule for each order, and detailed allocated
time information after it is scheduled. Cooperation with
various kinds of processing modules is enabled by
managing these kinds of information above mentioned as
information of order.

Application Example
In this chapter, an application example for resource
allocation is shown to explain how to cooperate OLM with
processing modules.

Applied Process Outline
An example applied in this chapter is scheduling of a
single operation, which is important because individual
operation schedule affects the production capacity of a
whole process. In this example, a process of paper
production is assumed; it involves the operations of
pulping, papermaking, cutting, finishing, and packing. In
particular, the target of this example is focused on the
scheduling of papermaking which can use multiple
machines. Paper products can be shipped as rolled paper
web, or after cutting, finishing and packing. In the latter
case, papermaking must be scheduled with allowance for
leveling of the downstream operations so as to avoid
increases in inter-stage inventories or overload.

The scheduling horizon is set as one week (7 days). The
total production volume for every item is given for this
period. The goal is to allocate resources for the total
production volume with regard to the processing capacity
of every resource, shipping schedule, and other conditions.
There are three product groups: group A (newspaper A1,
A2), group B (copying paper (PPC) B1, B2, B3, B4, B5,
B6, B7), and group C (tissue paper C1, C2). Every product
group is manufactured by different machines. The total
volume of every scheduled product is given in Table 1.

Table 1: Production Orders
Product Group Quantity(t) Product Quantity(t)

A: Newspaper 1,730 A1 1,260
A2 470

B: PPC Paper 5,500 B1 1,200
B2 800
B3 700
B4 1,500
B5 300
B6 500
B7 500

C: Tissue Paper 1,450 C1 750
C2 700

Table 2: Production Capacity of Machines
Product Group Product Capacity(t/day)

(- : not used)
Group Subgroup Machine 1 Machine 2 Machine 3

A A1 A1 250 450 -
A2 A2 160 220 -

B BG1 B1 350 700 -
B2 350 700 -
B3 350 700 -

BG2 B4 - 700 700
B5 - 700 700
B6 - 700 700

B7 B7 - 700 700
C CG1 C1 - - 400

C2 - - 400

ID:1
Type: C

ID:3
Type: C

ID:4
Type: C

ID:5
Type: U

ID:7
Type: U

ID:10
Type: U

ID:9
Type: U

ID:6
Type: U

ID:8
Type: I

ID:11
Type: T

AFFECT

VIEW 1

VIEW 2

ID:2
Type: C

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

73

In addition the following constraints and preferences
apply to the process.
� In continuous processes (pulping, papermaking), the

production volume is restricted by the capacity of the
paper machines. The available machines for every
product and their capacities are given in Table 2.

� Pulp for group A (A1, A2) should be produced as
uninterruptedly as possible (without switching to pulp
for other products).

� Since product B4, B5 and B6 involve complex
processing, parallel processing should be avoided.
That is, these products should not be manufactured by
multiple machines simultaneously. In addition they
should be manufactured independently of the other
products in the same group.

� Products of group C can be produced at any time.
Scheduling Procedure by a Human Operator
For this example, scheduling procedure organized by a
human operator in charge of scheduling is shown.

Figure 3: Schedules of Application Example

(1) Aggregated scheduling for each product subgroup
(see Figure 3 (a))

Prior to detailed scheduling for every product, the
products are organized into several groups, and a
simplified schedule is generated for each product group.
Operations on a product group are assigned to one of the
available machines. After that, a check is made to ascertain
out whether all the products can be manufactured in the

required volumes during the scheduling period. In this
application example, products B1/B2/B3, B4/B5/B6, and
C1/C2 are similar in processing capacity and available
machines, and hence these are treated as product subgroup
BG1, BG2 and CG1 respectively. Products A1 and A2 can
be processed by Machine 1 or 2; here they are
preferentially assigned to Machine 1 with higher capacity,
then check the result. As regards subgroup BG1, subgroup
BG2, and product B7, parallel processing by multiple
machines should be avoided as much as possible. Thus,
they are assigned only to Machine 2, and then check the
result. Subgroup CG1 can only be processed by Machine 3,
and therefore they are assigned to Machine 3 and check the
available processing time of Machine 3. Since Machine 1
is heavily loaded, part of the products must be shifted to
Machine 2. In turn, Machine 2 cannot process both the
initially assigned products and those shifted from Machine
1, and therefore, part of the products must be shifted to
Machine 3.
(2) Operation splitting adjustment (1) (see Figure 3 (b))

For each simplified schedule of product groups, the
work is split and the operations are reassigned so as to
finish production within the scheduling period. First
consider the partial shifting of A1 or A2 to Machine 2. In
this example, the production of A2 is split, and part of it is
shifted to Machine 2. Then the processing time is adjusted
according to the processing capacity. According to the
preference that pulp for A1 and A2 should be produced as
uninterruptedly as possible, processing by Machine 2 is
placed immediately before processing of A2 by Machine 1.
(3) Operation splitting adjustment (2) (see Figure 3 (c))

The work is split again, and the operations are re-
assigned so as to resolve conflicts caused by correction (2).
In this application example, shifting A2 to Machine2
results in competition with product subgroup BG2. Thus
the production of subgroup BG2 is split, and part of it is
shifted to Machine 3. Since parallel processing of BG2
should be avoided, modification is performed as shown in
Figure 3(c). In addition, product B7 is also shifted to
Machine 3. The parallel processing of B7 and BG2 is
unavoidable in terms of total capacity.
(4) Detailed Scheduling for individual products

(see Figure 3 (d))
When the scheduling for product groups is completed,

operation splitting and time adjustment are performed for
each product. In the case of Machine 2, the product groups
are divided into products, and the processing order is
determined simply. In the case of Machine 3, C1 and C2
are separated, and the processing order is determined. The
same applies to product subgroup BG2. Considering the
preference restricting parallel processing of B7 with the
subgroup BG2, this product is swapped with C2 in the
processing sequence. As a result, B7 and B3 are processed
in parallel. After that, a final schedule can be obtained.

Machine 2

Machine 1
1 2 3 4 5 6 7 8

A1 A2

Machine 3

BG1 BG2 B7
CG1

(a) Aggregated Scheduling

Machine 2

Machine 1
1 2 3 4 5 6 7 8

A1 A2

Machine 3
BG1 B7

CG1

(b) Operation Splitting Adjustment (1)

BG2
A2

Machine 2

Machine 1
1 2 3 4 5 6 7 8

A1 A2

Machine 3
BG1 BG2

B7CG1

(c) Operation Splitting Adjustment (2)

A2

BG2

Machine 2

Machine 1
1 2 3 4 5 6 7 8

A1 A2

Machine 3
B3 B4
B7C1

(d) Detailed Scheduling

A2B1 B2

C2B4B6B5

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

74

Figure 4: Order Transition of Application Example

Order Transition and Cooperation with Processing
Modules
In this section, it is described how orders are changed in
OLM and processing modules are cooperated with OLM,
when the proposed framework is applied to this application
example. Figure 4 shows the order transactions appearing
in this example. Each Box expresses a state of order.
Information of order is described on the inside of a box: a
product name or subgroup name in the first line, required
quantity in the second line, a machine ID in the third line
and starting time (date:hours:minutes) in the fourth line. A
downward arrow shows transition of order state and the
other dotted arrow shows influence relations.

Processing flow is almost same as the aforementioned
scheduling procedure by a human operator. The process
from (1) to (3) in the former section corresponds to
aggregated scheduling, and the process of (4) corresponds
to detailed scheduling.
(1) Initial state: Initial orders are created and connected to

related orders with an influence relation such as
"divided" or "aggregated".

(2) Execute the aggregated scheduling module: Before
execution, orders referred by this module are
designated. Using these order information, aggregated
scheduling is executed. After execution, using changed
information, orders are updated. The scheduling result
is the same as Figure3 (c).

(3) Update orders by consistency maintenance function:
According to the result of (2) and influence relations,
some other orders are updated for consistency.

(4) Execute the detailed scheduling module: Before
execution, orders referred by this module are
designated. Using information of these order, detailed
scheduling is executed. At first, starting time of each
order is already set and inconsistency might be
occured, however in this module all of it should be
solved. After execution, using changed information,
orders are updated. The scheduling result is the same
as Figure3 (d).

Furthermore, to explain the interaction of processing
modules when an order is changed, one scenario is
prepared which is a case when the quantity of an order is
changed after building a certain schedule.
(5) Update by actual order changing: Changed order is

drawn with gray color in Figure 4. In this scenario,
quantity of the order is changed from 160 to 300.

(6) Execute the aggregated scheduling module: using
already assigned information for orders, the
aggregating scheduling is executed again. Only
affected part is modified. The scheduling result is
shown in Figure 5 (a).

(7) Update orders by consistency maintenance function
(8) Execute the detailed scheduling module: The

scheduling result is shown in Figure 5 (b).

A1
1260

A2
470

B1
1200

B2
800

B3
700

B4
1500

B5
300

B6
500

B7
500

C1
750

C2
700

A1
1260
M1

1:00:00

A2
610
M1

1:00:00

A2
310
M1

6:00:58

A2
160
M2

5:07:31

B1
1200
M2

1:00:00

B2
800
M2

1:00:00

B3
700
M2

1:00:00

BG1
2700

BG1
2000
M2

1:17:09

BG1
700
M2

6:21:32

B4
1350
M2

6:00:58

B4
150
M3

4:16:24

B5
300
M3

4:16:24

B6
500
M3

4:16:24

BG2
2300

BG2
1350
M2

6:00:58

BG2
950
M3

4:16:24

BG2
500
M2

1:00:00

B7
500
M3

6:00:58

C1
750
M3

1:00:00

C2
700
M3

1:00:00

CG1
1450

CG1
1450
M3

1:00:00

BG1
2700
M2

1:00:00

B2
800
M2

2:17:09

B3
700
M2

3:20:34

B4
150
M3

5:19:50

B6
500
M3

5:02:41

B7
500
M3

3:23:17

C2
700
M3

6:00:58

A2
300
M2

5:07:31

A2
300
M2

4:16:14

BG2
600
M2

6:00:58

BG2
1200
M3

4:07:49

B7
500
M3

3:14:40

B4
600
M2

6:00:58

B5
300
M3

4:07:49

B4
900
M3

4:07:49

B6
500
M2

1:00:00

B4
900
M3

4:18:06

B3
700
M2

6:21:32

(2) updates by
the result of
aggregated
scheduling

(4) updates by
the result of
detailed
scheduling

:aggregated :aggregated :aggregated

:divided

:divided
:divided

:divided

:divided

(5) update by
actual order
changing

(6) updates by
the result of
aggregated
scheduling

(8) updates by
the result of
detailed
scheduling

(1) initial state

(3) updates by
consistency maintenance
function

CG1
700
M3

6:00:58

CG1
750
M3

1:00:00

B1
1200
M2

1:17:09

B2
800
M2

1:17:09

B2
800
M2

2:10:17

(7) updates by
consistency maintenance
function

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

75

Figure 5: Changes by Re-Scheduling

It is shown that the proposed integration framework of
processing modules based on OLM is applicable to the
thinking process of human brain and effective for the re-
scheduling caused by some information changes.

Required Functions for Processing Modules
For the multi-stage production planning and scheduling
system, processing modules to perform various kinds of
decision making must be prepared. Moreover, the
framework based on the centered OLM system that an
individual scheduling result affects mutually, is necessary.
The author has developed Self-construction Scheduling
System called ScheMe as a system which learns master
information and the scheduling technique that are
necessary for scheduling through operation of a user in
scheduling duties and uses the information acquired by the
former learning mechanism as a user support function
(Fujimura 2010). This system can be applied in various
kinds of process and it offers the structure, which can
apply the different scheduling approaches according to its
situation for the same target process. To realize multi-stage
production planning and scheduling system which can
make a decision one by one based on orders extracted from
OLM through its own view, the following functional
extension is required.
(1) Lightweight Recipe: Recipe is information referred to

make a product from order information; for a
scheduling system it is used to build a schedule.
Generally, recipe information is prepared before using
this system. However, in this proposed framework,
order information is dynamically changed and recipe
should be adopted flexibly. For this requirement, the
functions to make it dynamically and add it’s
information to order information are required.

(2) Multi-View Gantt Chart: Generally, purpose of
production scheduling is to assign a used resource or
machine and set the starting time of each operation.
However, in this proposed framework, according the

level of abstraction, instead of these it might be
important to set only sequence of processing
operations. Therefore, Multi-View Gantt Chart which
can be used to watch such kinds of information from
various kinds of viewpoints is necessary.

(3) Repair Function for Changed Orders: As shown in the
former chapter, for re-scheduling, most parts of
already built schedule should be kept intact and this
feature makes a decision more smoothly. These kinds
of information can be stored in OLM system and
maintained with consistency. So processing modules
should refer and reuse these as useful information.

Conclusion
In this paper, a design of the cooperated integration
framework of production planning and scheduling based
on the centered database of OLM is proposed. OLM
provides the order transition model, and enables the
management of changes of order information with
consistency and cooperation with processing modules for
production planning and scheduling.

By realizing such a cooperated integrated framework,
acceleration of decision making of work surrounding
production environment and smooth information flow in a
supply chain of the inside and outside of a company are
enabled, and this actualized supply chain can contribute to
a company profit increase.

Acknowledgments
This study was assisted by a MEXT 2008-10 Grant-in-Aid
for Scientific Research [Fundamental Research (C) No.
20560388], and we take this occasion to express our deep
gratitude.

References
Roy, D.; Anciaux, D.; Monteiro, T.; and Ouzizi, L. 2004. Multi-
agent architecture for supply chain management. Journal of
Manufacturing Technology Management, Vol.15, No.8: 745-755
Chatfield, D.C.; Hayya, J.C.; and Harrison, T.P. 2007. A multi-
formalism architecture for agent-based, order-centric supply
chain simulation. Simulation Modeling Practice and Theory,
Vol.15: 153-174
Leitao, P.; and Restivo, F. 2006. ADACOR: A holonic
architecture for agile and adaptive manufacturing control.
Computers in Industry, Vol.57: 121-130
Vorst , J.G.A.J.van der; Beulens , A.J.M.; and P.van Beek 2000.
Modeling and Simulating multi-echelon food systems. European
Journal of Operational Research, Vol.122: 354-366
Xue, H.; Zhang, X.; Shimizu, Y.; and Fujimura, S., 2010.
Conception of self-construction production scheduling system.
Electronics and Communications in Japan, Vol.93, Issue 1: 19–29

Machine2

Machine1
1 2 3 4 5 6 7 8

A1 A2

Machine3
BG1

B7CG1

(a) Aggregated Scheduling

A2

BG2

Machine2

Machine1
1 2 3 4 5 6 7 8

A1 A2

Machine3
B3

B7C1

(b)Detailed Scheduling

A2
B4

B1 B2

C2B5

BG1BG2

CG1

B4

BG2

B6

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

76

Relational Approach to Knowledge Engineering for POMDP-based Assistance
Systems with Encoding of a Psychological Model

Marek Grześ, Jesse Hoey & Shehroz Khan
School of Computer Science

University of Waterloo, Canada

Alex Mihailidis & Stephen Czarnuch
Dept. of Occupational Science and Occupational Therapy

University of Toronto, Canada

Dan Jackson
School of Computing Science

Newcastle University, UK

Andrew Monk
Department of Psychology

University of York, UK

Abstract
Partially observable Markov decision process (POMDP) mod-
els have been used successfully to assist people with dementia
when carrying out small multi-step tasks such as hand wash-
ing. POMDP models are a powerful, yet flexible framework
for modeling assistance that can deal with uncertainty and util-
ity. Unfortunately, POMDPs usually require a very labor in-
tensive, manual setup procedure. Our previous work has de-
scribed a knowledge driven method for automatically generat-
ing POMDP activity recognition and context sensitive prompt-
ing systems for complex tasks. We call the resulting POMDP
a SNAP (SyNdetic Assistance Process). In this paper, we for-
malise this method using a relational database. The database
encodes the goals, action preconditions, environment states,
cognitive model, user and system actions, as well as relevant
sensor models, and automatically generates a valid POMDP
model of the assistance task. The strength of the database is
that it allows constraints to be specified, such that we can ver-
ify the POMDP model is, indeed, valid for the task. To the best
of our knowledge, this is the first time the MDP planning prob-
lem is formalised using a relational database. We demonstrate
the method on three assistance tasks: handwashing, and tooth-
brushing for elderly persons with dementia, and on a factory
assembly task for persons with a cognitive disability.

1 Introduction
Quality of life (QOL) of persons with a cognitive disability
(e.g. dementia, developmental disabilities) is increased sig-
nificantly if they can engage in “normal” routines in their own
homes, workplaces, and communities. However, they gener-
ally require some assistance in order to do so. For example,
difficulties performing activities of daily living at home, such
as preparing food, washing, or cleaning, or in the workplace,
such as factory assembly, may trigger the need for personal
assistance or relocation to residential care settings (Gill and
Kurland 2003). Moreover, it is associated with diminished
QOL, poor self-esteem, anxiety, and social isolation for the
person and their caregiver (Burns and Rabins 2000).

Technology to support people in their need to live indepen-
dently is currently available in the form of personal and social
alarms and environmental adaptations and aids. Looking to
the future, we can imagine intelligent, pervasive computing
technologies using sensors and effectors that help with more
difficult cognitive problems in planning, sequencing and at-
tention. In the example of assisting people with dementia, the
smart environment would prompt whenever the residents get
stuck in their activities of daily living.

The technical challenge of developing useful prompts and
a sensing and modelling system that allows them to be de-
livered only at the appropriate time is difficult, due to is-
sues such as the system needing to be able to determine the
type of prompt to provide, the need for the system to rec-
ognize changes in the abilities of the person and adapt the
prompt accordingly, and the need to give different prompts
for different sequences within the same task. However, such
a system has been shown to be achievable through the use
of advanced planning and decision making approaches. One
of the more sophisticated of these types of systems is the
COACH (Hoey et al. 2010). COACH uses computer vision to
monitor the progress of a person with dementia washing their
hands and prompts only when necessary. COACH uses a par-
tially observable Markov decision process (POMDP), a tem-
poral probabilistic model that represents a decision making
process based on environmental observations. The COACH
model is flexible in that it can be applied to other tasks (Hoey
et al. 2005). However, each new task requires substan-
tial re-engineering and re-design to produce a working assis-
tance system, which currently requires massive expert knowl-
edge for generalization and broader applicability to differ-
ent tasks. An automatic generation of such prompting sys-
tems would substantially reduce the manual efforts neces-
sary for creating assistance systems, which are tailored to
specific situations and tasks, and environments. In general,
the use of a-priori knowledge in the design of assistance
systems is a key unsolved research question. Researchers
have looked at specifying and using ontologies (Chen et al.
2008), information from the Internet (Pentney, Philipose, and
Bilmes 2008), logical knowledge bases (Chen et al. 2008;
Mastrogiovanni, Sgorbissa, and Zaccaria 2008), and pro-
gramming interfaces for context aware human-computer in-
teraction (Salber, Dey, and Abowd 1999).

In our previous work, we have developed a knowledge
driven method for automatically generating POMDP activity
recognition and context sensitive prompting systems (Hoey
et al. 2011). The approach starts with a description of a
task and the environment in which it is to be carried out that
is relatively easy to generate. Interaction Unit (IU) analysis
(Ryu and Monk 2009), a psychologically motivated method
for transcoding interactions relevant for fulfilling a certain
task, is used for obtaining a formalized, i.e., machine inter-
pretable task description. This is then combined with a speci-
fication of the available sensors and effectors to build a work-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

77

ing model that is capable of analyzing ongoing activities and
prompting someone. We call the resulting model a SyNde-
tic Assistance Process or SNAP. However, the current system
uses an ad-hoc method for transcoding the IU analysis into
the POMDP model. While each of the factors are well de-
fined, fairly detailed and manual specification is required to
enable the translation.

The long-term goal of the approach presented in this paper
is to allow end-users, such as health professionals, caregivers,
and family members, to specify and develop their own con-
text sensitive prompting systems for their needs as they arise.
This paper describes a step in this direction by defining a rela-
tional database that serves to mediate the translation between
the IU analysis and the POMDP specification. The database
encodes the constraints required by the POMDP in such a
way that, once specified, the database can be used to gener-
ate a POMDP specification automatically that is guaranteed
to be valid (according to the SNAP model). According to the
best of our knowledge, this is the first time the MDP planning
problem is formalised using a relational database. This novel
approach helps coping with a number of issues, such as vali-
dation, maintenance, structure, tool support, association with
a workflow method etc., which were identified to be critical
for tools and methodologies which could support knowledge
engineering in planning (McCluskey 2000). This paper gives
the details of this relational database, and shows how it solves
these various issues. It then demonstrates the application of
this method to specify a POMDP in three examples: two are
for building systems to assist persons with dementia during
activities of daily living, and one is to assist persons with
Down’s syndrome during a factory assembly task. We show
how the method requires little prior knowledge of POMDPs,
and how it makes specification of relatively complex tasks a
matter of a few hours of work for a single coder.

The remainder of this paper is structured as follows. First,
we give an overview of the basic building blocks: Knowledge
engineering requirements, POMDPs, and IU analysis. Then,
Section 3 describes the relational database we use, frames the
method as a statistical relational model, and shows how the
database can be leveraged in the translation of IU analysis to
POMDP planning system. Section 4 shows how the method
can be applied to three tasks, and then the paper concludes.

2 Overview of the method
2.1 Requirements from Knowledge Engineering
The IU analysis and the sensor specification need to be trans-
lated into a POMDP model, and then the policy of action can
be generated. The relational database provides a natural link
between these two elements of the prompting system, and
the use of the database represents additionally a novel ap-
proach to knowledge engineering (KE) for planning. For an
extensive review of challenges which KE for planning faces,
the reader is referred to (McCluskey 2000). This area is es-
sentially investigating the problem of how planning domain
models can be specified by technology designers who are not
necessarily familiar with the AI planning technology. In (Mc-
Cluskey 2000), authors collected a number of requirements
which such a methodology should satisfy. Some of most im-
portant ones are: (1) acquisition, (2) validation, (3) mainte-
nance, and additionally the representation language should

be: (4) structured, (5) associated with a workflow method,
(6) easy to assess with regard to the complexity of the model,
(7) tool supported, (8) expressive and customizable, and (9)
with a clear syntax and semantics. In our work on the SNAP
process, we found that these requirements can be to a great
extent supported when one applies the relational database for-
malism to store and to process the domain model. The ac-
quisition step (1) does not have its full coverage in our case
since, e.g., the types of planning actions are known, as well
as the structure of the IU analysis. This allows specifying the
structure of the relational database and designing SQL-tables
beforehand and reusing one database model (see Section 3)
in all deployments of the system. The database technology
is a standard method of storing data, and checking validation
(2) of the data is highly supported. This includes both simple
checks of data types, as well as arbitrarily complex integrity
checks with the use of database triggers. Once the database of
a particular instance is populated, the designer can automati-
cally generate a SNAP for a particular user/task/environment
combination taking input for the sensors through the ubiqui-
tous sensing technician’s interface, and the POMDP can be
fed into the planner, and then simulated. Since, the overall
process is straightforward for the designer, this allows for a
traditional dynamic testing of the model, where the designer
can adjust the domain model easily via the database interface,
generate a new POMDP file, and then simulate it and assess
its prompting decisions. This shows that also maintenance
(3) is well supported in our architecture. The SQL relational
language is also flexible in representing structured (4) ob-
jects. In our work, it is used in conjunction with a workflow
method (5), where the technology designer follows specific
steps which require populating specific tables in the database.
The relational database technology is one of the most popu-
lar ways of storing data, and it is vastly supported by tools
and those tools are nowadays becoming familiar even to a
standard computer user. In our implementation, a PHP-based
web interface is used, which from the user’s point of view
does not differ from standard database-based systems.

2.2 Partially observable Markov decision processes
A POMDP is a probabilistic temporal model of a system

interacting with its environment (Åström 1965), and is de-
scribed by (1) a finite set of state variables, the cross product
of which gives the state space, S; (2) a set of observation
variables, O (the outputs of some sensors); (3) a set of sys-
tem actions, A; (4) a reward function, R(s, a, s′), giving the
relative utility of transiting from state s to s′ under action a;
(5) a stochastic transition model Pr : S × A → ΔS (a map-
ping from states and actions to distributions over states), with
Pr(s′|s, a) denoting the probability of moving from state s
to s′ when action a is taken; and (6) a stochastic observation
model with Pr(o|s) denoting the probability of making ob-
servation o while the system is in state s. Figure 1(a) shows
a POMDP as a Dynamic Bayesian network (DBN) with ac-
tions and rewards, where arrows are interpretable as causal
links between variables.

2.3 Specifying the task: Interaction Unit Analysis
Task analysis has a long history in Human Factors (Kirwan
and Ainsworth 1992) where this approach is typically used
to help define and break-down ‘activities of daily living’

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

78

(a)

tt−1

O O’

A R

S’S

t−1 t
A R

Y

(b)

B

T

V

Y’

B’

T’

V’

K’K

behavior

task

ability

Figure 1: Two time slices of (a) a general POMDP; (b) a
factored POMDP for interactions with assistive technology.

(ADL)– i.e. activities that include self-care tasks, household
duties, and personal management such as paying bills. The
emphasis in task analysis is on describing the actions taken by
a user and the intentions (goals and sub-goals) that give rise to
those actions. There has been less emphasis on how actions
are driven by the current state or changes in the environment.
Syndetic modeling (Duke et al. 1998) remedies this omission
by describing the conjunction of cognitive and environmen-
tal precursors for each action. Modeling both cognitive and
environmental mechanisms at the level of individual actions
turns out to be much more efficient than building separate
cognitive and environmental models (Ryu and Monk 2009).

The task analysis technique (Wherton and Monk 2009),
breaks a task down into a set of goals, states, abilities and be-
haviours, and defines a hierarchy of tasks that can be mapped
to a POMDP, a policy for which will be a situated prompting
system for a particular task (Hoey et al. 2011). The tech-
nique involves an experimenter video-taping a person being
assisted during the task, and then transcribing and analysing
the video. The end-result is an Interaction Unit (IU) analy-
sis that uncovers the states and goals of the task, the client’s
cognitive abilities, and the client’s actions. A simplified ex-
ample for the first step in tea-making (getting out the cup and
putting in a tea-bag) is shown in Table 1. The rows in the ta-
ble show a sequence of steps, with the client’s current goals,
the current state of the environment, the abilities that are nec-
essary to complete the necessary step, and the behaviour that
is called for. The abilities are broken down into ability to re-
call what they are doing, to recognise necessary objects like
the kettle, and to perceive affordances of the environment.

A second stage of analysis involves proposing a set of sen-
sors and actuators that can be retrofitted to the user’s envi-
ronment for the particular task, and providing a specification
of the sensors that consists of three elements: (1) a name
for each sensor and the values it can take on (e.g. on/off);
(2) a mapping from sensors to the states and behaviours in
the IU analysis showing the evidentiary relationships, and
(3) measurements of each sensor’s reliability at detecting the
states/behaviours it is related to in the mapping.

The IU analysis (e.g. Table 1) can be converted to a
POMDP model by factoring the state space as shown in Fig-
ure 1(b). The method is described in detail in (Hoey et al.
2011), here we give a brief overview. The task variables are a
characterisation of the domain in terms of a set of high-level
variables, and correspond to the entries in the state column in
Table 1. For example, in the first step of tea making, these

include the box condition (open, closed) and the cup contents
(empty or with teabag). The task states are changed by the
client’s behavior, B, a single variable with values for each
behaviour in Table 1. For the first IU group in tea making,
these include opening/closing the box, moving the teabag to
the cup, and doing nothing or something unrelated (these last
two behaviours are always present). The client’s abilities are
their cognitive state, and model the ability of the client to re-
call (Rl), recognise (Rn) and remember affordances (Af). For
the first IU group, these include the ability to recognise the
tea box and the ability to perceive the affordance of moving
the teabag to the cup.

The system actions are prompts that can be given to help
the client regain a lost ability. We define one system ac-
tion for each necessary ability in the task. The actions
correspond to a prompt or signal that will help the client
with this particular ability, if missing. Task and behav-
ior variables generate observations, O. For example, in a
kitchen environment there may be sensors in the counter-
tops to detect if a cup is placed on them, sensors in the
teabags to detect if they are placed in the cup, and sen-
sors in the kettle to detect “pouring” motions. The sensor
noise is measured independently (as a miss/false positive rate
for each state/sensor combination) (Pham and Olivier 2009;
Hoey et al. 2011).

3 Relational Database

The technology designer should be able to define the prompt-
ing system (planning problem specification) easily and with
minimal technical knowledge of planning. The approach
we are proposing in this paper is to provide a relational
database which can be populated by the designer using stan-
dard database tools such as forms or web interface, and then
translating the database into the POMDP specification using
a generator software, which implements parts of the overall
relational model not stored in the database. This is in ac-
cordance with the main goal of the way relational databases
should be used. The database in itself explicitly stores the
minimum amount of information which is sufficient to repre-
sent the concept. Those relations which are not represented
explicitly are then extracted on demand using SQL queries.
We adhere to this standard in our design and our genera-
tor contains such implicit parts of the model which are not
stored in the database. Below, we show how our methodol-
ogy of specifying planning tasks is motivated and justified by
locating this work in the context of relevant AI research on
planning, and probabilistic and relational modelling.

In the application areas which are considered in this paper,
planning problems are POMDPs. POMDPs can be seen as
Dynamic Decision Networks (DDNs). In POMDP planners,
DDNs have propositional representation, where the domain
has a number of attributes, and attributes can take values from
their corresponding domains. The problem with designing
methodologies for such propositional techniques is that the
reuse of the model in new instances is not straightforward,
and a relational approach becomes useful. In the case of mod-
elling POMDPs, Statistical Relational Learning (Getoor and
Taskar 2007) is the way to make relational specification of
DDNs possible.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

79

IU Goals Task States Abilities Behaviours
1 Final cup empty on tray, box closed Rn cup on tray, Rl step No Action
2 Final, cup TB cup empty on tray, box closed Af cup on tray WS Move cup tray→WS
3 Final, cup TB cup empty on WS, box closed Rl box contains TB, Af box closed Alter box to open
4 Final, cup TB cup empty on WS, box open Af TB in box cup Move TB box→cup
5 Final cup tb on WS, box open Af box open Alter box to closed

Final cup tb on WS, box closed

Table 1: IU analysis of the first step in tea making. Rn=recognition, Rl=Recall, Af=Affordance, tb=teabag, ws=work surface.

3.1 Statistical Relational Learning

Probabilistic Relational Models (PRM) define a template for
a probability distribution (Getoor and Taskar 2007), that
specifies a concrete distribution when ground with specific
data. The family of distributions that can be obtained from
a specific PRM is what we seek in the problem of specify-
ing POMDPs for prompting systems. Our goal is to have a
template which would be flexible and general enough to rep-
resent POMDPs for different tasks, but also specific enough
so that one relational model would be sufficient. Figure 2
shows the main components of the probabilistic model spec-
ified using the PRM.

The first element is the relational schemata which can be
formalised as a specification of types of objects, their at-
tributes, and relations between objects of specific types. The
two additional components are: for each attribute the set of

���
�����	
�����������

����
����������
�����	����

���

�����	
���������
�
������

��
���	�	�	���
���������	�������
���

Figure 2: The probabilis-
tic model and its components
when specified as a PRM.

parents this attribute
probabilistically depends
on, and the corresponding
conditional probability
distributions. These
elements together with
the relational struc-
ture is exactly what is
shared between different
prompting systems which
we build for cognitively

disabled people, and this part of the model can be designed
beforehand using the outcomes of years of research in this
area which ranges from artificial intelligence to cognitive
psychology. We argue in this paper, that the relational
database is a good way of representing and specifying these
kinds of models which define POMDP planning problems.
The PRM part of the model is exactly what can be designed
beforehand by POMDP planning experts and cognitive
scientists, and every particular deployment of the system
will be reduced to populating the database by the technology
designer who is not required to have POMDP specific
knowledge.

The relational schemata of the PRM can be represented di-
rectly as a standard relational database where tables and im-
plicit tables determined by SQL queries define objects, and
columns in tables define attributes. Relationships are mod-
elled as primary/foreign key constraints.

The two remaining elements of the PRM are also par-
tially incorporated in the relational database, defined as SQL
queries to the database, or explicitly encoded in the soft-
ware which reads the database and produces the final input
file for the POMDP planner. The PRM model contains ev-
erything which is required to obtain the probabilistic model

for the specific case, except for the data – objects, values of
their attributes, values of probabilities, and specifications of
some dependencies which are represented relationally in the
model – and this complementary element is named a rela-
tional skeleton in (Getoor and Taskar 2007). This skeleton
contains objects which adhere to relational constraints de-
fined in the relational model (database tables, SQL queries,
the generator implementation). Once this skeleton is pro-
vided, the PRM can be translated into a ground Bayesian
network in the original case, and into a ground DDN in our
implementation which has to model time (two slice Bayesian
network) and decisions.

3.2 Relational Schemata
The above discussion showed how our methodology origi-
nates from the state-of-the-art methods for relational prob-
abilistic modelling. In this paragraph, we show techni-
cal details of how the database was designed. Figure 3
shows the structure of the entire database. All tables which
have their names starting with t iu represent the IU ta-
ble, and the user interface shows the view of the full IU
table to the user (not individual tables separately). The
core table is t env variables values which stores do-
main attributes and their possible values. The sensor model,
t sensor model, associates environment variables with
sensors (t observations values). There is also a sen-
sor model for behaviours in the corresponding table. There is
a table for possible behaviours of the client in the modelled
domain (t behaviours) and dynamics of the client’s ac-
tions are defined in associated tables which store effects and
preconditions of behaviours. Essentially, the database encod-
ing of effects and preconditions of client’s actions contains
information which is equivalent to STRIPS operators in clas-
sical planning. One behaviour can have different effects de-
pending on the precondition. Additionally, our probabilistic
model can make use of the states in which a specific be-
haviour is impossible (t when is behaviour impos-
sible). Table t abilities stores client’s abilities which
are relevant to the task. Finally, rewards are defined in t re-
wards and the associated table allows specifying sets of
states which yield a particular value of the reward.

3.3 Relational Probabilistic Model
We present only one piece of the relational specification of
probabilistic dependencies: the client behaviour dynamics
model.

Let us assume that I is a set of rows in the IU table. T ,
T ′, B, B′, Y , and Y ′ are as specified in Figure 1b. ρ is a
random behaviour constant and is set to 0.01 in the current
implementation. We define the following functions:

1. row rel : I × T → {0, 1} is 1 for task states relevant in

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

80

Figure 3: Complete SNAP database diagram.

row, i, and 0 otherwise. We write this as of the row, i, only:
row rel(i) leaving the remaining variables implicit. The
same shorthand is applied to the other functions.

2. row rel b : I × T × B′ → {0, 1} is defined as
row rel b(i, b′) = row rel(i) ∧ behaviour(i, b′) where
behaviour(i, b′) = 1 when b′ is the behaviour of row i.

3. row abil rel : I × Y ′ → {0, 1} is 1 when all abilities of
row i are satisfied by y′, and 0 otherwise.

4. goal : T → {0, 1} is 1 when t is a goal state, 0 otherwise.
5. bn : B′ → {0, 1} is 1 when b′ = nothing, 0 otherwise.
6. same : B × B′ → {0, 1} is 1 when b = b′. This is a bias

which indicates that behaviours are likely to stay the same.
7. impossible beh : T → {0, 1} is 0 for states t when there

is no behaviour which is possible in t, and 1 when there is
at least one behaviour which is possible in t.

8. For all functions defined above, ¬f(x) is defined as
¬f(x) = 1− f(x) which defines a negation of f(x) when
0 and 1, the domain of f(x), are treated as boolean values.

The above functions are used in the definition of the dynam-
ics of behaviours B′, beh dyn : B′ × Y ′ × T ×B → [0, 2].

beh dyn =∑
i∈I

[row abil rel(i) ∧ row rel b(i) ∧ p(i)∨ (1)

¬row abil rel(i) ∧ row rel(i) ∧ bn]∨ (2)∏
i∈I

[¬row rel(i)] ∧ bn∨ (3)

goal ∧ bn∨ (4)

After normalisation, beh dyn defines probability
P (b′|b, y′, t) of b′ when the previous behaviour was b,
the person will have abilities y′, and the system is in state
t. It is important to recall that non-invasive prompts are
assumed here which influence abilities Y ′ and not behaviours
B′ directly. The first term (1) of this equation is for rows
which have their abilities and state relevance satisfied. (2)
defines behaviour ‘nothing’ when state is relevant in the row
but abilities are not present. (3) sets behaviour ‘nothing’ in
all states which are not relevant in any row. (4) reflects the
fact that only behaviour ‘nothing’ happens when the goal
state has been reached. It is important to note here, that the
IU analysis in original SNAP (Hoey et al. 2011) has to have
task states in all rows disjunctive, which means that each
state can be relevant in one row only. This is of course not

always the case in practice, and we add an extension here
which specifies probability p(i) of a row, used in (2), when
there are other rows which have the same states relevant.

All the functions necessary to specify the POMDP are rep-
resented as algebraic decision diagrams (ADDs) in SPUDD
notation (Hoey et al. 1999). These functions are computed
with queries on the database. Each such query extracts some
subset of ADDs from the relational skeleton. The ADDs are
then combined using multiplication and addition to yield the
final conditional probability tables (CPTs). Some relations
are explicitly represented in the database whereas others need
to be extracted using more complex SQL queries. For exam-
ple, data for row rel(i), row rel b(i), and row abil rel(i)
is read from the IU table in the database. The example subset
of the relational skeleton for the IU analysis from Table 1,
and diagrams for selected functions are in Figure 4. SQL
queries extract compound algebraic decision diagrams from
the relational skeleton, and the generator software multiplies
those diagrams in order to obtain final functions, such as
P (b′|b, y, t′) = row rel b(i, b′). The following more com-
plex SQL query example for goal returns sets of states with
the highest reward:

SELECT var_name, var_value, reward_value,

t_rewards.state_set_id

FROM t_rewards_desc INNER JOIN t_rewards

ON t_rewards_desc.state_set_id=t_rewards.state_set_id

WHERE reward_value=(SELECT MAX(reward_value)

FROM t_rewards)

ORDER BY 4

A schematic is shown in Figure 4, where the CPT for client
behaviour dynamics is gathered from the relevant tables in
the relational skeleton. The original table schema in the PRM
for the relations in Figure 4 can be seen in Figure 3.

3.4 Advantages of Database Engines
The advantage of the relational database is that it allows for
easy implementation of the constraints required by the model.
The simplest example are constraints on attribute values. For
example, probabilities have to be in the range [0, 1], or liter-
als should follow specific naming patterns (according to the
requirements of the POMDP planner). These simple con-
straints are easily implemented in the definition of SQL ta-
bles. Some more complex constraints which involve more
than one attribute are also required. For instance in the plan-
ner which we use, sensors and domain attributes are in the

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

81

���������	
�

�������
�����������

������������

��������

������	
��
�	��

�������
������������������
�������������

�������
��������������������
�������������

�
�

��

�������	�����

�������
�������������������������

�������
������������������
�������������

�������	��
�������	
��

�� ��

��

��

��

��

��

�������	�����

��������

������	
��
�	��

������	
��
�	��

������	
��
�	��

Figure 4: Subset of the relational skeleton for P (b′|b, y, t′) showing the generation of behaviour(i, b′) ∧ p(i) ∧ row rel(i) =
row rel b(i, b′) for row i = 2 in Table 1. The algebraic decision diagrams (ADDs) representing the relations are multiplied to
give the final CPT.

same name space, which means that their names have to
be different. Such things can be easily implemented using
database triggers, and the user will be prompted at the input
time and informed about the constraint.

4 Demonstrative Examples
We demonstrate the method on three assistance tasks: hand-
washing, and toothbrushing with older adults with dementia,
and on a factory assembly task for persons with a develop-
mental disability. We show that once our relational system is
designed (i.e. the database and the generator which reads the
database and outputs the POMDP file), the system is generic
and allows the designer to deploy the system in different tasks
simply by populating the database for the new task. The IU
analysis for handwashing was performed by a professional
IU analyser, and handwashing was used as the testbed for our
method. The analysis for the other two tasks were performed
by two different biomedical engineers, with limited experi-
ence with POMDPs or planning in AI. As an example of the
power of our method, the factory task was coded in about six
hours by the engineer. This can be compared to a manual
coding of the system for handwashing (a smaller task), that
took at least three months of work resulting in the system
described in (Boger et al. 2006).

The IU analysis breaks an ADL down into a number of
sub-tasks, or sub-goals. For the factory task, there are six
sub-goals. The decomposition arises according to the ele-
ments of recall noted in the IU analysis videos. The six sub-
goals are partially ordered, and the partial ordering can be
specified as a list of pre-requisites for each sub-goal giving
those sub-goals that must be completed prior to the sub-goal
in question. Since each sub-goal is implemented as a sepa-
rate POMDP controller, a mechanism is required to provide
hi-level control to switch between sub-goals. We have imple-
mented two such control mechanisms. A deterministic con-
troller is described in (Hoey et al. 2011), and a probabilistic
and distributed method in (Hoey and Grześ 2011). All con-

trollers described in the last section are implemented in Java,
and run as separate processes and can be easily distributed
across several PCs ensuring scalability.

4.1 COACH and prompting
Examples of automatic generation of task policies using IU
analyses and a relational database were implemented for the
task of handwashing and toothbrushing. For these examples,
people with mild to moderate dementia living in a long term
care facility were asked to wash their hands and brush their
teeth in two separate trials.

Handwashing The washroom used for this task had a sink,
pump-style soap dispenser and towel. Participants were led
to the sink by a professional caregiver, and were encouraged
to independently wash their own hands. The IU analysis was
performed on videos captured from a camera mounted above
the sink. The task was broken into 5 steps, each comprised of
multiple substeps: 1) wet hands; 2) get soap; 3) wash hands;
4) turn off water; and 5) dry hands. Steps 1 and 2 can be
completed in any order, followed by step 3. After completion
of step 3, steps 4 and 5 can be completed in any order.

Toothbrusing The videos used for the analysis captured
participants in a washroom that had a sink, toothbrush, tube
of toothpaste and cup, as they tried to independently brush
their own teeth. A formal caregiver was present to provide
coaching and assistance if required. The IU analysis was
completed based on videos of several different people and
included multiple different methods of completing the task.
The task was divided into 6 main steps, each containing mul-
tiple sub-steps: 1) wet brush; 2) apply toothpaste; 3) brush
teeth; 4) clean mouth; 5) clean brush; and 6) tidy up. Steps
1 and 2 can be completed in any order, followed by step 3.
Steps 4 and 5 can also be completed in any order after step 3,
and step 6 is the final step following the first 5 steps.

A policy was generated for each sub-step entered into the
relational database. Simulations were run to test the hand-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

82

washing and toothbrushing policies with a user assumed to
have mild-to-moderate dementia. To simulate a person with
mild-to-moderate dementia the user was forced to forget
steps of the task throughout the simulation (i.e., do noth-
ing) but respond to prompting if provided. Tables 2 (hand-
washing) and 3 (toothbrushing) show a sample of the be-
lief state of the POMDP, the system’s suggested action and
the actual sensor states for several timesteps of two simula-
tions. Probabilities of the belief state are represented as the
height of bars in corresponding columns of each time step.
In the handwashing example, the user is prompted to take the
towel (t=1). Detecting that the towel was taken (t=2), the
system prompts the user to dry his/her hands. The sensors
indicate the towel was returned to the surface without drying
the user’s hands (t=3) so the system again prompts the user to
take the towel. As a second example with the toothbrushing
simulation (t=1), the system prompts the user to turn on the
tap. The user does nothing, so the system tries to prompt the
user to take the brush from the cup (in this case either turning
the tap on or taking the toothbrush can happen first). The sen-
sors indicate the brush was taken (t=3), so the system returns
to prompting the user to turn on the tap.

Observations Task Behaviour Ability

T
im

e
st

ep
,

t

h
an

d
s

w
at

er

to
w

el
p

o
si

ti
o

n

h
an

d
s

d
ry

h
an

d
s

w
et

to
w

el
in

h
an

d

to
w

el
o

n
su

rf
ac

e

o
th

er

n
o

th
in

g

ta
k
e

to
w

el

d
ry

h
an

d
s

p
u

t
d

o
w

n
to

w
el

A
f

d
ry

A
f

p
u

t
to

w
el

d
o
w

n

A
f

ta
k
e

to
w

el

S
y

st
em

A
ct

io
n

(P
ro

m
p

t)

0 wet on surface Af take towel

1 wet on surface Af take towel

2 wet in hand Af dry

3 wet on surface Af take towel

4 wet in hand Af dry

5 dry in hand Af put down towel

6 dry on surface donothing

Table 2: Example simulation in the handwashing task. The
main goal shown in the subtask is to dry the hands after taking
the towel from the surface, while the secondary goal is to
return the towel to the surface.

Observations Task Behaviour Ability

T
im

e
st

ep
,

t

b
ru

sh
w

et

ta
p

b
ru

sh
p

o
si

ti
o

n

b
ru

sh
w

et

b
ru

sh
in

h
an

d

b
ru

sh
in

cu
p

b
ru

sh
o

n
su

rf
ac

e

ta
p

o
n

o
th

er

n
o
th

in
g

al
te

r
ta

p
to

o
n

ta
k
e

b
ru

sh
fr

o
m

cu
p

w
et

b
ru

sh

ta
k
e

b
ru

sh
fr

o
m

su
rf

ac
e

R
n

b
ru

sh
in

cu
p

R
n

b
ru

sh
o

n
su

rf
ac

e

A
f

ta
p

A
f

w
at

er

S
y
st

em
A

ct
io

n
(p

ro
m

p
t)

0 dry off in cup Af tap

1 dry off in cup Af tap

2 dry off in cup Rn brush cup

3 dry off in hand Af tap

4 dry on in hand Af water

5 dry on in hand Af water

6 wet on in hand donothing

Table 3: Example simulation in the toothbrushing task. The
goal in the shown sub-task is to turn on the tap, take the tooth-
brush from either the surface or the cup, and wet the brush.

4.2 Factory Assembly Task
In this example, workers with a variety of intellectual and de-
velopmental disabilities are required to complete an assembly
task of a ‘Chocolate First Aid Kit’. This task is completed at a

workstation that consists of five input slots, an assembly area,
and a completed area. The input slot contain all of the items
necessary to perform kit assembly-specifically the main first
aid kit container (white bin), and four different candy con-
tainers that need to be placed into specific locations within the
kit container. The IU analysis was completed based on video-
tapes of a specific adult worker who has Down’s Syndrome
completing this assembly task. The worker was assessed with
a moderate-to-mild cognitive impairment and was able to fol-
low simple instructions from a job coach. The IU analysis
broke this task into 6 required steps: 1) prepare white bin; 2)
place in bin chocolate bottle 1; 3) place in bin chocolate box
1; 4) place in bin chocolate box 2; 5) place in bin chocolate
bottle 2; and 6) finish output bin and place in completed area.
Steps 2, 3, 4, and 5 can be completed in any order. Through
a hierarchical task analysis (Stammers and Sheppard 1991)
each of these steps were further broken down into sub-steps.

Policies were generated for each of the required assembly
steps and were simulated by the authors for three different
types of clients: mild, moderate, and severe cognitive im-
pairment. Figure 5 is the output of sample timestamps for
step 2 for a user with severe cognitive impairment. Again,
probabilities of the belief state are represented as the height
of bars in corresponding columns of each time step. In this
specific example, the system is more active in its prompting
based on the fact that the user is assumed to have diminished
abilities with respect to the different aspects that needs to be
completed. For example (t=1), the worker has deteriorating
ability to recognize that the slot that holds the required choco-
late bottle is empty. As such, the system correctly prompts
the worker to recognize that the slot is empty and needs to be
filled. In another example (t=5), the system recognizes that
the worker has not placed the bottle in its correct location in
the white bin, and provides a prompt for the person to recall
that the bottle needs to be in that position in order to reach
the final goal state. When the worker does not respond to this
prompt, the system decides (t=6) to play a different, more
detailed, prompt (a prompt related to the affordance ability).

5 Conclusions and discussion
POMDP models have proven to be powerful for modelling
intelligent human assistance (Hoey et al. 2010). Unfortu-
nately, POMDPs, being propositional models, usually require
a very labour intensive, manual setup procedure. A stan-
dard approach which can make AI models portable and con-
figurable is to introduce the notion of objects and relations
between them and this is found in relational methods such
as Statistical Relational Learning. In this paper, we derive
a methodology for specifying POMDPs for intelligent hu-
man assistance which is motivated by relational modelling
in frame-based SRL methods (Getoor and Taskar 2007). The
core of our approach is the relational database which the user
populates in order to prepare the deployment of the system
for a specific task. The database and the POMDP genera-
tor have a structure that is designed based on experience in
the domain of assistance. Content provided by the designer
of a particular implementation then encodes the goals, ac-
tion preconditions, environment states, cognitive model, user
and system actions, as well as relevant sensor models, and
automatically generates a valid POMDP model of the assis-
tance task being modelled. The strength of the database is

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

83

Observations Task Behaviour Ability

T
im

e
st

ep
,

t

sl
o

t
o

ra
n

g
e

se
n

so
r

b
o

tt
le

1
p

o
si

ti
o

n
se

n
so

r

b
o

tt
le

1
p

o
si

ti
o

n
in

h
an

d

b
o

tt
le

1
p

o
si

ti
o

n
in

w
h

it
eb

in

b
o

tt
le

1
p

o
si

ti
o

n
in

w
h

it
eb

in
p

o
s1

b
o

tt
el

1
p

o
si

ti
o

n
o

th
er

b
o

tt
le

1
p

o
si

ti
o

n
in

sl
o

t
o

ra
n

g
e

sl
o

t
o

ra
n

g
e

em
p

ty

o
th

er

n
o

th
in

g

m
o
v
e

b
o

tt
le

1
to

w
h

it
eb

in

m
o
v
e

b
o

tt
le

1
fr

o
m

sl
o

t

al
te

r
b

o
tt

le
1

to
p

o
s1

fi
ll

sl
o

t
o

ra
n

g
e

R
l

b
o

tt
le

1
p

o
si

ti
o

n
in

w
h

it
eb

in
p

o
s1

R
n

sl
o

t
o

ra
n

g
e

em
p

ty

A
f

al
te

r
b

o
tt

le
1

to
p

o
s1

R
l

b
o

tt
le

1
p

o
si

ti
o

n
in

h
an

d

R
n

b
o

tt
le

1
p

o
si

ti
o

n
in

sl
o

t
o

ra
n

g
e

S
y

st
em

A
ct

io
n

(P
ro

m
p

t)

0 - - - - - - - - Rn bottle1 in slot

1 empty other Rn slot empty

2 empty other Rn slot empty

3 full in slot orange Rn bottle1 in slot

4 full in hand Rl bottle1 in hand

5 full in whitebin Af bottle1 to pos1

6 full in whitebin Rl botte1 in bin

7 full in whitebin Af bottle1 to pos1

8 full in whitebin pos1 do nothing

Figure 5: Example simulation in the factory assembly task. The goal in the shown sub-task is to take the bottle, named bottle
1, from the orange slot and to place the bottle in the white bin in pos1.

that it allows constraints to be specified, such that we can
verify the POMDP model is, indeed, valid for the task. We
demonstrate the method on three assistance tasks: handwash-
ing and toothbrushing for elderly persons with dementia, and
on a factory assembly task for persons with a cognitive dis-
ability. This demonstration shows that the system, once de-
signed using the relational approach, can be instantiated to
create a POMDP controller for an arbitrary intelligent human
assistance task. The use of the relational database makes the
process of specifying POMDP planning tasks straightforward
and accessible to standard computer users.

6 Acknowledgements
This research was sponsored by American Alzheimers As-
sociation grant numbers ETAC-08-89008 and ETAC-07-
58793.

References
Åström, K. J. 1965. Optimal control of Markov decision processes
with incomplete state estimation. Journal of Mathematical Analysis
and Applications 10:174–205.

Boger, J.; Hoey, J.; Poupart, P.; Boutilier, C.; Fernie, G.; and Mihai-
lidis, A. 2006. A planning system based on Markov decision pro-
cesses to guide people with dementia through activities of daily liv-
ing. IEEE Transactions on Information Technology in Biomedicine
10(2):323–333.

Burns, A., and Rabins, P. 2000. Carer burden in dementia. Interna-
tional Journal of Geriatric Psychiatry 15(S1):S9–S13.

Chen, L.; Nugent, C. D.; Mulvenna, M.; Finlay, D.; Hong, X.; and
Poland, M. 2008. A logical framework for behaviour reasoning
and assistance in a smart home. International Journal of Assistive
Robotics and Mechatronics 9(4):20–34.

Duke, D.; Barnard, P.; Duce, D.; and May, J. 1998. Syndetic mod-
elling. Human-Computer Interaction 13(4):337.

Getoor, L., and Taskar, B., eds. 2007. Statistical Relational Learn-
ing. MIT Press.

Gill, T., and Kurland, B. 2003. The burden and patterns of disability
in activities of daily living among community-living older persons.
Journal of Gerontology Series A: Biological Sciences and Medical
Sciences 58A(1):M70–M75.

Hoey, J., and Grześ, M. 2011. Distributed control of situated assis-
tance in large domains with many tasks. In Proc. of ICAPS.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic planning using decision diagrams. In Proceedings of Un-
certainty in Artificial Intelligence, 279–288.

Hoey, J.; Poupart, P.; Boutilier, C.; and Mihailidis, A. 2005.
POMDP models for assistive technology. In Proc. AAAI Fall Sym-
posium on Caring Machines: AI in Eldercare.

Hoey, J.; Poupart, P.; von Bertoldi, A.; Craig, T.; Boutilier, C.;
and Mihailidis, A. 2010. Automated handwashing assistance
for persons with dementia using video and a partially observable
markov decision process. Computer Vision and Image Understand-
ing 114(5):503–519.

Hoey, J.; Plötz, T.; Jackson, D.; Monk, A.; Pham, C.; and Olivier, P.
2011. Rapid specification and automated generation of prompting
systems to assist people with dementia. To Appear in Pervasive and
Mobile Computing. doi:10.1016/j.pmcj.2010.11.007.

Kirwan, B., and Ainsworth, L. 1992. The task analysis guide. Lon-
don: Taylor and Francis.

Mastrogiovanni, F.; Sgorbissa, A.; and Zaccaria, R. 2008. An in-
tegrated approach to context specification and recognition in smart
homes. In Smart Homes and Health Telematics, 26–33. Springer.

McCluskey, L. 2000. Knowledge engineering for planning
roadmap. Working Paper.

Pentney, W.; Philipose, M.; and Bilmes, J. 2008. Structure learning
on large scale common sense statistical models of human state. In
Proc. AAAI.
Pham, C., and Olivier, P. 2009. Slice&dice: Recognizing food
preparation activities using embedded accelerometers. In European
Conference on Ambient Intelligence, 34–43. Berlin: Salzburg, Aus-
tria: Springer-Verlag.

Ryu, H., and Monk, A. F. 2009. Interaction unit analysis: A
new interaction design framework. Human-Computer Interaction
24(4):367–407.

Salber, D.; Dey, A.; and Abowd, G. 1999. The context toolkit:
Aiding the development of context-enabled applications. In Proc.
of the Conference on Human Factors in Computing Systems (CHI),
434–441.

Stammers, R., and Sheppard, A. 1991. Evaluation of Human Work.
Taylor & Francis, 2nd edition. chapter Chapter 6: Task Analysis.

Wherton, J. P., and Monk, A. F. 2009. Problems people with demen-
tia have with kitchen tasks: the challenge for pervasive computing.
Interacting with Computers 22(4):253–266.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

84

Open-Ended Domain Model for Continual Forward Search HTN Planning

Dominik Off and Jianwei Zhang
TAMS, Department of Informatics, University of Hamburg

Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany
{off,zhang}@informatik.uni-hamburg.de

Abstract

Domain models for automated planning systems often rely on
the closed world assumption. Unfortunately, the closed world
assumption is unreasonable in many real world planning do-
mains. We propose an open-ended domain model based on
definite clauses that can be flexibly extended and is able to
automatically determine relevant but unknown information.
The determination of relevant but unknown information is in-
tended to be the starting point of an active information gath-
ering process which might result in the enablement of addi-
tional planning alternatives. This is particularly relevant for
situations in which it would otherwise be impossible to find
any plan at all. Moreover, we present several knowledge rep-
resentation constructs that help to deal with the special chal-
lenges of open-ended domains. The proposed domain model
is mainly intended for hierarchical task network planning sys-
tems that generate plans in open-ended domains by means of
interleaving planning and knowledge acquisition.

Introduction
Planning systems have been developed that in principle are
efficient enough to solve realistic planning problems in real
time. However, “classical” planning approaches fail to gen-
erate plans when necessary information is not available at
planning time, because they rely on having a complete rep-
resentation of the current state of the world. (Nau 2007)
nicely summarized this problem as follows:

In most automated-planning research, the informa-
tion available is assumed to be static, and the planner
starts with all of the information it needs. In real-
world planning, planners may need to acquire informa-
tion from an information source such as a web service,
during planning and execution. This raises questions
such as What information to look for? Where to get it?
How to deal with lag time and information volatility?
What if the query for information causes changes in the
world? If the planner does not have enough informa-
tion to infer all of the possible outcomes of the planned
actions, or if the plans must be generated in real time,
then it may not be feasible to generate the entire plan
in advance. Instead, it may be necessary to interleave
planning and plan execution.

We propose a domain model that is able to answer some of
the questions raised in the above quotation. More precisely,

the main contributions of this work are:

1. We propose an open-ended domain model—called Do-
main Model for Artificial Cognitive Systems (ACogDM)—
based on definite clauses that is able to answer the ques-
tions: ’What to look for?’ and ’Where to get it?’.

2. We demonstrate how the proposed language of the do-
main model can be easily extended by additional con-
structs.

3. We propose extensions of our basic domain model that
help to deal with the special requirements (e.g., computa-
tional complexity) for open-ended domains.

The proposed domain model is particularly intended for
forward search (i.e., forward decomposition) Hierarchical
Task Network (HTN) (Ghallab, Nau, and Traverso 2004)
planning approaches. However, it might also be useful for
other approaches.

A domain model for planning is usually composed of in-
formation about the state of the domain and information
about the possible activities of an agent. We call the for-
mer part of a domain model the state model and the later
part the activities model.

Extendable State Model
Several non-classical planning systems use axiomatic infer-
ence techniques to reason about the state of the world (Ghal-
lab, Nau, and Traverso 2004). Often the well investigated
definite-clause inference techniques are used. Usually ax-
iomatic inference is supported by calling a theorem prover
as a subroutine of the overall planning process. The ex-
ploited knowledge representation and theorem proving sys-
tems (e.g., PDDL axioms (Thiébaux, Hoffmann, and Nebel
2005)) often rely on the closed world assumption (CWA).
However, if we want to enable a planner to reason about
unknown information in a partially known domain, then we
need a state model and theorem proving system that are not
based on the CWA. Particularly, we need an appropriate han-
dling of negation.

As an alternative to implicitly representing negative in-
formation (e.g., by using the negation-as-failure seman-
tics (Clark 1987))—as often done by definite-clause theo-
rem provers—it is possible to extend the syntax of definite
clauses for the purpose of supporting the explicit representa-
tion of negative information. It has been stated in literature

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

85

that this approach is often practically infeasible, because of
the sheer magnitude of negative facts that would have to be
stated (Subrahmanian 1999). We agree with this argumenta-
tion, but only under the assumptions that (1) a complete state
model should be represented and (2) it is not possible to de-
fine a complete representation for local parts of the overall
model. However, with respect to the context and objectives
of this work neither of these two assumptions is fulfilled,
since it is intended to develop an adequate domain model for
incompletely known domains which—as introduced later—
permits the explicit representation of complete parts at the
level of predicates. Thus, we believe that it is reasonable to
directly represent negative information in the context of this
work.

We use definite clauses as the representational basement
for state models. The definition and notation of definite
clauses, definite goals, definite programs and substitutions
is borrowed from (Nilsson and Maluszynski 1995). In short,
a definite clause is notated as A0 Ð A1, . . . , An whereas
n ě 0. Furthermore, J denotes an atomic formula that
is true in every interpretation. A definite clause for which
n “ 0 is notated as A0 Ð J. Moreover, we use ’&’ in
definite clauses and definite goals as the negation as (final)
failure operator as introduced by (Clark 1987) and imple-
mented in several prolog systems.

Additionally, we introduce two special kinds of atomic
formulas: literals and statements. If f is an atomic formula,
then we call f and neg f a literal. Furthermore, we call st a
statement iff it can be constructed by the following rules:

• st is a literal

• st “ pneg st1q and st is a statement

• st “ pst1 ^ st2q and st1 as well as st2 are statements

• st “ pst1 _ st2q and st1 as well as st2 are statements

Literals and statements are syntactically defined as atomic
formulas for the purpose of reasoning about them in the lan-
guage of definite clauses. Conceptually a literal essentially
is what is known as a literal in first order logic. Similarly, a
statement essentially is what is known as a first order logic
sentence. Statements—including literals—are always im-
plicitly quantified. Statements in a definite clause are (im-
plicitly) universally quantified and statements that constitute
a definite goal are (implicitly) existentially quantified.

Similar to PDDL with PDDL Axioms our state model en-
ables domain experts to express factual (e.g., Bob’s mug is
in the kitchen) and axiomatic (e.g., Bob’s mug is in room
X1 if Bob’s mug is on table X2 and X2 is in room X1)
knowledge. Due to the objective to deal with open-ended
domains we additionally support the explicit representation
of negative information. Moreover, we support the flexible
extension of the representation language of a state model
by additional constructs. These additional constructs are in-
tended to constitute higher level (conceptual) knowledge and
are called concepts. In principle, our state model can be ex-
tended to support any conceptual knowledge as long as we
can compile this information to the underlying knowledge
representation formalism, namely, a set of definite clauses.
We exploit this feature in the following part of the paper by

successively adding support for additional concepts that are
intended to deal with the special requirements of open-ended
domains. For example, we are going to support the explicit
representation of subsumption-relations (e.g., ’A mug is an
object’).

A state model is formally defined as follows:

Definition 1 (state model). A state model is a quadruple
sM “ pF,C,RD, RGq. F is a set of literals and C is a
set of atomic formulas such that F X C “ H. RD is a set
of definite clauses l Ð s such that l is a literal and s is a
statement. RG is a set of definite clauses. sM

dp “ tf Ð
J|f P F YCuYRDYRG is the definite program constituted
by the state model.

A state model sM is represented by the four sets F , C,
RD, RG. F represents a set of facts about the state of a
domain. C contains additional conceptual knowledge. RD

represents domain-specific rules (i.e., domain-specific ax-
iomatic knowledge). In contrast, RG represents generic (i.e.,
domain-independent) rules (e.g., pA ^ Bq holds if A and B
hold). F , C and RD are intended to be specified by a do-
main expert in order to model the state of a certain domain.
RG, however, represents generic rules that are defined to-
gether with the supported state model language constructs
in order to be able to map these constructs to the level of
definite clauses.

The fact that a state model constitutes a definite program
has the advantage that the semantics of a state model is
based on the well-known semantics of a definite program.
From a more practical perspective, we can additionally ben-
efit from the actuality that several highly optimized prolog
implementations are available that can automatically deter-
mine whether a definite goal can be proved or not.

Based on the semantics of a definite program we can de-
fine the derivability of an atomic formula as follows:

Definition 2 (derivable). An atomic formula f is derivable
with respect to a state model sM and a grounding substi-
tution σ (denoted as sM $σ f) iff fσ is a logical conse-
quence1 of sM

dp.

In order to specify the semantics of statements we add
the following generic rules to the set RG of a state model
sM “ pF,C,RD, RGq:

pst ^ st1q Ð st, st1 (GR1)

pst _ st1q Ð st (GR2)

pst _ st1q Ð st1 (GR3)

neg neg st Ð st (GR4)

neg pst ^ st1q Ð pneg st _ neg st1q (GR5)

neg pst _ st1q Ð pneg st ^ neg st1q (GR6)

These rules determine the semantics of statements. In
particular, the handling of the introduced negation operator
’neg’ is specified. Furthermore, please note that it directly

1More precisely, this means that f is a member of the least
Herbrand model MsM

dp (Nilsson and Maluszynski 1995, Theo-
rem 2.16).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

86

follows from Definition 2 that a statement st is derivable
with respect to a state model sM and a substitution σ iff stσ
is a logical consequence of sM

dp. For the purpose of avoid-
ing misunderstandings we would like to emphasize again
that statements are syntactically treated as atomic formulas,
but semantically constitute a first order logic sentence.

As already pointed out, a domain modeller has the oppor-
tunity to define domain-specific axioms. Axioms are known
to be an important feature of domain languages (Thiébaux,
Hoffmann, and Nebel 2005). Two example axioms are de-
fined as follows:

in roompO,Rq Ð onpO, T q, in roompT,Rq (DR1)

neg in roompO,Rq Ð in roompO,R2q,
R2 ‰ R

(DR2)

DR1 represents the fact that an object is in a room R if it
is lying on a table which is in room R. DR2 is an example
for the explicit representation of negative information. It
represents the fact that an object can only be in one room at
a given point in time.

Due to the fact that we support the explicit representa-
tion of negative information it is in principle possible to
construct a syntactically inconsistent2 state model. This
means that it is possible to construct a state model where
st and neg st are derivable. Indeed, it is desirable to sup-
port domain modellers with software tools in order to pre-
vent the creation of inconsistent state models. However, se-
mantic inconsistencies may also occur in CWA based rep-
resentations. For example, one can create a CWA based
state model such that openpdoor1q and closedpdoor1q is
derivable. Thus, one also has to deal with inconsistency
in CWA based models. Furthermore, note that the explicit
representation of negation by means of the definite clause
neg openpdoor1q Ð closedpdoor1q has the advantage that
it would make it possible to detect the semantic inconsis-
tency via syntactic techniques. However, we will not further
address that problem here, since dealing with consistency is
not in the focus of this work. The fact that a state model sM
is consistent is denoted as cpsM q. In the following part of
this paper it is implicitly always assumed that a state model
is consistent.

Conceptualizing Open-Endedness
CWA based knowledge representation and reasoning sys-
tems (e.g., prolog) can in principle also be used in open-
ended domains. Nevertheless, in open-ended domains one
has to consider that it is possible that true instances of a
statement “exist” but cannot be derived due to a lack of
knowledge. CWA based approaches are—by definition—
unable to reason about unknown (i.e. non-derivable) but
possibly true information. More precisely, it is unfeasible
for CWA based systems to distinguish between instances of
statements that cannot be derived because the existence is
impossible and instances of a statement that might be deriv-
able if additional information about the state of the domain
were available.

2See (Nguyen 2008) for more details about syntactic and se-
mantic inconsistencies.

Example 1 For example, let us assume that the only literals
that can be derived from the state model sM of an agent are
mugpbobs mugq and in roompbobs mug, kitchenq. If one
would try to derive whether a true instance of mugpXq ^
colorpX, redq exists with respect to sM , then the only in-
formation a CWA based reasoner can provide is that such
an instance cannot be derived. Nevertheless, in principle
there are two possible situations in which an instance of
this statement exist. It might be (1) possible that Bob’s
mug is red or (2) it might be possible that there is an ad-
ditional (i.e., non-derivable) mug that is red. For the pur-
pose of also exemplifying the case where the existence of
an instance is impossible, let us take a look at the statement
in roompbobs mug, officeq. Once again, the only thing a
CWA based reasoner can tell us about the literal is the fact
that it is not derivable. However, in this case the existence
of a true instance is impossible if one makes the reasonable
assumption that Bob’s mug cannot be in two different rooms
at same point in time as specified by DR2.

Summing up, the CWA leads to a strong limitation that
makes it hard to reason about unknown information. The
objective of the proposed open-ended domain model is to
enable the distinction between situations in which the exis-
tence of a non-derivable instance of a statement is impos-
sible and situations in which additional information might
make non-derivable instances derivable. Moreover, in the
latter case the domain model should make it possible to de-
rive all situations in which the existence of an additional in-
stance is possible. If we want to enable such a reasoning,
then we need an open-ended domain model. We propose
an open-ended domain model that is based on the following
three concepts: a F-extension; an open-ended literal; and a
possibly-derivable statement.

For the purpose of reasoning about open-ended domains
we have to reason about possible extensions of a state model.
Here we only consider extensions that are constituted by
adding factual knowledge (i.e., a set of literals) to a state
model. These extensions are called F-extensions and are for-
mally conceptualized as follows:

Definition 3 (F-extension). A state model s1
M “

pF 1, C,RD, RGq is called an F-extension of sM “
pF,C,RD, RGq (denoted as sM ĎF s1

M) iff F Ď F 1 and
cpsM q ñ cps1

M q.

In other words, one can create an F-extension of a state
model by adding literals such that a consistent world model
stays consistent. We denote the set of all instances of a state-
ment st that are derivable with respect to a state model sM asr$psM , stq respectively as r$pstq if the respective state model
is apparent. Furthermore, we call literals for which the exis-
tence of non-derivable instances is possible open-ended:

Definition 4 (open-ended literal). A literal l is called open-
ended w.r.t. a state model sM (denoted as lĹ) iff it is possible
that there is an instance lσ of l and a state model s1

M such

that sM ĎF s1
M , lσ R r$psM , lq and lσ P r$ps1

M , lq.

Please note that for a ground literal the following holds:

Remark 1. If l is ground, then l is open-ended iff & l and
& neg l holds.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

87

Let us recall the situation of Example 1 in order to ex-
emplify the concept of an open-ended literal. mugpXq and
colorpred,Xq are examples of open-ended literals, because
the existence of non-derivable mugs and red things is possi-
ble. In contrast, mugpbobs mugq is not open-ended, since
the only possible instance is already derivable.

Let groundplq be a meta-predicate that holds iff l is
ground and non-groundplq be a meta-predicate that holds
iff l is non-ground. The following two clauses constitute a
first attempt to specify an open-ended literal by means of a
set of definite-clauses:

lĹ Ð non-groundplq (GR7)

lĹ Ð groundplq,& l,& pneg lq (GR8)

In other words, a literal l is open-ended if it is non-ground
(GR7); or if it is ground and neither l nor neg l can be de-
rived (GR8).

Based on the definition of an open-ended literal, a
possibly-derivable statement is defined as follows:

Definition 5 (possibly-derivable statement). A statement st
is possibly-derivable w.r.t. to a state model sM and a set of
open-ended literals Lx (denoted as ♦pst, Lxq) iff the exis-
tence of a new instance lσ for each l P Lx implies the exis-
tence of a new instance stσ of st.

A possibly-derivable statement constitutes the partition of
a logical statement into a derivable and an open-ended part
(i.e., a set of open-ended literals). This partition determines
what additional information is necessary in order to derive
an additional (i.e., non-derivable w.r.t. the state model at
hand) instance of a given statement. Note that there may be
more than one way to partition a statement into a derivable
and an open-ended part.

Let us assume that we have the same state model sM as
introduced in Example 1 and would like to know whether
the statement st “ mugpXq ^ colorpX, redq is possibly-
derivable (i.e., we are looking for a red mug). In this
example there are two different situations in which st
is possibly-derivable. In the first situation, X is substi-
tuted with bobs mug and st is possibly-derivable with re-
spect to sM and the resulting set of open-ended literals
tcolorpbobs mug, redqu. In the second situation, we exploit
the fact that there might exist an unknown red mug and st is
possibly-derivable with respect to sM and the resulting set
of open-ended literals tmugpXq, colorpX, redqu.

Let literalplq be a meta-predicate that holds iff l is a lit-
eral. In order to be able to derive possibly-derivable state-
ments we introduce the following generic rules:

♦pst, Lxq Ð ♦pst,H, Lxq (GR9)

♦pst, Lx, Lxq Ð literalpstq, st,@lPLx
: lĹ (GR10)

♦pst, Lx, Lx Y tstuq Ð literalpstq, stĹ (GR11)

♦ppst ^ st1q, Lx, Lx
1q Ð♦pst, Lx, Lx

2q,
♦pst1, Lx

2, Lx
1q (GR12)

♦ppst _ st1q, Lx, Lx
1q Ð ♦pst, Lx, Lx

1q (GR13)

♦ppst _ st1q, Lx, Lx
1q Ð ♦pst1, Lx, Lx

1q (GR14)

♦pneg pst ^ st1q, Lx, Lx
1q Ð

♦ppneg st _ neg st1q, Lx, Lx
1q (GR15)

♦pneg pst _ st1q, Lx, Lx
1q Ð

♦ppneg st ^ neg st1q, Lx, Lx
1q (GR16)

GR10 and GR11 specify under what conditions a literal
is possibly-derivable. The general idea is that a literal is
possibly-derivable if it is derivable or open-ended. Thus, ev-
ery open-ended literal is possibly-derivable, because for ev-
ery open-ended literal it is possible that there is a consistent
extension of the current domain model so that it is deriv-
able w.r.t. this extension. Note that a (non-ground) literal
can be both derivable and open-ended. Lx denotes the set of
open-ended literals of the previous part of a statement and
initially is empty (see GR9). Including Lx into the recur-
sive definition is necessary in order to consider the possible
dependencies between different parts of a statement. To be
more precise, it has to be ensured that all literals that have
been ”chosen” to be in the open-ended part of a statement
stay open-ended after additional substitutions. This is ex-
actly what is done in GR10 by means of ensuring that possi-
ble substitutions that are necessary in order to derive an in-
stance of st do not affect the open-endedness of the literals
in Lx. Besides the correct handling of the set of open-ended
literals, GR13 - GR16 essentially describe well-known rules
of first order logic.

Continual Planning in Open-Ended Domains
As already mentioned, ACogDM is developed for forward
decomposition HTN planners (e.g., SHOP (Nau et al. 1999)
or SHOP2 (Nau et al. 2003)). In this section we briefly
motivate and explain how the proposed domain model can
be combined with such a planner so that the combination
constitutes a continual planning system.

Forward decomposition HTN planners choose between a
set of relevant (Ghallab, Nau, and Traverso 2004) methods
or planning operators (i.e., actions) that can be in principle
applied to the current task network. In the context of this
work preconditions of action or methods are represented by
definite goals of the form ’Ð st’ such that st is a state-
ment (e.g., Ð pmugpXq ^ neg in roompX, kitchenqq). If
it does not lead to ambiguity, then we will omit the lead-
ing ’Ð’ of a definite goal. A relevant method or planning
operator can actually be applied if and only if its precondi-
tion p holds (i.e., an instance pσ is derivable) with respect
to the given domain model. Therefore, we define the set
of relevant preconditions with respect to a given planning
context (i.e., a domain model and a task network) to be the
set of all preconditions of relevant methods or planning op-
erators. A HTN planner cannot continue the planning pro-
cess in situations where no relevant precondition is derivable
with respect to the domain model at hand. The notation of
a relevant precondition is a first step to determine relevant

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

88

extensions of a domain model, since only domain model ex-
tensions that make the derivation of an additional instance
of a relevant precondition possible constitute an additional
way to continue the planning process. All other possible ex-
tensions are irrelevant, because they do not imply additional
planning alternatives.

The general idea is to adapt a forward decomposition
HTN planner such that the behaviour is not changed as long
as sufficient information is available in order to generate a
plan. However, if necessary information is missing, then
the planning process is stopped and a partial plan prefix
and a set of open-ended literals of a relevant and possibly-
derivable precondition is returned. If the planner stops the
planning process due to a lack of knowledge, then the set
of open-ended literals constitute a relevant extension of the
domain model that would make it possible to continue the
planning process. Hence, a planner can answer the question
“What to look for?” as follows: Look for non-derivable in-
stances of the open-ended part (i.e., a set of open-ended lit-
erals) of possibly-derivable and relevant preconditions. For
example, if want a planner to perform the task “Deliver
Bob’s mug into the kitchen”, but the the fact whether the
kitchen door is open or closed cannot be derived from the
domain model, then a planner returns a partial plan (e.g.,
rpick uppbobs mugq, . . .s) and a set of open-ended liter-
als (e.g., topenpkitchen doorqu). Based on that, a planner
can try to generate and execute a plan that acquires a non-
derivable instance for each open-ended literal (e.g., try to
acquire whether the kitchen door is open). Subsequently, a
planner can continue the planning process based on the up-
dated domain model. By this means a planner can automat-
ically switch between planning and acting such that missing
information can be acquired by means of active information
gathering.

Additional State Model Constructs
Supporting the representation on a conceptual meta-level—
in contrast to representing knowledge on the level of definite
clauses—has the advantage that it eases the knowledge engi-
neering process, since domain experts can represent knowl-
edge on a higher abstraction level that is often closer to the
way they think about the domain.

In this section, we are going to extend the state model
by additional concepts that make it possible to reduce the
open-endedness of the state model. The general idea is that
one can reduce the open-endedness by means of exploiting
additional domain knowledge such that the number of open-
ended literals can be reduced. For example, according to Re-
mark 1 one could deduce that an opened-ended and ground
literal l is not open-ended if additional domain knowledge
would make it possible to derive l or neg l.

With the current state model (i.e., the state model
constituted by GR1 - GR16) every non-ground literal is
open-ended (see GR7). To put it another way, we as-
sume that we never know all instances of a non-ground
literal. However, this might not always be the case.
On the conceptual—or semantical—level domain con-
straints can limit the number of possible instances of a
statement. For example, let us assume that the literal

in roompbobs mug, officeq is derivable. In this case the
non-ground literal in roompbobs mug,Xq is not open-
ended (i.e., no additional instance is possible) if we assume
that an object can only be in one room at a given point in
time. In order to be able to express these kinds of constraints
we extend the language of the state model by constructs of
the form imaxpl, n, cq such that l is a literal, n P N Y t8u
and c is a statement. imaxpl, n, cq specifies that the literal l
can maximally have n ground instances if c holds. In order
to “ground” this additional construct to the level of definite
clauses we have to add the following rules:

imaxpl, nq Ð imaxpl, n, cq, c (GR17)

imaxpl,8q Ð non-groundplq,& imaxpl, n,X1q (GR18)

imaxpl, 1q Ð groundplq (GR19)

Now we can formulate an advanced version of (GR7) as
follows:

lĹ Ð non-groundplq, i maxpl, nq, n ă |r$plq| (GR20)

In other words, a literal is open-ended if the number of
derivable instances is less than the number of maximum in-
stances.

A less flexible, but easier way to define the maximum
number of instances for a subset of non-ground literals is
based on the instantiation scheme of a literal.

A literal or a term is called duplicate-variable-free iff
it does not contain two identical variables. For exam-
ple, ppX,Y q is duplicate-variable-free and ppX,Xq is not
duplicate-variable-free. For duplicate-variable-free terms
and literals we define a corresponding instantiation scheme
as follows:

Definition 6 (instantiation scheme). Let g be a duplicate-
variable-free term or literal. The instantiation scheme gρ of
g is defined as follows:

gρ :“
#

ground if g is ground
var if g is a variable
fpuρ

1, . . . , u
ρ
mq else if g “ fpu1, . . . , umq

An instantiation scheme abstracts from the concrete argu-
ments of a literal by replacing variables with the constant
var and ground terms with the constant ground. We re-
strict instantiation schemes here to duplicate-variable-free
terms and literals, because the multiple occurrence of the
same variable imposes additional constraints that otherwise
would be unintentionally abstracted away. Moreover, from
the knowledge engineering perspective we wanted to keep
the definition of an instantiation scheme simple, since in-
stantiation schemes are intended to be specified by a hu-
man domain expert. Explicitly representing possible con-
straints that result from duplicate variables in a literal would
make the representation significantly more difficult while
only being necessary for the minority of literals. Addition-
ally, please note that Definition 6 can also be applied to
negative literals, since the negation operator is technically
a “normal” predicate. Let Lρ :“ tlρ|l P Lu. The maximum
number of possible instances with respect to an instantiation
scheme is defined by the function imax ρ : Lρ Ñ NY 8. In

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

89

ACogDM, we can define the possible number of instances
with respect to a representation scheme with atomic formu-
las of the form i max ρpscheme, nq such that scheme is
a instantiation scheme and n P N Y t8u. In order to sup-
port these constructs we add the following generic rule to
the state model:

imaxpl, nq Ð imax ρplρ, nq (GR21)

For example, the fact that an object can only be in one
room at a given point in time can be easily represented by the
atomic formula i max ρpin roompground, varq, 1q. How-
ever, now we have a semantically redundant representation
because the conceptually same actuality is already speci-
fied by the domain specific rule DR2. Note that both rep-
resentations have been introduced for different technical
reasons. DR2 solely makes it possible to derive that all
statements of the form neg in roompobj, rq are true if it
is known that in roompobj, r1q and r1 ‰ r hold. In con-
trast, i max ρpin roompground, varq, 1q solely makes it
possible to deduce that all statements with the instantiation
scheme in roompground, varq can only have one instance.

We can omit redundancies introduced by i max ρ via
adding generic rules. For the purpose of achieving this we
first introduce the sub-scheme-relation as follows:

Definition 7 (sub-scheme). An instantiation scheme s is
called a sub-scheme of an instantiation scheme s1 (denoted
as s ĺ s1) iff one of the following holds:

• s1 “ var ;

• s “ ground ^ ps1 “ ground _ s1 “ varq ;

• or s “ gpα1, . . . , αnq and s1 “ gpβ1, . . . , βnq and for all
1 ď i ď n it holds that αi ĺ βi.

The sub-scheme-relation constitutes an ordering on in-
stantiation schemes. We are interested in this ordering, since
it is related to imax ρ as stated by the following proposition:

Proposition 1. If l and l1 are duplicate-variable-free liter-
als, then the following holds: lρ ĺ l1ρ ñ imax ρplq ď
imax ρpl1q.

We define the lift of a duplicate-variable-free literal or
term with respect to a compatible instantiation scheme as
follows:

Definition 8 (lift). Let g be a duplicate-variable-free literal
or term, g1ρ be an instantiation scheme such that gρ ĺ g1ρ
and X‹ denote a new (i.e., unused) variable. The lift of g
w.r.t. g1ρ is defined by the function ρÒ as follows:

• ρÒpg, g1ρq :“ g; if gρ “ g1ρ
• ρÒpg, g1ρq :“ X‹; if g1ρ “ var and g is not a variable

• ρÒpg, g1ρq :“ fpρÒpu1, u
1
1
ρq, . . . , ρÒpum, u1

m
ρqq; if g “

fpu1, . . . , umq and g1ρ “ fpu1
1
ρ
, . . . , u1

m
ρq

Lifting a literal or a term with respect to an instan-
tiation scheme gρ essentially means to replace ground
terms by new variables such that the instantiation
scheme of the resulting literal is gρ. For exam-
ple, lifting in roompbobs mug, officeq with respect to
the instantiation scheme in roompground, varq results in
in roompbobs mug,Xq. Now we can propose the follow-
ing:

Proposition 2. For each duplicate-variable-free literal l,
neg l is derivable w.r.t. a state model sM if the following
holds:

1. �Dσ : sM $σ l; (l is not derivable)
2. Dl1ρPLρ : lρ ĺ l1ρ ^ |r$psM , ρÒpl, l1ρqq| “ imax ρpl1ρq

This means that we can derive neg l if l is not derivable
and it exists an instantiation scheme that is more general than
the instantiation scheme of l for which all possible instances
are already derivable. Proposition 2 constitutes a rule that
enables us to now derive, based on the definition of imax ρ,
that something cannot hold. We can now represent Proposi-
tion 2 as the following rule:

neg l Ð & l, imaxρ
pl1ρ, nq, lρ ĺ l1ρ,

|r$pρÒpl, l1ρqq| “ n
(GR22)

For example, we can now derive neg in roomp
bobs mug, officeq if in roompbobs mug, kitchenq and
imax ρpin roompground, varq, 1q are derivable. Thus, we
can now omit the domain specific rule DR2 in order to re-
move the redundancy without loosing derivable information.

We proposed an open-ended state model where all
statements are by default interpreted based on the open
world assumption (OWA). Nevertheless, in order to com-
bine the best of both worlds it is possible to define on
the predicate level if a literal should be interpreted based
on the CWA or the OWA. This property of a predi-
cate is called the interpretation model of a predicate and
can either be OWA or CWA. For example, imagine a
predicate connection(R1,D,R2) which describes that
room R1 is connected via door D with room R2. The
relation that is represented by this predicate is rather
static, thus even in dynamic unstructured environments
it is possible to equip an artificial agent a priori with
all true ground instances of this relation. In this situ-
ation it would be reasonable to define the interpretation
model of the connection predicate as CWA. This def-
inition implies neg connection(R1,D,R2) holds iff.
connection(R1,D,R2) cannot be derived—which in
fact is the negation-as-failure semantics as introduced by
(Clark 1987). Predicate based CWAs reduces the lack of
knowledge and can significantly improve the performance
of the plan generation and knowledge acquisition process.

A predicate is symbolically represented as rname{ns
where name is the name of the predicate and n denotes the
arity. The predicate of a literal l is denoted as l�. The fact
that a predicate is interpreted with respect to the CWA is rep-
resented by atomic formulas of the form cwaprname{nsq.
Thus, all predicates that are not defined as being interpreted
with respect to the CWA are—by default—interpreted based
on the OWA. In order to support CWAs at the level of pred-
icates we only have to add the following rule:

neg l Ð cwapl�q,& l (GR23)

Another featured knowledge representation construct is
the explicit definition of subsumption-relations between lit-
erals. More precisely, subsumption is a relation between

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

90

concepts which are constituted by literals. The subsump-
tion relation can only be defined for literals that have the
same arity. Let Xi p1 ď i ď nq be variables and
ppX1, . . . , Xnq and p1pX1, . . . , Xnq be literals. The fact
that a literal ppX1, . . . , Xnq is conceptually subsumed by
a literal p1pX1, . . . , Xnq is denoted as ppX1, . . . , Xnq Ď
p1pX1, . . . , Xnq. Information about subsumption relations
can now be exploited as follows:

l Ð l1 Ď l, l1 (GR24)

In other words, a literal is derivable if there is a subcon-
cept that is derivable. Moreover, it can be easily shown that
the following holds:

neg l1 Ď neg l Ð l Ď l1 (GR25)

Similarly, the fact that the literals ppX1, . . . , Xnq and
p1pX1, . . . , Xnq are disjunct is denoted as ppX1, . . . , Xnq [
p1pX1, . . . , Xnq. Knowledge about the disjointness is ex-
ploited by the following inference rule:

neg l Ð l [l1, l1 (GR26)

Knowledge Acquisition
We already proposed an answer to the question: “What to
look for?”. In this section we briefly survey our answer to
the second initial question:“Where to get it?”.

The central concept to answer this question is an ex-
ternal knowledge source. Anything that is able to pro-
vide additional information about the world (e.g., percep-
tion, human-computer interaction, low-level reasoning and
planning) might serve as an external knowledge source. Of
course, an external knowledge source has to conform to a
corresponding interface in order to enable the planner to sub-
mit queries to various external sources in an uniform man-
ner.

Artificial agents—especially robots—can usually acquire
information from a multitude of sources. Sources may dif-
fer strongly from each other in terms of the type of infor-
mation they can provide and other non-functional character-
istics (e.g., acquisition cost, reliability, degree of necessary
human interaction, world altering effects). Here we restrict
ourselves to the following two major properties of an exter-
nal knowledge source: the type of information it in princi-
ple can provide, and how expensive it is to answer a certain
question. Let ks be the symbolic representation of a knowl-
edge source and l be a literal. We further extend the repre-
sentation language of our state model by constructs of the
form applicable kspks, lq in order to denote that ks is in
principle able to provide new instances of l.

Now we can answer the question “Where to get it?” with:
“You can get the desired information from an applicable
knowledge source”.

How expensive it is to acquire new information from ex-
ternal sources strongly depends on: the information one is
looking for, the chosen knowledge source, and the current
situation. The expense that takes these three issues into ac-
count is called the acquisition cost. The fact that the cost to

acquire a new instance of a literal l from a knowledge source
ks is c is specified by constructs of the form acpks, l, cq.

Based on the applicability of external knowledge sources
and the expected acquisition cost, a planner can decide (i.e.,
plan) how to acquire relevant information (i.e., the open-
ended part of a relevant precondition) from external knowl-
edge sources.

Activities Model
The activities model of ACogDM contains knowledge about
planning steps and tasks. The term planning step is used
as an abstraction of planning operators (i.e., actions), HTN
methods and High-level actions (HLAs). Planning operators
and HTN methods are mainly defined as in (Ghallab, Nau,
and Traverso 2004) and HLAs are mainly defined as in (Rus-
sell and Norvig 2010). Additionally, it is possible to specify
a cost for each planning step. Please note that specifying the
cost of an action or an HTN method is not a new idea and,
for example, also supported by SHOP2 (Nau et al. 2003).

In many domains there are tasks respectively goals for
which a lot of possible solutions exist. However, in the light
of additional domain knowledge one can often significantly
reduce the number of possible plans and thereby reduce the
computational effort. Continual planning approaches bene-
fit to a special degree from the reduction of alternative solu-
tions, because less alternatives usually also means less un-
necessary execution of planning operators. And execution is
often (e.g., in robotics) a time intensive process.

For forward-search HTN planning (e.g., SHOP (Nau et al.
1999)) we propose to support additional domain knowledge
which makes it possible to reduce the number of alternative
plans for a given task.

Example 2 For example, let us assume that we instruct
a robot to pick up Bob’s mug from the kitchen table
(pick uppbobs mug, kitchen tableq) and there is exactly
one HTN methods that always decomposes this task into the
subtasks rgotopkitchen tableq, grasppbobs mugqs. More-
over, let us assume that there are in principle several differ-
ent ways to go into the kitchen. Nevertheless, how the robot
actually performs the task of going into the kitchen does not
affect the task of grasping Bob’s mug. This information can
be exploited in a situation where a planner successfully gen-
erated a plan for the purpose of getting into the kitchen and
then realizes that it is impossible to grasp Bob’s mug (e.g.,
because the mug is in another room). In this situation it ob-
viously does not make sense to backtrack and try to find an
alternative plan for the task gotopkitchen tableq. A planner
that knows that these tasks can be solved independently can
first generate a sufficiently good plan for gotopkitchenq, cut
alternative decompositions for gotopkitchenq and then plan
to grasp Bob’s mug.

In ACogDM it is possible to express the in-
dependency of subtasks by task lists of the form
rtt1, . . . , tmu, . . . , ttm`k, . . . , tm`k`jus such that
one can plan individually for each set of tasks em-
braced by ’tu’. For Example 2 one can repre-
sent the subtasks of pick uppbobs mug, kitchenq as
rtgotopkitchen tablequ, tgrasppbobs mugqus.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

91

Related Work
Most existing automatic theorem proving or knowledge rep-
resentation and reasoning systems, including planning do-
main models, do not systematically analyze failed inferences
or queries. The only known exception is the “WhyNot” tool
of PowerLoom (Chalupsky and Russ 2002) which tries to
generate a set of plausible partial proofs for failed queries.
Nevertheless, “WhyNot” is rather a debugging tool that tries
to generate human readable explanations that describe why
the overall reasoning process failed. Therefore, this ap-
proach is not adequate for the objectives of this work.

Exploiting local closed world assumptions is also featured
by PowerLoom (Chalupsky, MacGregor, and Russ 2010)
and has also been proposed by (Etzioni, Golden, and Weld
1997).

The approach of (Dornhege et al. 2009) also makes it pos-
sible to integrate external components into the planning pro-
cess. However, integration is not done autonomously (i.e.,
by reasoning on the need to acquire information from exter-
nal sources), but predefined in the domain description.

Converting knowledge from one representation scheme to
another in general and particularly converting an ontology
(e.g., a description logic based representation) to a definite
program is not a new idea. The integration of description
logic and logic programming is currently an active research
topic (Motik and Rosati 2007). How an OWL based on-
tology can be converted to prolog programs is described in
(Samuel et al. 2008). Furthermore, it is possible to express a
subset of OWL directly as a logic program, namely, a de-
scription logic program (Hitzler, Studer, and Sure 2005).
Description logic has been used in many different aspects
in planning systems (Gil 2005). An approach that combines
HTN planning and description logic reasoning is described
by (Hartanto and Hertzberg 2008).

Discussion and Conclusion
We have presented an open-ended domain model based on
definite clauses that can be extended by additional con-
structs. The proposed conceptualization of open-endedness
allows us to automatically determine relevant but unknown
information which makes additional planning alternatives
possible. In particular, it often makes it possible to find any
plan at all if insufficient information is a priori available.

We observe definite clauses to be a solid representational
basement that makes it relatively easy to extend the state
model language by additional constructs. Furthermore, we
define several additional state model constructs that help to
deal with the special challenges of open-ended domains as
well as exemplify how a basic state model can be succes-
sively extended. The additional state model constructs so
to speak reduce the “open-endedness” of a state model by
enabling it to rule out possible extensions of a state model.

Acknowledgements
This work is founded by the DFG German Research Founda-
tion (grant #1247) – International Research Training Group
CINACS (Cross-modal Interactions in Natural and Artificial
Cognitive Systems)

References
Chalupsky, H., and Russ, T. A. 2002. Whynot: Debugging
failed queries in large knowledge bases. In AAAI/IAAI, 870–
877.

Chalupsky, H.; MacGregor, R. M.; and Russ, T. 2010. Pow-
erLoom Manual (Version 1.48). University of Southern Cal-
ifornia, Information Sciences Institute.

Clark, K. L. 1987. Negation as failure. Logic and databases
293–322.

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Bren-
ner, M.; and Nebel, B. 2009. Semantic attachments for
domain-independent planning systems. In Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS), 114–121. AAAI Press.

Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. Artif. Intell.
89(1-2):113–148.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning Theory and Practice. Elsevier Science.

Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.

Hartanto, R., and Hertzberg, J. 2008. Fusing dl reasoning
with htn planning. In KI, 62–69.

Hitzler, P.; Studer, R.; and Sure, Y. 2005. Description logic
programs: A practical choice for the modelling of ontolo-
gies. In 1st Workshop on Formal Ontologies Meet Industry,
FOMI’05, Verona, Italy, June 2005.

Motik, B., and Rosati, R. 2007. A faithful integration of
description logics with logic programming. In IJCAI, 477–
482.

Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In IJCAI, 968–
975.

Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal on Artificial Intelligence Research 20.

Nau, D. S. 2007. Current trends in automated planning. AI
Magazine 28(4):43.

Nguyen, N. T. 2008. Advanced Methods for Inconsistent
Knowledge Management. Springer.

Nilsson, U., and Maluszynski, J. 1995. Logic, Program-
ming, and PROLOG. New York, NY, USA: John Wiley &
Sons, Inc.

Russell, S. J., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall.

Samuel, K.; Obrst, L.; Stoutenburg, S.; Fox, K.; Franklin,
P.; Johnson, A.; Laskey, K. J.; Nichols, D.; Lopez, S.; and
Peterson, J. 2008. Translating owl and semantic web rules
into prolog: Moving toward description logic programs. In
Theory and Practice of Logic Programming, volume 8, 301–
322.

Subrahmanian, V. S. 1999. Nonmonotonic logic program-
ming. IEEE Trans. Knowl. Data Eng. 11(1):143–152.

Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of pddl axioms. Artificial Intelligence 168(1-2):38–69.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

92

Taking Advantage of Domain Knowledge in Optimal Hierarchical Deepening
Search Planning

Pascal Schmidt†‡, Florent Teichteil-Königsbuch† and Patrick Fabiani†

†ONERA - The French Aerospace Lab
F-31055, Toulouse, France

firstname.lastname@onera.fr

‡Université de Toulouse
F-31000, Toulouse, France

Abstract

In this paper, we propose a new algorithm, named HDS
for Hierarchical Deepening Search, to solve large struc-
tured classical planning problems using the divide and
conquer motto. A large majority of planning problems
can be easily and recursively decomposed in many eas-
ier subproblems, what is efficiently exploited for in-
stance by domain-independent approaches such as land-
mark techniques or domain-knowledge formalisms like
Hierarchical Task Networks (HTN). We propose to ex-
ploit domain knowledge in the form of HTNs to guide
the generation of multiple levels of subgoals during
the search. Compared with traditional HTN approaches,
we rely on task effects and task-level heuristics to re-
cursively optimize the plan level-by-level, instead of
depth-first non-optimal planning in the network. Higher
level plan solutions are decomposed into subproblems
and refined into finer level plans, which are in turn de-
composed and refined. Backtracks between levels oc-
cur when costs of refined plans exceed the expected
costs of higher-level plans, thus ensuring to produce op-
timal plans at each level of the hierarchy. We demon-
strate the relevance of our approach on several well-
known domains compared with state-of-the-art domain-
knowledge planners.

INTRODUCTION
Automated planning is a field of Artificial Intelligence
which aims at automatically computing a sequence of ac-
tions that lead to some goals from a given initial state. Many
subareas have been explored, some assuming that effects of
actions are deterministic (Ghallab, Nau, and Traverso 2004).
Even in this case, solving realistic problems is challenging
because finding a solution path may require to explore an ex-
ponential number of states with regard to the number of state
variables. To cope with this combinatorial explosion, effi-
cient algorithms use heuristics, which guide the search to-
wards optimistic or approximate solutions. Remarkably, hi-
erarchical methods iteratively decompose the planning prob-
lem into smaller and much simpler ones.

In a vast majority of problems, the planner must deal with
constraints, such as multiple predefined phases or protocols.
Such constraints generally help solving the planning prob-
lem, because they prune lots of search paths where these
constraints do not hold. They can be given by an expert of

Figure 1: Example of path planning graph

Figure 2: Path planning graph with high level choice

the problem to solve — which is often the case in many re-
alistic applications such as military missions — or before-
hand automatically deduced from the model. In this paper,
we assume that these constraints are known and given to the
planner. We thus propose a new method to model and solve a
deterministic planning problem, based on a hierarchical and
heuristic approach and taking advantage of these constraints.

Intuition on a simple example
We illustrate our idea on a simple navigation problem,
but our approach pre-eminently targets complex structured
problems formalized in a kind of hierarchical STRIPS se-
mantics (Ghallab, Nau, and Traverso 2004). In the graph of
Figure 1, the robot must go from A to L. A human user who
see this graph can immediately say that there is an important
choice to do: go around the wall by the north through G or
by the south through H, as shown in Figure 2. Therefore, it
seems to us interesting to solve this problem at coarse grain,
using this information to decide where we should pass be-
fore exploring at fine grain this solution, avoiding to explore
the non-chosen branch. Refinement of the chosen path into
elementary steps may question the previous choice, reveal-
ing an unseen difficulty. For instance, there may be a hole
in E discovered when exploring the path via G in details,
forcing the agent to reappraise the choice of this path and

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

93

changing its higher level decision to the path via H. We then
replan at coarse grain using this new information, until the
solution converges.

Intuitively, this approach consists in making jumps in the
state graph, then refining these jumps by recursively doing
shorter ones until we apply only elementary steps.

Related work

The idea of adding domain-dependent control knowledge to
help finding a plan is wide spread. We can cite TLPlan (Bac-
chus and Kabanza 2000) in which the authors use tempo-
ral logic (LTL) to give properties defining “good” plans (i.e.
cheap plans that lead to the goal) over a sequence of actions
or states (not only the current state). This allows for very
precise guidance of the search either by checking if the cur-
rent partial plan is correct, or if it may lead to a complete
plan that satisfies the formulas.

Other approaches use what is called procedural knowl-
edge: an user, who writes a planning problem, knows by ex-
perience some techniques, some groups of actions (and re-
cursively) that achieve a subgoal and knows how to break
down each goal and subgoal into finer subgoals. Several
works are done in this field. In Hierarchical Task Networks
(HTNs) (Erol, Hendler, and Nau 1994), the global mission
is recursively broken down into a combination of subtasks,
until the planner applies only elementary actions. The High-
level Actions (HLA) framework (Marthi, Russel, and Wolfe
2008) differs from HTNs on the fact that no recipe is given
for the whole mission: the planner has to built the first high
level plan then refine it the same way than for HTNs. Plan-
ning algorithms are also associated with the BDI formalism
(de Silva, Sardina, and Padgham 2009). Our main difference
with these formalisms and associated planning techniques
is that we plan one hierarchical level at a time and keep a
coherence in the abstraction level of the different tasks in
each hierarchical plan. Thus, we allow the planner to fore-
see shortcuts and difficulties at each level of the hierarchy,
avoiding to plan an elementary step without knowing the
long-term effect of this step at coarse grain.

Other works aim at automatically learning some kind of
procedural knowledge. For instance, Landmarks Planning
techniques as used in Lama (Richter, Helmert, and West-
phal 2008), where the planner deduces a set of subgoals
from the problem, Macro-FF (Botea et al. 2005), where the
planner tries to make groups of actions that have interesting
effects, or HTN-MAKER (Hogg, Muñoz-Avila, and Kuter
2008) where the algorithm tries to generalize tasks by ana-
lyzing admissible plans. While these works are interesting,
they assume that knowledge is learned rather given by hu-
man experts, what definitely targets applications with differ-
ent design and operational constraints.

We now present how we extended the HTN formalism to
implement our contribution, and the algorithm we developed
to solve problems expressed in this formalism. In a last part,
we compare the performances of our planner with SHOP2,
dynDFS and TLPlan on several planning benchmarks.

��������	��

��������	��
�������	��
� ����

�������	��

�������	��
������	��
� ����

Figure 3: Example of HTN

FORMALISM
PDDL planning The goal of “classical” planning is to
compute a strategy called plan to reach a goal with the ex-
act knowledge of the applicable actions and their effects in
a completely known world. A problem of classical planning
is a P = (s0, g, A) where s0 is the initial state of the world,
g the goal to reach, defined as a set of states, and A a set
of actions. The initial state of the world and all the other
states of the world are represented by a set of literals L de-
scribing the world. A is the set of actions a. The goal is
defined by a set of literals either true or false. If all liter-
als (and their value) are given in the goal description, the
goal state is unique, otherwise it defines a set of states. Each
action a is a triplet a = (name(a),precond(a),effects(a)),
where name(a) is the name of the action, precond(a) are the
preconditions required on the current state to apply a, and
effects(a) are the modifications done on the current state by
the application of a. A plan π is a sequence of actions. π is a
solution of the problem if by the application of all its actions
from s0 it leads to g.

In order to describe planning problems, the PDDL lan-
guage (presented on (Fox and Long 2003)) and its various
extensions are widely used. It is based on the Strips formal-
ism, and breaks the problem into two parts, the domain that
contains the set of actions A, and the problem that contains
the initial state of the world s0 and the goal definition g.

Expressing hierarchy with HTNs A Hierarchical Task
Network (HTN) (Erol, Hendler, and Nau 1994) is an exten-
sion to classical planning that consists in modeling tasks,
that is, abstract actions with different methods to break them
down. A HTN problem is a tuple (s0, g, A, T), where s0 is
the initial state, g is the goal, A the set of elementary actions
(as above), and T the set of tasks. A task t ∈ T is a set of
preconditions and a set of methods: t = (precond(t),M(t))
where precond(t) is a literal formula that represents the set
of states where the task can be performed, and M(t) is the
set of methods m(t). Each method m(t) defines a possible
decomposition of the task into subtasks or elementary ac-
tions. There are two ways of breaking down a task, parallel
and sequential. A parallel decomposition gives the subtasks
the possibility to be executed in parallel whereas a sequen-
tial decomposition forces the planner to put the subtasks one

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

94

after the other in the given ordering. In most applications,
the set of tasks is given by a human expert of the domain,
and have a significant influence on the performance of the
planner.

A graphical representation of a HTN is shown on Fig-
ure 3. Tasks and elementary actions are represented in boxes,
a horizontal line shows the different choices of methods for
that task, and slanted bars show the decompositions of meth-
ods. Sequential decompositions are represented by arrows.
We can see here a model to solve a path planning prob-
lem, where moveTo ?a ?l represents the highest level
task (the mission) consisting for an agent ?a to reach the
location ?l, jumpTo a high level move and goto an ele-
mentary step. The void task is the termination case, neces-
sary to stop the recursion.

Meta-effects to link tasks In the standard HTN formal-
ism as defined by (Erol, Hendler, and Nau 1994), each task
represents a group of methods to achieve a sub-goal, but the
planner does not have knowledge of the accomplished sub-
task. Therefore, it is impossible to tie up a task after an-
other one without exploring it in details to know its effects.
In other terms, the standard formalism does not allow for
helpful coarse grain exploration of the problem. In order to
use HTN tasks directly as macro-operators at any level, the
first extension we need to add to the HTN formalism must
give the planner the ability to know the effect of a task.

In order to do so, we introduce meta-effects for HTNs.
These meta-effects are attached to tasks like effects are at-
tached to elementary actions. This allows the planner to get
a knowledge of the main effects of a task and to assemble
high-level tasks to make a high level plan. With that knowl-
edge, it will be able to check the pre-conditions of the next
task and compute a high-level heuristic.

Our task t is now a set of preconditions, a set of methods
and a set of effects: t = (precond(t),M(t), effects(t)).

Here is the BNF of the meta-effects in PDDL-like syntax:
<metaEffect> ::= ":metaEffect" <effect>

<effect> ::= <pEffect>
|"(not" <effect> ")"
|"(forall" "(" <typedVarLst> ")" <effect> ")"
|"(when" <cond> <effect> ")"
|"(and" <effect>+ ")"

<pEffect> ::= <atomicTermFormula>
|"(assign" <fHead> <fExp> ")"
|"(increase" <fHead> <fExp> ")"
|"(decrease" <fHead> <fExp> ")"

where <fHead> is a function, <fExp> an expression,
<atomicTermFormula> a boolean expression, <cond>
a boolean condition and <typedVarLst> a list of typed
variables.

An example is shown on Figure 4. We give meta-effects
to high-level tasks moveTo and jumpTo that give the re-
sult of the task, i.e. the position of the robot at the end of the
task. These meta-effects are written in a rounded box on the
graphic representations of HTN. Meta-effects can be more
or less precise depending on which points are considered as
relevant by the expert. Here, an estimated cost of a move
or a jump, computed with euclidean distance from the start-

��������	��

��������	��
�������	��
� ����

�������	��

�������	��
������	��
� ����

	���	��

	���	��

Figure 4: Meta-effects in HTN

ing point of the task to its destination, can be associated to
the meta-effect if the underlying planner can deal with it. In
PDDL, this example is written as:
:metaEffect

(and
(increase (cost) (dist (at ?a) ?l))
(assign (at ?a) ?l)

)

The level of precision of the meta-effects has an impor-
tant influence on the planning process: if they are exhaustive
with respect to the effects of the underlying actions, then the
effects of the task are totally predictable, and the choice of
a given task will not need to be reconsidered. Contrary to
the works by (Marthi, Russel, and Wolfe 2008), who also
define meta-effects, our effects are generally not complete,
i.e. some numerical estimations of the final state are not well
evaluated and some predicate changes are not present. This
simplification allows us to use meta-effects the same way as
normal effects in any forward planning algorithm.

Inspired by admissible heuristics in classical planning, we
define optimistic meta-effects such that the long term cost of
a meta-effect is lower than the real one.

Macro-tasks to avoid recursion Another weakness of
standard HTNs concerns the modeling of methods that must
be decomposed into an unknown number of subtasks (deter-
mined at planning time). For instance, consider our naviga-
tion graph of Figure 3. To break down the jumpTo task, we
need to recursively write that jumpTo is a sequence of one
goTo to a given point next to the starting point, followed by
a jumpTo from there to the goal.

This may cause several problems. For modelers and read-
ers who do not have expert programming skills, it is not
very intuitive to break this task down using recursion. One
must deal with termination cases, or ask oneself if he would
rather use right or left recursion. Most importantly, task re-
cursion is incoherent with our idea of doing jumps in the
state graph. At high level of hierarchy, the planner tries to
plan a moveTo by refining it into a jumpTo and a moveTo.
At the next level, it will be a goTo then a jumpTo, then an-
other jumpTo and a moveTo. That is, the computed plan
does not have any consistence in terms of hierarchy.

Thus, we introduce macro-tasks as another extension
in the spirit of regular expressions. The aim is to break

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

95

��������	��

�������	��
�

������	��
��

	���	��

	���	��
�

�

�

Figure 5: Macro-task example

down a task into an unknown number of subtasks that
are all at the same level in the hierarchy. A method
m is now defined as a precondition and a macro-task :
m = (precond(m),macroTask(m)). A macro-task is re-
cursively defined by several alternatives that express how
to group subtasks together, the terminal case being a single
subtask:
• ordered: subtasks are executed in sequence;
• multseq: a subtask is executed an unknown number of

times until a final condition is met;
• optional: a subtask is executed only if needed;
• pickOne: a subtask is executed, where the value of a vari-

able satisfying a given constraint is set.

Macro-tasks are lazily refined by the parser, so that the
planner’s algorithm described in the next section needs to
only assume that macro-tasks are sequences of subtasks.

The definition of the grammar is the following:
<macroTask> ::= <naryTask>

| ordered <macroTask>*
| multseq <macroTask> until <cnd>
| optional <macroTask>
| pickOne <varLst> <cnd> <macroTask>

where <varLst> is a list of variables, <naryTask> a
subtask with its parameters and <cnd> a boolean test.

An example of this extension is presented on Figure 5.
Compared with Figure 4, the model is simpler and more un-
derstandable, and above all, all different occurrences of a
same task are all at the same level of the hierarchy.

The PDDL decomposition of jumpTo is written as:
:subtasks

(:multseq
(:pickOne (?l1 - loc) (isElem (at ?a) ?l1)

(goTo ?a ?l1)
)

until (= (at ?a) ?l)
)

where loc is a type representing a location and isElem
is a boolean function that tests if the path between its two
arguments is elementary and possible or not. The keyword
multseq represents a set of subtasks with an unknown ar-
ity, and pickOne defines the point of choice of a given vari-
able.

ALGORITHM DESCRIPTION
In this section, we present an algorithm that is able to solve
any problem expressed in the previous formalism. The main
idea of this algorithm, named HDS for Hierarchical Deep-
ening Search, consists in computing first a plan with a low

level of precision, then using this plan as a guide to compute
a more precise plan, until we obtain a detailed plan that con-
tains only elementary actions. At each step, the algorithm
backtracks to a previous higher level plan if the cost of the
current plan is higher than the expected quality of the lower-
level plans.

Using a lower precision plan as a guide
Let n be a given level of the hierarchy. We assume first that
complete plans have been constructed for all upper levels
including n. The by-level planner (see Algorithm 1) uses
the macro-tasks at level n + 1 and the plan Pn at level n to
compute a higher precision plan Pn+1 that solves level n+
1. We can use any forward planning algorithm, for instance
A∗, slightly modified to handle constraints from Pn in its
exploration.

The first idea is that the by-level planner uses all tasks
(actions and macro-tasks) as elementary actions, using the
meta-effects of macro-tasks as normal effects. The second
idea consists in keeping track, for each state, of its position
in the HTN by means of an extended state σ := (σ.s, σ.p),
composed of the state σ.s and the position σ.p in the HTN.
Using this extended state, we can significantly restrict the
branching factor: in each state, we pick-up actions that can
be applied according to the position σ.p in the HTN among
the ones whose preconditions are satisfied in state σ.s. This
is quite similar to works by (Kuter and Nau 2005) and
(Marthi, Russel, and Wolfe 2008), except that we run this
algorithm at each level of the hierarchy, not only the finest
one.

We initialize the forward planner with a root node con-
taining the initial state of the problem (lines 2 to 5). In each
state that is explored by the forward planning algorithm, we
look at the position in the upper plan and the possible so-
lutions proposed by the method decomposition of the upper
task. Among all of these solutions, we keep only the applica-
ble ones according to the current state and the preconditions.

The possible successors are defined by the upper plan and
the methods of the meta-actions. We keep track of the cur-
rent task of the upper plan and the current position in the
methods decomposition of the task. According to the posi-
tion in the higher plan, we have different branching possibil-
ities:

• if just entered a primitive action: apply it in the new plan
and go to the next task,

• if just entered a meta-action: successors are the different
acceptable methods according to their preconditions,

• if ordered/parallel: apply in sequence/parallel the differ-
ent sub-tasks, without choices,

• if optional: develop two successorss, one with the optional
subtask inserted, one without,

• if multseq/multpar: develop in sequence/parallel the sub-
task until the end condition is true

• if pickone: develop all successorss with all combination
of variables accepted by the condition,

• if face a subtask: check the preconditions, if true apply the
effects, otherwise declare the branch as dead-end.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

96

Using an algorithm inspired from A* for this forward
planner, we have the algorithm 2. As in A*, we maintain a
planning tree for each level of hierarchy. This tree contains
at each node:

• a state (node.σ)

• the lowest cost to reach it (node.cost),

• an estimation of the cost to reach the goal (computed by
an heuristic) (node.estim)

• and the successors of this node (node.succs), that is, the
reachable states according to the different applicable and
acceptable actions.

The algorithm rides recursively through this tree, choos-
ing at each node its most promising successor, that is, the
one with the lowest sum of its cost and its estimated cost
(line 24). Once a tip node is reached, that is, a node with-
out successor, the algorithm applies all the applicable and
acceptable actions from this state (line 8), and affects the
resulting states as successors for the current node (line 15).

The algorithm stops when the goal set has been reached or
when it is established that the problem has no solution, that
is, when no more node can be developed. It then extracts
the plan from the A* tree (∅ if the problem has no solution)
(line 5).

Algorithm 1: By-level planner: Pn+1 = by-level(Pn)

1 begin
// Pn is the higher level plan

2 root.σ ← initState;
3 root.cost ← 0;
4 root.estim ← heurist(root.σ);
5 root.succs ← ∅;
6 Pn+1 = runPlanner(root,Pn);
7 return Pn+1;

Links between levels
We present now (see Algorithm 3) how we construct the
complete hierarchical plan (defined at all levels of the hier-
archy) by refining or backtracking between plans iteratively
constructed by the by-level planner.

We initialize the planner with the init task of the problem
(line 2), that is used by the by-level algorithm as a guide to
compute the first plan. Then we keep an instance of the by-
level planner for each level. The by-level planner is launched
using the plan extracted from the upper level (line 5).

Then, once the currently lowest level (lets call it n) by-
level planner ends its work, we call a plan updater (line 10)
on the higher level plans. This updater reports the actual best
estimated cost to the final node of the upper by-level plan (at
level k, k < n). By propagating this cost to the whole best
branch of the planning structure, the updater will be able to
determine if the best plan is still the same or not(line 10).
This can happen if the meta-effects of a task were too opti-
mistic and the development of this task at a finer level has
shown an extra cost. In this case, another branch can pretend

Algorithm 2: Astar by-level planner:

1 begin runAStar(root,Pn)
2 goalReached ← false;
3 while root.cost< ∞ ∧ ¬goalReached do
4 goalReached ← aStarRecPlanner(node,Pn);

5 return extractPlan(root);

6 begin aStarRecPlanner(node,Pn)
7 if node.succs = ∅ then
8 Ast ← next(node.σ.p) ∩ acceptable(node.σ.s);
9 forall the a ∈ Ast do

10 node’.σ.s ← apply(a.effects, node.σ.s);
11 node’.σ.p ← track(node.σ.p, a, Pn+1);
12 node’.cost ← node.cost
13 + cost(node.σ.s, a, node’.σ.s);
14 node’.estim ← heurist(node’.σ);
15 node.succs ← node.succs ∪ {node’};

16 if node.succs = ∅ then node.estim = ∞;
17 goalReached ← false;

18 else
19 if satisfies(node.σ.s,goal) then
20 goalReached ← true;
21 else
22 node’ ←
23 argminn’∈node.succs(n’.cost+n’.estim);
24 goalReached ← aStarRecPlanner(node’);
25 c ← minn’∈node.succs(n’.cost+n’.estim);
26 node.estim ← c - node.cost;

27 return goalReached;

to have better estimated costs to the goal and invalidate the
plan.

This updater is called on each plan, from level n − 1 to
level 0 (lines 8 to 13). At each step, the current evaluation of
the best possible plan is reevaluated and used for the directly
upper plan. The planning sequence starts again at the coarser
level where the best plan has changed.

We continue propagating the new cost estimation towards
the coarsest plan. For each level, we note if the plan has
been questioned or not. We then restart the computation at
the coarsest level which has been questioned.

This algorithm terminates if it finds a plan containing only
elementary tasks and which is not invalidated by the upper
by-level planners, that is when the final solution is found, or
when the estimated cost for the highest level by-level plan-
ner reaches infinity, that is, when it is estimated that no plan
can be computed to reach the goal with the given decompo-
sition.

HDS Properties
HDS properties first rely on the HTN and its meta-effects. If
the solution (resp. optimal solution) is not reachable through
the HTN, HDS will not be able to find any solution (resp.
the optimal solution) of the problem. Assuming the HTN is
well written, i.e. the optimal solution is reachable, the plan-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

97

Algorithm 3: Hierarchical planner

1 begin
2 P0 ← init task;
3 n← 0;
4 while (cost(P0) < ∞) ∧ (¬is elem(Pn)) do
5 Pn+1 ← by-level(Pn);
6 max cost ← cost(Pn+1);
7 last change←n+1;
8 for i ← n to 1 step −1 do
9 old Pi ←Pi;

10 reeval(Pi,max cost);
11 if Pi �= old Pi then
12 last change ← i;

13 max cost ← cost(Pi);

14 n← last change;

15 if cost(P0) = ∞ then
16 return ∅;
17 else
18 return [P0 : Pn];

ner may still consider an intermediate solution that does not
allow the planner to reach the optimal solution if the meta-
effects are not optimistic (i.e. their long-term cost are higher
than the real cost) ; the backtrack process will not be able to
detect it.

Second, the properties of our algorithm depends on the
properties of the by-level planner used:
Correctness. If the by-level planner is correct, complete and
optimal (i.e. it finds the optimal solution iff there exists a so-
lution at a given level), HDS is still: (1) correct, because
the finest plan is computed only with the elementary actions
and by the by-level planner; (2) complete and optimal, since,
given optimistic meta-effects, the cost of any plan is always
lower to the best one, that is no plans with a higher cost than
optimal ones can be proposed as a solution and the plan-
ner cannot conclude that no plan can reach the solution (that
would be a plan with infinite cost).
Termination. If the by-level planner terminates, as the min-
imum estimated costs strictly increases at each hierarchical
backtracks and there is a finite number of hierarchical lev-
els, HDS will converge to the solution or conclude to the fact
that no solution exists in a finite time.

EXPERIMENTAL STUDY
Implementation
We implemented our planner in the OCaml language, which
is a functional language, like Lisp, therefore suitable for our
highly recursive algorithm. We tuned the garbage collector
of the language, forcing it to optimize the RAM occupa-
tion. This optimization made us gain approximatively 40%
in speed, which is however not significant compared to other
improvements obtained over some state-of-the-art domain-
knowledge planners as shown in the following.

To implement our by-level planner, we chose the Dijk-

stra algorithm, modified to use macro-tasks and informa-
tion from upper plan. Even if there exist far more efficient
algorithms in the literature, we chose to implement a very
simple and quite naive by-level planner in order to highlight
the relevance of our global Hierarchical Deepening Search
approach (efficiency does not come from the by-level plan-
ner but from our general framework). Along the same line,
we do not use generic heuristics, such as Hmax or Hadd
(Haslum and Geffner 2000). Without these heuristics, we
have much less constraints on the formalism, and our plan-
ner accepts object functions, i.e. functions that return an ob-
ject instead of just a number. We can also use non linear
functions or effects.

Comparisons with other planners

Our planner HDS is optimal given an HTN decomposition
on the problem. We compared HDS with TLPlan (Bacchus
and Kabanza 2000), a non optimal domain-dependent plan-
ner based on LTL temporal logic ; with dynDFS (Pralet
and Verfaillie 2008), a domain-dependent optimal temporal
planner based on the Timelines formalism ; and with SHOP2
configured to find the optimal solution, which is a successful
HTN planner (without meta-effects). The first three tracks
presented in the next are from the IPC3 planning competi-
tion (ICAPS 2002). All planners were allowed 2Gb of RAM
and 10 minutes to plan each problem on a 3GHz Intel pro-
cessor.

Satellite. The Satellite STRIPS domain comes from IPC3
where a fleet of satellites have to take pictures of various
events with various instruments. In the STRIPS version,
each action has a time cost of one. The aim is to minimize
the total time of the mission. Parallelism between satellites
is authorized. In this domain, we compared HDS with dyn-
DFS and with TLPlan. SHOP2 is not presented here as we
did not have HTNs for SHOP2 on this track.

Figure 6 presents planning times and costs for the differ-
ent planners. Since parallelism of tasks is not yet available
on HDS, our HTN decomposition is quite weak, including
only tasks to initialize a sensor (turn towards an acceptable
ground station then switch on the sensor and calibrate it) and
to take a picture (turn to event then take picture), and cannot
really take advantage of the hierarchical framework.

HDS performances are similar to dynDFS, which is spe-
cialized in parallelism, but can solve fewer problems. In par-
ticular, HDS finds optimal plans for the problem that could
be solved. As a reference, we report also the costs found
by the domain-independent planner Lama (Richter, Helmert,
and Westphal 2008) which, as TLPlan, cannot take advan-
tages of parallelism in term of costs. Lama was set in the
optimizing mode, and even if it does not always get the opti-
mal cost (in a non parallelized plan), it can often find a much
better solution than the one found by TLPlan, showing that
TLPlan solutions are far from the optimal ones (TLPlan did
not take advantage of parallelism and get high costs as soon
as the problem has more than one satellite).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

98

Figure 6: Satellite

Figure 7: HDS vs SHOP2

Freecell. This domain comes also from IPC3 and is in-
spired from by the famous Microsoft Windows game. We
compared ourselves with SHOP2, giving SHOP2 exactly
the same HTNs as the ones given to HDS, except meta-
effects and macro-tasks that cannot be handled by SHOP2.
We configured these HTNs to find the optimal solution at the
finest level of the hierarchy. We forced the planners to send
to the home location all unneeded cards, as automatically
done in the Windows game. We provided another method
to move a block of cards of the same column if enough
free cells are available. Figure 7 presents planning times
for both planners. Costs are not plotted since HDS is op-
timal and SHOP2 is configured here to be optimal. SHOP2
is able to solve only the first problem, whereas HDS can
solve the seven first ones. Additionally to meta-effects and
macro-tasks, this difference can be due to several other fac-
tors: Lisp is far less efficient than OCaml and HDS can deal

with more abstract functions and denser problem descrip-
tions than SHOP2, leading to more efficient computation.

Zeno Traveler. In this domain also extracted from IPC3,
the planner has to make people reach their destination by
plane. The planes have two speed modes: slow and zoom.
Slow consumes far less fuel than zoom, but it is far slower. In
the numeric version, as each move only takes one time step,
zoom is never the best solution. Like Satellite, the lack of
parallelism between tasks in our model restricts the capac-
ities of HDS. We only gave as knowledge the information
that the plane can only go to destinations where someone is
waiting or where someone needs to go, and that someone
already at his destination is not allowed to board the plane.

We compared HDS with SHOP2 in its optimal mode, us-
ing its IPC3 HTN decomposition. We can see on Figure 7
the advantage of HDS: in the first two problems, with just
one plane, HDS computation time is around 20 millisec-
onds, whereas SHOP2 computation time is around 200 mil-
liseconds. For the other problems, the planner must choose
among multiple planes, and even if parallelism is not really
taken into account, SHOP2 cannot solve any of these prob-
lems, whereas HDS can solve the third problem in 14 sec-
onds.

Explore and Guide. This domain particularly puts in ev-
idence the advantages of our approach. The goal is, for a
helicopter, to drive back intruders to the border, having ex-
plored their known exit path in order to ensure that no trap
is present. The zone is described as a discrete grid, the heli-
copter knows the position and the exit path of each vehicle
and must perform a ”explore” action on each cell of the exit
path to prepare the drive back procedure of each vehicle.
The aim is to minimize the number of explored cells and the
mileage of the helicopter.

In this problem, non concurrent high-level tasks are easy
to identify and their effects and costs are well approximated.
Once the highest-level plan is computed, it is very helpful
for the computation of the exploration strategy, that is split
into sub-zones by an expert.

We gave to SHOP2 exactly the same HTNs as to HDS,
except meta-effects and macro-tasks. The main algorithmic
difference is that HDS first explores at low precision and
then refines this plan (with backtracks), whereas SHOP2 di-
rectly explores at the finest precision level. Both planners
return the same optimal solution for each problem. The re-
sults are presented in Figure 7, where we can see that HDS is
still between one and two orders of magnitude quicker than
SHOP2.

CONCLUSION AND FUTURE WORKS
In this paper, we proposed to use both macro-operator tech-
niques and procedural control knowledge within the same
informed planning framework. We introduced the meta-
effects and macro-tasks extensions to the HTN formalism,
allowing us to jump forward in the state graph. We also pro-
posed an algorithm named HDS that explores, level by level,

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

99

such a structure, thus detecting traps and optimizing an ab-
stract plan before refining it into a precise executable plan,
backtracking to another high-level solution if necessary. We
furthermore proved that HDS, thanks to the proposed ex-
tensions to the HTN formalism, is very efficient and opti-
mal given the decomposition on structured problems. This
contribution provides an assistance to write large planning
problems using domain expertise, and to reduce the com-
plexity of the underlying planning algorithm. The required
domain expertise can be also automatically extracted from
the model, and used in our approach.

In a close future, we plan to implement real parallelism,
not only in our model but also in our planner. We expect
gains by introducing more human expertise in the domains
and better performances on some problems. Since our algo-
rithmic approach is quite generic, especially concerning the
by-level planner, we plan to extend our contribution to other
planning schemes, such as probabilistic planning, using a
forward MDP by-level planner.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.

de Silva, L.; Sardina, S.; and Padgham, L. 2009. First prin-
ciples planning in bdi systems. In Autonomous Agents and
Multiagent Systems (AAMAS-09).
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
complexity and expressivity. In AAAI’94: Proceedings of the
twelfth national conference on Artificial intelligence (vol. 2),
1123–1128.

Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of Arti-
ficial Intelligence Research 20:2003.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning. San Francisco, CA, USA: Morgan Kaufmann.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. 140–149. AAAI Press.

Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. Htn-maker:
Learning htns with minimal additional knowledge engineer-
ing required. In Association for the Advancement of Artifi-
cial Intelligence (AAAI-08).
ICAPS. 2002. Planning competition.
http://ipc.icaps-conference.org/.

Kuter, U., and Nau, D. S. 2005. Using domain-configurable
search control for probabilistic planning. In AAAI.
Marthi, B.; Russel, S.; and Wolfe, J. 2008. Angelic hierar-
chical planning: Optimal and online algorithms. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-08).
Pralet, C., and Verfaillie, G. 2008. Using constraint

networks on timelines to model and solve planning and
scheduling problems. In Proc. ICAPS.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In 23rd AAAI Conference on Artificial In-
telligence (AAAI-08).

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

100

Automatic Polytime Reductions of NP Problems into a Fragment of STRIPS

Aldo Porco
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

aldo@gia.usb.ve

Alejandro Machado
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

alejandro@gia.usb.ve

Blai Bonet
Departamento de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Abstract

We present a software tool that is able to automatically trans-
late an NP problem into a STRIPS problem such that the for-
mer problem has a solution iff the latter has one, a solution
for the latter can be transformed into a solution for the former,
and all this can be done efficiently. Moreover, the tool is built
such that it only produces problems that belong to a fragment
of STRIPS that is solvable in non-deterministic polynomial
time, a fact that guarantees that the whole approach is not an
overkill. This tool has interesting applications. For example,
with the advancement of planning technology, it can be used
as an off-the-shelf method to solve general NP problems with
the help of planners and to automatically generate benchmark
problems of known complexity in a systematic and controlled
manner. Another interesting contribution is related to the area
of Knowledge Engineering in which one of the goals is to de-
vise automatic methods for using the available planning tech-
nology to solve real-life problems.

Introduction
Deciding plan existence for STRIPS is PSPACE-complete
(Bylander 1994). This means that any decision problem that
can be solved by a deterministic algorithm that uses polyno-
mial space can be reduced in polynomial time to deciding
plan existence of a STRIPS problem. However, although
such reductions exist, there is no known algorithm that au-
tomatically generates a STRIPS problem from an arbitrary
PSPACE problem (up to our knowledge).

Such an algorithm would be a valuable tool for a num-
ber of reasons. First and most importantly, the algorithm
would provide the basis for developing a General Problem
Solver able to tackle PSPACE problems, suitably described
in a high-level declarative language, by translating them into
STRIPS and then applying one of the many available plan-
ners. Second, given the recent (and future) advancements in
the area, the algorithm would be of practical interest too be-
cause it would offer an easy way to solve concrete instances
of difficult problems and, in some cases, competitively with
other specialized algorithms. Finally, by generating STRIPS
problems in a controlled manner, one could design bench-
mark problems in order to evaluate the heuristics or algo-
rithms used in planning. All these applications assume in

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one way or another that the input is a declarative description
of a PSPACE problem, that a solution for the input problem
can be efficiently computed from a solution to the planning
problem, and that solving the latter problem is no more dif-
ficult than solving the former problem.

In this paper we take a first step in constructing such a tool
by considering the class NP instead of PSPACE. Nonethe-
less, the result is an interesting tool that is able to translate a
given NP problem, expressed as a decision problem, into a
STRIPS problem that satisfies above properties. We present
the formal translation and its properties, and evaluate it on
classical NP-complete problems such as satisfiability and the
computation of Hamiltonian paths on digraphs.

The input problem is specified using the existential frag-
ment of second-order logic that is known to capture NP. This
is a fundamental result in the area of Descriptive Complex-
ity Theory (DCT) on which the tool is firmly grounded. On
the other hand, the guarantee that the planning problem is no
more difficult than the input (in the worst case) is achieved
by targeting a class of STRIPS problems for which plan ex-
istence can be decided in NP.

Part of the contribution is related to the area of Knowledge
Engineering for Planning and Scheduling (KEPS) that fo-
cuses on the practical deployment of planning resources for
solving real-life problems. The tool presented in this work
produces a planning problem that can be fed into a planner
from a declarative description of a NP problem. Thus, the
tool can be thought as a KEPS tool that permits the use of
planning technology for solving real-life problems that are
not directly specified in PDDL. However, differently from
other tools, our framework permits to formally characterize
the scope, soundness and completeness of the tool, and to
obtain worst-case guarantees on the complexity of solving
the generated problems.

Our tool is not the first such tool. Cadoli and Schaerf
(2005) develop one that translates a DATALOG-like specifi-
cation of an NP problem, called NP-SPEC, into a SAT prob-
lem that is then fed into a solver to find a solution to the input
problem. Hence, our proposal is quite similar to NP-SPEC,
yet we target STRIPS instead of SAT. Furthermore, unre-
stricted STRIPS as well as specifications based on second-
order logic go well beyond NP, and thus we have a clear
direction for extending the tool in the future.

Another related work is that of Mitchell and Ternovska

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

101

(2005) that proposes a general framework for describing
problems, in NP and beyond, that is based on the Model Ex-
tension (MX) problem. A simple parameterization of MX
renders the decision problem in NP, while fully unrestricted
MX is in NEXPTIME. Mitchell and Ternovska propose a
language for expressing general problems, but do not present
a practical solver based on their ideas.

In the following, we revise the relevant concepts from
DCT, describe the tool, give the formal translation from NP
problems into STRIPS, and study its properties. At the end,
we present experiments and conclude with a discussion.

Descriptive Complexity Theory
It is a field of research, lying in the intersection of mathe-
matics and computer science, that studies complexity theory
from a pure mathematical viewpoint without committing to
a model of computation such as Turing machines. DCT be-
gan with the seminal work of Fagin (1974) on NP. Today, the
major complexity classes had been characterized and impor-
tant results had been obtained (Immerman 1998).

In DCT, a decision problem like SAT1 is denoted as a col-
lection of finite (first-order) structures that satisfy a second-
order existential sentence. In this section, we review the fun-
damental concepts from logic and the most important results
from DCT that are relevant to this work.

Languages
Every logical language is constructed from a set of sym-
bols or vocabulary. The symbols are typically partitioned
into pure logical symbols such as ‘∧’, ‘∃’, etc., punctua-
tion symbols such as ‘(’ and ‘)’, and relational, functional
and constant symbols. The logical and punctuation symbols
belong to every language while the relations, functions and
constants change from one language to another. Hence, it
is convenient to define the signature of the language as the
finite set of relations, functions and constants that are al-
lowed in the formulae. Signatures are denoted by tuples like
σ = 〈P 1, Q2, f1, A,B〉 that contains two relational sym-
bols P and Q of arities 1 and 2 respectively, one functional
symbol f of arity 1, and two constants A and B. In DCT,
functional symbols can be avoided altogether and thus will
not be considered in the rest of the paper. We denote with
FOL(σ) and SOL(σ) the sets of all first-order and second-
order formulae built from σ. In general, if L denotes a logic
or fragment of a logic, L(σ) denotes the set of all formulae
belonging to L built from σ.

SOL differs from FOL in that quantification on relational
symbols is permitted. SOL formulae are constructed as
– any FOL(τ) formula, τ ⊇ σ, is a SOL(σ) formula,
– if Φ and Ψ are SOL(σ) formulae, then so are ‘(Φ)’, ‘¬Φ’,

‘Φ ∧Ψ’, ‘Φ ∨Ψ’, etc., and
– if Ra /∈ σ and Φ is a SOL(σ) formula, then ‘(∃R)Φ’ and

‘(∀R)Φ’ are SOL(σ) formulae.
We typically denote FOL formulae with lowercase Greek
letters, and other formulae with capital letters. For the rest

1In this paper, SAT is the subset of satisfiable CNF formulae.

s 1 t

Figure 1: the digraph that corresponds to the structure
A = 〈|A|, EA, sA, tA〉 where |A| = {0, 1, 2}, EA =
{(0, 1), (1, 2)}, sA = 0 and tA = 2.

of the paper, we only consider (first- and second-order) for-
mulae without free variables, also called sentences, and for
second-order formulae, those that comply with the form

Φ = (Q1R
a1

1)(Q2R
a2

2) · · · (QnR
an

n)ψ

where eachQi is a quantifier in {∃,∀}, and ψ is a first-order
sentence over σ ∪ {Ra1

1 , . . . , Ran

n }. This form is universal
because for every second-order sentence there is an equiva-
lent of this form. If all Qis are existential quantifiers, then
we say that Φ is a second-order existential sentence. The
class of all second-order existential sentences, also called
the existential fragment of SOL, is denoted by SO∃; simi-
larly, one defines SO∀. If there is 1 < k < n, such that
Qi = ∃ for all i < k and Qi = ∀ for all i ≥ k, then the
sentence belongs to the fragment SO∃∀, and so on.

First-Order Structures
Logical formulae are interpreted with respect to first-order
structures. A first-order structure over signature σ =
〈Ra1

1 , . . . , Ras

s , c1, . . . , ct〉, where Ri is an ai-ary rela-
tional symbol and cj is a constant, is a tuple A =
〈|A|, RA

1 , . . . , R
A
s , c

A
1 , . . . , c

A
t 〉 with non-empty universe

|A| where each RA
i ⊆ |A|ai is a subset of ai-tuples from

|A| (called the interpretation of Ri) and each cAj ∈ |A| is an
element of |A| (called the interpretation of cj). Without loss
of generality, we assume that the universe is always of the
form |A| = {0, 1, . . . , n − 1}. DCT is only interested in fi-
nite structures (i.e. structures of finite universe); the class of
all finite structures for signature σ is denoted by STRUC[σ].

We do not have enough space to formally present the se-
mantic interpretation of formulae with respect to structures.
We only say that a formula φ in FOL(σ) (or SOL(σ)) holds
(or is satisfied) in structure A ∈ STRUC[σ] iff the for-
mula holds when each relation Ri and constant cj is in-
terpreted by RA

i and cAj respectively. If φ holds in A, we
write A � φ. For example, consider σ = 〈E2, s, t〉 and
A = 〈|A|, EA, sA, tA〉 where |A| = {0, 1, 2}, EA =
{(0, 1), (1, 2)}, sA = 0 and tA = 2. Then, A �

(∃x)(E(s, x) ∧ E(x, t)) and A � (∀x)(∃y)E(x, y). No-
tice that σ can describe digraphs with designated vertices s
and t; e.g., A corresponds to the graph shown in Fig. 1.

Second-order formulae are also interpreted with respect
to first-order structures. For example, the sentence

Φ2COL = (∃R1)(∀xy)[E(x, y) → ¬(R(x) ↔ R(y))]

holds in A since the unary relation R = {1} makes it true.
Indeed, this formula holds in a structure A ∈ STRUC[σ] iff
the digraph encoded by A is 2-colorable.

The class of finite structures in STRUC[σ] that sat-
isfy a sentence Φ ∈ L(σ) is denoted by MOD[Φ]; e.g.,
MOD[Φ2COL] is the class of all finite 2-colorable digraphs.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

102

DCT requires some basic numeric relations and constants
that have fixed interpretation at each structure; the relations
are <2, SUC2, BIT2, PLUS3 and TIMES3 while the con-
stants are 0 and max. For the interpretations, x < y iff x
is less than y, SUC(x, y) iff y = x + 1, BIT(x, y) iff the
yth-bit in the number x is 1, PLUS(x, y, z) iff z = x + y,
and TIMES(x, y, z) iff z = x× y. The constants 0 and max
are mapped into 0 and ‖A‖ − 1 respectively.

Complexity Classes
The last example shows that a sentence can describe a col-
lection of finite discrete structures (such as digraphs) that
satisfy a certain property (such as 2-colorability).

In DCT, a decision problem corresponds to a class of first-
order structures that satisfy a sentence. The seminal work of
Fagin (1974) established that every decision problem in NP
can be characterized by the class of structures that satisfy a
second-order existential sentence; in symbols, NP = SO∃.
Consider SAT, for example. An instance of SAT is a CNF
with m clauses over n propositional variables, where a
clause is a subset of positive and negative literals. Two re-
lational symbols σSAT = 〈N2, P 2〉 suffice to describe the
positive and negative occurrences of propositions in clauses:
N(x, y) (resp. P (x, y)) expresses that the proposition x ap-
pears negatively (resp. positively) in clause y; e.g., (p∨¬q∨
r)∧(¬p∨¬r)∧(¬p∨q) is encoded withA = 〈|A|, NA, PA〉
where |A| = {0, 1, 2}, NA = {(1, 0), (0, 1), (2, 1), (0, 2)}
and PA = {(0, 0), (2, 0), (1, 2)}. On the other hand, a truth-
assignment is a subset of true propositions and the existence
of a truth assignment (satisfiability) can be expressed with
the SO∃ sentence ΦSAT:2

(∃T 1)(∀y)(∃x)[(P (x, y) ∧ T (x)) ∨ (N(x, y) ∧ ¬T (x))]

The following list shows the major results of DCT on the
characterization of complexity classes (Immerman 1998):
• non-deterministic log-space (NL) equals FOL extended

with a transitive-closure operator (FO(TC)),
• P equals second-order Horn sentences (SO-Horn),
• NP equals SO∃ and coNP equals SO∀,
• the polynomial-time hierarchy (PH) equals SO, and
• PSPACE equals SOL extended with a transitive-closure

operator (SO(TC)).
A transitive-closure operator is a syntactic construct whose
interpretation coincides with the transitive closure of a rela-
tion. Thus, it is not surprising that NL equals FO(TC) be-
cause checking the existence of a path from node s to node t
in a digraph with designated vertices s and t is NL-complete
(Sipser 2005), and this property holds whenever s is related
to t in the transitive closure of the edge relation.

Syntactic Abbreviations
Quite often one needs to quantify over a k-ary function fk

instead of a relation. This can be accomplished by quantify-
ing over a (k + 1)-ary relation F k+1 and adding first-order

2This sentence assumes that m ≥ n. If not, add tautological
clauses to the CNF.

formulae that guarantees that F represents f . For example,
a unary function f can be represented by the binary relation
F and the formula

ψfun = (∀xyy′)(F (x, y) ∧ F (x, y′) → y = y′) .

Likewise, in need of an injective function, one quantifies
over a relation F and adds above formula plus

ψinj = (∀xx′y)(F (x, y) ∧ F (x′, y) → x = x′) .

Finally, if the function needs to be total, then one should use
ψtot = (∀x)(∃y)F (x, y). We use the abbreviations (∃F ∈
Fun)φ and (∃F ∈ Inj)φ to denote (∃F 2)(φ∧ψfun ∧ψtot) and
(∃F 2)(φ∧ψfun∧ψinj∧ψtot) respectively, and ‘PFun’ instead
of ‘Fun’ and ‘PInj’ instead of ‘Inj’ if the function does not
need to be total. For example, the following sentence defines
digraphs with directed Hamiltonian paths

ΦDHP = (∃F ∈ Inj)(∀x)[x < max →

(∃x′yz)(E(y, z) ∧ F (x, y) ∧ SUC(x, x′) ∧ F (x′, z))] .

To see how it works, observe that a directed Hamiltonian
path over the vertices |A| = {0, . . . , n−1} can be thought of
as a permutation f on the vertices such that E(f(x), f(x +
1)) for each 0 ≤ x < n− 1.

The Tool
The input to the tool is a signature σ, a SO∃ sentence Φ de-
scribing a property of interest, and a first-order structure A
describing an object on which to test the property Φ. The
output is a PDDL domain and instance that have a valid
plan if and only if A satisfies Φ. Moreover, a certificate
for the satisfaction of the property, in the form of values for
the second-order variables in Φ, can be recovered in linear
time from the plan.

Hence, we can think of the tool as a generator of reduc-
tions among problems. Recall that a reduction from problem
A into problem B is a computable function f such that for
each instance ω, ω ∈ A iff f(ω) ∈ B.

In our case, the reduction decomposes in two functions

D : Signatures× SO∃ → PDDL Domains ,
I : Signatures× SO∃ × STRUC → PDDL Instances

such that dom = D(σ,Φ) is a PDDL domain and ins =
I(σ,Φ,A) is a PDDL instance.

In order to get something of theoretical and practical in-
terest, the reduction should run in polynomial time (so that
it would not be able to check whetherA satisfies Φ and then
produce a trivial planning problem) and its output should
be solvable in NP (so that complexity of solving the output
problem is no bigger than the complexity of solving the in-
put problem). However, the plan-existence decision problem
for PDDL is not in NP because 1) the number of grounded
fluents and actions may be exponential in the input size, and
2) a minimum-length plan may be of exponential size in the
number of grounded fluents and actions. Thus, not every
reduction works for our purposes and we must be careful
with its design. In the following two sections, we present an
acceptable reduction and study its formal properties.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

103

Reductions
A (grounded) STRIPS planning problem is a tuple P =
〈F, I,G,O〉 where F is a collection of fluents (proposi-
tions), I ⊆ F denotes the initial state, G ⊆ F denotes the
goal states and O is a collection of actions. Each action
a ∈ O is defined by three subsets of fluents pre(a), add(a)
and del(a) that stand for the precondition, and the positive
and negative effects of the action. As usual, action a is ap-
plicable at state s iff pre(a) ⊆ s, and the result of applying
a is res(s, a) = (s \ del(a)) ∪ add(a). A plan for state s is
a sequence of actions applicable from the initial state I that
achieves the goal condition.

A PDDL planning problem is a pair 〈dom, ins〉 made of
a domain and instance description in the PDDL language
(McDermott et al. 1998). In this paper, we only consider
the simplest fragment of PDDL which is equivalent to un-
grounded STRIPS, and hence the grounding of 〈dom, ins〉
results in an STRIPS problem P . The size of the grounding
is polynomial for fixed domain, but exponential for unre-
stricted domain and instance.

Getting an acceptable reduction is not obvious at the be-
ginning, but once you get one, others become apparent. For
lack of space, we present only one reduction that is aimed
at SAT-based planners. We are aware of other reductions,
including one designed for optimal sequential planners that
produce a delete-free problem together with a length bound.

The first step in the translation is to transform the for-
mula by eliminating the implications and bi-implications,
and moving the negations to the literal level. Further, con-
stants other than 0 and max are removed by introducing
unary relational symbols with interpretations consisting only
of the unique element that interprets each constant. After
the formula is preprocessed in this manner, the domain and
problem are generated as follows.

Domain
D(σ,Φ) produces a domain for signature σ and sentence
Φ ∈ SOL(σ) of the form (∃Ra1

1) · · · (∃Ran

n)ψ. The actions
in the domain are divided in three groups: actions for set-
ting the truth-value of the second-order variables, actions for
proving the sentence ψ and two other actions.

Actions for variables For each second-order variable Ri

or arity ai, there is an action set Ri true with ai param-
eters that sets the fluent Ri and removes not-Ri which is
initially true; these fluents are used to denote the truth value
of Ri. For example, the action for the relation T 1 in SAT is
(:action set_T_true

:parameters (?x)
:precondition (and (guess) (not-T ?x))
:effect (and (T ?x) (not (not-T ?x))))

The fluent guess is used to create two phases within
plans: a ‘guess’ phase for setting the value of quantified re-
lations, and a ‘proof’ phase for showing the validity of ψ.

Actions for formulae These actions are designed follow-
ing the structure of ψ and make use of fluents that denote the
validity of the subformulae in ψ.

For each subformula θ, there is a fluent F[θ] that denotes
its validity in the structure and actions to add it. The fluent
F[θ] has parameters that match the free variables in θ. The
function F[·] is called the fluent translation and it is closely
related to the Tseitin translation (Tseitin 1968).

The actions are generated by recursing over the subfor-
mulae θ of ψ in a depth-first manner as follows:3

– if θ(x̄) =
∧n

i=1
θi(x̄i) with x̄ = ∪n

i=1x̄i, then gener-
ate the action prove[θ] with parameters x̄, precondition∧n

i=1
F[θi](x̄i) and unique add effect F[θ](x̄),

– if θ(x̄) =
∨n

i=1
θi(x̄i) with x̄ = ∪n

i=1x̄i, then generate
n actions of the form prove[θ]i(x̄i) with precondition
F[θi](x̄i) and unique add effect F[θ](x̄),

– if θ(x̄) = (∃y)θ′(x̄, y), then generate prove[θ](x̄, y) with
precondition F[θ′](x̄, y) and unique add effect F[θ](x̄),

– if θ(x̄) = (∀y)θ′(x̄, y) then generate two actions. The
idea is to prove θ(x̄) by varying y over all objects.
The first action prove[θ]0(x̄) shows θ′(x̄, 0). The action
has parameters x̄, precondition F[θ′](x̄, 0) and unique ef-
fect F[(∀y ≤ z)θ′(x̄, y)](x̄, 0). (Observe that the fluent
translation is applied to a different formula in which the
quantification is bounded by z.)
The second action prove[θ]1(x̄, z

′, z′′) inductively
proves (∀y ≤ z)θ′(x, y) once (∀y < z)θ′(x, y) holds.
The action has parameters x̄, z′, z′′, precondition F[(∀y ≤
z)θ′(x̄, y)](x̄, z′)∧F[θ′](x̄, z′′)∧SUC(z′, z′′) and unique
add effect F[(∀y ≤ z)θ′(x̄, y)](x̄, z′′).

All these actions have as additional precondition the fluent
proof. Also, notice that there are no actions for literals as
such are taken care by the fluent translation as follows:

– F[Q(x̄)](x̄) = Q(x̄),

– F[¬Q(x̄)](x̄) = not-Q(x̄),

– F[(∀y)θ′(x̄, y)](x̄) = F[(∀y ≤ z)θ′(x̄, y)](x̄,max),

– in all other cases, F[θ](x̄) = holds <id>(x̄) where <id>
is a unique identifier for θ.

Other actions Two other actions are required. One
for switching the phase from ‘guess’ to ‘proof’ called
begin-proof that has precondition guess, adds
proof and removes guess, and another action called
prove-goal that has precondition F[ψ] and unique add
effect holds goal. Figure 2 shows the domain for ΦSAT.

Abbreviations In the presence of abbreviations, the oper-
ators for the second-order variables are extended in order to
make the translations more efficient. For (∃F ∈ Fun), the
precondition and delete of set F true are extended with
the fluent (free F dom ?x) so that there can be at most
one fluent F (x, y) true for each x and thus there is no need
to include the subformula ψfun. Similarly, for (∃F ∈ Inj) the
precondition and delete are further extended with the fluent
(free F ran ?y).

3θ(x̄) means that the free variables in θ are among those in x̄.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

104

(define (domain SAT)
(:constants zero max)
(:predicates
(holds_and_2 ?x ?y) (holds_and_6 ?x0 ?x1)
(holds_exists_8 ?x0) (holds_forall_9 ?x0)
(holds_or_7 ?x0 ?x1) (holds_goal)
(N ?x ?y) (P ?x ?y) (T ?x) (not-T ?x)
(suc ?x ?y) (guess) (proof)

)
(:action set_T_true
:parameters (?x)
:precondition (and (guess) (not-T ?x))
:effect (and (T ?x) (not (not-T ?x))))

(:action prove_forall_9_1
:precondition (and (proof)

(holds_exists_8 zero))
:effect (holds_forall_9 zero))

(:action prove_forall_9_2
:parameters (?y1 ?y2)
:precondition (and (proof)

(suc ?y1 ?y2)
(holds_forall_9 ?y1)
(holds_exists_8 ?y2))

:effect (holds_forall_9 ?y2))

(:action prove_exists_8
:parameters (?y ?x)
:precondition (and (proof)

(holds_or_7 ?y ?x))
:effect (holds_exists_8 ?y))

(:action prove_or_7_0
:parameters (?y ?x)
:precondition (and (proof)

(holds_and_2 ?y ?x))
:effect (holds_or_7 ?y ?x))

(:action prove_or_7_1
:parameters (?y ?x)
:precondition (and (proof)

(holds_and_6 ?y ?x))
:effect (holds_or_7 ?y ?x))

(:action prove_and_2
:parameters (?y ?x)
:precondition (and (proof)

(P ?x ?y) (T ?x))
:effect (holds_and_2 ?y ?x))

(:action prove_and_6
:parameters (?y ?x)
:precondition (and (proof)

(N ?x ?y) (not-T ?x))
:effect (holds_and_6 ?y ?x))

(:action prove-goal
:precondition (holds_forall_9 max)
:effect (holds_goal))

(:action begin-proof
:precondition (guess)
:effect (and (proof) (not (guess)))))

Figure 2: Full domain translation for Φsat = (∃T 1)(∀y)(∃x)
[(P (x, y) ∧ T (x)) ∨ (N(x, y) ∧ ¬T (x))].

Problem
The PDDL problem is generated by the call I(σ,Φ,A). The
objects in the problem correspond to the elements in the uni-
verse |A| = {0, . . . , n−1}: 0 is mapped to the object zero,
n−1 to the object max, and the other elements 0 < i < n−1
to objects obj i. The goal is to achieve holds goal, and
the initial situation consists of fluents describing the truth-
value of all the relations in A and the predefined relations
such as <, SUC, etc. that are mentioned in Φ. Also, for each
second-order variable R, the initial situation has fluents to
denote false values for R, and in cases where R is a func-
tion, the initial situation has fluents of the type free R dom
and/or free R ran.

Formal Properties
The most important properties to care about are soundness,
completeness and the complexity guarantees. Soundness
and completeness mean that the translation function actually
implements a reduction between decision problems, while
the complexity guarantees refer to the time to compute the
reduction and the complexity of deciding plan existence on
the generated problem. In this section we show that the tool
is a polytime reduction from the NP problem MOD[Φ] into
a fragment of STRIPS that is decidable in NP.

It is well known that checking plan existence for STRIPS
problems without deletes is in NP (Bylander 1994). The
proof relies on the fact that an optimal plan does not repeat
actions and thus is of linear size. A similar complexity result
for STRIPS can be obtained if each action with non-empty
delete list can be applied at most once.
Definition 1. A STRIPS problem P = 〈F, I,G,O〉 is at-
most-once iff the operators can be partitioned into O =
O0 ∪ O1 such that all operators in O0 are delete-free, and
for each a ∈ O1, there is a fluent p ∈ pre(a) ∩ del(a) that
is added by no action; i.e., p /∈ add(a) for all a ∈ O. The
class of all at-most-once problems is denoted by STRIPS-1.

Consider now the grounding function G that maps a pair
〈dom, ins〉 of PDDL domain and instance into a STRIPS
problem P = G(dom, ins). For fixed dom, the function
ins � G(dom, ins) runs in polytime O(‖ins‖k) for some k
that only depends on dom. Likewise, the translation func-
tion I runs in polytime in the size of the structure A, but
exponential in the largest arity of a second-order existential
quantifier in Φ. Therefore, the function fσ,Φ : STRUC[σ] →
STRIPS defined by

fσ,Φ(A) = G(D(σ,Φ),I(σ,Φ,A))

is a polytime function that maps σ-structures into grounded
STRIPS problems. This function is a reduction.
Theorem 2. The function fσ,Φ is a polytime reduction from
the decision problem MOD[Φ] into STRIPS-1.

Proof. (Sketch.) The proof is by structural induction on
the subformulae θ of ψ, starting from literals and building
up towards more complex subformulae. The statement to
show is that 〈A, Rπ

1 , . . . , R
π
n〉 � θ(x̄) iff there is a plan π

that achieves F[θ](x̄) and defines interpretations Rπ
i for the

second-order variables Ri. Here, 〈A, Rπ
1 , . . . , R

π
n〉 denotes

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

105

a) directed Hamiltonian path b) 6-clique

Figure 3: Two examples of NP-Complete problems reduced to STRIPS and the solutions computed by an off-the-shelf planner.
The left panel shows a digraph of 15 vertices with a Hamiltonian path and the right panel a graph of 15 vertices with a 6-clique.

the extension of A with the relations Rπ
i that interpret the

symbols Ri.
For A ∈ STRUC[Φ], fσ,Φ(A) is a STRIPS-1 problem

because all operators are delete-free except begin-proof
and the set R true operators, but each one of these deletes
a precondition that is added by no operator.

Corollary 3. The plan-existence decision problem for
STRIPS-1 is NP-complete.

Proof. For inclusion, note that every action a ∈ O1 can be
applied at most once. Because each such action deletes flu-
ents, then some (or all) actions inO2 may be required before
applying another action from O1. Thus, the size of a plan is
at most quadratic in the total number of actions. For hard-
ness, fσSAT,ΦSAT reduces SAT into STRIPS-1 in polytime.

Therefore, our tool translates any given problem in NP,
encoded by a SO∃ sentence, into PDDL/STRIPS. Such a
sentence specifies the properties of a solution in a declara-
tive manner. The solution of the problem is obtained from
the valuation of the second-order variables that make the
sentence true and that is contained in any valid plan for the
planning problem. For example, the assignment that satis-
fies the CNF encoded by a structure A corresponds to the
values of the second-order variable T .

It is important to say that although SO∃ captures the
whole class NP, there are problems that are easier to encode
as sentences than others. For instance, there are succinct and
clear sentences for SAT, Hamiltonian path, k-colorability,
vertex cover and other problems, yet we do not have at
this moment sentences for most of the benchmark problems
used in planning. On the other hand, toy problems such as
Blocksworld are not interesting and the exercise of abstract-
ing relevant aspects of a real-world task into SO∃ sentences
may reveal the core difficulties involved in a task.

In the rest of this section, we derive tight bounds on the
length of parallel plans. These bounds are used with SAT-
based planners to show that a given problem has no solution
and also to improve performance.

Horizon Windows
A horizon window for a STRIPS problem P is an interval
of the form [s, f] such that P has a plan iff it has a plan of
length 	 ∈ [s, f]. A window is a parallel-horizon window if
	 refers to the makespan of a parallel plan. Horizon windows
can be effectively used to prune the search space.

The recursive structure of the generated problem permits
the calculation of non-trivial horizon windows and of tight
parallel-horizon windows. Indeed, since all set operators can
be applied concurrently, a parallel plan needs at most one
time step to execute them. The plan also requires the oper-
ators begin-proof and prove-goal. Thus, the parallel-
horizon window is [2, 3] (the lower bound 2 applies when
there is a plan that uses no set operators) plus the parallel-
horizon windowmkspw(ψ) of the sentence ψ. The parallel-
horizon window is inductively defined as
– mkspw(θ)

.
= [0, 0] if θ is a literal,

– mkspw(∧n
i=1θi)

.
= 1 +

∨n

i=1
mkspw(θi),

– mkspw(∨n
i=1θi)

.
= 1 +

∧n

i=1
mkspw(θi),

– mkspw((∃y)θ(x̄, y))
.
= 1 +mkspw(θ), and

– mkspw((∀y)θ(x̄, y))
.
= ‖A‖+mkspw(θ),

where A is the structure associated to the problem, and
the operations between windows and scalars are [a, b] ∨
[a′, b′]

.
= [max{a, a′},max{b, b′}], [a, b] ∧ [a′, b′]

.
=

[min{a, a′},max{b, b′}] and c + [a, b]
.
= [c + a, c + b].

SAT, for example, has the window [‖A‖ + 5, ‖A‖ + 6]
which means that the CNF encoded by a structure A is sat-
isfiable iff there is a parallel plan of makespan 	 such that
‖A‖+ 5 ≤ 	 ≤ ‖A‖+ 6.

By bounding the upper limit of parallel horizon windows,
we obtain the following.
Theorem 4. Consider a signature σ, Φ ∈ SO∃(σ) and A ∈
STRUC[σ]. Then, to decide A � Φ, it is enough to consider
parallel plans of makespan linear on ‖A‖ for fixed Φ but
independently of the arities in σ and Φ. More precisely, it is
enough to consider plans of makespan maxb qb(‖A‖− 1) +
hb + 3 where qb is the number of universal quantifiers along
branch b in the parse tree of ψ, hb is the height of branch b,
and ψ is the FOL part of Φ.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

106

Proof. Let n = ‖A‖ and T the parse tree for ψ. For a
maximal branch b ∈ T , let qb be the number of universal
quantifiers in b, hb its height, and u(b) the upper limit of the
parallel horizon window along b. The upper limit u(ψ) of
mkspw(ψ) is maxb∈T u(b), and u(b) = qbn + hb − qb =
qb(n−1)+hb. End by adding 3 to the upper limit u(ψ).

This bound is tight for SAT. This result is surprising be-
cause one would expect the need to consider parallel plans of
makespan O(‖A‖k) for some k. However, note that a linear
makespan does not mean a linear number of operators.

Finally, observe that by composing the translation fσ,Φ

with any translation from STRIPS to SAT, and using the up-
per bound of the window, one obtains a polytime reduction
from the problem expressed by Φ into SAT.

Experiments
We performed experiments on the NP-complete prob-
lems SAT, CLIQUE, DIRECTEDHAMILTONIANPATH, 3-
DIMENSIONALMATCHING, 3-COLORABILITY and k-
COLORABILITY. Also, we computed the chromatic number
of random graphs using the tool as an oracle.

The instances for SAT were taken from the SATLIB
repository,4 the instances for graph problems were randomly
generated according to the G(n, p) model (Bollobás 2001),
and the instances for matching were generated by randomly
choosing triplets from {0, . . . , n− 1}3 with probability p.

The experiments were performed on an Intel Xeon pro-
cessor running at 1.86 GHz with 2 GB of RAM. The plan-
ners were run for 30 minutes with a limit of 1 GB of memory.
The planners that solved more instances are M and Mp that
support lower and upper bounds for time horizons (Rintanen
2010b; 2010a), and a num2sat (Hoffmann et al. 2007) modi-
fied to handle upper bounds on time horizons. Among these,
M was the one that solved more instances.

Figure 3 shows two examples with solutions: the left
panel shows a random digraph of 15 vertices that has a
directed Hamiltonian path, and the right shows a random
graph of 15 vertices with a 6-clique. These structures were
discovered by M on the problems obtained from the sen-
tences and the structures encoding the graphs.

Table 2 shows a summary of results for M. In total, we
ran the planner on 1,920 instances from which 1,614 were
solved: 706 on the positive side meaning that the input struc-
ture satisfies the property, and the rest 908 instances on the
negative side. The problems of type uf20, uf50 and uf75 are
random satisfiable 3CNF instances from the phase transition
region with 20, 50 and 75 propositional variables respec-
tively, while the problems uuf50 and uuf75 are random un-
satisfiable instances. The instances of type n-k in CLIQUE
refer to graphs with n vertices on which to look for cliques
of size k, those n-k in k-COLORABILITY refer to graphs
with n vertices on which to test k-colorability, and those of
type n in other problems refer to graphs with n vertices.

The table contains information about the total number of
instances of each type (N), the number of instances solved
by M (N∗), the number of instances solved in the positive

4http://www.satlib.org

k-colorability

instance χ 1 2 3 4 5 6 7

10-0.75-1 5 2 2 6 101 3
10-0.75-2 5 1 2 2 6 4
10-0.85 7 2 2 3 6 4 1,265 4
15-0.25 2 27 62
15-0.60 5 27 29 54 118 72
15-0.70 6 28 28 33 47 329 67
20-0.10 3 214 350 705
20-0.25 4 211 272 1,261 837

Table 1: Results for M on the computation of chromatic
numbers on random graphs. For each instance, the table
shows the chromatic number χ, and the time (in seconds) to
prove/disprove k-colorability for increasing values of k. The
last value for k, for each instance, is the chromatic number.

and negative, and the average time that M took per instance.
As it can be seen, we tried to generate a balanced set of prob-
lems with positive and negative instances. Overall, we think
that M behaves very good as it solves 84.06% of the bench-
mark which is made of NP-complete problems of varying
size and difficulty.

Chromatic Numbers
The chromatic number of a graph G = (V,E) is the least
k such that G is k-colorable. It is NP-hard to compute the
chromatic number of a graph, but we can do it by testing
for k-colorability for increasing values of k = 1, . . . , |V |.5
Table 1 shows results for the computation of chromatic num-
bers on random graphs. For each instance, it shows the chro-
matic number χ and the time to prove/disprove the existence
of a k-coloring for increasing values of k.

Discussion
We presented a “black box” that given as input a signa-
ture σ, a second-order existential sentence Φ and a structure
A ∈ STRUC[σ], outputs a STRIPS problem P that is solv-
able in non-deterministic polynomial time and has a plan iff
A � Φ. The black box is fully automated and runs in poly-
nomial time in the size ‖A‖, and thus can be thought of as
an efficient method to generate polytime reductions from NP
into STRIPS.

The choice of SO∃ as the input language is arbitrary.
However, SO∃ is a widely accepted formalism for express-
ing problems because it is declarative and not tied to any
particular problem. In theory, one could choose any NP-
Complete problem, such as SAT or Hamiltonian Path, as the
input language for representing NP problems. This would
make the translation much easier, but then the user would
have to express his problems as instances of them, rendering
the approach uninteresting.

We have not compared our approach with direct transla-
tions of problems into SAT, tools such as NP-SPEC from
other areas, or specialized solvers. We expect to perform
some of these comparisons in the near future. Specially,

5One can do better by performing a binary search on k.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

107

with tools that generate SAT instances from problem de-
scriptions, because our tool combined with M can be thought
as a tool that reduces SO∃ to SAT.

More ambitiously, we would like to consider complex-
ity classes beyond NP by exploiting known results in DCT.
For example, PSPACE equals SO(TC) and thus any SO(TC)
formula can be mapped into STRIPS. Unfortunately, the re-
duction is not as easy as the one for NP. The general reduc-
tions that we know consists of going from the formula to a
polyspace TM that decides the validity of the formula in the
input structure and then to simulate the TM with STRIPS.
Instead, we would like more meaningful and practical re-
ductions.

Acknowledgments Thanks to M. Helmert, P. Haslum and
J. Hoffmann for interesting discussions, to J. Rintanen for
helping us with M and Mp, and to the anonymous reviewers
for their comments and references to related work.

References
Bollobás, B. 2001. Random Graphs. Cambridge University
Press, second edition.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Cadoli, M., and Schaerf, A. 2005. Compiling problem spec-
ifications into SAT. Artificial Intelligence 162:89–120.
Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. American Mathematical
Society 7:27–41.
Hoffmann, J.; Gomes, C.; Selman, B.; and Kautz, H. A.
2007. SAT encodings of state-space reachability problems
in numeric domains. Proc. 20th Int. Conf. on Automated
Planning and Scheduling, 1918–1923.
Immerman, N. 1998. Descriptive Complexity. Springer.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control, New Haven, CT.
Mitchell, D. G., and Ternovska, E. 2005. A framework for
representing and solving NP search problems. Proc. 20th
National Conf. on Artificial Intelligence, 430–435.
Rintanen, J. 2010a. Heuristic planning with SAT: Beyond
strict depth-first search. Proc. 23rd Australasian Joint Conf.
on Artificial Intelligence, 415–424.
Rintanen, J. 2010b. Heuristics for planning with SAT. Proc.
16th Int. Conf. on Principles and Practice of Contraint Pro-
gramming, 414–428.
Sipser, M. 2005. Introduction to Theory of Computation,
2nd Edition. Boston, MA: Thomson Course Technology.
Tseitin, G. S. 1968. On the complexity of derivation in
propositional calculus. In Slisenko, A. O., ed., Studies in
Constructive Mathematics and Mathematical Logic, Part 2.
Springer. 115–125.

N∗/N #pos #neg avg. time

SAT: mkspw = [n + 5, n + 6]

uf20 40/40 40 0 1.7
uf50 40/40 40 0 146.7
uf75 15/40 15 0 362.1
uuf50 40/40 0 40 548.5
uuf75 1/40 0 1 1,746.4

CLIQUE: mkspw = [2n + 4, 3n + 7]

10-3 40/40 22 18 1.2
10-4 40/40 12 28 2.2
10-5 40/40 1 39 32.3
15-3 40/40 22 18 10.5
15-4 40/40 11 29 36.6
15-5 39/40 4 35 74.3
15-6 37/40 1 36 79.4
20-3 40/40 25 15 40.2
20-4 40/40 17 23 72.6
20-5 39/40 10 29 159.6
20-6 34/40 4 30 185.2
25-3 40/40 30 10 111.9
25-4 40/40 18 22 231.0
25-5 39/40 10 29 387.5
25-6 36/40 8 28 394.1

DIRECTEDHAMILTONIANPATH: mkspw = [n + 3, n + 10]

10 40/40 15 25 1.1
15 39/40 18 21 63.7
20 31/40 20 11 70.0
25 29/40 20 9 202.1
30 22/40 20 2 629.1

3-DIMENSIONALMATCHING: mkspw = [3n + 4, 3n + 6]

10 40/40 36 4 9.6
15 40/40 40 0 251.5
20 13/40 13 0 1,191.0
25 0/40 0 0 —

3-COLORABILITY: mkspw = [2n + 4, 2n + 7]

10 40/40 18 22 0.1
15 40/40 24 16 0.9
20 40/40 12 28 3.0
25 40/40 30 10 8.9
30 40/40 9 31 20.9
40 40/40 4 36 75.1
50 40/40 1 39 196.7

k-COLORABILITY: mkspw = [2n + 4, 3n + 6]

10-2 40/40 9 31 1.9
10-3 40/40 18 22 2.8
10-4 40/40 27 13 11.0
15-2 40/40 7 33 33.5
15-3 40/40 16 24 46.5
15-4 40/40 24 16 91.7
20-2 40/40 3 37 254.9
20-3 40/40 12 28 395.9
20-4 40/40 20 20 497.3
25-2 0/40 0 0 —
25-3 0/40 0 0 —
25-4 0/40 0 0 —

Total 1,614/1,920 706 908 180.9

Table 2: Results for M. For each problem type, the table
shows number of solved instances (N∗), total number of
instances (N), number of solved instances that satisfy the
property (#pos), number of solved instances that do not sat-
isfy the property (#neg), and the average time in seconds.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

108

A Conceptual Framework for Post-Design Analysis in AI Planning Applications

Tiago Stegun Vaquero1 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronics Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Abstract

A disciplined design process does not guarantee a com-
plete and flawless model of a planning problem, even
with the existing methods and tools available in the AI
community. A post-design project phase can identify
essential hidden knowledge and directly impact the fi-
nal planning system. The central theme of this paper is
the design of a domain-independent framework to struc-
ture the post-design process of planning applications
for a better understanding and capture of missing re-
quirements. The framework feeds the re-modeling pro-
cess, closing the loop of the design cycle. We describe
the conceptual model of such post-design framework,
named Post-Design Application Manager (postDAM).

Introduction
Since the end of the 1990s there has been an increasing in-
terest in the application of AI planning techniques to solve
real-life problems. In addition to characteristics of academic
problems, such as the need to reason about actions, real-life
problems require detailed knowledge elicitation, engineer-
ing, and management. It is necessary a systematic design
process in which Knowledge and Requirements Engineer-
ing techniques and tools play a fundamental role. A well-
structured life cycle to guide design increases the chances
of building an appropriate planning application while reduc-
ing possible costs of fixing errors in the future. However,
given the natural incompleteness of the knowledge, practi-
cal experience in real applications such as space exploration
(Jónsson 2009) has shown that, even with a disciplined pro-
cess of design, requirements from different viewpoints (e.g.
stakeholders, experts, users) still emerge after plan genera-
tion, analysis and execution.

Conceptually, a design process does not guarantee a com-
plete and flawless model of a planning problem, even with
the existing methods and tools available in the AI commu-
nity (McCluskey 2002; Vaquero et al. 2009). The identifi-
cation of unsatisfactory solutions and unbalanced trade-offs
among different quality metrics and criteria (Jónsson 2009;
Rabideau, Engelhardt, and Chien 2000; Cesta et al. 2008)
indicates a lack of understanding of requirements and pref-
erences in the model. These hidden requirements and ratio-
nales raise the need for iterative model analysis, re-modeling
and tuning process. However, the gathering and interpreta-

tion of the hidden requirements must be made carefully. The
lack of a structured process for acquiring emerging knowl-
edge can lead re-modeling to wrong directions and prevent
a proper judgment of resulting plans, as well as their respec-
tive quality and tradeoffs.

The design process of planning domain models has a sat-
uration point in which further model adjustment make no
significant impact on the final plan. Therefore, the anal-
ysis and evaluation of generated plans - with respect to
the requirements and quality metrics - becomes a funda-
mental step in the modeling cycle. Such a post-design pro-
cess naturally leads to feedback and the discovery of hid-
den requirements for refining the model. While some hid-
den requirements are detected in a single plan analysis cy-
cle, others are only discovery in after several analysis cy-
cles; this aspect indicates that plan analysis have differ-
ent stages of hidden requirements identification. In fact,
the literature on knowledge engineering for planning has
shown interesting tools and techniques for plan analysis,
including plan animation (McCluskey and Simpson 2006;
Vaquero et al. 2007), visualization (e.g. Gantt charts), vir-
tual prototyping (Vaquero, Silva, and Beck 2010), and plan
querying and summarization (Myers 2006). However, all
that work did not consider different identification stages of
hidden requirements and did not explore the effects of the
missing knowledge in the re-modeling loop.

In this paper, we present a conceptual model of a post-
design framework for AI planning applications, called Post-
Design Application Manager (postDAM), that addresses the
different stages of the plan analysis process, including (1) a
short-term analysis stage with simulation and visualization
of plans, (2) a long-term analysis stage with acquisition and
re-use of human-centered rationales for plan evaluations,
and (3) a stage for cross-project analysis that would pro-
vide generalization of knowledge from different domains to
be applied in other planning application designs. The frame-
work aims at structuring the post-design process for the con-
tinuous discovery and identification of hidden requirements
(e.g., constraints and preferences) that would potentially im-
prove the model and, consequently, the quality and perfor-
mance of planners. postDAM was designed as a complement
of the KE tool itSIMPLE (Vaquero et al. 2009) in order to
support designer while dealing with post-design challenges.

This paper is organized as follows. First, we briefly in-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

109

troduce the concepts of the postDAM framework, including
its layered structure for handling the different stages of the
plan analysis process. Then, we describe the layers of the
framework and their role in discovering missing and hidden
requirements, as well in the re-use of domain knowledge.
We provide a short discussion about the components of the
framework that have been implemented in itSIMPLE and the
ones that should be addressed next. Finally, we conclude and
provide some final remarks.

The postDAM Framework
Due to the challenge of capturing requirements from differ-
ent sources during design and the natural incompleteness of
knowledge in complex planning applications, domain mod-
els might not reflect exactly the behavior expected by devel-
opers and stakeholders. Besides the initial expectation re-
flected in the requirements, design participants tend to learn
and recognize their real needs during the development of the
artifact. Incompleteness can mean that most of the recogni-
tion process must be part of the post design process, where a
better and practical view of the system is available. The Post-
Design Application Manager framework, postDAM, aims to
support such an essential phase of plan development.

The primary goal of postDAM is to structure the post-
design process in order to organize the plan analysis and sup-
port the capture of emerging requirements. The post-design
process was designed as a domain-independent integrated
framework with three layers of plan analysis, each requir-
ing a different level of abstraction. As illustrated in Figure
1, the three layers are: Short-term Plan Analysis, Long-term
Plan Analysis, the Cross-project Re-use Analysis. The ab-
straction level in these layers ranges from single plan eval-
uation (for acquiring metrics and rationales and to identify
missing requirements) to the analysis of several cumulative
plan evaluations (to discover hidden knowledge and to al-
low a cross-domain re-use of rationales). Figure 1 illustrates
the layered analysis and how the layers interact and feed the
re-modeling process in order to close the design loop.

We do not aim to replace the analysis done during the
initial design process, but to complement the knowledge ac-
quisition process, enhancing the feedback provided by post-
design. This complementary process is as important as those
performed during model design.

In what follows, we describe the main goal and role of
each proposed layer of the framework.

First Layer: Short-term Plan Analysis
The first layer in the framework aims to analyze plans di-
rectly during the design and development phase. The goal
is to detect malformed solutions and identify inconsistent
behavior, missing requirements and misinterpreted features
that can be clearly spotted by design actors. Each plan is
analyzed individually in an attempt to verify the overall co-
herence of the model and of the resulting plan. Figure 2 il-
lustrates the short-term analysis process.

As the first step in this layer, plans must be validated to
guarantee that they are in fact solutions to the specified plan-
ning problem and that they do not violate any constraints or

preferences defined in the domain model. Performing anal-
ysis without first checking plan validity is a waste of time
and resources. If a plan is not a valid solution, it is necessary
to revise the model of the domain, the plan itself, and the
planner that generated it.

If a valid plan satisfies a problem specification, it does not
mean that it can be directly applied and executed in real life.
There are two main reasons why a plan cannot be directly
executed. First, the plan might be composed of high level
actions that can not be directly executed. This situation gen-
erally requires a post-processing to translate the high level
plan into a low level sequence of actions or procedures that
can be executed by controllers. Second, the specification of
the planning problem and domain of application might be
incomplete which would lead to unexpected results during
the execution. For example, the lack of a safety constraint
in the model to prevent robots from navigating too close to
each other might result in crashes during execution. In this
case, the execution of the plan must be investigated seek-
ing for possible incoherence and unexpected characteristics.
However, testing plan execution in real word can be very
costly, risky, and sometimes impossible. Thus, a more elab-
orated plan analysis must take place. The postDAM frame-
work uses a Virtual Prototyping (Cecil and Kanchanapiboon
2007) approach for such analysis.

A virtual prototyping stage is included in the first layer as
a mechanism for plan simulation, which can reveal incom-
pleteness and omissions in the problem specification or in
the model of the domain of application. The virtual proto-
typing approach provides several advantages in system de-
sign (Cecil and Kanchanapiboon 2007). The approach has
been widely used in industry for reasons such as: it provides
cross-functional evaluation at a lower cost; it enables en-
gineers to consider costly mistakes and downstream issues
earlier in the product design cycle; and it facilitates better
communication of product design issues among engineers
of varying backgrounds (Cecil and Kanchanapiboon 2007).
Connecting AI planning with the literature on virtual proto-
typing would benefit from these advantages.

The purpose of this visual technique is twofold. Firstly, it
serves as a mimic of the real world in which the plan will
be executed. The execution can consider physical proper-
ties that illustrate the applicability of plans in real scenar-
ios. Properties such as collisions, gravity, mass, inertia and
others can be verified (most of the available development
environments for virtual prototyping have these properties
already implemented in embedded engines - they can be in-
cluded or not in the virtual model). Second, the visual and
sound effects provide an excellent means of communication
among design actors, such as domain experts, planning ex-
perts, stakeholders and users. These effects can give experts
and non-experts a clear view of the domain model as well
as an underlying planning strategy, as opposed to looking at
plan traces. Flaws and missing constraints, not detected dur-
ing design (or specification), can be spotted and discussed
by visual inspection (Cecil and Kanchanapiboon 2007). Hy-
pothetical examples of model inconsistency are: a robot tres-
passing solid bodies or sharp corner areas; a robot’s battery
reaching undesirable or unfeasible power levels; or a (pro-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

110

Figure 1: The conceptual model of the postDAM framework

Figure 2: Short-term analysis in the postDAM framework

hibited) sequence of movements made by an autonomous
air vehicle. Generally all these behaviors lead to a revision
in the domain model. Besides the advantage in the model
communication, a visual approach enriches the understating
and familiarity with designs and resulting plans. Depending
on the feedback provided during this analysis, early design
phases must also be revisited.

Other plan visualization and simulation techniques would
also fit on this layer of the framework (e.g., charts and di-
agrams). Similar to virtual prototyping, they serve as plan
communication and plan analysis in the identification of in-
consistencies in the model. However, we believe that virtual
prototyping has a powerful communicative aspect via the vi-
sual interaction.

Creating virtual prototypes demands time and consumes
resources, especially if applied to large and complex sys-

tems. However, its advantages in design support and deci-
sions pay off, as seen in many real engineering problems
(Cecil and Kanchanapiboon 2007). In addition, not all plan-
ning applications can be represented in visualization envi-
ronments. For example, clinical decision support systems
for oncology therapy planning (Fdez-Olivares, Cózar, and
Castillo 2009) do not have a clear virtual representation to
support analysis. For these cases, system or software proto-
typing becomes necessary to provide the same communica-
tion of the model for inconsistency detection.

The short-term layer and the re-modeling cycle are ex-
ecuted as many times as necessary. The cycle stops when
there exists a minimal degree of acceptance (validation)
from the design actors perspective and when changes in the
model do not make any impact on the generated plans. After
the short-term analysis, the generated plans are considered

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

111

valid, satisfying the goals and constraints specified in the
model and having no inconsistencies or flaws.

In order to support the process described in Figure 2, the
postDAM framework integrates a knowledge engineering
tool (itSIMPLE (Vaquero et al. 2009)) for the modeling and
re-modeling processes with a virtual prototyping environ-
ment. The former must provide a structured and disciplined
design process while the latter must have a rich simulation
environment that allows realistic representation of the real
domain of application. In this work, we focus on domain-
independent tools that are able to represent and model a va-
riety of planning applications. It is worth to note that existing
work and contributions in plan verification & validation, and
plan execution & control (e.g. (Giannakopoulou et al. 2005;
Fox, Howey, and Long 2005; Cesta et al. 2008)) could en-
hance, complement or fulfill the requirements of the short-
term level, depending of the application.

Second Layer: Long-term Plan Analysis
In real planning applications, distinct valid plans can solve
the same planning problem; however, they might have dif-
ferent qualities and strategies. In some applications (such as
space exploration (Cesta et al. 2008)) there are a number
of criteria to evaluate a plan and complex trade-offs to be
achieved. The definition of a quality metric must be made
wisely and carefully in AI planning problems. The use of
the appropriate quality metrics and the consideration of eval-
uation rationales are essential to the selection of a subset of
valid plans that can be reliably executed. In real applications,
trade-offs must be known and acknowledged.

The second layer of the postDAM framework aims to
support plan evaluation and model refinement based on a
set of specified metrics. Plan evaluation involves the anal-
ysis of quality metric values, plan classification, and ratio-
nale acquisition. The successive plan evaluations gathered
in the long-term can provide important information that can
be pieced together, accessed and explored. This information
is the base for discovering hidden requirements, constraints,
preferences and the real intentions of design actors (knowl-
edge that was not identified during the virtual prototyping
phase). Such discoveries feed the model refinement cycle.
Differently from the first layer, the model refinement en-
visaged in this long-term analysis focuses on enhancing the
plan quality as opposed to plan validity. Figure 3 illustrates
the long-term plan analysis process proposed in the frame-
work.

As illustrated in Figure 3, the first step in the layer refers
to an initial plan evaluation based on a specified set of qual-
ity metrics. In this initial evaluation, the goal is to analyze
the values of each metric, their weights (representing the
importance among other metrics) and to provide a classifica-
tion for each one of them (e.g., a satisfiability level ranging
from bad to good, 0 to 1).

Depending on the specification and experts’ familiarity
with the domain, it is possible that some of the metrics might
have predefined classification functions that map metric val-
ues to classification ranges. The work of (Rabideau, Engel-
hardt, and Chien 2000) describes an interesting approach
for representing predefined metric classification functions in

which each metric is attached to a preference function that
maps values to scores in the interval [0,1] (0 = unsatisfac-
tory, 1 = satisfactory). This approach is used as a reference
in the framework for representing predefined classification
of quality metrics. If such predefined metric classification is
available (for instance through a KE tool), the initial eval-
uation of the metrics can be made automatically. However,
in most real scenarios predefined metrics functions are un-
known. In fact, the complete set of necessary quality metrics
might be unknown in advance. The lack of a complete set
of metrics requires design participants to communicate and
discuss the main aspects of their planning problem solutions
during plan analysis.

As a second step, the framework introduces the process of
acquiring plan metrics, plan classifications and plan evalua-
tion rationales. Since the set of quality metrics might be in-
complete, users can specify new ones during the initial plan
evaluation. Based on individual metric classification and on
the overall characteristics of the plan, design actors provide
the final plan classification by using, for example, the inter-
val [0,1]. Both metric and plan classification are done inter-
actively with users.

Besides plan classification, the framework aims to acquire
human-centric evaluation rationales. Different from existing
work on rationales in planning (Polyank and Austin 1998;
Wickler, Potter, and Tate 2006), we focus on acquiring
human-centric rationales that emerge from user feedback,
observations and justifications during plan evaluation. Based
on general and individual criteria, interests, feelings and ex-
pectations, the rationales from plan evaluation generate ex-
planations and justifications as to why a plan was classified
into a specific quality level. Therefore, we extend here the
concept of plan rationales described in planning literature
with rationales that encompass “why a certain plan element
does not or does satisfy a criterion” or “why a certain plan
does not or does satisfy a preference”. Moreover, these ratio-
nales could explain “why a certain metric does not or does
satisfy a given criteria” and “what is the effect of a given
plan characteristic or element in the plan quality” (e.g., it
decreases or increases the quality). As an example of plan
rationale, one might say that “the plan has a decreased qual-
ity because the robot left a block too close to the edge of
the table” or “the plan has a high quality because the robot
avoided repeatedly passing through the two most crowded
areas of the building while cleaning it”. We call these expla-
nations plan evaluation rationales.

As illustrated in Figure 3, the acquired rationales for plan
evaluations are checked to guarantee correctness and appli-
cability to the plan being evaluated. Valid rationales are at-
tached to the plan. Once analyzed and evaluated, the plan is
then stored in a database of the postDAM framework, called
Plan Analysis Database.

The Plan Analysis Database is an essential component of
the postDAM framework and, in particular, of the long-term
layer. The main role of the database is to support the reuse of
rationales in each initial plan evaluation, i.e., the framework
is responsible for accessing the database and looking up for
rationales that can be applied. For example, if a previously
analyzed plan in the database was annotated with a given

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

112

Figure 3: Long-term analysis in the postDAM framework

rationale that refers to a bad sequence of actions and if the
plan currently being analyzed has the same bad sequence,
the rationale can be reused to justify an initial classification
during the evaluation.

Another role of the database is to support knowledge dis-
covery in the long-term scenario. In the right side of Figure
3, we have split the exploration of the analysis data into two
processes. The upper process refers to the manual access to
the database and discovery of hidden requirements, prefer-
ences and constraints. The lower process refers to the au-
tomatic reasoning about plan evaluations and discovery (or
extraction) of the hidden knowledge. Both processes address
knowledge that directly impact in the quality of plans.

The manual process includes the access of the database
to explore and study the information available from several
plan analyses. A proper interface for accessing the data is
required. By investigating and comparing different plans,
classifications, and rationales, designers can perform mod-
ification to the model as they better understand actors’ pref-
erences, justifications and the correlations between a plan’s
properties and classifications.

Since manual identification of hidden requirements can be
time consuming (but sometimes very efficient), an automatic
process for knowledge extraction and suggested model ad-
justments becomes necessary. The postDAM includes such
automatic process which can include specially designed al-
gorithms and AI techniques. We do not get into the dis-
cussion of any algorithm or technique in this paper (an ex-
ample is given in (Vaquero 2011)). Nevertheless, the input
and output must be made clear. The input is a set of evalu-
ated plans (along with their respective classification and ra-
tionales) and, if necessary, a domain and problem descrip-
tion. The output is a set of model modification suggestions
to be analyzed by designers (e.g., a new precondition, post-
condition, constraint, preference, metric, or action).

In order to support the process described in Figure 3,

the postDAM framework integrates the following: (1) the
knowledge engineering tool itSIMPLE for plan evaluation
(including metric acquisition, specification and classifica-
tion), rationale acquisition, and manual discovery of hid-
den requirements; (2) a database for storing analyzed plans;
and (3) AI algorithms and techniques for reasoning about
plan evaluations and discovering model refinements. Be-
sides these elements, it is necessary to consider a good repre-
sentation language to capture plan structures, metrics, clas-
sification and rationales. According to (Polyank and Austin
1998), the most reasonable approach would be to consider
new and existing extensions of Plan Ontologies. In this
work, we propose the use of an ontology-based representa-
tion of plans and rationales to allow reasoning about plan
evaluations. Such an ontology is an extension of existing
plan ontologies that is able to support post-design analysis.
The proposed ontology-based representation of plans and ra-
tionales is discussed in the implementation section.

Third Layer: Cross-project Re-use Analysis
The two previous layers were designed to analyze a partic-
ular domain model. However, the experience gained in the
design of one application can be applied to others with simi-
lar properties. The cross-project layer aims to abstract some
of the experience gathered in the short and long-term anal-
yses and make them available and reusable in the design of
new planning applications. In this section, we focus on the
reuse of quality metrics, rationales for plan evaluations and
discovered knowledge.

Reusing past experience during design has long been used
by other engineering areas, such as Software Engineering.
The term design pattern is commonly used to refer to ele-
ments of reusable software. A design pattern is a general,
reusable solution to a commonly occurring problem. Design
patterns have been successfully used in software engineer-
ing to speed up design, improve quality, reduce cost, and

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

113

decrease problem fixing issues (Gamma et al. 1995).
Even though research on design patterns for AI Planning

and Scheduling is scarce, studies like (Long and Fox 2000;
Simpson et al. 2002) have shown that reusable elements can
indeed be useful. Initial work on design patterns for Plan-
ning and Scheduling focuses on enhancing automated plan-
ners to produce plans faster through recognition of common
patterns and the use of specialized heuristics (Long and Fox
2000; Clark 2001). The only work that focuses on the ad-
vantages of reusable knowledge during the design process
is (Simpson et al. 2002). The most significant existing de-
sign patterns are: transportation encapsulating the behavior
of mobile objects that traverse a network of locations (Long
and Fox 2000); construction representing the behavior of ob-
jects that are built from other objects (e.g., assembly prob-
lems) (Clark 2001); and bistate referring to the behavior of
on-off switches (Simpson et al. 2002). The existing design
patterns are limited to classical problems, but this topic has
great potential to evolve with richer domains.

Since design patterns already provide a structured foun-
dation for reusing past experience, in the cross-project reuse
analysis layer we focus on enhancing the patterns for plan-
ning with the knowledge gathered in previous plan evalua-
tions performed in the short and long-term layers. Figure 4
illustrates the process proposed in the layer.

discussed
The main components of the layer described in Fig-

ure 4 are the Plan Analysis Database and the Planning
Design Patterns Database. The former stores specific ex-
periences acquired in plan evaluation cycles (in different
domains), whereas the latter stores general encapsulated,
reusable model elements for planning problems.

The first step represented in Figure 4 aims to generalize
specific knowledge found in the plan analysis database and
enrich the elements in the design patterns database. In this
work we focus on making rationales and discovered knowl-
edge available in design patterns. A matching process be-
tween design patterns and the existing knowledge from the
plan analysis database is required. Conceptually, when a pat-
tern is recognized in a particular domain model that has its
plan analysis stored in the plan analysis database, the ratio-
nales, metrics and model modification referring to that par-
ticular pattern can be analyzed and transfered to the design
patterns database. Since the plan analysis database can be
highly dynamic (new data being stored in each analysis) an
update cycle is necessary to filter new experiences and main-
tain the design patterns database. The techniques and meth-
ods for recognizing and updating design patterns are not in
the scope of this paper. However, ontology matching tech-
niques could be useful in such process (Euzenat and Shvaiko
2007). In fact, the use of an ontological representation of
evaluated plans and rationales in the second layer provides
a foundation for the application of such ontology matching
techniques.

When a new design takes place for a planning application,
existing patterns can potentially be used and explored. The
framework is responsible for providing a design pattern cat-
alog during the modeling phase. When designers import a
selected pattern, all information can be re-used (e.g., quality

metrics, preferences, additional constraints, and evaluation
rationales). Design patterns might also be applied in exist-
ing models. In these cases, the framework is also responsible
for identifying existing patterns in the model, matching the
available knowledge and bringing the attached experience,
if it is not yet explicitly specified in the model.

In order to support the process described in Figure 4,
the postDAM framework conceptually integrates the follow-
ing: (1) the knowledge engineering tool itSIMPLE for per-
forming the update cycle on the planning design patterns
database and for providing such patterns during application
design; (2) a database of design patterns; and (3) mecha-
nisms and techniques for recognizing and matching model
components. Note that it is necessary to consider formalisms
and languages for representing and reasoning about design
models. The KE tool has an important role to provide the
right reusable information at the correct phase of the design.

Implementation in itSIMPLE
In order to support the different layers of plan analysis,
the postDAM framework has been implemented as a post-
design tool for AI planning that integrates several tools, in-
cluding an open-source KE tool, an open-source 3D content
creation for virtual prototyping, an ontology-based reason-
ing system, and a database. The core of this integration is
the KE tool, itSIMPLE (Vaquero et al. 2009). The KE tool
has an important role in every layer of the framework; it sup-
ports human interactions, from metric and rationale acquisi-
tion to knowledge discovery and re-modeling. We have been
designing a series of new extensions of itSIMPLE to fulfill
such roles.

Currently we have completely implemented the first layer
of the framework and partially implemented the second
layer. Regarding the first layer, we have implemented an
extension of itSIMPLE, integrating the KE tool with the
plan validation VAL (Howey, Long, and Fox 2004) for plan
verification and a virtual prototyping environment called
Blender1 for plan simulation. The work described in (Va-
quero, Silva, and Beck 2010) provides a complete descrip-
tion of the short-term plan analysis process. The work in-
troduces a re-modeling support tool that uses virtual proto-
typing techniques for plan analysis. While observing plan
execution and evaluation in a 3D environment environment,
users detect inconsistencies, unexpected behaviors and hid-
den requirements that guide a re-modeling process. In (Va-
quero, Silva, and Beck 2010) we show, through experiments
with benchmark domains, that the impact of a re-modeling
tool on the planning process can be quite impressive, affect-
ing not only the plan quality, but run-time and solvability. In
these experiments, we have detected missing constraints on
the definition of operators, as well as new predicates which
were added to avoid specific scenarios. Such experiments
open a large road for the investigation and understanding of
knowledge captured on post-design.

In the long-term plan analysis, itSIMPLE (Vaquero et al.
2009) has also a central role; it supports human interac-
tions and reasoning processes, from plan evaluation to ratio-

1Blender, available at www.blender.org.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

114

Figure 4: Cross-project re-use analysis in the postDAM framework

nales acquisition and knowledge extraction. We have imple-
mented the following processes: the interactive plan evalua-
tion in which users are able to modify and adjust plan classi-
fication based on their impressions; and the acquisition and
re-use of plan evaluation rationales. This implementation is
describe in the work (Vaquero, Silva, and Beck 2011).

In order to give here an overview of the implemented
components of the second layer, we have integrated itSIM-
PLE with a database system, PostgreSQL,2 and with a rea-
soning system, based on tuProlog.3 The database is respon-
sible for storing plan evaluations and their respective ratio-
nales, while the reasoning system is responsible for infer-
ring rationale re-use in new plan evaluations. In order to
capture, represent and re-use the rationales, we have used
an extension of the Process Specification Language (PSL).
PSL is an expressive ontological representation language of
processes (plans), including activities and the constraints on
their occurrences. PSL has been designed as a neutral inter-
change ontology to facilitate correct and complete exchange
of process information among manufacturing systems such
as scheduling, process modeling, process planning, produc-
tion planning, simulation, project management, workflow,
and business process applications (Grüninger and Kopena
2005).

We have not covered the development and investigation
of all three layers of plan analysis and knowledge re-use.
We have focused on the short and long-term analyses while
the third layer is left for future work.

2PostgreSQL is available at http://www.postgresql.org/.
3tuProlog: see http://alice.unibo.it/xwiki/bin/view/Tuprolog/.

Conclusion
This paper presents the conceptual model of the postDAM
framework. We have emphasized the structure of the pro-
posed framework, i.e., its different layers of plan analysis
that provide a basis for the model modification and refine-
ment. Such refinement aims at the improvement of plan
quality and, as a consequence, the planning performance.
The layers of analysis include a short-term support for detec-
tion of missing requirements, a long-term support for iden-
tification of hidden knowledge, a cross-project analysis and
software tools for knowledge re-use.

We have described the different tools that can be inte-
grated in the framework to assist the discovery of missing
requirements, to support evaluation rationale acquisition and
re-use, and to guide the model refinement cycle. Not all pro-
cesses have been implemented, but some of them have been
developed. In previous work we implemented for example
the first layer of postDAM. We demonstrated in (Vaquero,
Silva, and Beck 2010) that following a careful post-design
analysis, we can improve not only plan quality but also solv-
ability and planner speed. However, in this paper we have
shown the big picture of our research on post-design, aim-
ing at supporting the different stages of plan analysis. In a
real planning application, the analysis process that follows
design becomes essential to have the necessary knowledge
represented and adapted in the model.

References
Cecil, J., and Kanchanapiboon, A. 2007. Virtual engi-
neering approaches in product and process design. The In-
ternational Journal of Advanced Manufacturing Technology
31(9-10):846–856.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

115

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2008. Validation and verification issues in a timeline-based
planning system. In Proceedings of the 18th International
Conference on Automated Planning and Scheduling (ICAPS
2008) Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).
Clark, M. 2001. Construction domains: A generic type
solved. In Proceedings of the 20th U.K. Planning and
Scheduling Workshop.

Euzenat, J., and Shvaiko, P. 2007. Ontology matching. Hei-
delberg (DE): Springer-Verlag.

Fdez-Olivares, J.; Cózar, J.; and Castillo, L. 2009. On-
coTheraper: Clinical Decision Support for Oncology Ther-
apy Planning Based on Temporal Hierarchical Tasks Net-
works. In Riaño, D., ed., Knowledge Management for
Health Care Procedures, volume 5626 of Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer-Verlag. 25–
41.

Fox, M.; Howey, R.; and Long, D. 2005. Exploration of
the Robustness of Plans. In Proceedings of ICAPS 2005
Verification and Validation of Model-Based Planning and
Scheduling Systems workshop.

Gamma, E.; Helm, R.; Johnson, R. E.; and Vlissides, J.
1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley.

Giannakopoulou, D.; Pasareanu, C. S.; Lowry, M.; and
Washington, R. 2005. Lifecycle Verification of the NASA
Ames K9 Rover Executive. In Proceedings of ICAPS 2005
Verification and Validation of Model-Based Planning and
Scheduling Systems workshop.

Grüninger, M., and Kopena, J. B. 2005. Planning and the
Process Specification Language. In Proceedings of ICAPS
2005 workshop on the Role of Ontologies in Planning and
Scheduling, 22–29.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Auto-
matic Plan Validation, Continuous Effects and Mixed Ini-
tiative Planning Using PDDL. In ICTAI’04: Proceedings of
the 16th IEEE International Conference on Tools with Arti-
ficial Intelligence, 294–301. Washington, DC, USA: IEEE
Computer Society.

Jónsson, A. K. 2009. Practical Planning. In ICAPS 2009
Practical Planning & Scheduling Tutorial.
Long, D., and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. In In Artificial Intelligence
Planning and Scheduling AIPS-00, 196–205. Breckenridge,
CO: AAAI Press.

McCluskey, T. L., and Simpson, R. M. 2006. Tool support
for planning and plan analysis within domains embodying
continuous change. In Proceedings of the 16th International
Conference on Automated Planning and Scheduling (ICAPS
2006) Workshop on Plan Analysis and Management.
McCluskey, T. L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning. Toulouse, France 1–4.

Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-06).
Cumbria, UK: AAAI Press.

Polyank, S., and Austin, T. 1998. Rationale in Planning:
Causality, Dependencies and Decisions. Knowledge Engi-
neering Review 13(3):247–262.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
generic preferences to incrementally improve plan quality.
In Proceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning and Scheduling. Breckenridge,
CO.: AAAI Press.

Simpson, R. M.; Mccluskey, T. L.; Long, D.; and Fox, M.
2002. Generic Types as Design Patterns for Planning Do-
main Specification. In Knowledge Engineering Tools and
Techniques for AI Planning: AIPS’02 Workshop.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA: AAAI Press.

Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From Requirements and Analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, ICAPS 2009, 54–61.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Im-
proving Planning Performance Through Post-Design Analy-
sis. In Proceedings of ICAPS 2010 workshop on Scheduling
and Knowledge Engineering for Planning and Scheduling
(KEPS), 45–52.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. Ac-
quisition and Re-use of Plan Evaluation Rationales on Post-
Design. In Proceedings of ICAPS 2011 workshop on Knowl-
edge Engineering for Planning and Scheduling (KEPS).
Vaquero, T. S. 2011. Post-Design Analysis for AI Planning
Applications. Ph.D. Dissertation, Polytechnic School of the
University of São Paulo, Brazil.

Wickler, G.; Potter, S.; and Tate, A. 2006. Recording Ratio-
nale in <I-N-C-A> for Plan Analysis. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS 2006) Workshop on Plan Analysis and
Management.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

116

�

�

�

�

System�Demonstrations�

An Interactive Tool for Plan Visualization, Inspection and Generation

Alfonso E. Gerevini and Alessandro Saetti

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy
{gerevini,saetti}@ing.unibs.it

Abstract

In mixed-initiative planning systems, humans and AI plan-
ners work together for generating satisfactory solution plans
or making easier solving hard planning problems, which oth-
erwise would require much greater human planning efforts or
much more computational resources. In this approach to plan
generation, it is important to have effective plan visualization
capabilities, as well to support the user with some interactive
capabilities for the human intervention in the planning pro-
cess. This paper presents an implemented interactive tool for
the visualization, generation and revision of plans. The tool
provides an environment through which the user can inter-
act with LPG, a state-of-the-art domain-independent planner,
and obtain an effective visualization of a rich variety of in-
formation during planning, including the reasons why an ac-
tion is being planned or why its execution in the current plan
is expected to fail, the trend of the resource consumption in
the plan, and the temporal scheduling of the planned actions.
Moreover, the proposed tool supports some ways of human
intervention during the planning process to guide the planner
towards a solution plan, or to modify the plan under construc-
tion and the problem goals.

Introduction
In the AI-planning literature, many approaches to plan gen-
eration or revision combining automated techniques with
human-driven decisions have been proposed, e.g., (Allen &
Ferguson 2002; Cox & Zhang 2005; Cox & Veloso 1997b;
Currie & Tate 1991; Ferguson et al. 1996; Ferguson & Allen
1994; Myers et al. 2003; Tecuci 2003; Veloso et al. 1997;
Zhang 2002). The rationale of these mixed-initiative ap-
proaches is that the collaborative joint work of a human and
an AI planner can be much more effective than either hu-
man planning or fully automated planning alone, in terms
of problem solvability, planning speed, or user satisfaction
about the quality of the generated solutions.

Mixed-initiative planning systems with interactive user-
machine interfaces can be essential for making modern
planning technology usable in real-world applications (e.g.,
(Bresina et al. 2005; Castillo et al. 2005)). For instance,
consider the Mars Exploration Rovers Mission project,
which involved two NASA rovers for the ground exploration
of Mars (Bresina et al. 2005). As argued in (Bresina et al.
2005), the complexity of this project and the aggressive op-
eration plans made using an automated tool for generating

the daily activity plans necessary. However, also the human
involvement during the planning process was needed. The
activity plan needed to be presented, critiqued and, hope-
fully, accepted. Another concern in this application was
the infeasibility of formally encoding and effectively utiliz-
ing during automated plan generation all the knowledge that
characterizes plan quality.

As argued by Ferguson & Allen (1994), in mixed-
initiative planning the description of a plan that the system
provides to the user should be richer than just a list of ac-
tion names with the associated temporal information, e.g.,
for each action, its start time and expected duration, as in
PDDL2.1 plans (Fox & Long 2003). In particular, for an
interactive planning tool it is essential to have specialized
user-interface capabilities explaining the reasons why an ac-
tion has been planned, or why, in the context of the plan un-
der consideration, it is expected that its execution will fail.
Moreover, it is desirable that the system supports an effec-
tive visualization and inspection of the plan, which helps the
user to understand the ongoing planning process, the deci-
sions taken by the planner, and the feasibility and quality of
the solution plan proposed by the system to the user.

An adequate description of the current plan and the plan-
ning process that led to its generation is very useful to
the user for deciding the possible human interventions in
order to (a) guide the planning process for a faster gen-
eration of a solution, (b) constrain the plan under con-
struction so that, e.g., it contains certain actions or crosses
some particular intermediate states specified by the user,
or (c) modify the problem goals during planning. How-
ever, plan visualization is a scarcely investigated area in AI
planning, and only very few planning systems currently in-
corporate a user interface with effective plan visualization
capabilities, e.g., (Lino & Tate 2004; Lino et al. 2005;
Daley et al. 2005).

In the recent years, automated domain-independent plan-
ning has dramatically improved in terms of planning perfor-
mance and especially speed. However, to the best of our
knowledge, the state-of-the-art domain-independent plan-
ners are not equipped with an interactive tool supporting
plan visualization and mixed-initiative planning capabili-
ties. This limits their applicability to real-world applications
where, often, the domain experts want to analyze the plan
generated by the planner and possibly refine some portion(s)

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

118

of it, before committing to its execution. The output infor-
mation of all recent efficient domain-independent planners
is given to the user only in a simple high-level textual form,
indicating some very general information about the planning
process and describing the generated plan as a simple list of
actions with the relative scheduled start times and durations.
Moreover, there is no possibility of human intervention to
guide the planning process, to inspect the generated plan and
to possibly revise it.

In this work, we focus on a successful approach to fully
automated domain-independent planning with the aim of
making it more suitable for mixed-initiative planning. This
approach is implemented in the well-known LPG planner
(Gerevini et al. 2003; 2006; 2009), a state-of-the-art plan-
ner supporting the standard language PDDL2.2 (Hoffmann &
Edelkamp 2000) and belonging to the so-called “satisficing”
style of planning, which in the last ten years has received
significant interest in the AI planning community.1

The main contribution of the work presented in this pa-
per is a new interactive environment for the visualization,
inspection, generation and revision of plans. The tool im-
plementing this environment is called InLPG, and uses LPG
as the underlying automated planning system. The user can
interact through InLPG with the underlying planner about:

• the plan under construction or revision (e.g., the user re-
quests a temporal scheduling for some planned action that
is different from the one decided by the planner, or im-
poses that some particular action must be in the solution
plan);

• the planning problem under consideration (e.g., the user
communicates to the system that some particular goal can
be ignored, or adds some new goals);

• the automated planning process (e.g., the user pauses the
search of the planner and modifies the planner decision
about the next search state to be explored).

Moreover, the proposed tool supports plan visualization
through various (dynamic) views of the plan, such as: a
Gantt chart of the planned actions, a constraint graph for the
temporal constraints in the plan, a resource graph for moni-
toring and describing the trend of the resource consumption
in the plan, a graphical representation of the main data struc-
ture representing the search states and partial plans explored
by the automated planner, several plots describing the trend
of the search process.

The paper is organized as follows. Section 2 introduces
the necessary background about LPG planner. Section 3
describes the main components of the proposed interactive
planning tools. Finally, the last section is devoted to the con-
clusions and possible future work.

The LPG Planner
LPG is a versatile system that can be used for plan genera-
tion, plan repair and incremental planning in PDDL2.2 do-

1Differently from optimal planning, satisficing planning ad-
dresses the problem of quickly computing a good quality solution
plan rather than a necessarily optimal solution plan (which usually
is a more expensive computational task).

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic function E;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

mains (Hoffmann & Edelkamp 2000). The planner is based
on a stochastic local search procedure that explores a space
of partial plans represented through linear action graphs
(LA-graph), which are variants of the very well-known plan-
ning graph (Blum & Furst 1997). A linear action graph is
a directed acyclic leveled graph that alternates between a
proposition level, i.e., a set of domain propositions, and an
action level, i.e., one ground domain action and a set of spe-
cial dummy actions, called “no-ops”, each of which prop-
agates a proposition of the previous level to the next one.
If an action is in the graph, then its preconditions and pos-
itive effects appear in the corresponding proposition levels
of the graph. Moreover, a pair of propositions or actions can
be marked as (permanent) mutually exclusive at every graph
level where the pair appears (for a detailed description, see
(Gerevini et al. 2003)). If a proposition appears at a level of
the action graph, then its no-op appears at that level and at
every successive graph level until a level containing an ac-
tion that is marked mutually exclusive with it is reached (if
any). The initial and last levels of every action graph con-
tain the special actions astart and aend, where the effects of
astart are the facts of the problem initial state and the pre-
conditions of aend are the problem goals.

The plan represented by an action graph is a valid plan if
and only if the graph contains no flaw, where, intuitively, a
flaw is an action in the graph with a precondition that is not
supported by the propagation of an effect of another action
appearing at a previous graph level.

Starting from the initial action graph containing only
two special actions representing the problem initial state
and goals, respectively, LPG iteratively modifies the current
graph until there is no flaw in it or a certain bound on the
number of search steps is exceeded. LPG attempts to re-
solve flaws by inserting into or removing from the graph a
new or existing action, respectively. Figure 1 gives a high-
level description of the general search process performed by
LPG. Each search step selects a flaw σ in the current ac-
tion graph A, defines the elements (modified action graphs)
of the search neighborhood of A for repairing σ, weights
the neighborhood elements using a heuristic function E, and
chooses the best one of them according to E with some prob-
ability n, called the noise parameter, and randomly with
probability 1 − n. Because of this noise parameter, which
helps the planner to escape from possible local minima, LPG
is a randomized procedure.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

119

Architecture of InLPG
In this section, we describe the architecture of the proposed
interactive tool for the visualization, generation and revision
of plans, along with its main components.

Architecture Overview
The architecture of InLPG is sketched in Figure 2. It con-
sists of five main components that are integrated in the LPG
planner:

• the input module, which inputs the files containing the de-
scription of the planning problem under consideration;

• the search process monitor, which monitors the search
process, and at each step of the search displays the in-
formation about the current search state;

• the search state monitor, which provides different views
of the current state during the search process;

• the plan editor, which provides some tools for human-
driven changes to the plan under construction;

• the search process editor, which provides some tools for
human-driven changes to the search process and to the
current planning problem.

Our environment includes an open-controllable version
of LPG, i.e., all the decision points of the search procedure
sketched in Figure 1 can be controlled by an external process
that, in our context, is under the control of a human user. In
particular, at each search step, the user can select a plan flaw
to repair (step 3 of the procedure in Figure 1), modify the
definition of the search neighborhood (step 4), and select a
graph modification among those that generate the elements
in the search neighborhood (step 6). Basically, LPG runs as
a separate process, and it communicates with the rest of the
environment through socket messages. The decisions about
the search process taken by the user through InLPG over-
writes the decisions taken by the heuristics of LPG.

Figures 3 and 4 shows two screenshots of the user-
interface. The left frames show the Gantt chart of the plan
computed at the 368th search step (upper screenshot) and
the trend of some resources during the execution of the plan
(bottom screenshot). The plan is flawed, because it con-
tains actions that cannot be executed (the darker boxes in
the Gantt chart, which in the actual screen are red). The in-
formation in this frame can be moved to the secondary frame
(right frame), as displayed by the bottom screenshot, or into
different windows. (This latter option is particularly useful if
the user wants to compare different plans.) The Gantt chart
in this frame also displays the temporal constraints between
some actions in the plan, that can be activated or deactivated
in the chart by clicking the action boxes.

The quality of the plan is automatically measured accord-
ing to the metric expression specified in the problem formu-
lation. In this example, the quality is defined as the duration
of the plan, and for the displayed plan it is 1350.

The right hand side of the upper screenshot contains four
plots. The first three plots (starting from the top) show, for
each search step, the number of flaws (1st plot), the num-
ber of actions (2nd plot) and the makespan of the plan con-

Application

Front-end

Search State

Monitor

C
o
m

p
lete

in
fo

rm
atio

n

ab
o
u
t

th
e

cu
rren

t
L

A
-g

rap
h

m
o
d
ifi

ed
L

A
-g

rap
h

A
n

o
p
tio

n
ally

o
r

a
selected

fl
aw

(LPG)

Constraint Graph,

Gaant chart, Etc.

Automated Planner

U
ser

co
m

m
an

d
s

Messages

Socket

Search Process

Editor

the search process

D
o
m

ain
,

P
ro

b
lem

,
P

lan
n
in

g
settin

g
s,

E
tc.

Graphs monitoring

Monitor

Search Process

S
u
m

m
ary

in
fo

rm
atio

n

n
eig

h
b
o
rh

o
o
d

ab
o
u
t

th
e

cu
rren

t
L

A
-g

rap
h

A
search

Domains/Problems

KB

Plans

Input

Module

Plan Editor

Figure 2: A sketch of the main components of InLPG and
their interactions.

structed at the corresponding search step (3rd plot). The bot-
tom plot informs the user about the trend of the quality of the
solutions computed so far (LPG is an incremental planner
computing a sequence of plans with increasing quality): for
the example of Figure 3, LPG first found one solution with
quality 7836.6 using 0.171 CPU-seconds; subsequently, a
better solution with quality 4868.6 was found using about
0.4 CPU-second, and finally another slightly better solution
with quality 4522.8 was generated using about 1.5 CPU-
second.

In the next subsections, we will give a detailed description
of the components integrated in our environment.

Input Module
By using standard acquisition tools the user inputs the ba-
sic planning information to our environment: (i) a PDDL
domain file, containing the action schemata and the predi-
cates of the planning problem to solve; (ii) a PDDL problem
file describing the problem initial state and goals; and, op-
tionally, (iii) a plan file containing the PDDL description of
a plan taken from a plan library. The possibility of load-
ing a plan is particularly useful for solving plan adaptation
problems (Gerevini & Serina 2000), in which the input plan
is modified to become a solution of the planning problem.
In addition, the user can change the default values of some
technical parameters of the search algorithm implemented
in LPG. A complete list of such parameters is described in
(Gerevini et al. 2004).

After the necessary information has been acquired, the in-
put module verifies the syntax of the PDDL files, and, if they
are syntactically correct, it sends a message to LPG in or-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

120

Figure 3: A screenshot of the graphical user interface of InLPG showing the Gantt chart of the current partial plan (main frame)
and four graphs for monitoring the search process (right frame).

Figure 4: A screenshot of the graphical interface of InLPG showing the resource graph and the Gantt chart of the current plan.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

121

Figure 5: A portion of the screen of the user interface show-
ing an example of the plots displayed by the search pro-
cess monitor: the number of flaws (upper plot), the num-
ber of actions in the current LA-graph (middle plot), and the
number of time steps of the plan under construction (bot-
tom plot). On the x-axis we have the number of performed
search steps.

der to start a planning process for solving the given planning
problem.

Search Process Monitor
At each search step, LPG sends a message to the search
process monitor containing the following basic information
about the current LA-graph: the number of flaws in the LA-
graph, the number of actions in the represented plan and
the makespan of this plan. The search process monitor pro-
cesses this information and plots the corresponding graphs
in order to visualize a variety of information about the on-
going search process. For example, if the user sees that the
number of actions or the plan makespan is much higher than
the desired value, then he is informed that the search pro-
cess is most likely visiting a portion of the search space that
is faraway from the portion where the desired solution is lo-
cated. Moreover, if the number of flaws does not decrease
with the search steps, then the search might be trapped in
a local minimum or plateau. Figures 3 (right frame) and 5
show two examples of these plots.

Identifying which are the search steps where the planner
makes wrong decisions that are crucial for the success of
the search process could be a difficult task. The plots of the
search process monitor help the user to identify them. The
intervention of a human to revise the wrong decisions made
by the planner for these steps could be very important in or-
der to effectively guide the process towards a solution plan.

In our context, when the search process visits a portion of
the space which contains no solution LA-graph, the num-
ber of flaws does not significantly decrease. The plot of the
number of flaws can indicate this problematic behavior in
which the planner is continuously making wrong decisions,
and hence it can suggest that a human-driven choice could
improve the search.

For example, according to the right frame of Figure 3, the
planning system is working well: at several search steps the
number of flaws in the current LA-graph is zero.2 On the
contrary, according to the plots about the number of actions,
flaws and duration of the plan in Figure 5, LPG is not ap-
proaching a solution LA-graph.

Search State Monitor
When the user intervenes in the search process of LPG, e.g.,
by pausing the search process and undoing the search steps
back to a certain search state (LA-graph), LPG sends a de-
tailed description of the current LA-graph to the search state
monitor. The search state monitor processes such informa-
tion by computing the following information:

• a complete graphical representation and some compact
representations of the current LA-graph,

• a graphical representation of the temporal constraints in-
volving the actions in the plan represented by the current
LA-graph;

• a textual (PDDL-like) description of the plan represented
by the current LA-graph;

• a Gantt chart of the actions in the current plan; and

• a graph showing the trend of the involved resources during
the plan.

All these graphs are dynamic. At each search step (for-
ward or backward), they are automatically recomputed and,
in order to guarantee their readability, they are automatically
scaled and appropriately displayed. For example, at each
search step, the temporal constraints involving the actions in
the plan change because either an action is removed or in-
serted, and thus the search state monitor recomputes an ap-
propriate graphical organization of the nodes in the revised
constraint graph, in order to avoid edge crossing and to re-
duce the edge length. The new constraint graph is computed
by GRAPHVIZ (http://www.graphviz.org/), an auto-
mated tool for layered drawing of directed graphs. More-
over, the nodes of the graphs can be clicked to obtain infor-
mation on the represented action or to change some property
of the action (e.g., a new start time for the represented ac-
tion). Figures 3, 4 and 6 give examples of the Gantt chart,
the graph of the resources and the linear-action graph.

By looking at the graphical representations of the com-
puted plan, the user can evaluate the current search state and

2When a search step reaches an LA-graph with no flaw, the
planner has found a valid plan. However, this plan is given in out-
put only if its quality improves the quality of the previous output
plan. In the example of Figure 3, some valid plans are computed,
but only the one found at about the 350th step is given as the third
output plan.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

122

Figure 6: A portion of the screen of the user interface showing a compact representation of the current LA-graph. Square
nodes are action nodes; elliptical nodes are fact nodes. Dark elliptical nodes (red nodes in the actual screen) are plan flaws
(unsatisfied action preconditions). For lack of space, the label of some nodes is abbreviated. By moving the mouse on a node,
a tooltip displays the corresponding full label. The darkened level (blue area in the actual screen) is the level of the last change
performed by the planning process.

realize (or at least hypothesize) how the current plan has to
be modified. In particular, the user interface highlights the
graphical objects corresponding to plan actions that are not
executable, and provides information exploiting why they
are not executable (for instance, because of a precondition
is not satisfied, a scheduling constraint is violated, or not
enough resources are available in the state where the action
is executed).

Plan Editor
The plan editor is activated when the user revises the plan
under construction. In a mixed-initiative planning context,
the possibility for the user to inspect a plan and revise it
through a plan editor is useful both during the process of
constructing high quality plans and during the process of
adapting an existing plan to satisfy the requirements of a
new planning problem.

The plan editor allows the user to remove undesired ac-
tions, to add new actions (possibly satisfying some precon-
ditions that currently are unsatisfied), and to reschedule an
action in the plan. In the following, we describe the tools
provided by the plan editor for supporting these plan revi-
sions. If the user adds (removes) an action from the current
plan, the plan editor sends a special message to LPG con-
taining the desired (undesired) action selected by the user.
Then, the planner computes a new LA-graph obtained from
the previous one by adding (removing) the corresponding
action node. Similarly, the plan editor allows the user to
constrain the start time of an action in the plan to be after
a desired time, and the end time of an action to be before a
desired time. Moreover, the plan editor allows the user to
restart the search from an empty plan, instead of continuing
it from the current plan, which can be a good option when
the current plan contains too many undesired actions or too
many actions violating the desired scheduling constraints.

When the plan under construction is not valid, the plan

editor allows the user to repair “by hand” a flaw in the cur-
rent partial plan. This interaction requires the usage of some
handshaking messages. The plan editor sends a message to
the planner containing the flaw selected by the user; then,
LPG sends a new message to the component containing the
elements in the search neighborhood for the selected flaw.
The plan editor displays such a neighborhood (each ele-
ments is compactly represented by the corresponding action
addition/removal that eliminates the flaw under considera-
tion), while the user selects an element from the neighbor-
hood (for an example, see Figure 7). Finally, the plan editor
sends a message describing the graph modification selected
by the user to the planner, which then computes a new LA-
graph obtained by applying the selected graph modification.

Search Process Editor
The search process editor allows the user to control the
progress of the search. The user can inspect and run the
search by different modalities: with “no interruption”, “for-
ward step by step”, “forward multi steps” and by “backward
step by step”. For instance, the user can “pause” the search
at any time, inspect the current plan and LA-graph and then
continue the search step by step, i.e., the search progresses
only one step and then waits that the user clicks the com-
mand button to proceed for the next step. If the user ob-
serves that the heuristics of LPG make an incorrect choice
when repairing the selected flaw, the search process editor
allows her to move the search one step backward, so that she
can intervenes and forces the planner to make an alternative
decision among a set of alternatives provided by the sys-
tem. The backward step-by-step modality can be repeated
to undo the search back to any of the last k states previously
generated, where k can be set by the user. The multi-step
modality is very useful to obtain a graphical animation of
the search progress. Under this modality, for each search
step all graphs provided by the environment are automati-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

123

Figure 7: Two frames of the user interface containing a portion of the current LA-graph (left frame) and the search neighborhood
of such a graph for repairing the flaw (attruck1NY) at level 2 of the LA-graph (right frame). The user can choose one of the
three indicated possible graph modifications or let LPG choose using the heuristic value.

cally updated and re-displayed after k-milliseconds, where
k is the speed of the animation that can be set by the user.

Moreover, the search process editor gives the user a tool
for affecting the future search steps of the planning process
by modifying the definition of the search neighborhood for
every flaw in the current plan. For example, by inspecting
the (partial) plan computed so far, the user realizes that, in
order to achieve a desired solution plan, some actions should
never be removed from the plan under consideration. The
search process editor allows her to specify this constraint to
the search, and, in this case, the search process editor sends
a special message to the planner imposing that in the rest of
the search process the removal of these actions will not be
part of any search neighborhood.

The search process editor also allows the user to asso-
ciate a breakpoint with a flaw in the plan under construc-
tion. When this happens, the editor sends a special message
to the planner containing the selected flaw, which modifies
the standard behavior of the planner in the following way.
Whenever the planning process of LPG selects such a flaw to
repair, the process is interrupted; the system presents all pos-
sible options for repairing the flaw to the user; and the user
choices one of these options repairing the flaw “by hand”.

For each flaw σ repaired by hand and search neighbor-
hood N , the search process editor memorizes the successor
action graph (a graph modification) selected by the user. In
the successive search steps, if the planning process of LPG

attempt to repair flaw σ again, evaluating a search neighbor-
hood similar to N , then the successor action graph selected
by the planner is the graph obtained by performing the graph
modification previously selected by the user, which could be
different from the action graph that the planner would select
from the neighborhood according to its heuristic evaluation.
Let Ncurr be the neighborhood for solving the flaw σ un-
der consideration, the similarity between Ncurr and N is

measured by
|Ncurr∩N |

max{|Ncurr|,|N |} . A similarity threshold t can

be customized as an input setting of the graphical user in-
terface. Thus, the search process repairs flaw σ using the
graph modification previously chosen by the user for σ with
neighborhood N , if the similarity measure between Ncurr

and N is greater than or equal to t; it repairs flaw σ using
the graph modification selected according to the default cri-
teria of LPG, otherwise.

Finally, the search process editor allows the user to im-
pose intermediate goals, i.e., facts that must be true at some
point in the plan.

Conclusions
We have presented InLPG, an implemented interactive tool
for the visualization, inspection, generation and revisions of
plans, which supports a form of “human-in-the-loop” con-
trol of planning that is typical in the mixed-initiative ap-
proach to plan generation. InLPG includes a graphical in-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

124

terface through which the user can interact with a state-of-
the-art domain-independent planner, obtaining an effective
visualization of a variety of information about the plan under
construction or inspection, as well as about the undergoing
planning process. Moreover, the tool provides some capa-
bilities allowing the user to intervene during the planning
process to modify the problem goals, the plan under con-
struction or the planner heuristic decisions at search time.

In a preliminary experiment using hard problems from the
IPC benchmark domains Philosophers and Storage, we
observed that specifying a few human-driven search steps
or intermediate goals through the user interface of InLPG
significantly helps the underlying planner to reach a solution
plan, which otherwise would be much harder to find for the
planner alone.

Current and future work concerns the extension of InLPG
with further innovative techniques of information visualiza-
tion for improving the readability of large plans. We also
intend to augment the options offered by the tool to the hu-
man intervention during the plan construction, and to con-
duct some experiments to test the usability of the tool for
novice and expert users of planning technology. Finally, we
believe that the proposed tool can be useful also in an educa-
tional context to support teaching and learning AI planning,
as observed with the students of an AI course (master degree
level) recently taught by the authors of this paper.

Acknowledgments. We would like to thank Fabrizio Bonfadini

and Maurizio Vitale for their help with the implementation of

InLPG’s graphical interface.

References
J. Allen and G. Ferguson. 2002. Human-machine collabo-
rative planning. In Proc. of the 3rd Int. NASA Workshop on
Planning and Scheduling for Space (2002).

A. Blum and M. Furst. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence. 90:281–300.

J. Bresina, A. Jonsson, P. Morris, and K. Rajan. 2005 Ac-
tivity planning for the mars exploration rovers. In Proc. of
the 15th Int. Conf. on Automated Planning and Scheduling.

L. Castillo, J. Fdez-Olivares, O. Garcı̀a-Pèrez and F. Palao
2005. SIADEX. An integrated planning framework for cri-
sis action planning. In Proc. of ICAPS-05 System Demon-
strations.

M. T. Cox and M. Veloso, 1997. Controlling for unex-
pected goals when planning in a mixed-initiative setting. In
Proc. of the 8th Portuguese Conf. on Artificial Intelligence.

M. Cox and C. Zhang, 2005. Planning as mixed-initiative
goal manipulation. In Proc. of the 15th Int. Conf. on Auto-
mated Planning and Scheduling.

K. Currie and A. Tate. 1991. O-plan: the open planning
architecture. Artificial Intelligence 52:49–86.

P. Daley, J. Frank, M. Iatauro, C. McGann, W. Taylor.
2005. PlanWorks: A debugging environment for constraint
based planning systems. In Proc. of the 1st Int. Competition
on Knowledge Engineering for Planning and Scheduling.

G. Ferguson and J. Allen. 1994. Arguing about plans: Plan
representation and reasoning for mixed-initiative planning.
Proc. of the 2nd Int. Conf. on AI Planning Systems.

G. Ferguson, J. Allen, and B. Miller. 1996. Trains-95:
Towards a mixed-initiative planning assistant. Proc. of the
3rd Conf. on Artificial Intelligence Planning Systems.

M. Fox and D. Long. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.

A. Gerevini, A. Saetti, and I. Serina. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.

A. Gerevini, A. Saetti, and I. Serina. 2004. An empirical
analysis of some heuristic features for local search in LPG,
Proc. of the 14th Int. Conf. on Automated Planning and
Scheduling.

A. Gerevini, A. Saetti, and I. Serina. An approach to tem-
poral planning and scheduling in domains with predictable
exogenous events. Journal of Artificial Intelligence Re-
search 25:187–231.

A. Gerevini, A. Saetti, and I. Serina. 2009. An Approach
to Efficient Planning with Numerical Fluents and Multi-
Criteria Plan Quality. Artificial Intelligence 172(8-9):899–
944.

A. Gerevini and I. Serina. 2000. Fast plan adaptation
through planning graphs: Local and systematic search
techniques. in Proc. of the 5th Int. Conf. on Artificial Intel-
ligence Planning and Scheduling.

J. Hoffmann and S. Edelkamp, 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research 24:519–579.

N. Lino and A. Tate. 2004. A visualisation approach for
collaborative planning systems based on ontologies. In
Proc. of the 8th Int. Conference on Information Visualisa-
tion.

N. Lino, A. Tate, and Y.-H. Chen-Burger. 2005. Semantic
support for visualisation in collaborative AI planning. In
Proc. of the Workshop on The Role of Ontologies in Plan-
ning and Scheduling.

K. L. Myers, P. A. Jarvis, W. M. Tyson, and M. J. Wolver-
ton. 2003. A mixed-initiative framework for robust plan
sketching. In Proc. of the 13th Int. Conf. on Automated
Planning and Scheduling.

H. A. Simon. 1957. Models of Man. John Wiley & Sons
Inc., New York, USA.

G. Tecuci. Proc. of the IJCAI Workshop on Mixed-Initiative
Intelligent Systems. AAAI Press, Menlo Park, California,
USA.

M. Veloso, M. Mulvehill, A., and T. Cox, M. 1997.
Rationale-supported mixed-initiative case-based planning.
in Proc. of the 9th Conf. on Innovative Applications of Ar-
tificial Intelligence.

C. Zhang. 2002. Cognitive models for mixed-initiative
planning. PhD thesis, Wright State University, Computer
Science and Engineering Department, Dayton, Ohio, USA.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

125

An extended HTN knowledge representation based on a graphical notation

Francisco Palao
IActive Intelligent Solutions

Granada, SPAIN

Juan Fdez-Olivares
Dept. of Computer Science and A.I

University of Granada

Luis Castillo and Oscar Garcı́a
IActive Intelligent Solutions

Granada, SPAIN

Abstract

This work presents both an extended HTN Knowledge Rep-
resentation based on a graphical notation inspired in commer-
cial standards and a suite of tools, named IActive Knowledge
Studio, based on this representation aimed at fully support-
ing a knowledge engineering process that, starting with the
acquisition and representation of planning knowledge, ends
with the integration and deployment of planning applications.
The suite is also intended to be a knowledge engineering
workbench for HTN planning applications deployment. This
workbench includes several interesting features like a fully
integrated representation of problem and domain knowledge
and a new graphical and intuitive notation for easily repre-
senting HTN domains. It also provides tools for data integra-
tion with external data sources as well as an enhanced visual
environment for HTN domains and plan validation.

Motivation
AI Planning and Scheduling (AIP&S) has revealed as an en-
abling technology to develop ”assistant applications” which
support human decision making in domains where the ac-
complishment of tasks to carry out a given activity or
achieve a goal is mandatory. Most of these applications are
aimed at supporting Human-Centric processes (Dayal, Hsu,
and Ladin 2001) for knowledge workers (experts or deci-
sion makers). These processes are collections of tasks which
support decisions and help to the accomplishment of work-
flow tasks for such knowledge workers in several and diverse
application domains. Indeed, the features of AIP&S are re-
ally aligned with key requirements in these application field:
human-centric processes mainly embody expert knowledge,
processes need to be dynamically generated through a pro-
cess that must be aware of the context in which they will
be executed, and the execution environments are highly dy-
namic, thus requiring adaptive behaviour and rapid response
to the new, changing situations.

The development of such knowledge-intensive applica-
tions, where intelligent planning becomes a key component,
require a great modeling and engineering effort in the main
application development stages: acquisition and representa-
tion of planning knowledge, validation of such knowledge,
integration with external sources of information or already
existing legacy software systems, and deployment of the fi-

nal planning application. Most planning applications devel-
oped at the time being (Fdez-Olivares et al. 2006), (Fdez-
Olivares et al. 2011),(Boddy and Bonasso 2010), (Cesta et
al. 2010) are based on a standard life-cycle based on the
above stages, but each of the steps in this cycle are per-
formed following different, ad-hoc and difficult to couple
techniques or tools, not easily scalable nor reproducible to
other applications (thought the same technology is being
used). For example, given a set of protocols and procedures
to be operationalized, it is common to manually encode such
protocols in a textual planning language (PDDL (Gerevini
and Long 2006), HTN-PDDL (Fdez-Olivares et al. 2006)
or ANML (Boddy and Bonasso 2010) to cite some), then
to generate plans in order to validate this knowledge, then
to develop ad-hoc algorithms to integrate external sources
of information (for example mapping data from ontologies
or external data bases to PDDL data models (Castillo et al.
2010a)), then to develop extra code in order to integrate the
output of the planner with existing systems, etc. This is
neither an agile nor easily reproducible development pro-
cess that clearly impact negatively the goal of AI Planning
to be a widespread and widely used technology. Moreover,
a widely recognized bottle-neck in the development of such
applications is that the languages used to represent both ex-
pert knowledge and domain dynamics are textual and ori-
ented to expert AI planning researchers, and normally, little
attention is devoted to the domain objects model as well as
the plan representation and integration.

This handcrafted way of working in our area is in con-
trast with the extremely high-technological tools developed
in other, no so distant areas like Business Process Manage-
ment (BPM (van der Aalst, ter Hofstede, and Weske 2003)),
where a plethora of tools may be found which give sup-
port to the whole life-cycle of development in such areas:
modeling, deployment, execution and monitoring of pro-
cesses. BPM is, perhaps, the dominant area in IT solu-
tions for Human-Centric processes, but BPM technology is
mainly focused on the management of static and perfectly
predictable tasks/processes and, at present, there is a clear
trend (González-Ferrer et al. 2010) to incorporate features
like dynamic composition, context awareness or adaptive-
ness of processes into software solutions: clearly these fea-
tures may come from the incorporation of AIP&S technol-
ogy into these systems. However, in order to compete on

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

126

equal terms with this extremely developed area, and to con-
vince IT engineers and managers about the real capabilities
of AI Planning technology, the current engineering process
of planning applications must be radically improved.

Compared with the modeling and engineering processes
of the not so different BPM area, AI P&S lacks of integrated
tools (also called suites) that cover an important gap, still not
fully bridged, between the conceptualization and design of
a planning domain and the final deployment of a fully func-
tional planning application. In this sense, the contribution of
this work is two fold:

• On the one hand, we present an extended knowledge rep-
resentation based on a graphical notation, built on both
the concepts of HTN planning languages (concretely an
HTN extension of PDDL, called HTN-PDDL (Castillo
et al. 2006) which has been used in several applica-
tions) and inspired in the graphical notation of industrial
standards devoted to the modeling of business processes
(called BPMN (White 2004)).

• On the other hand, a suite of strongly coupled planning
tools developed by IActive Intelligent Solutions1, inte-
grated into a product called IActive Knowledge Studio2,
conceived as an integrated development environment for
planning applications. It includes several visual working
environments in order to support the main steps of Knowl-
edge engineering: acquisition and representation of plan-
ning knowledge based on the graphical notation, valida-
tion by inspection based on planning process debugging
and plan visualization and analysis, knowledge integra-
tion with external sources of information and planning
application deployment.

Next sections are devoted to describe, firstly, the main is-
sues concerned with the extended graphical representation
and, secondly, the main features of IActive Knowledge Stu-
dio.

The graphical knowledge representation
The graphical knowledge representation introduced in this
work can be considered as an evolution from a former,
textual HTN language called HTN-PDDL (Castillo et al.
2006),(Fdez-Olivares et al. 2011) towards a more usable
one, closer to the modeling practices of general purpose IT
engineers and strongly focused on developing commercial
planning applications. HTN-PDDL is a hierarchical exten-
sion of PDDL which incorporates all the standards concepts
of the PDDL 2.2 version (Edelkamp and Hoffmann 2004).
Concretely HTN-PDDL supports the modeling of planning
domains in terms of a compositional hierarchy of tasks rep-
resenting compound and primitive tasks at different levels of
abstraction, where primitive tasks maintain the same expres-
siveness that PDDL 2.2 level 3 durative actions (allowing to
represent temporal information like duration and start/end
temporal constraints, see (Castillo et al. 2006) for details).
In addition, HTN methods used to decompose compound

1http://www.iactive.es
2Download at http://www.iactive.es/productos/iactive-

knowledge-studio/

tasks into sub-tasks include a precondition that must be sat-
isfied by the current world state in order for the decompo-
sition method to be applicable by the planner. The problem
representation in HTN-PDDL is thus almost the same that
in PDDL 2.2 problems, but with the only difference that the
goal is described as a set of high-level tasks to be decom-
posed, instead of than a set of states to be achieved.

It is worth to note that this textual representation, though
can be seen as a general-purpose hierarchical planning rep-
resentation, based on the HTN paradigm, is specific for
a temporally extended HTN planner, formerly known as
SIADEX (Fdez-Olivares et al. 2006),(Castillo et al. 2006),
which has evolved as a commercial product, developed by
our start-up IActive Intelligent Solutions, now called De-
cisor 3. Both, the textual language and the former plan-
ner have already been applied in several applications in di-
verse domains like crisis intervention (Fdez-Olivares et al.
2006),(Castillo et al. 2010a), e-learning (Castillo et al.
2010b), e-tourism (Castillo et al. 2008) or e-health (Fdez-
Olivares et al. 2011), many of them being at present com-
mercially exploited by IActive 4.

In the following, we will detail how this textual represen-
tation has evolved into a graphical knowledge representation
based on three pillars: 1) a domain objects representation
based on UML that is called Context Model that clearly over-
comes the classic representation of PDDL domain objects,
2) a planning description language, still based on predicates
but incorporating object-oriented concepts, named EDKL
(Expert Knowledge Description Language) used for writing
logical expressions for preconditions, effects, rules and tem-
poral constraints in both compound tasks and actions, and
3) a graphical notation named EKMN (Expert Knowledge
Model Notation) used to represent the main concepts of an
HTN domain (compound tasks, methods, primitive tasks as
well as hierarchical, compositional and order relations) in-
tended to be understandable by both, IT engineers and do-
main experts.

Context Model: UML-based domain objects model
Domain objects are represented in the Context Model fol-
lowing the standards recommendations of UML (Unified
Modeling Language (Booch, Rumbaugh, and Jacobson
1999)), a standardized general-purpose modeling language
in the field of object-oriented software engineering. UML
includes a set of graphic notation techniques to create visual
models of object-oriented software-intensive systems. Al-
though UML supports the modeling of many aspects related
with planning applications (like activities diagrams or state
machine diagrams) we have opted to use UML only with
those issues related with data and domain objects modeling,
trying to bring the strong modeling capabilities of this stan-
dard to domain objects in AI Planning.

Indeed, all the HTN-PDDL concepts (mostly inherited
from the classical PDDL types and objects representation)
have their associated representation in UML. The Context

3http://www.iactivecompany.com/products/iactive-intelligent-
decisor/

4http://www.iactive.es/casos-de-exito/casos-de-exito/

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

127

Figure 1: A (simple) UML model of a fire-fighting ontology: a Resource is located at a GISLocation (represented by a UML
association). Every location is represented by two coordinates and an associated operation to compute the distance between
two points (special Google libraries are provided by the language to implement this operation). There are material (Vehicles
and Facilities) or Human (Squads and Fire Director) resources. A Vehicle has an speed, autonomy, current autonomy and a fuel
rate. The fuel consumption of every vehicle (Terrestrial or Aerial) is a dynamic value computed by a procedure. Attributes,
operations and relations are inherited throughout the is-a hierarchy.

Model is based on five key UML concepts: Class, Attribute,
Operation, Association and Generalization. Object types
are represented as UML Classes (see Figure 1), and the hier-
archy of types is represented as an is-A hierarchy, using the
UML standard Generalization relationship between classes;
object properties are represented as UML Class attributes
and relations as UML Association. Domain objects are rep-
resented as instances of the UML classes defined. In addi-
tion, UML operations are used as special attributes of ob-
jects that need to be computed by a procedure, thus allowing
to manage and represent resources. Finally, it is also possi-
ble to represent temporal information as attributes of a class
the value of which is of a special type called DateTime (sup-
porting the representation of time and dates associated to
objects).

This modeling approach based on UML eliminates any
barrier between the modeler and the AIP&S technology, and
it is intended to offer a standard way to model planning do-
main objects close to IT engineers. Moreover, as seen in
the next section, the Context Model defined as a UML Class
Diagram is directly incorporated and managed by the plan-
ning language. The incorporation of this object-oriented ap-
proach into de planning language provides new features that
increase both the expressiveness of the planning language
and the user-friendliness with respect to previous languages
like PDDL or HTN-PDDL. Among others enhancements,
these features allow to introduce a solid interpretation of
inheritance of properties and operations in the language as
well as a better modeling of objects relations, now much
easier to manage. Perhaps the most important one is the in-
tegration with external data models. That is, most external
sources of information are based on relational data bases or

ontologies. Both models can be directly mapped into UML
models, thus increasing the integration capabilities of plan-
ning domains and problems with external sources informa-
tion, a key issue to be addressed in the development of any
planning application.

EKDL: Expert Knowledge Description Language
As opposed to other well known approaches, like for exam-
ple itSIMPLE3.0 (Vaquero et al. 2009), the aim of EKDL5

is not to translate the UML Context Model into PDDL, but
maintaining this object-oriented representation as modeled
in the Context Model and introducing it into the planning
language that will be described in this and following sec-
tions. Predicates are still the basic construction of EKDL,
but the standard syntax used in most planning languages has
been modified in order to cope with objects and classes.

The first consequence is that predicates now respond to
the syntactical pattern (C.p o v), where C stands for the
name of a class, p stands for the name of a property or a re-
lation, o stands for an instance or a variable of type C, and
v stands for an instance or variable of the range of p (that is,
the Class which the allowed values of the property p belong
to). For example, a typical PDDL predicate (at ?x - Person
?y - Place) shall require firstly to define a Class Person,
with a property at of type Place (Place must also by defined
as a class). This definition will result in an EKDL predicate
(Person.at ?x ?y) that can be used as desired in any logical
expression. This notation (indeed a prefix form of the stan-
dard < object attribute value >) forces to represent all the

5A manual (in spanish) describing EKDL and EKMN can be
found in http://help.iactive.es/

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

128

expressions as logical combinations of binary predicates, but
has the key advantage that is aligned with standards knowl-
edge interchange formats, like for example RDF triplets, a
common way to serialize knowledge present in ontologies
or relational data bases, thus opening the way to easily in-
tegrate the planning knowledge modeled under EKDL with
other standard knowledge representation formalisms.

In summary, EKDL is an adaptation and extension of
PDDL and HTN-PDDL that tries to maintain the expres-
siveness of logical expressions based on predicates, but also
maintaining the object-oriented approach in logical expres-
sions.

Figure 2: A primitive task represented in EKDL. It is like a
PDDL durative action representing the movement of a hu-
man group transported by a vehicle. Temporal (duration of
the transport) and resource constraints (the autonomy of the
vehicle decreases) are also represented.

Primitive tasks are represented textually in EKDL (see
Figure 2), but supported by visual forms. They are rep-
resented as a name, typed parameters (now referring to
Context Model classes), and logical expressions to de-
scribe preconditions and effects. Preconditions and ef-
fects are represented as logical expressions of predicates
taking into account the object-centered syntax above de-
scribed. Numerical function are also allowed and, there-
fore, it is also possible to represent discrete numerical re-
sources. Indeed numerical resources are represented as nu-
merical properties of objects, for example the remaining
autonomy of a Vehicle can be represented as the attribute
current-autonomy of a class Vehicle. Then EKDL provides
arithmetic and increment/decrement operators that can be
applied to numerical attributes. For example, the expres-
sion (= (V ehicle.currentautonomy?v)?dur) stands for a
decreasing ?dur time units the autonomy of a Vehicle ?v.

In addition, primitive tasks representation inherits the
concepts of PDDL 2.2 level 3 durative actions (allowing to
represent temporal information like duration and start/end
temporal constraints). EKDL also allows the representation
of PDDL 2.2 axioms. As shown in next sections, the intro-
duction of this knowledge is supported by graphical inter-
faces, with powerful capabilities to make the introduction of
this knowledge an easier task.

It is worth to note that neither UML activity diagrams nor
state machine diagrams are intended to capture and repre-

sent all the categories of knowledge found in temporal HTN
paradigms. Although they may be useful to represent some
aspects of domain dynamics related to changes of state, and
thus able to model basic primitive actions, they lack of nec-
essary mechanisms to adequately represent temporal con-
straints as well as compound tasks and alternative decompo-
sition methods. UML can represent relationships between
activities at different levels of abstraction, but it is not de-
signed to represent alternative decompositions to be dynami-
cally managed at reasoning time by a planner (one of the key
aspects of HTN). Moreover, thought some time constraints
on activities can be represented in UML, they are intended
to be used on sets of predefined, already fixed activities. The
temporal constraints management in HTN is much more ex-
pressive, since it supports to represent which temporal con-
straints must be satisfied on a dynamically generated, and
initially unknown set of tasks. Therefore, the modeling of
HTN planning domains requires additional characteristics to
the ones presented in UML, since UML is not designed to
be a knowledge representation language. Because of this,
we have defined a new graphical approach for this purpose,
detailed in the next section.

EKMN: Expert Knowledge Model Notation

EKMN Graphic�Elements
Graphic�notation Description

Compound�Task�or�Goal
…Travel

Method
…

Task
…Walk

Parallel�Task�Network
…

Sequential Task�Network

Walk Talk

…Walk

Jump

Figure 3: Main elements of the graphic notation.

Compound tasks, decomposition methods and primitive
actions represented in an HTN planning domain mainly en-
code the procedures, decisions and actions that experts must
follow, according to a given protocol, when they deal with a
given decision problem.

Therefore, the main advantage of HTN planning ap-
proaches is their capability of capturing planning expert
knowledge in form of either protocols or operating proce-
dures. Hence, an HTN planning model should be seen as

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

129

a knowledge representation mechanism to represent human
expertise and operating procedures as well as using them as
a guide to the planning process.

The main goal of EKMN is to face these aspects and pro-
vide a notation that is understandable by IT modelers (re-
sponsible of encoding the knowledge finally managed by
the planner) as well as domain experts (containers of the
knowledge). It is inspired in BPMN (White 2004), the cur-
rent standard notation for process modeling, and its aim is
to display an intuitive visual metaphor of the main cate-
gories of knowledge found in an HTN domain. On the one
hand, compound tasks (or goals), methods, task networks
and primitive tasks. On the other hand, the relationships be-
tween these categories: hierarchical relationships between
tasks and methods, is-part-of relationships between meth-
ods and subtasks, and order relations between tasks inside
a method). Figure 3 shows the visual representation used
for compound tasks (goals), methods, primitive tasks and
sequential and parallel tasks. The main idea behind this
graphic notation is to support a modeling process that starts
with the development of a visual skeleton of the task hi-
erarchy, carrying out (if possible) a collaborative process
between knowledge engineer and expert, and then to detail
this skeleton by filling out more detailed knowledge, using
EKDL, in successive refinement steps. Figure 4 shows an
example of the skeleton of an HTN domain which incorpo-
rates the above described elements.

Attack

-

notReinf...

-0-

-

Select_M...

+

Deploy_T...

+

Reinforced

-1-

-

Select_M...

+

Deploy_A...

+

Deploy_S...

+

Deploy_T...

+

Figure 4: An example domain using EKMN implementing
a standard operating procedure to attack a sector in a forest
fire. The doctrine establishes that, in case of not being a re-
inforced attack, first select appropriated human means, then
deploy and mobilize them. In case of reinforced attack, first
select means, then deploy every human, aerial and terrestrial
mean selected.

More concretely, the knowledge representation language
as well as the planner are also capable of representing and
managing different workflow patterns (van Der Aalst et al.
2003) which can be found in most business process models.
A knowledge engineer might then represent control struc-
tures that define both, the execution order (sequence, par-
allel, split or join), and the control logic of processes with

conditional (represented by alternative methods) and itera-
tive ones (represented by recursive decomposition schemas).

In addition, this knowledge representation supports to ex-
plicitly represent and manage time and concurrency at ev-
ery level of the task hierarchy in both compound and primi-
tive tasks, by allowing to express temporal constraints on the
start or the end of an activity. Any sub-activity (either task or
action) has two special variables associated to it, ?start and
?end, that represent its start and end time points, and some
constraints (basically <=, =, >=) may be posted on them
(it is also possible to post constraints on the duration with the
special variable ?duration). In order to do that, any activity
may be preceded by a logical expression that defines a tem-
poral constraint. For example, it is possible to encode con-
straints of the form ((and (>= ?start date1)(<= ?start
date2)) (t)) what provides flexibility for the start time of
t’s execution, indicating that t should start neither earlier
than date1 nor later than date2. These constraints are repre-
sented using EKDL and can be posted using a user-friendly
interface, embedded into the integrated development envi-
ronment that is described in the next section.

IActive Knowledge Studio

Figure 5: The knowledge edition environment of IActive
Knowledge Studio. From left to right: the project tree show-
ing the main parts of a planning project, the task hierarchy,
an outline of this hierarchy, and a properties view showing
the EKDL representation of a primitive task.

The above described knowledge representation and

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

130

graphical notation is the cornerstone of a suite of plan-
ning tools developed by IActive Intelligent Solutions, in-
tegrated into a product called IActive Knowledge Studio.
This suite is conceived as an integrated development envi-
ronment for planning applications. It is intended to sup-
port the main steps in the process of Knolwedge Engineer-
ing for Planning and Scheduling: Knowledge Acquisition
and Representation based on the above described extended
graphical representation, Knowledge Validation based on a
validation-by-inspection process supported by an enhanced
debugging process and plan analysis tools, Knowledge Inte-
gration with external sources of information, based on the
Context Model above described and Planning Application
Deployment. IActive Knowledge Studio has been developed
using Eclipse Java technology, and it includes several visual
working environments in order to support each one of these
steps, which will be detailed in the four following sections.

Edition environment
The edition environment is intended to facilitate the acqui-
sition and representation of planning domain knowledge. It
allows to model planning objects based on the UML Context
Model, to describe the task hierarchy based on EKMN and to
fill out the properties associated to every category of knowl-
edge through EKDL. Figure 5 shows a snapshot of the main
perspective. It provides a Project Tree where the main cat-
egories of a planning project are shown: the context model
in the terms above described, the expert knowledge show-
ing an expandable list of tasks and the integration structure
devoted to represent planning problems (see section below).
A region to graphically model both the Context Model ob-
jects and the EKMN domain is also provided. Finally, the
environment also includes a properties window in order to
represent in EKDL the knowledge required for action pre-
conditions and effects, temporal constraints, axioms, etc.

Integration environment
The integration environment has a triple role: (1) it is in-
tended to define the necessary data definitions to allow the
integration of both the input (initial state) and the output (the
plans) of the planner with external systems, (2) to describe
the initial state, and (3) to define the goal. Through this envi-
ronment (see Figure 6), a domain modeler not only is able to
represent the initial values of object properties or relations,
but to define the way in which external sources of informa-
tion can be accessed from the planner. Aimed at preserving
its integration capabilities at the maximum, the data defini-
tion schemas managed by the planner (input data of initial
state, input goal and plans) are stored as XML files (XSD
templates), and these definitions are intended to both, be
used to easily define the mapping from external data sources
into the internal structure defined in the Context Model, and
to integrate the plans obtained with external systems that
need as input the output of the planner (for example, a BPM
running engine).

The integration environment turns around the concept of
Integration Structure, what can be seen as a metaphor of the
”old” concept of planning problem, but redefining it into a

����

����	
�����

���

����
���

����������

�������		
�

����
���

������
�����

�������	�

����

����

����
���

�������

�������	 ���� �
��!��"�����

����

����#$�

��������	

���

���

�������	�

#���

����

��"�
�

%�� ��&	�

��%�'�

���������

����

�(�

!��������&��

�(�

!��������&��

Figure 6: A diagram of the integration environment.

more ambitious way, mainly centered on exploiting and en-
hancing the integration capabilities of the planner. Through
this metaphor a Knowledge Engineer is able to define a plan-
ning problem by using the following concepts: Local Data,
Incoming Data and Incoming Goal. Local Data are in-
tended to be used in the first validation tests of the planning
domain. The working environment allows to describe de ini-
tial conditions of every object as set of data tables (locally
managed by the tool) that are automatically generated from
the Context Model. These tables are automatically gener-
ated in such a way that the attributes of every table T cor-
responds to the properties and relations defined for a corre-
sponding class CT . In addition, each row in the table cor-
responds with an object instance of type CT . Therefore, a
domain modeler can describe the initial state of the world in
a friendly and commonly accepted interface based on rela-
tional data base tables. The section Incoming data is aimed
at managing the Data Template Definition (DTD), stored as
XML files, that an external source should fit in order for
the planner to access these external data. This is the cor-
nerstone of the integration features of this approach: on the
one hand, the XML schemas so defined can be used to eas-
ily develop data mappings to acquire external information,
on the other hand these files can be used to provide the XSD
specifications to third-party developers responsible of inte-
grating the planning application with other systems. Finally,
through the Incoming Goal Section the modeler defines the
goal, that is, the task at the highest level to be decomposed
as well as its parameters and start/end temporal constraints.
These definitions are also stored as XML files that are given
as inputs to the planner in order to carry out a planning pro-
cess. Finally, the resulting plan is also stored as an XML file
which can be used to integrate this output with other external
systems.

Execution and debugging environment
Once the domain knowledge as well as the information re-
quired for the planner has been defined, the next step con-

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

131

Figure 7: A snapshot of the debugging environment.

sists on using the execution and debugging environment in
order to validate the knowledge. The execution and de-
bugging environment provides the necessary functionalities
to perform a validation-by-inspection process. On the one
hand, it provides a trace facility that allows to execute step
by step the planning process guided by the knowledge de-
scribed in the EKMN notation (see Figure 7. The trace win-
dow allows to visualize and analyze through a expandable
decision tree the decisions performed by the planner dur-
ing the planning process. In addition, the tool also supports
to define breakpoints associated either to compound tasks
(goals), methods or primitive tasks, thus allowing to inter-
rupt the knowledge-based reasoning process at any point de-
fined by the modeler. The trace tree informs about the se-
lected HTN methods as well as the discarded options during
a given problem solving episode. In addition, this environ-
ment also allows to show the intermediates states produced
by the planner. Moreover, it provides powerful tools for plan
analysis and validation. Firstly, the plan obtained can be vi-
sualized either as a sheet or as a gantt diagram. The gantt di-
agram visualization also allows to intuitively analyze order
dependencies between actions. In addition, there is a section
to show several statistics about the resulting plan (resource
usage, actions duration, etc.).

Deployment environment
The deployment environment allows to obtain a software
component with the functionality defined in the previous
steps and which will be able to be executed as a standalone
application. The deployment process starts when the plan-
ning knowledge has been acquired and represented, when
the data models necessary to integrate external information
have been defined and when the knowledge has been vali-
dated. The deployment environment allows to deploy a plan-

ning project either as a local application (a jar file that can
be accessed through an API) or as a web service (allowing to
access to the planning application through remote procedure
calls). In both cases, an API (application programming in-
terface) is automatically provided. This API allows, among
other operations, to perform calls to the planner and to ob-
tain plans. Concretely, the planning component developed
will return a plan from a given goal, specified as an XML file
and a given set of data specified as an XML file accomplish-
ing the data schema defined in the integration environment.
The plan representation is based on an internal model that
can also be known through the API. Therefore, this opens
the way to integrate (by third party developers) the plans
obtained with external systems that require as input the so-
lutions offered by the planner.

Related work
Regarding other Knowledge Engineering Tools, GIPOII
(McCluskey, Liu, and Simpson 2003) and itSIMPLE3.0 (Va-
quero et al. 2009) are pursuing similar purposes as the work
here presented. On the one hand, GIPOII is mainly aimed at
supporting an object-centered Knowledge Acquisition pro-
cess, focused on how domain objects change their proper-
ties or relations by specifying object transitions. Then these
transitions are grouped to finally form action specifications.
As opposite, the approach here presented supports a task-
centered knowledge engineering process, based on the HTN
paradigm. With respect to isSIMPLE3.0, one of the main
common points is the domain objects model, also based on
UML diagrams. itSIMPLE3.0 is devoted to capture user
data requirements by using class diagrams and state based
diagrams in order to represents the dynamics of actions in
non-hierarchical domains, and then to translate this model
into PDDL. Our approach, on the contrary, maintains the
object-oriented approach to its last consequences and, so,
the planning language (EKDL) has been designed in order
to adopt the object-oriented paradigm. Perhaps, one of the
stronger points of itSIMPLE3.0 is its capability to perform
domain analysis by translating the UML and PDDL spec-
ification into Petri-Nets, what suposses a great help when
focusing on validating the dynamic aspects of the domain.
However these techniques are not fully applicable to hierar-
chical domains like the one addressed in our approach. On
the other hand, itSIMPLE3.0 does not deal with temporal
constraints, nor faces the representation of hierarchical plan-
ning knowledge.

Another work somehow related is (Boddy and Bonasso
2010) where authors describe a knowledge engineering pro-
cess that includes the representation of operating procedures
in NASA’s PRL (Procedure Representation Language)(Ko-
rtenkamp et al. 2008), and then the (manual) translation into
ANML (Action Notation Modeling Language) in order to
be manageable for a planner. Indeed the representation of
operating procedures is supported by a different tool (Ko-
rtenkamp et al. 2008), than the one used to represent plan-
ning domains with ANML (Boddy and Bonasso 2010). Our
knowledge representation, based on the graphical HTN no-
tation here presented is indeed intended to represent operat-
ing procedures (as HTN domains) and, moreover, to make

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

132

these protocols directly interpretable by a planner, thus of-
fering a more integrated approach than the one described by
Boddy et al.

Conclusions
In this work we have presented an extended Graphical
Knowledge Representation for HTN domains with three
main features: (1) it allows to model domain objects fol-
lowing an object-centered approach based on UML visual
diagrams, overcoming several weaknesses of PDDL, mainly
related with expressiveness and user-friendliness issues, spe-
cially the most relevant one is that this planning domain ob-
jects representation is closer to the modeling practices of IT
engineers; (2) this Context Model is also directly embed-
ded into the planning language and, in order to manage this
object-centered model, EKDL (an object-oriented redefini-
tion of basic PDDL constructs) has been described; (3) the
most important aspect of this knowledge representation is
EKMN, a graphical notation based on standard BPM model-
ing notations, which is aimed at visually and intuitively rep-
resenting HTN domains as hierarchical and expandable di-
agrams based on compound tasks (goals)/methods/primitive
tasks and the relationships between them. This graphical
knowledge representation is intended to be understandable
by both, IT engineers and domain experts. On the other
hand, the knowledge representation is the basis on which
IActive Knowledge Studio has been built. It is a develop-
ment suite intended to support a knowledge engineering pro-
cess that bridges the gap between the conceptualization of a
planning domain and the final deployment of a planning ap-
plication. The tool may also be seen as a workbench that can
be used for academic and research purposes, including inter-
esting features like a fully integrated representation of prob-
lem and domain knowledge and a new graphical and intu-
itive notation for easily representing HTN domains. IActive
Knowledge Studio, also provides tools for data integration
with external data sources, plan statistics and visualization
methods for plan validation. But its most distinguishing fea-
tures is that it has been designed to be used by IT engineers
when developing commercial planning applications. Indeed,
we have achieved to significatively increase the number of
users of AIP&S technology through this development suite,
since it is a commercial product that is being used in sev-
eral industrial projects developed in collaboration with the
partners of IActive Intelligent Solutions.

References
Boddy, M., and Bonasso, R. 2010. Planning for human
execution of procedures using ANML. In Scheduling and
Planning Applications Workshop (SPARK), ICAPS.

Booch, G.; Rumbaugh, J.; and Jacobson, I. 1999. The
unified modeling language user guide. Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA, USA.

Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Efficiently handling temporal knowledge in an
HTN planner. In Proceeding of ICAPS06, 63–72.

Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodrı́guez, A.; Fernández, S.;

Arias, J.; and Borrajo, D. 2008. samap: An user-oriented
adaptive system for planning tourist visits. Expert Systems
with Applications 34(2):1318–1332.

Castillo, L.; Fdez-Olivares, J.; González, Milla, G.; Prior,
D.; Morales, L.; Figueroa, J.; and Pérez-Villar, V. 2010a. A
knowledge engineering methodology for rapid prototyping
of planning applications. In Proceedings of FLAIRS 2010.

Castillo, L.; Morales, L.; Gonzlez-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onainda, E. 2010b. Au-
tomatic generation of temporal planning domains fore-
learning problems. Journal of Scheduling 13:347–362.

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010. Validation and verification issues in a timeline-
based planning system. The Knowledge Engineering Re-
view 25(03):299318.

Dayal, U.; Hsu, M.; and Ladin, R. 2001. Business process
coordination: State of the art, trends, and open issues. In
Proceedings of the 27th VLDB Conference.

Edelkamp, S., and Hoffmann, J. 2004. The language
for the 2004 international planning competition. http://ls5-
www.cs.uni-dortmund.de/ edelkamp/ipc-4/pddl.html.

Fdez-Olivares, J.; Castillo, L.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
Experiences in SIADEX. In Proceedings ICAPS06, 11–20.

Fdez-Olivares, J.; Castillo, L.; Czar, J. A.; and Prez, O. G.
2011. Supporting clinical processes and decisions by hier-
archical planning and scheduling. Computational Intelli-
gence 27(1):103122.

Gerevini, A., and Long, D. 2006. Plan constraints and
preferences in PDDL3. ICAPS 2006 7.

González-Ferrer, A.; Fdez-Olivares, J.; Sánchez-Garzón,
I.; and Castillo, L. 2010. Smart Process Management: au-
tomated generation of adaptive cases based on Intelligent
Planning technologies. In Proceedings of the Business Pro-
cess Management 2010 Demonstration Track.

Kortenkamp, D.; Bonasso, R.; Schreckenghost, D.; Dalal,
K.; Verma, V.; and Wang, L. 2008. A procedure repre-
sentation language for human spaceflight operations. In
Proceedings of i-SAIRAS-08.

McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003.
GIPO II: HTN planning in a tool-supported knowledge en-
gineering environment. In 13th ICAPS.

van Der Aalst, W.; Ter Hofstede, A.; Kiepuszewski, B.;
and Barros, A. 2003. Workflow patterns. Distributed and
parallel databases 14(1):5–51.

van der Aalst, W.; ter Hofstede, A.; and Weske, M. 2003.
Business process management: A survey. Business Process
Management 1019–1019.

Vaquero, T.; Silva, J.; Ferreira, M.; Tonidandel, F.; and
Beck, J. 2009. From requirements and analysis to PDDL
in itSIMPLE3. 0. In ICKEPS’09: Proceedings of the 3rd.
International Competition on Knowledge Engineering for
Planning and Scheduling, 54–61,.

White, S. 2004. Introduction to BPMN. IBM Cooperation
2008–029.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

133

VisPlan – Interactive Visualisation and Verification of Plans

Radoslav Glinský, Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
radkogl@gmail.com, bartak@ktiml.mff.cuni.cz

Introduction
Plan analysis is an inevitable part of complete planning
systems. With the growing number of actions and causal
relations in plan, this analysis becomes a more and more
complex and time consuming process. In fact, plans with
hundreds of actions are practically unreadable for humans.
In order to make even larger plans transparent and human
readable, we have developed a program which helps users
with the analysis and visualization of plans. This program
called VisPlan finds and displays causal relations between
actions, it identifies possible flaws in plans (and thus
verifies plans’ correctness), it highlights the flaws found in
the plan and finally, it allows users to interactively modify
the plan and hence manually repair the flaws.

Existing Tools
Though the number of planners rapidly grows, the number
of available tools for user interaction with planners is still
limited. Three complex systems are worth mentioning as
they are publicly available and provide graphical user
interface supporting the planning process: itSimple
(Vaquero et al. 2010), GIPO (Simpson et al. 2007), and
VLEPPO (Hatzi et al. 2010). They are effective tools for
modelling and updating planning domains, however, their
plan analysis lacks some handy features such as:
� recognizing causal relations of actions
� compact overview of actions’ preconditions and effects
� support for plans with flaws
� information about world state at a specific plan step
� a user friendly interface to modify, insert, and delete

actions in a plan and to re-verify the plan in real-time.
VisPlan focuses on all above features.

VisPlan
VisPlan is a graphical application (Figure 1) written in
Java with the ultimate goal to visualize any plan, to find
and highlight possible flaws, and to allow the user to repair
these flaws by manual plan modification.

Figure 1. Graphical user interface of VisPlan.

Program Input
VisPlan works with three types of files that the user should
specify as program input:

� planning domain file in PDDL
� planning problem file in PDDL
� plan file specified in text format

VisPlan supports STRIPS-like plans and temporal plans.
The program recognizes the plan type (strips/temporal)
automatically and verifies and visualizes it based on its
type. The plan type is determined by the planning domain
– durative actions indicate a temporal plan, actions with no
duration indicate a STRIPS-like plan. The following PDDL
requirements are currently supported in the program: strips,
typing, negative-preconditions, disjunctive-preconditions,
equality, existential-preconditions, universal-preconditions,
quantified-preconditions, durative-actions.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

134

 Planning domain and problem need to be syntactically
correct and mutually consistent (separately parsed planning
domain and problem files can be linked with each other).
Otherwise, visualization and verification is not performed
and errors from the PDDL parser are displayed.
Sometimes, PDDL parser encounters errors and issues
which are not critical. In these cases, warning and non-
critical error messages are displayed and the program
continues. Recognized plan actions are given in the
following format:

start_time: (action_name param1 param2
…) [duration]
In the plan file each action is supposed to be on a separate
line. The parser recognizes the lines and creates actions
given only in the above mentioned format. Other lines are
ignored. Eventually, a modified plan can be saved either to
the original file or to a new text file.

Verification
Plan verification is automatically executed after the plan is
initially loaded and then after each user interaction
modifying the plan. The verification process is based on
simulation of plan execution and the main idea is to
incrementally construct “layers” of facts. Each fact layer is
determined by a corresponding set of facts and an action
due to which the layer has been created.
 At the beginning of the verification, all possible facts
(grounded predicates) are instantiated. This domain-
specific data remains fixed and is computed only once at
the beginning; re-verifications do not change the data. This
attitude permits us not to manipulate with the facts during
the whole verification process, but to work only with the
indexes to the array of grounded facts. Because of that,
operations like checking if an action is applicable,
application of action’s effects, finding missing conditions,
etc. are just logical bit-sets operations (where one bit-set
has its bits set to true at indexes corresponding to the
selected grounded facts). Such operations are very fast.
 Unlike facts, only actions present in the plan are
grounded (meaning related to an operator with grounded
conditions and effects). The operator is found based on
matching the planning-domain operator and concrete
parameters of the action. As mentioned in the previous
paragraph, conditions and effects of the grounded operator
are represented by bit sets (pointing to the fix array of
grounded facts). The verification process makes sure it has
a matching operator available for each examined plan
action (otherwise, for instance when a user adds a new
action, the verification process additionally finds and stores
the operator). Actions, which do not comply with any
operator definition, are marked as invalid and omitted from
the verification. Nevertheless, such actions are still
displayed (but distinguished from others by a different
colour and marked as invalid).
 There are two special “actions” artificially added into
the plan. They are called “init” and “goal” and their aim is
to represent the initial state and the goal. A classical plan-

space approach is used to define these actions. The init
action has empty preconditions and the facts that apply at
the initial state are considered as its effects. The goal
action has empty effects and the set of facts that need to be
satisfied at the final world state are considered as its
preconditions. By treating the initial state and the goal as
regular plan actions we are able to recognise causal
relations also at the margins of the plan without any further
work. This way we easily find dependencies on the initial
state and, eventually, marking the “goal” action as non-
applicable means that the goal conditions are not satisfied.

Finding action’s matching operator
In order to find a matching operator for an action we have
to go through the planning-domain operator expressions
and find an operator which:
� matches action’s name
� matches the number of action’s parameters
� each action’s parameter belongs to a (typed) domain

of respective operator’s variable, where the domain is
a set of concrete objects in the planning problem such
that object’s type is equal to the variable’s type (or
variable’s deduced type)

Upon correspondence, every couple (variable, parameter)
is bound and added into a “substitution” object. This
substitution is consequently applied on the operator’s
conditions and effects, thus ensuring they are grounded
since then. Afterwards, the algorithm separately converts
the grounded conditions’ and effects’ compound
expressions into a set of trivial expressions (for STRIPS-
like actions each such expression is either a literal or, for
durative actions, a timed expression including just one
literal).
 In the final step, an operator is created based on the
trivial expression set from the previous step. For STRIPS-
like actions the following bit-sets are instantiated: positive
preconditions, negative preconditions, positive effects, and
negative effects. If the literal from the literal set is an
atomic formula, the index of atomic formula (which is,
indeed, a grounded fact, one of the facts in the initially
created array of facts) is added to positive
preconditions/effects bit-set. On the other hand, if the
literal is a “not (atomic formula)”, the index of atomic
formula is added to negative preconditions/effects bit-set.
 For durative actions the literal is obtained from a timed
expression (one of the following: “at start (literal)”, “over
all (literal)”, “at end (literal)”). And, similarly, index of
literal’s atomic formula is added to one of the following
sets: at start conditions, over all conditions, at end
conditions, at start effects, at end effects (each positive or
negative depending on the literal).
 Artificial operators for special “init” and “goal” actions
are constructed as well. Conditions for the “goal” operator
are obtained in the same way as conditions for any regular
plan action with an exception that the goal expression is
separately taken from the parsed PDDL problem file. In
contrast to the “goal” operator, for the “init” operator there
is already a predefined and grounded set of facts (atomic

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

135

formulas) from the separately taken init expression. These
facts (represented as a bit-set) are then assigned to the
“init” operator’s effects. In addition to grounded facts, the
init PDDL expression may contain equality comparison
functions, for instance:

(= (drive-time l1 l2) 4.3)
Function name plus its arguments (the first argument of the
above equality comparison function) is assigned a
numerical value representing time duration (the second
argument of the above equality comparison function).
Couple (duration function, duration value) is stored and
used when creating an operator matching the durative
action. At this time, the duration of action is obtained from
the parsed PDDL domain file, grounded (by the same
substitution as action’s conditions and effects) and
searched within previously stored duration functions.
Duration value of the found function is assigned to the
matching operator of the currently manipulated action.

Verification of STRIPS plans
Verification is realised via simulation of plan execution.
Firstly, we construct an empty layer of facts. After that, we
consecutively try to apply a single action (in the order
given by the sequential plan) to the current world state
represented by the last fact layer. If the action is applicable,
the action is applied and a new world state is computed
based on the effects of the action. If the action is not
applicable, its effects are not encountered and the
verification starts processing the next action in the plan.
For instance, after the first “init” action is successfully
applied, we have constructed the initial world state as
defined in the planning problem. An action is applicable to
a given fact layer if and only if the layer contains all
action’s positive preconditions and simultaneously
excludes all negative preconditions. If the action is
applicable, a new fact layer is created. The new set of facts
is computed based on the previous fact layer extended by
the facts from action’s positive effects and excluding
action’s negative effects.
 Fact layer against which an action under examination is
trying to be applied is remembered. If applicable, the fact
layer which the action has created is stored as well. For
STRIPS-like plans the first and the second fact layer are
next to each other. In temporal plans, a difference between
these two layers can vary a lot, as there can be arbitrary
number of other actions’ starts and ends between them
(each start and end of durative action possibly creates a
new layer). Such stored information will be used when
finding how the world changes by applying the action (the
actual set of facts prior and after the action).
 Missing preconditions of the action (if any) and causal
relations to previous actions in the plan are also computed
for each action during its verification. In the visualization,
an action is applicable if and only if its set of missing
preconditions is empty. If a precondition of the action is
not missing, we find the last fact layer from which the
precondition fact is included (on the other hand, for

negative precondition we find the last fact layer from
which the precondition fact is excluded). The precondition
then depends on the action assigned to that fact layer.
 After each modification the plan is immediately re-
verified.

Verification of temporal plans
Verification of temporal plans is similar to STRIPS plans’
verification regarding the plan execution simulation and
fact layers’ construction. The main difference is that a
single durative action, besides “at start” conditions
(equivalent to strips preconditions), defines “over all” and
“at end” conditions. Therefore, a durative action needs to
be checked multiple times whether it is applicable or not.
Similarly, in a general case one action can create more than
one fact layer, when both “at start” effects and “at end”
effects are encountered.
 Prior the verification, at the time the algorithm is
creating operators matching to actions, each durative action
is checked to have the duration complying with the
duration specified for the operator in the planning-domain.
In case the two durations vary, a user is prompted (in a
new question message dialog) to accept or deny
modification of action’s duration to the one specified in the
planning domain. Once a user has denied action’s duration
modification, he/she is never prompted again for the same
action. When many actions from the plan under
examination have similar conflict, the user is given a
possibility to accept/deny modifications for all actions.
Nevertheless, this doesn’t affect new actions eventually
added to the plan.
 During the verification every action is processed twice.
Firstly, at its start time, when “at start” and “over all”
conditions are checked against the current fact layer. If the
action is applicable it is applied (taking its “at start” effects
into consideration), resulting in creation of a new fact
layer. In addition, the action is remembered to be “in
progress” internal state. Secondly, at action’s end time
(start plus duration time), the action finds out whether it
has been applied at its start. If so, “at end” and “over all”
conditions are checked and, if satisfied, the action is
applied (considering its “at end” effects). The action is
removed from “in progress” actions at this phase.
 When processing an action during verification either at
its start time or its end time, besides checking its own
conditions, the algorithm checks also “in progress” actions
(those which have already started but haven’t finished yet)
to verify their “over all” conditions. Such verification is
performed only when the inducing action is applied (either
at its start time or end time).
 In case an action’s “at start” effects have been applied at
action’s start time and it has later been found that any of
action’s “over all” and “at end” conditions are not satisfied,
the verification process is reverted back to the point when
the affected action was applied at its start time, the action
is omitted then and marked as non-applicable.
 Similarly to STRIPS plans’ verification, possibly
missing conditions for an action are found while

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

136

processing the action. However, for durative actions we
store three different types of missing conditions: “at start”,
“over all” and “at end” missing conditions sets. Thus, in a
future plan analysis, missing conditions are already
available without need to be computed.

Figure 2. Example of information about world-state change.

Visualization
As shown in the right-upper frame of Figure 1, plan’s
actions are visualized as cells (boxes) of fixed size filled by
the action name. Each action is coloured either green or red
(or any other colour chosen by the user) depending on
whether the action is applicable or non-applicable. Causal
relations between the actions are visualized by edges.
These edges are annotated by grounded facts that are
“passed” between the actions. Only the causal relations for
the currently highlighted action are displayed to remove a
cluttered view. Display position of the edges is
automatically adjusted every time an action is highlighted
in order to assure that the edges do not overlap and their
labels (describing the causal relations) are fully readable.
The edge position adjustment is vertical (with fixed space
size between edges), as well as horizontal (source and
target points of edges on the same cell have regular space
between themselves).
 If the process of verification is still going on, actions
whose state has not been decided yet are coloured gray (or
any other colour chosen by the user). The state of an action
can be one of the following:

� invalid (action doesn’t match any definition in the
planning domain file),

� un-decided (action is still being checked by the
validation module),

� applicable (action is valid and can be used),
� non-applicable (action cannot be used due to non-

satisfied preconditions).
Two special actions, “init” and “goal” are coloured
differently to distinguish their special meaning. These are
the only two actions which cannot be modified in any way.
 For the highlighted action, the system displays
complete information about the action including the
satisfied and violated preconditions and actions giving
these preconditions (the right-bottom frame of Figure 1), as
well as world change caused by the action (Figure 2).
World change illustrates which facts are true prior the
action and which after the action. Naturally, world state
information is not available for non-applicable actions.
Facts that were subject of change (either added or deleted)

are marked (by colour and/or by strike through their
names).
 On the left side of the window a list of actions is shown
to provide a brief plan summary (the left frame of Figure
1). Actions in the list are sorted by their order/start time
and are visually differentiated based on their states. The list
gets updated every-time a modification is done to the plan.
Selecting an action in the list results in adjusting the
scrollbar view to comprise the visualized action in the
graph and vice versa. If the user needs more space for
graphical plan analysis he/she is free to hide the action
summary list completely (as well as informative tab pane
at the bottom of the application).
 During a plan analysis, the ruler (Figure 1) helps to
orientate within a time axis. Its default size of units is one
inch (without dependence on user’s screen resolution). Size
of units can be adjusted by the combo box (upper-right
frame of Figure 1) or by dragging any tick of the ruler.
 While dragging an action (to change its position),
actions providing preconditions and actions using effects
of the dragged action are dynamically highlighted, so that
the user knows where he/she can drop the action. When
actions are swapped it usually changes causal relations
between the actions significantly. Due to this fact,
highlighting preconditions and effects partially wouldn’t
provide enough information. Therefore the plan is re-
verified when an action changes its order while dragging.
Having such information the program chooses the correct
actions to highlight. Colour for highlighting is the same as
colour for preconditions/effects edges. If actual colour of
an action is the same as the colour for edges when
highlighting, another (but similar) colour is used then.
 Each user has an opportunity to set his/her own user
preferences regarding the visual appearance and behavior
of software according to the personal needs. The user
preferences are saved in the home directory of the user and
include various (mostly graphical) settings, for instance:

� colors for actions (each state has its own color),
edges (both preconditions and effects) and ruler,

� font size (for different GUI components),
� automatic loading of last successfully loaded files

(domain, problem, plan) at start-up,
� default action width in STRIPS-like plans.

Visualization of STRIPS plans
As the STRIPS plans are sequential, cells representing the
actions are displayed in a row. When changing the order of
an action by drag & drop, the new order is computed after
each movement by checking the horizontal position of the
cell being dragged and ruler’s units. In the case the new
position is different from the current one, a cell placed at
that moment on the “new order” position is immediately
repositioned to the “current order” position, and thus these
two actions swap their position. When the action is finally
dropped, it is just placed in the row.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

137

Visualization of temporal plans
Ruler units in temporal plans reflect durations of actions.
However, as individual durations of actions within a plan
can vary a lot, the median duration has been chosen to be
the initial ruler unit. Auxiliary ticks are also present on the
ruler. All actions (meaning cells) are also guaranteed to
have a minimum horizontal size (in order to be visible even
if real duration is too small).
 Horizontal position of an action is fully determined by
its start time and duration. Although actions in temporal
plans can overlap with each other, cells representing the
actions are positioned in order to be fully visible. This is
performed by placing the cells in rows. All cells in the
same row have the same vertical position. Cells position
adjustment is iterative and cells are positioned into the first
row (from top) where the cell would not overlap with other
cells (Figure 3).
 When an action is being dragged, in contrast to STRIPS
plans, the start time of the action is determined by the
horizontal position only (multiplied by the current ruler
units). In such a situation re-verification of the plan is done
only when the action has changed its position significantly,
meaning the relative order of the dragged action margins
(start/end) changed with respect to other actions.

Figure 3. Example of visualisation of temporal plans.

Plan Modifications
In addition to visualization of plans the software supports
interactive modification of the plan. The following
operations with plans are supported:

� inserting new actions (selection of actions and their
parameters is automatically restricted to the current
planning domain and the problem and offered in the
corresponding number of pre-filled combo boxes),

� removing actions,
� modifying actions,
� changing the order of actions in STRIPS plans and

start time of action in temporal plans by drag & drop
technique.

Modifications are revertible and are under control by undo
manager. Undo manager waits for performing an undoable
(revertible) modification, which is any of the above. When
an undoable change is fired, undo manager clones and
saves both the current plan and verificator state (this
includes the constructed layers of facts, the causal relations
among actions, actions’ indexes to layers before and after

application, missing conditions). On the one hand, this
approach is more memory consuming, due to the fact that
undo manager saves as many plans and verificator states as
is the limit of possible “undo”s. On the other hand, the
approach is time-saving. Re-verification is not needed to
be performed after each “undo”/“redo”. All the necessary
steps include just retrieving previous/next plan and
verificator state plus redrawing the graph based on the
retrieved plan. In comparison with a memory-saving
approach, which would save only modifications’
description and would perform opposing action during
“undo”/“redo”, the chosen approach is easier and more
“defect-resistant”. That is because it coherently maintains
entire plans and states.
 Besides the already mentioned plan and verificator state,
undo manager saves two more items for user-friendliness
and informative purposes. These include id of an action
causing an undoable change (in order to select this action
and to adjust view to comprise it) and a string describing
the change (in order to print informative message onto
status panel at the bottom of the application).
 Modified plans can be saved in the text format to either
the same (initially loaded) file or to a new file (save as).

Future Development
The up-to-date version of the software can be downloaded
from http://glinsky.org/visplan. The program is under
continuous development and in a near future it will support
additional features such as:

� wider support of PDDL requirements
� support of plans in PDDL+
� own planning module
� support for finding possible plan modifications in

order to solve flaws in the plan
� graphs visualizing a timeline of predicates and

numerical variables during plan execution

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract P103/10/1287.

References
Simpson, R.M.; Kitchin D.E.; McCluskey, T.L. 2007. Planning
Domain Definition using GIPO. The Knowledge Engineering
Review 22(2): 117-134.
Vaquero, T. S.; Silva, J. R.; Beck, J.C. 2010. Analyzing Plans and
Planners in itSIMPLE3.1. In: Proceeding of the ICAPS 2010
Knowledge Engineering for Planning and Scheduling Workshop.
Toronto. Canada, pp. 45-52.
O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I.
Vlahavas. VLEPPO system, A Visual Programming System for
Automated Problem Solving, Expert Systems With Applications,
Elsevier, Vol. 37 (6), pp. 4611-4625, 2010.

KEPS 2011: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling

138

	Contents
	A Brief Review of Tools and Methods for Knowledge Engineering for Planning & Scheduling
	Acquisition and Re-use of Plan Evaluation Rationales on Post-Design
	The Challenge of Grounding Planning in Simulationwith an Interactive Model Development Environment
	Finding Mutual Exclusion Invariants in Temporal Planning Domains
	Using Planning Domain Features to Facilitate Knowledge Engineering
	Fluent Merging for Classical Planning Problems
	Heuristic Search-Based Planning for Graph Transformation Systems
	JPDL: A fresh approach to planning domain modeling
	Cooperated Integration Framework of Production Planning andScheduling based on Order Life-cycle Management
	Relational Approach to Knowledge Engineering for POMDP-based AssistanceSystems with Encoding of a Psychological Model
	Open-Ended Domain Model for Continual Forward Search HTN Planning
	Taking Advantage of Domain Knowledge in Optimal Hierarchical DeepeningSearch Planning
	Automatic Polytime Reductions of NP Problems into a Fragment of STRIPS
	A Conceptual Framework for Post-Design Analysis in AI Planning Applications
	An Interactive Tool for Plan Visualization, Inspection and Generation
	An extended HTN knowledge representation based on a graphical notation
	VisPlan – Interactive Visualisation and Verification of Plans

