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Abstract

In the Canadian Traveler Problem (CTP) a traveling agent is
given a graph, where some of the edges may be blocked, with
a known probability. A solution for CTP is a policy, that has
the smallest expected traversal cost. CTP is intractable. Pre-
vious work has focused on the case of a single agent. We
generalize CTP to a repeated task version where a number
of agents need to travel to the same goal, minimizing their
combined travel cost. We provide optimal algorithms for the
special case of disjoint path graphs. Based on a previous
UCT-based approach for the single agent case, a framework
is developed for the multi-agent case and four variants are
given - two of which are based on the results for disjoint-path
graphs. Empirical results show the benefits of the suggested
framework and the resulting heuristics. For small graphs
where we could compare to optimal policies, our approach
achieves near-optimal results at only a fraction of the compu-
tation cost.

Introduction
The Canadian Traveler Problem (CTP) (Nikolova and
Karger 2008; Papadimitriou and Yannakakis 1991; Bar-Noy
and Schieber 1991) is a navigation problem where traveling
agent receives a graph as input and needs to travel from its
initial location to a given goal location. The complication in
CTP is that some edges of the graph may be blocked with
a known probability. The basic action in the CTP is a move
action along an edge of the graph. Moves incur costs. After
arriving at a node, the agent can sense its incident edges at
no cost. The task is to minimize the travel cost of reaching
the goal. Since some of the graph’s edges may be blocked, a
simple search for a path does not work; a solution is a contin-
gent plan, or policy, that has the smallest expected traversal
cost.

In the basic version of the CTP, a single agent is assumed.
However, in many realistic settings the problem needs to be
solved for a group of agents, requiring minimization of the
combined travel cost of all agents. For example, think of an
owner of a fleet of trucks, who has to move the trucks from
a single source to a single destination. In this paper, we
generalize CTP to its multi-agent repeated-task setting, that
assumes that the agents traverse the graph sequentially. We
also briefly examine the interleaved version, where agents
are allowed to traverse the graph concurrently. Single-agent
CTP is intractable (Papadimitriou and Yannakakis 1991).

Having multiple agents further increases the size of the state-
space, which makes finding an optimal solution even harder
and is also intractable. Therefore, we cannot find optimal so-
lutions efficiently in general. However, we provide efficient
optimal solutions for special case graphs which are then used
to generate heuristics for the general case. These heuristics
are tested empirically against baselines developed for single
and multi-agent. Experimental results show that our heuris-
tics appear to improve the expected travel cost, and are not
too far from the optimal for small graphs.

Variants of the Canadian Traveler Problem
In the single agent version of CTP, a traveling agent is given
a connected weighted graph G = (V,E), a source vertex
(s ∈ V ), and a target vertex (t ∈ V ). The input graphGmay
undergo changes, that are not known to the agent, before
the agent begins to act, but remains fixed subsequently. In
particular, some of the edges in E may become blocked and
thus untraversable. Each edge e ∈ E has a weight, w(e),
and is blocked with a known blocking probability p(e), or
traversable with probability q(e) = 1− p(e). The agent can
perform move actions along an unblocked edge which incurs
a travel cost equal to w(e). The status of an edge (blocked
or traversable) is revealed to the agent, only after the agent
reaches a vertex incident to that edge.

The task of the agent is to travel from s to t with minimal
total travel cost. As the exact travel cost is uncertain until the
end, a solution to CTP is a traveling strategy (policy) which
yields a small (ideally optimal) expected travel cost.
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Figure 1: CTP example. Edge label w|p denotes edges cost
w, blocking probability p.

To illustrate CTP, consider figure 1 with unknown edges
e0,1 and e1,1. If e0,1 is traversable, the cheapest path is
(s, v0, t) with cost 1.5, but if e0,1 is blocked, and e1,1 is
traversable, the cheapest path is (s, v1, t) with cost 2.5. Tak-
ing into account the blocking events (e0,1 is likely to be
blocked, and its status can only be observed from v0), the



optimal policy is to try v1 first, then if e1,1 is blocked go to
v0; finally if e0,1 is also blocked, reach t though path I2.

Multi-agent CTP
In this paper, we generalize CTP to its multi-agent case.
where several (n) agents operate in the given graph. We
assume that the agents are fully cooperative and aim to min-
imize their total travel cost. In addition, we assume a com-
munication paradigm of full knowledge sharing. That is, any
new information discovered by an agent (e.g., whether an
edge is blocked or traversable) is immediately made known
to all other agents. This assumption is equivalent to having
a centralized control of all agents. In our trucks example,
the trucks have full communication with the owner, who, on
his part, is interested in minimizing the expected total cost
of the entire fleet.1

Repeated task CTP In the Repeated task multi-agent CTP
(called CTP-REP(n) for short) there is only one active agent
at a time. All other agents are inactive until the currently ac-
tive agent reaches t. An agent that reaches t becomes inac-
tive again (is “out of the game”), and can make no additional
actions or observations. The goal is a natural extension of
single-agent CTP: all n agents begin at s, and must reach t.
We need to find a policy for the agents that minimizes the ex-
pected total travel cost of reaching this goal. Equivalently,
this can be seen as repeating the single-agent CTP task n
times, but in each case based on observations gathered in
all previous traversals. Similar combinations of multi-agent
and repeated task navigation were presented by (Meshulam,
Felner, and Kraus 2005) but for for the case of completely
unknown graphs (as opposed to the CTP framework here).

Interleaved repeated-task CTP In the more general in-
terleaved action multi-agent CTP (called CTP-MULTI(n)
for short), the agents make their moves in a round-robin
fashion. No-op actions, where an agent does not move in
a specific turn, with a cost of zero, are permitted. Note that
one could consider an alternate definition of the problem,
where agents move in parallel. However, in the latter setting,
we can prove the following property: there exists an optimal
policy where all agents but one perform a “no-op” at every
step, since no cost is incurred by doing nothing (proof by
policy simulation). Thus, there is no need to examine the
parallel action case.

Complexity of Single and Multi-Agent CTP
Define a weather as a given assignment of
{traversable,blocked} status to an edge. There are
2|E| different possible weathers. Therefore, the size of
the state space of CTP is V × 2|E| because a state also
includes the specific location of the agent. Partially Ob-
servable Markov Decision Processes (POMDP) offer a
model for cost optimization under uncertainty, and CTP
can be modeled as an indefinite horizon POMDP (Hansen
2007). POMDPs use the notion of a belief state to indicate
knowledge about the state. In CTP, the belief state is the
location of the agent coupled with the belief status about

1The treatment of other types of agents (e.g., selfish or adver-
sarial agents) and other communications paradigms (e.g., message
exchanging) is beyond the scope of this paper.

the edges (the hidden variables). One could specify edge
variables as ternary variables with domain: {traversable,
blocked, unknown}, thus the belief space size is O(|V |3|E|)
(where is the agent, what do we know about the status
of each edge). An optimal policy for this POMDP, is a
mapping from the belief space into the set of actions, that
minimizes the expected travel cost.

Solving POMDPs is PSPACE-hard (in the number of
states) in the general case. However, because the only source
of uncertainty in CTP is in the initial belief state and not
in the outcome of the actions, CTP is actually a special
case of the simpler deterministic POMDP (Littman 1996;
Bonet 2009), which can be solved in time polynomial in the
size of the state space. Unfortunately these results do not
help solving CTP, because the size of the CTP state space
(O(|V |2|E|)) is exponential in the size of the input graph. In
fact CTP is known to be #P-hard (Papadimitriou and Yan-
nakakis 1991), and some variants are known to be PSPACE-
complete. Multi-agent CTP is potentially harder. The size
of the state space is now O(|V |n2|E|) for CTP-MULTI(n)
as we need to specify the locations of n agents for each
state, and O(n|V |2|E|) for CTP-REP(n) because we have
n phases, one per agent.

Theoretical Results on Disjoint Paths
We restrict the theoretical analysis in this paper to disjoint-
path graphs (CTP-DISJ) such as that shown in figure 1 be-
cause every departure from this topology makes the analysis
prohibitively complex, even for single-agent CTP. For ex-
ample, adding even one edge to an instance of CTP-DISJ,
either between nodes in different paths or from such a node
directly to t, violates the conditions under which committing
policies (see below) are optimal. The situation is made even
more complex in multi-agent CTP. Nevertheless, our theo-
retical results on this restricted version provide insight for
the general case, as shown below.

A CTP-DISJ graph has k ≥ 2 paths, denoted by
I0, · · · , Ik−1. We assume w.l.o.g. that at least one path
is known to be traversable. Otherwise, we can add a
traversable path consisting of one edge with a finite, but very
large cost, between s and t. If the agent reveals that all other
paths are blocked, it can backtrack and follow this additional
edge, which can be thought of as a rescue choice, such as
call an helicopter, that the agent must take if no regular path
to the goal exists.

The length ri of each path Ii, is the number of the edges
of Ii. The edges of path Ii starting from s are denoted by ei,j
for 0 ≤ j < ri, (see Fig. 1). For a path Ii, and an edge ei,j ,
letWi,j =

∑
l<j w(ei,l) be the cost of the path Ii up to edge

ei,j without including ei,j , and let Wi = Wi,ri be the cost
of the entire path Ii. We also define Qi to be the probability
of path Ii being unblocked; thus Qi =

∏
l<ri

q(ei,l).

Single-Agent CTP on disjoint paths
The analysis for single-agent CTP-DISJ is from (Bnaya, Fel-
ner, and Shimony 2009; Nikolova and Karger 2008) and re-
peated here as the basis for the multi-agent case. Reason-
able policies are policies that do not involve the agent walk-
ing around without making headway and without obtaining
new information. An optimal policy must also be reason-



able. Two “macro actions” are defined in terms of which all
reasonable policies on disjoint-paths graph can be specified.
Both macro actions are defined for an agent situated at s.
Definition 1 For path Ii, macro action TRY (i) is to move
forward along path Ii until reaching t; if a blocked edge is
encountered, the agent returns along the path and stops at
s. An agent performing a TRY action on a path is said to
be trying the path.
Definition 2 For path Ii, and an edge ei,j , macro action
INV (i, j) (meaning investigate) is to move forward along
path Ii until reaching (without crossing) ei,j , or a blocked
edge, whichever occurs first. In either case the agent returns
to s.

For path Ii, denote by BC(Ii) the random variable repre-
senting the backtracking cost of path Ii: the cost of traveling
path Ii, finding Ii blocked, and returning to s. Since the path
can be blocked anywhere, and the cost to reach edge ei,j is
Wi,j , the expected backtracking cost is:

E[BC(Ii)] = 2
∑
j<ri

Wi,jp(ei,j)
∏
l<j

q(ei,l) (1)

Denote the expected cost of TRY (Ii) by E[TRY (Ii)]:

E[TRY (Ii)] = QiWi + E[BC(Ii)] (2)

A policy which consists only of TRY actions, but never
uses INV actions, (that is, only backtracks if a blocked edge
is revealed), is called committing. Since a TRY macro ac-
tion either reaches t or finds a path blocked, it never makes
sense to try the same path more than once, and thus all such
committing policies can be represented by an order of paths
to be tried. Let M be an instance of CTP-DISJ, and χ∗M be
a committing policy for M in which the agent tries the paths
in a non decreasing order of E[TRY (Ii)]

Qi
. Assuming without

loss of generality that E[TRY (Ii)]
Qi

are all different, and thus
χ∗M is unique. Then the following theorem (Bnaya, Felner,
and Shimony 2009) holds:
Theorem 1 χ∗M is an optimal policy for M . 2

Repeated CTP in disjoint-path graphs
We now adapt these results to Repeated CTP with n agents
on disjoint paths graph (CTP-DISJ-REP(n)). Let M be an
instance of CTP-DISJ-REP(n) with k paths. Note that any
reasonable policy inM can be represented using only TRY
and INV macro actions as follows. Let TRY (l, i) be the
action in which agent Al tries path Ii, and let INV (l, i, j)
be the action in which agent Al performs INV (i, j). A pol-
icy for an agent Ai is committing if Ai executes only TRY
actions. Likewise, a policy (for a set of agents) is commit-
ting if it consists only of TRY actions for all agents. It is
non-trivial to show that in repeated CTP, TRY actions suf-
fice for optimality – this requires definition of the restricted
followers-commiting policies, discussed next.

Let π be a policy for M , where whenever A0 reaches t
through path Ii, for some i < k, the agents A1, · · ·An−1
traverse Ii as well. A policy π with this property is called
a followers-committing policy, and the agents A1, · · ·An−1
are said to follow A0 in π.

Denote by TRYn(Ii) the action TRY (0, i) executed in
a followers-committing policy in CTP-DISJ-REP(n). The

results of such actions are either that A0 traverses Ii to t,
and the other agents follow A0 on Ii, or that A0 finds Ii
blocked and backtracks to s (other agents staying idle). Let
E[TRYn(Ii)] be the expected cost of TRYn(Ii). We get:

E[TRYn(Ii)] = nQiWi + E[BC(Ii)] (3)

Let <∗ be the following order on the k paths: l <∗ j
if and only if E[TRYn(Ii)]

Qi
<

E[TRYn(Ij)]
Qj

, assuming again
w.l.o.g. that all of these fractions are different. Let σ∗ be the
permutation on {0, · · · , k − 1} which is induced by <∗.
Definition 3 Let π∗M be the followers-committing policy
where A0 executes the committing policy of trying the paths
by increasing order of <∗, and A1, · · · , An−1 follow A0.

We show that π∗M is optimal, but first need to show that
π∗M is optimal among all followers-committing policies. De-
note the expected cost of policy π by c(π).
Lemma 1 Let π be a followers-committing policy for M .
Then c(π∗M ) ≤ c(π).
Proof outline: Note that any followers-committing policy
π for an instance M of CTP-DISJ-REP(n) can be re-cast
as an equivalent CTP-DISJ problem instance M ′, where an
extra cost of (n− 1)Wi is incurred once that agent reaches t
through path Ii, as follows. M ′ is an extension of M , where
we add at the end of each path Ii, an additional traversable
edge ei,ri incident on t, with a cost of (n− 1)Wi. Since, in
a followers-committing policy for M , all agents follow the
first agent, thus each agent incurs a cost of Wi, there is a
trivial bijection F between followers-committing policies in
M , and committing policies in M ′, that preserves expected
costs, such that F (π∗M ) = χ∗M ′ . Now suppose that π is
a followers-committing policy for M . Then by theorem 1,
c(F (π∗M )) ≤ c(F (π)), hence c(π∗M ) ≤ c(π).
Theorem 2 π∗M is an optimal policy for M .

Proof outline: By induction on n. For n = 1, we have
an instance of CTP-DISJ-REP(1), M ′, which is also an in-
stance of CTP-DISJ. Hence, by theorem 1, π∗M ′ is optimal.

We now assume inductively that π∗M is an optimal policy
for any instance of CTP-DISJ-REP(n − 1), and show that
this property holds for all instances of CTP-DISJ-REP(n) as
well. Let M be an instance of CTP-DISJ-REP(n). Given
a committing policy π for M , denote by σπ the permuta-
tion on {0, · · · , k − 1} which is induced by the order in
which A0 tries the paths in π. For σ, and ν, permuta-
tions on {0, · · · , k − 1}, let d(σ, ν) be the “Euclidean” dis-
tance between σ, and ν (the Euclidean distance is known as
d(σ, ν)

def
=

√∑
i<k(σ(i)− ν(i))2).

A CTP instance M can be represented as a directed ac-
tion/outcome AND/OR tree TM , and a policy π can be rep-
resented by an AND-subtree Tπ of TM . For a general policy
π′, let an INV -edge be any action-edge in Tπ′ where the
action taken by the agent is INV , and let INV (Tπ′) be the
number of INV -edges in Tπ′ . Since π∗M is committing, then
INV (Tπ∗M ) = 0.

Let π be an optimal policy forM , with INV (Tπ) as small
as possible, and such that if INV (Tπ) = 0, then d(σπ, σ∗)
is minimal. There are two cases:

(1:) π is committing. Then INV (Tπ) = 0. We
may assume that A0 tries the paths in π in the order of
{I0, I1, · · · Ik−1}. By the induction assumption we have



that A2, · · ·An−1 follow A1 in π. If A1 also follows A0,
then π is a followers-committing policy, and by lemma 1,
c(π∗M ) ≤ c(π), hence π∗M is an optimal policy for M . If
A1 does not follow A0, we can show that there is a path
u < k − 1 such that u+ 1 <∗ u. We then define a policy π′
which is the same as π, except that Iu+1 is tried right before
Iu. As π′ is committing as well, INV (Tπ′) = INV (Tπ) =
0. Then we can show that π′ is an optimal policy for M ,
and d(σπ′ , σ∗) < d(σπ, σ∗), contradicting the minimality of
d(σπ, σ∗) among the committing optimal policies of M .

(2:) π is not committing. Then INV (Tπ) > 0. We
can then show that Tπ contains a subtree, T , with only
one INV -edge, and define a policy π′ which is obtained
from π by replacing T with another tree, T ′, which has no
INV -edges at all. We then show that π′ is optimal and
INV (Tπ′) < INV (Tπ), contradicting the minimality of
INV (Tπ) among the optimal policies of M . 2

Example 1 Consider Fig. 1. We have E[TRY1(I0)]
Q0

= 39.5,

and E[TRY1(I1)]
Q1

= 2.6. Hence by theorem 2, the optimal
single agent policy is committing to try path I1 before I0.
However, E[TRY38(I0)]

Q0
= 95, and E[TRY38(I1)]

Q1
= 95.1,

hence for n ≥ 38 agents, the optimal policy is for the first
agent, to try path I0 before I1, and for the other agents to
follow the first agent’s path to t.

Interleaved-action CTP in disjoint-path graphs We
briefly consider interleaved action CTP in disjoint-path
graphs (CTP-DISJ-MULTI(n)). Since agents can start mov-
ing before the first active agent has reached t, it is by no
means clear that the optimal policy can be described us-
ing only TRY and INV macro actions. In fact, it is easy
to see that for more general graphs, the optimal policy re-
quires interleaved actions. For example, adding a (certainly
traversible) path that costs 100 from v1 to t in Fig. 1, the
optimal 2-agent policy is to send the first agent to v1, and if
e1,1 is blocked, send the second agent to v0 to check e0,1,
while the first agent waits at v1.

Since for disjoint paths this type of scenario cannot oc-
cur, we are led to suspect that there is no advantage to hav-
ing more than one active agent at a time in this topology.
We have checked this empirically by generating the optimal
policies (using value iteration) with and without interleaved
actions for small randomly generated problem instances.
From hundreds of such non disjoint-path instances, more
than 10% of the cases required interleaved actions to achieve
the optimal policy. Conversely, in all of over a thousand such
disjoint-path graph instances, the optimal policy for CTP-
DISJ-REP(n) was also optimal for CTP–DISJ-MULTI(n).
Hence we state the following:

Conjecture: Any optimal policy for CTP-DISJ-REP(n)
is also optimal for CTP-DISJ-MULTI(n).

Heuristics for repeated-task CTP
For general graphs, the size of the tree of the optimal policy,
and the time to compute it, are exponential in the number
of unknown edges even for single-agent CTP. Thus, such
policies can be computed and described only for very small
graphs. We thus examine non-optimal policies suggested for
CTP in the literature. The optimistic policy (OPT) (Bnaya,
Felner, and Shimony 2009; Eyerich, Keller, and Helmert

2010), is based on the “free-space assumption” (commonly
used in robotics) which assumes that all unknown edges are
traversable. The agent computes the shortest path under this
optimistic assumption, and begins to traverse it. The short-
est path from the current location to the goal is re-computed
every time an edge on the currently traveresed path is found
to be blocked. OPT is fast, but far from optimal in expected
cost.

(Eyerich, Keller, and Helmert 2010) performed system-
atic comparison between sampling-based schemes. Their
best sampling method (denoted as CTP-UCT) was based
on the UCT scheme (Kocsis and Szepesvári 2006). They
showed that CTP-UCT converges in the limit to the optimal
behavior and outperforms other techniques for single agent-
CTP. We revisit single-agent CTP-UCT and then generalize
it to the multi-agent case.

UCT for Single-Agent CTP
CTP-UCT works by performing “rollouts” as follows. For
each rollout a weather (defined above) is randomized. Status
of unknown edges is revealed only when the search reaches
the appropriate node. Starting with the initial belief state b0,
choose an action a1 to explore. The choice is made accord-
ing to the CTP-UCT formula defined below. This results in
a new belief state b1, depending on b0, the current weather,
and the action a1. Then, a new action is chosen, resulting in
a new belief state b2. This is repeated until we reach a belief
state bm where the agent is located at t. This is a single roll-
out, involving a sequence of belief states < b0, b1....bm >.

Let σ =< b0, b1....bi > be a partial sequence of belief
states generated in the (k+1)-th rollout where the agent lo-
cation in bi is not t. Define: (1:) Rk(σ) to be the number
of rollouts among the first k rollouts that start with σ (2:)
Ck(σ) to be the average cost incurred on these rollouts from
the end of σ to the goal.

There are several possible successor belief states b′1, b
′
2...,

one for each possible action a1, a2.... Each successor b′i,
when appended to σ, results in an extended sequence of be-
lief states denoted by σi. Based on (Kocsis and Szepesvári
2006), CTP-UCT picks the action whose successor state
maximizes:
UCT (σi) = B

√
logRk(σ)
Rk(σi)

− cost(ai)− Ck(σi)

whereB > 0 is a parameter, and cost(ai) is the cost of the
edge traversed by action ai. The idea here is to allow “ex-
ploration” initially (i.e. to sample previously little-visited
actions), due to first term in the equation. Eventually, when
many rollouts are performed the equation gives more weight
to minimizing the expected travel cost as expressed by the
last 2 terms in the equation. In order to direct the sampling
better towards the goal, the value Ck(σi) is initially based
on the optimistic cost, based on the free-space assumption.

After completing a pre-determined number of rollouts, an
agent performs the action with the minimal average cost to
reach the goal, where averaging is computed based on the
rollouts. This results in a new belief state actually reached
by the agent, and the process (of CTP-UCT) is repeated until
the agent reached the goal.

Generalization of UCT to Repeated-Task CTP
In CTP-REP, knowledge revealed to an agent is immediately
shared with all other agents. All agents share a known graph



which includes all edges known to be traversable. There
are 4 different ways to generalize UCT to work for repeated
CTP depending on the following attributes.

1: behavior of consecutive agents. After the first agent
activates CTP-UCT there are two possible behaviors of the
remaining agents. They can be reasoning agents, that is,
they also active CTP-UCT. Or, they can be followers: Since
the first agent has arrived at the goal, the known graph in-
cludes at least one path to the goal. The shortest such known
path is followed by the remaining n− 1 agents.

2: considering consecutive agents. An agent can be in-
considerate, ignore the remaining agents, and use the CTP-
UCT formula of the single agent case. By contrast, it can
be considerate. In this case, the agent considers the fact that
the remaining n− 1 agents are expected to travel to the goal
too and therefore their expected travel cost should be taken
into account. One way to do it is by assuming that consec-
utive agents will follow the shortest known path. This idea
is based on the theoretical results for disjoint graphs, where
this policy is actually optimal. While no longer necessarily
optimal for general graphs, it is used here as a heuristic. In
order to implement this scheme, we modify the CTP-UCT
formula by adding an additional F k term (stands for “fu-
ture path”), which is the cost of the shortest path we expect
to discover at the end of the rollout. This is multiplied by
n− 1, since n− 1 agents are expected to follow that path as
well. We therefore use the following modified UCT rule:
UCTR(σi) = UCT (σi)− (n− 1)F k(σi)

where F k(σi) is the average over k rollouts of the shortest
path from s to t among edges known to be unblocked in
belief states at the end of the rollout starting from σi. As this
quantity is not well defined initially, it is initialized based on
the value of the shortest path from s to t under the free-space
assumption.

Example 1 demonstrates the difference between a consid-
erate and an inconsiderate agent, as an inconsiderate first
agent always chooses to try I1 before I0 no matter how
many agents follow it. There are four possible combina-
tions, which lead to four possible variants that generalize
CTP-UCT as follows.

(1:) Inconsiderate, followers. In this variant, only the
first agent activates CTP-UCT for choosing its actions. The
first agent inconsiderately ignores the existence of the other
agents and activates CTP-UCT for choosing its actions. The
other agents are followers. This variant is labeled UCTR1.

(2:) Considerate, followers.. The first agent activates
UCTR. The other agents are followers. This variant is la-
beled UCTR2.

(3:) Inconsiderate, reasoning. Here, all agents are rea-
soning agents but they are all inconsiderate, i.e., they all
activate CTP-UCT. This variant is labeled UCTR3.

(4:) Considerate, reasoning. All agents are reasoning
agents and they all activate UCTR. This variant is labeled
UCTR4.

Empirical Evaluation
Our experiments included instances with small number of
unknown edges. This enables the evaluation of a given pol-
icy under all possible weathers and measuring the policy per-
formance accurately as all cases have been evaluated. We

experimented on problem instances based on the graph de-
picted in figure 2(a). In the figure, the source and target ver-
tices are labeled s and t, respectively. Each edge is labeled
with the edge weight.

We generated two sets of instances where we randomly
selected 4 and 8 unknown edges (not adjacent to s) respec-
tively. We also uniformly select blocking-probabilities for
each of the unknown edges in the range of (0.01, 0.9). Sim-
ilar trends were observed and we only report results on the
graph with 8 unknown edges.
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Figure 2: Our example graphs

We implemented six policies for CTP-REP. First, we
computed the optimal policy using value iteration. This
serves as a lower bound on the travel cost. Second, we im-
plemented a bound we call cautious-blind (C-Blind in the
tables). The cautious-blind uses only the known edges of
the graph to find a shortest path from source to target and
then follows it. If any unknown edges are revealed to the
agent while traversing, the agent ignores this information.
Cautious-blind serves only to indicate a type of “worst-case”
and thus we define a range of costs that makes sense for
each problem instance. Finally, the expected costs for our
four UCTR variants described above are achieved by aver-
aging simulations of the policy under each possible weather
of an instance. The travel cost incurred in each simulation is
weighted according to the probability of the weather. There-
fore, this gives the expected cost of the policy on a given
instance. UCTR variants were tried with 10000-200000 roll-
outs.

agents n=2 n=3 n=10
Optimal 15.45 35.37 361.00
UCTR1 1.72 1.73 1.73
UCTR2 1.77 1.84 1.94
UCTR3 3.15 4.23 6.23
UCTR4 3.25 4.54 6.34

Table 1: Execution times in minutes

Table 1 presents the execution time in minutes required to
generate the polices on a typical instance with 8 unknown
edges. Clearly, as the number of agents, n, grows, com-
puting the optimal policy consumes significantly more time
than any other policy. UCTR1, and UCTR2 are both policies
that are based on our ”followers” principle. Thus, the exe-
cution of UCT is only performed once, for the first agent.
As a result, the time it takes to calculate these policies is
significantly smaller than UCTR3 and UCTR4.

We have performed a number of experiments and did not
see evidence that the reasoning policies UCTR3 and UCTR4



Instance 1 Instance 2
N=1 N=3 N=10 N=1 N=3 N=10

Optimal 164.32 487.03 1615.52 150.14 450.09 1499.60
C-Blind 178.79 536.37 1787.90 164.10 492.30 1641.00
UCTR1 164.32 487.36 1618.00 150.14 450.25 1500.64
UCTR2 164.32 487.13 1619.32 150.14 450.13 1500.06
Table 2: Results for the set of 20 edges with 8 unknown

show significant improvements over the followers polices
UCTR1 and UCTR2. Since the time spent to compute the
reasoning policies is much larger than the followers polices,
we conclude that these versions are not recommended. This
bolsters our theoretical results, which show that following is
optimal on disjoint paths: while not optimal in general, it is
a strong heuristic. We thus only report the total cost of the
followers polices UCTR1 and UCTR2.

Table 2 presents the total costs incurred on our graph (with
8 unknown edges) by the two benchmark algorithms and by
the followers policies UCTR1 and UCTR2 when the num-
ber of agents n was varied. We experimented with several
instances and present results on two representative instances.
It is important to observe that both UCTR1 and UCTR2 are
very close to the optimal policy, and are far better than the
cautious-blind bound. This strengthen our claim that the op-
timal behavior for the disjoint-path graphs is a strong heuris-
tic for general graphs.

When the number of agents n is small, UCTR2 slightly
outperforms UCTR1. When n is larger (10 agents), results
are inconclusive. As indicated by varying the number of
rollouts (not shown), the reason is that with many agents
the ”considerate” assumption and the large extra F k term
in the UCTR formula (especially as it is multiplied by the
number of remaining agents) amplifies the sampling noise.
This noise is hard to overcome unless the number of rollouts
is increased drastically.

Discussion
UCTR2 outperforms UCTR1 if some policy Πc exists (c for
considerate) such that using Πc on CTP-REP has lower ex-
pected cost than taking the ”selfish” policy Πs where each
agent tries to minimize it’s own cost function. We expect
UCTR2 to resolve with Πc and UCTR1 to resolve with Πs.

Denote Π1 as the policy that the first agent takes and ΠF

as the ”followers” policy, used by the rest of the agents. In
general, E[Π1

s] ≤ E[Π1
c ] since Π1

s tries to minimize the cost
function without the burden of the follower agents.

Despite this fact, UCTR2 will outperforms UCTR1 when:

E[Π1
c ] + (n− 1)× E[ΠF

c ] < E[Π1
s] + (n− 1)× E[ΠF

s ].

The graph in figure 2(b) demonstrates such a case, and
indeed UCTR2 outperforms UCTR1 when the number of
agents is large enough. In this instance, all edges are known
except the dashed edge which has blocking probability of
0.95.

On the initial state s, Π1(s) chosen by UCTR1 results
in taking action a1 (traverse a1) with cost 100 since taking
the alternative action a2 evaluates to 0.05 × 50 + 0.95 ×
150 = 145. The follower policy ΠF (s) also follows a1 and
evaluates to 100.

Now, let’s consider UCTR2. If Π1(c) chooses to take
a1 then the follower policy, ΠF (s) evaluates to 100, as

in UCTR1. However if Π1(c) takes a2 then the value of
ΠF (c) will be 0.95 × 100 + 0.05 × 50 = 97.5 which is
slightly better for the followers. It is beneficial for UCT2
to choose Π1(c) to be a2 when the extra cost incurred by
Π1(c) is compensated by the advantage gained by the fol-
lowers. Therefore, it is beneficial to take a2 only when
(n − 1) × (100 − 97.5) > 145 − 100. For our case, it
happens for n ≥ 20.

We also experimented with instances that have large num-
ber of unknown edges (up to 20). In this case, evaluat-
ing the policy against all weathers is not practical therefor
only a subset of weathers is used. In these experiments we
get inconclusive results - on some cases UCTR-1 seems to
outperform UCTR-2 probably. In such cases, although the
above condition holds, experimenting with only a subset of
weathers does not necessarily demonstrate the benefit of us-
ing UCTR2 because of the negative skewness of E[Π2

c ].

Conclusions
Repeated task CTP is introduced, and an optimal followers
policy for the special case of disjoint-path graphs is defined
and proved. This followers policy forms the basis of heuris-
tics for reasonable non-optimal policies for general graphs,
as suggested by an empirical evaluation on using a suite
of sampling algorithms based on UCT. While optimal for
disjoint-path graphs, the followers policy is very strong and
is near optimal for general graphs.

The more general interleaved-agent CTP was also intro-
duced. However, this problem is more complicated due to
the much larger state and action spaces. For disjoint-path
graphs, empirical results indicate that the followers policy
is optimal, and that there is nothing to gain by allowing in-
terleaved actions. Proving (or disproving) this conjecture
would be a good way to continue research on this CTP vari-
ant. Experimental results demonstrate cases where UCTR1
outperformed UCTR2.
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