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Abstract

UCT and Minimax are two of the most prominent tree-search
based adversarial reasoning strategies for a variety of chal-
lenging domains, such as Chess and Go. Their complemen-
tary strengths in different domains have been the motivation
for several works attempting to achieve a better understanding
of their vastly different behavior. Rather than using complex
games as a testbed for deriving indirect insights into UCT and
Minimax, we propose a relatively simple model on which
sampling-based techniques, in particular UCT, significantly
outperform Minimax. The simplicity of the model enables
novel analytical computations of Minimax’s decision accu-
racy, while an extension of this model incorporating search
traps and correlated heuristic noise confirms that UCT’s per-
formance begins to deteriorate as more and more traps are
added.

Introduction
Minimax search with alpha-beta pruning has endured for
many decades as the algorithm of choice for tree search in
complete information games. It has produced game-playing
programs that surpass human-level play in the games of
Chess and Checkers (Campbell, Hoane, and Hsu 2002;
Schaeffer et al. 1992). The game of Go, however, re-
mains something of a final frontier. Due to its large
branching factor and the lack of good board evaluation
functions, Minimax-style full-width search approaches have
been mostly ineffective in this domain. The emergence
of MoGo (Gelly and Silver 2007) marked the first signifi-
cant improvement in the strength of Go-playing programs
in many years. Underpinning its success is Upper Confi-
dence bounds for Trees (UCT), a novel sampling-based tree
search algorithm (for a detailed description of the algorithm,
see Kocsis and Szepesvári 2006), that has since been suc-
cessfully applied to many other challenging domains (Balla
and Fern 2009; Finnsson and Björnsson 2008). Intrigu-
ingly, however, efforts to replicate this success in domains
where Minimax is the “gold-standard” (such as Chess) have
been mostly futile. Thus, a big open question remains —
is it possible to characterize aspects of search domains that
make them more or less favorable to UCT- style search al-
gorithms?

Prior attempts to answer this question have focused on
specific domains such as Chess (Ramanujan, Sabharwal, and

Selman 2010b), or Mancala (Ramanujan and Selman 2011).
While those studies have been useful in building an intuitive
understanding of the strengths and weaknesses of UCT, the
domains themselves are too complicated for any mathemati-
cal analysis. In this paper, we address this issue by studying
UCT, Minimax, and other simple alternatives such as leaf
averaging, on a family of synthetic tree models.

Our most basic model, to our knowledge, is the first sim-
ple family of trees on which a UCT-style sampling based
search strategy clearly outperforms Minimax (with alpha-
beta pruning). Briefly, this model produces bounded depth
trees where there is precisely one optimal action at each
node. A player picking a sub-optimal action suffers a fixed
additive cost ofk. The tree is constructed in a top-down
fashion and the true minimax value for any node is known
by design. The heuristic evaluation is based on anindepen-
dent random noisemodel. Specifically, the heuristic value
of a node is the sum of its true Minimax value and some
Gaussian noise.

The simplicity of this model enables us to provideana-
lytical equations capturing the distribution of the backed-up
heuristic estimate for any node. We use these to compute the
decision accuracy of Minimax in this model, i.e., how often
Minimax selects the optimal child of the root node of the
search tree. While a closed form solution for decision accu-
racy is hard to obtain, we use numerical computation with
Matlab to obtain decision accuracy figures. We also discuss
a simpler analytical approximation that relies on the fact that
the minimum and maximum of two Gaussian random vari-
ables can often be approximated well by another Gaussian
variable, with easily computable mean and variance.

As a comparison, we estimate the decision accuracy of
UCT on this tree model through simulations. UCT is mod-
ified to use the same heuristic model as Minimax to esti-
mate the value of leaf nodes, in place of traditional random
playouts. We find that UCT clearly outperforms Minimax in
our basic tree model and the gap in performance grows with
deeper search trees. What makes UCT work well in this
model is the fact that randomly sampling nodes of the tree
yields a fairly reliable estimate of the true Minimax value of
the tree, despite the noise in the heuristic. Good guidance
from sampling is one of the keys to UCT’s success, and this
aspect is clearly demonstrated in this simple model.

While the independent noise assumption allows for ease



of analysis, it is not fully realistic — in real games, there
are often correlations between the heuristic evaluations of
closely related positions. In particular, a heuristic that erro-
neously evaluates a certain position is more likely to mis-
classify similar positions as well. Thus, we study a sec-
ond model where the independent noise assumption is re-
laxed. In trees grown using this model, we show that UCT’s
performance is greatly affected by the prevalence of shal-
low search traps, i.e., nodes with sub-optimal moves that,
if taken, lead to an easy win for the opponent in just a few
more moves. In particular, UCT outperforms Minimax when
very few traps are present in the search tree, but this trend
is reversed when more traps are added. This is in line with
observations from real world games.

We begin the rest of the paper by describing the general
search tree model to be used in our studies. We first de-
scribe the simplest form of the model with fixedk and fixed
noise varianceσ . We present results on the decision accu-
racy of various search strategies as well as a derivation of
analytical expressions that can be evaluated numerically in
order to compute the decision accuracy of Minimax, exactly
or approximately. We then present and discuss the corre-
lated noise model and the impact of search traps on UCT,
and conclude with a brief summary.

Game Tree Model
Numerous synthetic game tree models have been proposed
in the literature, particularly to study the phenomenon of
look-ahead pathology in Minimax search. The existing
approaches to tree construction may be broadly classi-
fied into two types — bottom-up and top-down. In the
bottom-up approach, the values of the leaves of the tree
are carefully specified, either as win/loss values (Nau 1982;
Pearl 1983) or as real numbers (Luštrek, Gams, and Bratko
2005). The value of the game (as well as the minimax val-
ues of the internal nodes) is computed using a full-depth
alpha-beta search, which in practice limits the size of the
trees that may be studied. Moreover, the value of each
leaf is independent of the value of other leaves. This does
not accurately model real games where values of sibling
nodes tend to be correlated. In the top-down approach,
values are assigned to edges in the game tree. The value
of a leaf is then defined by the sum of the edge values
on the path from the root node to the leaf (Nau 1982;
Scheucher and Kaindl 1998). These “incremental” tree
models do introduce correlations among sibling nodes; how-
ever, they still suffer from the problem that computing the
true minimax value of any internal node in the tree involves
performing a search. More recently, Furtak and Buro intro-
duced theprefix valuegame tree model which builds upon
the top-down formulation of Scheucher and Kaindl. No-
tably, no search is required to determine the true value of in-
ternal nodes in this tree model which allows simulation and
analysis of different search procedures on arbitrarily large
games (Furtak and Buro 2009). We describe the details of
this model, and our extensions, below.

Without loss of generality, we restrict our study to trees
where the maximizing player (henceforth, Max) is on move
at the root. The minimax values of nodes are drawn from the

set of integers, with positive values representing wins for
Max and the rest indicating wins for Min, the minimizing
player. For the sake of simplicity, we disallow draws.

Let m(v) represent the true minimax value of a nodev.
The key insight exploited by the model is the fact that mak-
ing a move can neverincreasethe value of a position for
the player on move. Moreover, at least one child ofv must
have the same value asv. Thus, given a nodev, we grow the
sub-tree rooted atv as follows:

• Denote the set of children ofv by V = {v1,v2, . . . ,vb},
corresponding to action choicesA = {a1,a2, . . . ,ab}.

• Pick anai uniformly at random fromA — this is desig-
nated as the optimal action atv

• Assignm(vi) = m(v). If Max is on move atv, then for all
j 6= i, m(v j) = m(v)−k. If Min is on move atv, then for
all j 6= i, m(v j) = m(v)+k.

Here,k is a constant that quantifies the cost incurred by
the player on move for taking a sub-optimal action. The
process is seeded by setting the minimax value of the root
node to+1. This is necessary to ensure that Max is faced
with an interesting decision at the root node. A parameter
dmax controls the depth of the tree.

The tree model as described grows complete trees to the
specified depth. However, many real games do not exhibit
such regularity and contain a proliferation of early termi-
nal nodes or “trap states”. Recent work has shown that the
prevalence of trap states has an impact on the performance of
sampling-style algorithms such as UCT (Ramanujan, Sab-
harwal, and Selman 2010a; Ramanujan and Selman 2011).
To better mimic such search spaces, we extend the basic tree
model by introducing a new parameterδ that is a threshold
on the maximum magnitude the minimax value of a node
can assume. If|m(v)|> δ for a nodev, it is marked as a ter-
minal node, with the sign ofm(v) determining the outcome
of the game. The value ofδ thus has an inverse relation-
ship to the density of trap states in the game tree — figure 1
illustrates this phenomenon concretely.

Finally, in most interesting real-world games, a complete
search to the horizon of the game is infeasible. The typ-
ical work-around is to set a depth (or time) cut-off and to
evaluate the leaf nodes at the frontier of the search using
a heuristic function. In our game tree model, we generate
heuristic values for nodes by adding Gaussian noise to their
true minimax values. We introduce and discuss two different
approaches to generating this noise in the following sections.

Independent Noise Model
In this model, the heuristic valueh(v) of a nodev is defined
as follows:

h(v) = m(v)+X

Here,X ∼N (0,σ), i.e.,X is a Gaussian random variable
with mean 0 and standard deviationσ , which is a parame-
ter of the model.h is re-scaled to fall in the interval(0,1),
with the values 0 and 1 used to denote terminal loss and win



Figure 1: Game trees with many search traps (left,δ = 5) and no traps (right,δ = 25). The value ofk is chosen uniformly at
random from the set{1, . . . ,8} for each sub-optimal action.
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Figure 2: Decision accuracy of Minimax, UCT and Leaf
Averaging search versus search effort, withσ = 30, k = 1,
δ = dmax= ∞ and branching factor= 2

positions, respectively, for Max. The noise sampled to com-
pute the heuristic value of a node is independent of the noise
sampled at other nodes.

Figure 2 illustrates the variation in the decision accuracy
of three search procedures — Minimax, UCT and Leaf Aver-
aging — as the search effort (quantified by the search depth
of the Minimax player) is varied with the other parameters
fixed to their indicated values. The leaf averaging approach
is a näıve decision procedure that works as follows: for each
child d of a given node, theaverageutility of the leaf nodes
in the sub-tree rooted atd is computed. This average value
is treated as a heuristic estimate of the utility of the childd

— the best child is then selected based on this estimate. For
UCT, we use an exploration bias parameter of 0.2, which
was empirically found to produce the best performance on
this family of trees. To make a fair comparison, we normal-
ize for search effort by allowing UCT and leaf averaging to
expand at most the number of nodes examined by Minimax.
The average decision accuracy is computed over 5000 trees
per data point.

We make two observations. Firstly, our tree model is not
pathological (Beal 1980; Nau 1982) as evidenced by the fact
that searching deeper leads to a consistently higher decision
accuracy for Minimax. Further, UCT (and leaf averaging)
significantly outperform Minimax with increasing search ef-
fort. This is significant — to our knowledge, this is the first
realistic synthetic tree model where UCT demonstrably out-
performs Minimax search. The surprisingly good perfor-
mance of leaf averaging offers a clue to UCT’s impressive
performance; namely, sampling in conjunction with averag-
ing offers very reliable estimates of the value of states in this
tree model. We prove this statement more rigorously.

Let T be a tree of depthd generated by the model. For
a non-leaf nodev in T, one may attempt to estimate its true
minimax valuem(v) by simply sampling the estimated val-
ues of several leaf nodes in the subtree rooted atv and taking
the average of these values. In general, this average may not
converge tom(v), but for the basic model with fixedk, fixed
σ , and independent noise discussed above, it actually does
converge tom(v) as long as there are an even number of
levels belowv till the leaves. To see this, considerYv, the av-
erage of the estimated values ofall leaf nodes in the subtree
Tv consisting ofv and its descendents inT; the depthdv of
Tv is even. Note thatYv is a random variable whose value de-
pends on the Gaussian noise injected by the heuristic when
estimatingm(v) for leavesv.



Proposition 1. The expected value of Yv is m(v).

Proof. Assume without loss of generality that the player on
move atv is Max. We prove thatE [Yv] = m(v) by induction
ondv.

For the base case, whendv is 0,Yv = m(v)+X whereX is
a random variable drawn from the distributionN (0,σ). It
follows thatE [Yv] = m(v)+E [N] = m(v).

For the inductive step, letvi, j ,1≤ i, j ≤ b, be theb2 de-
scendents ofv two levels below it inTv, with vi,1,1≤ i ≤ b,
as the optimal moves at that level. Hereb denotes the
branching factor. LetU denote the set of theseb2 nodes.
For anyu ∈U , let Yu be a random variable whose value is
the average of the estimated values of all leaf nodes under
u. ThenYv = ∑u∈U Yu and thereforeE [Yv] = ∑u∈U E [Yu].
By induction hypothesis,E [Yu] = m(u). Hence, we have
E [Yv] = ∑u∈U m(u). We will argue that this latter sum equals
m(v).

To see this, note that by construction ofTv, we know that
m(u) = m(v) + k for u ∈ {v1,2,v1,3, . . . ,v1,b}, that m(u) =
m(v)−k for u∈ {v2,1,v3,1, . . . ,vb,1}, andm(u) = m(v) for all
other nodesu in U . In other words, there are as manym(v)−
k values two levels belowv as there arem(v) + k values,
and the remaining values equalm(v). Hence the summation
∑u∈U m(u) equalsm(v), as desired.

Analytical Computation of Decision Accuracy

A key benefit of this model is that it allows us to analytically
compute the decision accuracy of Minimax, without relying
on simulations based on samples from the Gaussian noise
distribution. We discuss this approach next.

Exact Method Consider a treeT. For simplicity, let us
assume that the branching factor ofT is 2. As before, for
a nodev, m(v) denotes the true minimax value ofv. The
heuristic minimax value ofv, computed by taking the min
or the max, as appropriate, of the heuristic minimax val-
ues of the two childrenvL and vR of v, is a random vari-
ableXv whose value is ultimately a function of the true val-
ues of the leaves ofT in the subtree underv, as well as
the Gaussian noise at these leaves. Consider the cumula-
tive probability distribution function (CDF) ofXv, defined
asFv(x) = Pr[Xv ≤ x]. Then we can writeFv for any internal
nodev recursively as follows:

Fv(x) =
{

FvL(x)FvR(x) if v is Max
1− (1−FvL(x))(1−FvR(x)) if v is Min

Here, by “v is Max” we mean the player on move atv is Max;
similarly for Min. Whenv is a leaf node ofT with true value
x∗, thenFv is simply the CDF of the Gaussian distribution
centered aroundx∗ and with the specified standard deviation
σ , i.e.,Fv(x) = Φ( x−x∗

σ
).

Now, if u is the root node (w.l.o.g., a Max node) ofT with
childrenuL anduR, then we can compute the decision accu-

racy of Minimax atu by evaluating the following integral:

decAccMM (u) = Pr[XuL ≥ XuR]

=
∫

Pr[XuL = x] Pr[XuR ≤ x]dx

=
∫

fuL(x)FuR(x)dx

where fuL(x) denotes the probability density function ofXuL
at valuex and equals the derivative ofFuL evaluated at value
x.
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Figure 3: Decision accuracy of Minimax search as predicted
by our Gaussian approximation and numerical integration
methods, compared to actual simulation results

The green curve in figure 3 depicts the results of a numer-
ical evaluation of the above integral in order to compute the
decision accuracy of Minimax as a function of search depth.
An important aspect that makes this numerical integration
feasible is the fact that we can define the CDF of a node
at any pointx recursively as a combination of other CDFs
at the same pointx. The numerical evaluation is performed
using Matlab1, with the “quadl” integration method, a tol-
erance level of 10−6, and the integral evaluated in the large
but bounded range[−1000,1000]. Theσ value used in the
tree model is 4. As can be seen, this numerical computation,
based on the analytical integral discussed above, provides a
very good estimate of the decision accuracy of Minimax, and
is much smoother than the simulation based curve shown in
red.

Gaussian Approximation An alternative way to estimate
the decision accuracy analytically is to use the fact that the
min and max of two Gaussians are often well approximated
by yet another Gaussian whose mean and variance can be
easily computed. This approximation is especially accurate
when the two constituent Gaussians have the same variance
– which is indeed the case in the current tree model.

As above, letfv(x) denote the probability density func-
tion (PDF) ofXv evaluated at valuex. If v is a leaf of the

1http://www.mathworks.com/products/matlab



treeT, then, by construction,fv is simply N (m(v),σ). If
v is an internal node with childrenvL andvR, let us assume
we have recursively computed the Gaussian approximations
N (µvL ,σvL) andN (µvR,σvR) of their true probability den-
sity functions, respectively. Then, following the moment-
matching approach outlined by Nadarajah and Kotz, we can
approximate the probability density function forv (assuming
v is a Max node) asN (µv,σv) (Nadarajah and Kotz 2008),
where:

ρ = µvL −µvR

θ =
√

σ2
vL

+σ2
vR

µv = µvLΦ(
ρ

θ
)+ µvRΦ(−ρ

θ
)+θφ(

ρ

θ
)

σ
2
v = (σ2

vL
+ µ

2
vL

)Φ(
ρ

θ
)+(σ2

vR
+ µ

2
vR

)Φ(−ρ

θ
)

+(µvL + µvR)θφ(
ρ

θ
)−µ

2
v

Here, φ(·) and Φ(·) are the PDF and CDF respectively
of the standard normal distribution. We refer the reader to
Nadarajah and Kotz 2008 for similar analytical expressions
for µv andσv whenv is a Min node. Given root nodeu with
childrenuL anduR, the decision accuracy of Minimax equals
Pr[XuL ≥ XuR] = Pr[XuL −XuR ≥ 0]. With Gaussian approx-
imations forXuL andXuR in hand, we can in turn approxi-

mateXuL −XuR by a GaussianN (µuL − µuR,
√

σ2
uL

+σ2
uR

).
The decision accuracy may be computed directly using this
Gaussian PDF.

The blue curve in Figure 3 shows the resulting estimates
of decision accuracy. As can be seen, the Gaussian approx-
imation is somewhat over-optimistic for small values ofd
(specifically, ford ≤ 10 in this case) but then begins to co-
incide with the numerical estimate of the exact analytical
expression discussed previously.

Enhanced Independent Noise Model
While the basic tree model as presented is easy to analyze,
figure 2 shows that even a very naı̈ve sampling-based strat-
egy does quite well on those trees. We make the following
two observations in the basic model:

1. The noise in the heuristic estimate of a node is constant
regardlessof the depth of the node. In reality, heuristic
estimates tend to improve as one encounters nodes closer
to terminal states.

2. The penalty term assigned to sub-optimal moves (k) is a
constant. However, in real games, sub-optimal moves are
not all equally bad — some are worse than others.

Based on these insights, we make two slight modifications
to our basic model. In particular, rather than use a constant
σ for the standard deviation of the Gaussian noise, we define
it as a function:

σ(v) = min{(δ −|m(v)|),(dmax−d(v))} (1)

whered(v) represents the depth of the nodev from the
root. With this formulation, the magnitude of the noise be-
comes height-dependent — the closer a node is to a terminal
state, the more accurate the heuristic value. Moreover, we
also modifyk to be a random variable drawn uniformly at
random from the set{1, . . . ,kmax}. For this modified tree
model, we re-plot the decision accuracies of Minimax, UCT
and leaf averaging while varying the search effort (figure 4).
As can be seen in the plot, UCT is still the best performing
search method, with Minimax the worst of the three. More-
over, in this model, UCT demonstrates a clear edge over the
simple sampling algorithm, demonstrating that some care-
ful balancing of exploration and exploitationdoesboost the
search performance over naı̈ve sampling.
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Figure 4: Decision accuracy of Minimax, UCT and Tree Av-
eraging search versus search effort, with height-dependent
σ andk as a uniform random variable (kmax= 8). All other
parameters are as in figure 2.

Correlated Noise Model
In this section, we relax the independent noise assumption
(in the extended model) and examine the relative perfor-
mance of UCT and Minimax on the resulting game trees.
Since heuristic evaluations of similar positions often tend to
be correlated, this approach models real games more accu-
rately. In this model, the noise used to generate the heuristic
value of a nodev is no longer independent of the noise used
at other nodes. In particular, the noiseX no longer has a
mean of 0; rather,X ∼ N (µ,σ(v)), whereσ is as defined
in equation 1.µ is a value drawn from{−s,0,+s}, depend-
ing on the heuristic value assigned top, the parent ofv (in
our experiments,s is fixed at 5). Ifp is a winning position for
Max, which is misclassified as a loss by the heuristic (“false
loss”), thenµ = −s. This increases the likelihood thath(v)
will be negative as well. Symmetrically, whenp is a false
win, µ = +s; otherwiseµ = 0. As before,h(v) is rescaled
to the interval(0,1).Under this scheme, heuristic evaluation
errors tend to be reinforced down the tree. In other words, if
the heuristic makes a mistake in evaluating a particular state



p, it is more likely to make mistakes when evaluating the
children ofp as well.
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Figure 5: Decision accuracy of Minimax and UCT on trees
using the correlated noise model, as the trap density parame-
terδ is varied. Higher values ofδ correspond to fewer traps.

In this model, UCT displays sensitivity to trap states as
illustrated in figure 5. UCT exhibits superior decision
accuracy in state spaces with few search traps (i.e., large
values of δ ) compared to Minimax. As the density of
search traps is increased (δ lowered), Minimax overtakes
UCT as the better search procedure. This confirms simi-
lar observations from real games such as Chess and Man-
cala (Ramanujan, Sabharwal, and Selman 2010a; 2010b;
Ramanujan and Selman 2011). Moreover, it offers an expla-
nation for the success of UCT in the game of Go. Namely,
the scarcity of trap states in the early stages of the game al-
lows UCT to build up a positional advantage that it can then
exploit in the end-game phase.

Conclusions
In this work, we proposed relatively simple synthetic game
tree search models that bring out key aspects of dominant ad-
versarial search strategies. These synthetic models serve as a
vehicle to better understand the strengths of UCT, Minimax,
and simpler alternatives in a controlled setting, complement-
ing previous work done in the context of complex games
such as Chess, Go, and Mancala. The simplicity of the basic
model allows the use of analytical and numerical methods
to compute the true backed-up value of the Minimax tree in
the presence of independent heuristic noise. For the more
realistic model with correlated noise, UCT exhibits a char-
acteristic which mirrors it’s behavior in many real games,
namely, the strong dependence of it’s performance on the
presence of search traps.
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