
Learning and Application of High-Level Concepts with
Conceptual Spaces and PDDL

Richard Cubek and Wolfgang Ertel
Ravensburg-Weingarten University of Applied Sciences

88250 Weingarten, Germany
{richard.cubek,ertel}@hs-weingarten.de

Abstract

Robots should be able to learn skills from humans not only
through kinesthetic teaching, but also by recognizing in-
tentions and abstract concepts in human behavior. This
work presents a method that enables robots to learn human-
demonstrated concepts on an abstract, first-order logic based
representational layer, while addressing the problems of
keyframe extraction, concept learning, symbolic grounding
and representation in PDDL.

1 INTRODUCTION
1.1 Robot Architectures and Control
Modelling of robot behavior and underlying software archi-
tectures emerged into several directions. Behavior-based
systems are a network of interconnected units, that directly
couple sensors to actuators. Each unit implements a specific
behavior and depending on the situation specific behaviors
can override others. Some behaviors use representations to
a certain degree (Brooks 1985; Arkin 1998).

A counter example to behavior-based control is the early
sense-plan-act paradigm, where based on its perception, the
robot builds an abstract model of the world, generates a sym-
bolic plan according to a long-range goal and then applies
the plan (Nilsson 1984).

While behavior-based systems are well suited for rapidly
changing environments of high stochasticity, they lack in
their ability to achieve long range goals. Purely delibera-
tive systems again are not able to deal with dynamic en-
vironments. The logical consequence was the appearance
of hybrid control systems (three-layer architectures), inte-
grating deliberation and reactivity at different layers (Firby
1989; Bonasso 1991). The reactive lower layer corresponds
to behavior-based systems, where representations are de-
scribed in a subsymbolic form (i.e. meters). The deliber-
ative layer at the top relies on a symbolic formalism, often
based on first-order predicate logic. The sequencing layer in
the middle connects the deliberative and reactive parts while
being responsible for tasks like invoking planning or trans-
lating high-level plans to low-level actions (Firby 1989).

Our framework is based on a three-layer paradigm. Ba-
sic operations are implemented on the lower layer in a
hardware-specific way. Such basic operations are composed
to so called high-level actions like pick-object, place-object

or move-to, which again have a corresponding symbol on the
deliberative layer. The underlying architecture now allows
to represent goal-oriented plans as sequences of high-level
actions since reactivity is covered at a lower layer. The rep-
resentational gap between the layers, the symbol grounding
problem (Harnad 1990) is a central question of this work.

1.2 Learning from Demonstration
Learning from demonstration (LfD) aims at robots learning
skills being trained by humans. Most often it is based on the
recognition of similarities among demonstrations. LfD can
be classified into two approaches which are related to the
earlier described levels of abstraction (Section 1.1): trajec-
tory encoding for low-level representations of generic mo-
tions and symbolic encoding for high-level representations
e.g. of sequences of predefined actions (Billard et al. 2008).

Trajectory encoding allows to describe arbitrary motor
primitives and during training often requires direct motion of
the robot’s actuators by a human trainer (kinesthetic teach-
ing). High-level learning requires a predefined set of func-
tional low-level skills and often further prior knowledge.
This allows the description of more abstract skills and goal
oriented tasks. The presented framework belongs to this cat-
egory of LfD.

1.3 Motivation
LfD-learned skills are evaluated by their generalization ca-
pabilities. To be more precise, the focus lies on their appli-
cability to situations that differ from those during demon-
stration. The underlying idea now is to create a framework,
that provides a robot with the ability to learn the goal be-
hind a human-demonstrated task, to formalize this goal in a
symbolic language and to apply a symbolic planner in order
to reproduce the task in new situations. Thus, the approach
fully complies to the generalization aspect. This basic idea
was formulated in (Ekvall and Kragic 2008), which beside
other related work will be compared to the presented frame-
work in the next section.

2 RELATED WORK
In (Chella et al. 2004), a model from cognitive science,
namely conceptual spaces, is proposed as a method to bridge
the gap between symbolic and subsymbolic representations

in robotics. In this work, a formalized approach of connect-
ing sensor data to symbols is shown. A similar grounding
technique is used in a LfD framework in (Chella, Dindo,
and Infantino 2006). Regarding observation, the focus lies
on actions and their effects on objects and not on particular
properties of motions. Observations are represented in two
conceptual spaces, one to discover the type of objects and
one to discover spatial relations between them. Learning of
similarities among demonstrations is done by clustering in
the conceptual spaces. Observed tasks are then encoded as
sequences of actions on involved objects. There is no goal
abstraction and a planner is not used. The similarity of a
new situation and those from demonstrations is used to de-
termine, which action sequence to execute.

The work in (Ekvall and Kragic 2008) was already men-
tioned in Section 1.3. It learns an abstract task goal from
demonstration and describes it in a first-order based logical
language. In new situations a symbolic planner is used to
generate a plan that reproduces the task goal. The learn-
ing process is described as the detection of spatio-temporal
constraints. Spatial constraints are learned by finding co-
variances in the position distances of different objects.

The framework presented in this paper is a combination of
ideas based on (Chella, Dindo, and Infantino 2006) and (Ek-
vall and Kragic 2008). In contrast to the first, we define only
one conceptual space where we then apply projections, con-
texts and conceptual prototypes (introduced in Section 3.2).
We aim at creating a more general and formalized approach
of learning different concepts from demonstration. Further-
more, we formalize recognized concepts to be applicable for
planners. The difference to (Ekvall and Kragic 2008) is the
use of conceptual spaces and the integration of object prop-
erties in recognized concepts. Furthermore, we do not learn
temporal constraints, but rather let the planner take care of
action orders based on its world model. Different to both
works is the overall approach aiming to reach a concept ab-
straction as used in natural language, which is in terms of
objects, their properties and relations among them.

A very sophisticated further LfD framework is presented
in (Knoop, Pardowitz, and Dillmann 2007). Here, primitive
movement types are recognized, extracted and abstracted
during demonstration. Their pre- and postconditions and el-
ementary operators are described in symbolic form, while
symbolic planners can be used to generate sequential tasks.
The abstract task knowledge has to be mapped to a target
system. The described framework is supported by a whole
range of sophisticated sensors. We simulate one vision sys-
tem only and we concentrate less on action characteristics,
but more on special events in key frames. Furthermore we
dedicate more attention to the symbol grounding problem.

3 BACKGROUND
3.1 Symbolic Planner
The first planner designed for the purpose of robotics was
STRIPS (Fikes and Nilsson 1971) where world-models, ini-
tial states, goals and actions with preconditions and effects
can be defined. STRIPS is based on first-order logic. It
was extended to the Action Description Language (ADL)

(Pednault 1989), supporting conditional effects and quanti-
fied variables. Meanwhile, there is a whole research com-
munity dealing with the problem of planning. Therefore,
a unique modelling language based on STRIPS and ADL
has been introduced, the Planning Domain Definition Lan-
guage (PDDL). We use the recent version PDDL2.1 because
it supports ADL and the integration of fluents. Further-
more, a plan optimization metric can be defined. The ref-
erence specification of PDDL2.1 is (Fox and Long 2003).
As symbolic planner, the presented framework uses Metric-
FF (Hoffmann 2003), a top performing competitor from the
International Planning Competition.

3.2 Conceptual Spaces
Representing Concepts: Conceptual spaces have been in-
troduced by Gärdenfors as a mean for knowledge represen-
tation (Gärdenfors 2000). A conceptual space is built up
from a set of quality dimensions within a geometric struc-
ture. A concept in a conceptual space is a convex region
in that space, while a point in it (vector of quality dimen-
sion values or simply knoxel) is an instance of a concept.
Using the euclidean distance as a metric in this space, con-
ceptual spaces reduce the question of semantic similarity to
the question of the euclidean distance between two points.

A knoxel can also define a prototype of a concept. This al-
lows to decide about the membership of an arbitrary knoxel
to a specific concept by the distance between that knoxel
and the concept prototype. Or, the concept membership of
a knoxel can be defined by the nearest concept prototype.
The former defines a concept in a geometric form of a hy-
persphere, the latter causes a voronoi tesselation of concepts
over the whole space.

Different contexts can be applied by assigning weights to
dimensions. Let Q be a set of quality dimensions in a con-
ceptual space, then the distance between two points p1 and
p2 in a context k is:

dist(p1, p2, k) =

√√√√ n∑
i=1

w
(i)
k (p(i)

1 − p
(i)
2)2 (1)

where n = |Q|, while wk denotes the weight vector for the
context k (Adams and Raubal 2009).

The most simple example of a conceptual space in
(Gärdenfors 2000) is an one-dimensional space of time.
Here, the point now divides the space into the concepts past
and future. A further example is the color space of hue, sat-
uration and value where the focal colors like red or green
could be treated as certain color concepts, represented as
convex regions in space. A domain is described as a a sub-
space of a conceptual space.

Symbolic grounding: Gärdenfors proposes the use of
conceptual spaces also as an intermediate level between
symbolic and subsymbolic representations. Concrete nu-
meric values can be represented in single dimensions, while
regions in the n-dimensional space can be bound to symbols.
An example is the grounding of the term red used in natural
language to a concrete vector of hue, saturation and value.

In fact, Gärdenfors treats the ability to recognize conceptual
similarities as an important property of cognitive skills.

4 PROPOSED METHOD
This section explains the process of learning abstract con-
cepts from demonstration and the transfer to a PDDL-based
higher abstraction level.

4.1 Approach
As shown in (Ekvall and Kragic 2008), LfD on a symbolic
abstraction layer enables the robot to learn task goals and
to achieve them in new situations using a symbolic plan-
ner (provided that low-level skills are implemented). In our
approach, a further objective is to achieve an abstraction
of world and goal descriptions based on natural language,
which is in terms of objects, their properties and relations
between objects. The reason behind is that first, this en-
ables the robot to learn and execute complex tasks as they
are instructed among humans. Second, the effort to equip a
robot with a priori knowledge or innate skills decreases with
higher levels of abstraction.

4.2 High-Level Representation
World Model: The used world model is defined as a
PDDL domain. It describes a simulated environment which
is explained in detail in Section 4.4. It consists of sev-
eral workdesks, while various objects are located at each of
them. Every workdesk is very similar to a blocks world,
an often used environment in high-level learning and plan-
ning experiments. The robots can move in the environment
to approach the workdesks and they can pick objects and
place them at arbitrary positions. Such skills (as pick-object
or move-to) are represented as high-level skills. High-level
skills refer to a set of low-level operations, implemented
at lower layers. Their preconditions and effects can eas-
ily be defined manually. Moving between two workdesks
produces higher costs than a pick or place operation. This
causes the planner to generate optimal plans.

Object properties are formalized in the form of p(x, c),
p denoting the property predicate (e.g. color), x an object
variable and c a concrete property constant (e.g. red). All
kinds of spatial relations between objects are defined as cer-
tain bivalent predicates.

Learned concepts will be defined as PDDL goals. When
applying to new situations, the initial PDDL state depends
on the robot’s perception. PDDL problem files are dynami-
cally generated based on facts and goals.

4.3 Observations
The aim is to recognize and learn abstract concepts from
demonstration. Since it is not possible to determine sym-
bolic data directly from the vision system, the corresponding
(subsymbolic) raw data has to be obtained first.

Relevant Parts of a Demonstration: The robot should
recognize what was done instead of how it was done. There-
fore, effects of actions are important (instead of kinematic
properties of motions). We assume, that important effects
occur at the end of an action.

Figure 1: The virtual robot world.

Extraction of Relevant Data: The approach now is to
recognize object manipulation units (OMUs), a series of vi-
sion frames, where the demonstrator manipulates a certain
object. To analyze the effect of such a manipulation, the
state at the first frame after an OMU is extracted. Such a
frame is denoted as key frame. The states at the key frames
are then used for further investigation.

Concentrating on spatial manipulations, we assume that
an object is manipulated when it is moved. An object’s mo-
tion is determined by the change of its position between two
vision frames, which means by its velocity.

4.4 Simulated Environment
Experiments are realized within a virtual environment, cre-
ated in OpenRAVE, a planning and simulation environment
for robotics (Diankov 2010) (planning hereby means trajec-
tory planning, not high-level planning as in PDDL). The vir-
tual environment contains several workdesks, where again
several objects are located on each of them. The robots can
manipulate objects and move among the workdesks. There
is a demonstrating and a learning robot, both consisting of
a Puma robot arm, installed on a mobile platform (Figure
1). Several low-level skills are implemented on each robot,
dealing with inverse kinematics, collision-free trajectories
etc. The high-level behavior of the first robot is completely
programmed manually, while the high-level behavior of the
second is entirely learned by observing the first in demon-
strations. Demonstrations are performed by manipulating
objects at a workdesk.

The simulated robot vision is recognizing objects and
their positions, delivering noisy position data in each of the
dimensions x, y and z. The used error model is defined by

ε
(i)
j ∼ N (0, σ2) (2)

where i ∈ {1, 2, 3} and j ∈ {1, 2, ..., n} for n processed
frames, i and j denoting the indices of the dimensions
and frames, respectively. The used standard deviation is
σ = 0.0033 m, resulting in 99% of the object positions
oscillating ±1cm in each dimension. That should lead to
noisier data than delivered by most stable visions.

4.5 Keyframe Extraction
The setup of a demonstration is shown in Figure 2. The
demonstrating robot is stacking the cuboid building blocks

Figure 2: Setup at a certain workdesk in the environment
with the demonstrating robot.

Figure 3: Velocity of the red cube over time (red) and locally
weighted regression (blue). The framerates are 30 (top), 10
(middle) and 5 frames per second (bottom).

according to traffic lights: the yellow one on the green and
the red one on the yellow. The positions of all blocks are
recorded during the whole demonstration. Their velocities
are calculated afterwards. Figure 3 shows the velocity of the
red cube over time during demonstration. Due to the vision
error model, it is very noisy. In order to smooth the data,
the framerate can be decreased by skipping frames. Alter-
natively, locally weighted regression (LWR) can be applied
(Atkeson, Moore, and Schaal 1996). Both is shown in Figure
3. In the experiments, the framerate is reduced to 5 frames
per second. LWR is used additionally.

The noise floor causes the average velocity being > 0. A
threshold of 0.07 m/s is defined as a maximum value for
noise floor (red areas in Figure 4), while all above is treated
as object motion. Detected motion data is now clustered
over time, resulting in clusters representing OMUs (green
areas in Figure 4), wheras the first frame after an OMU is a
key frame. For each key frame, the positions of all objects
are stored in the observation data. The object positions are
averaged over an adjustable amount of n frames, following
a key frame.

Figure 4: Velocities of the stacked objects over time. The
red area is not considered, green areas show found clusters
of motions (OMUs). Red arrows mark key frames.

4.6 Representing the Observation
The key frame data is treated as describing the action effects
and thus the key events of the demonstration, which will be
used to learn the underlying concept.

Event Representation in Conceptual Spaces: The learn-
ing part in the presented framework is based on the recog-
nition of similarities among demonstrations. They will be
determined by investigating the detected key events, con-
sidering the described level of abstraction in Section 4.1.
Thus, a proper representational structure for the key events
is needed. Conceptual spaces as intermediate level between
symbolic and subsymbolic representations offer a suitable
mean. Abstract concepts can be represented as regions in
space, detecting conceptual similarities can be achieved by
clustering knoxels in space. The dimensions in the concep-
tual space and the represenational aspect of a knoxel in it are
yet to be explained.

4.7 Learning of Abstract Concepts
Regarding a key frame, we call the manipulated object the
source object and the remaining objects the target objects.
In Section 4.5, it was mentioned that at each key frame,
positions of all objects are extracted, not only the position
of the manipulated one. The reason behind is that the key
frames are the moments where relations between objects are
formed. Therefore, the detected key events from key frames
are events between the manipulated object and the remaining
objects. Such a key event will now be represented by a single
knoxel in the conceptual space. Thus, a knoxel refers to an
event between a source and a target object. This is illustrated
in Figure 5. Assuming a scene at a workdesk with n objects,
where one object is moved to another position (at the same
workdesk). Here, the corresponding key frame from the end
of the spatial manipulation generates n− 1 key events. One

Figure 5: A key frame at the end of an object manipulation
unit. The manipulated object (red cube) is the source object,
the others are target objects. Each blue arrow is a key event,
referring to a knoxel in conceptual space.

for each potential relation between the manipulated object
and each remaining object on that workdesk.

We now define a conceptual space oriented on the kind of
the described key events between a source and a target ob-
ject. If the robotic system is able to deliver n properties for
each observed object, then 2n+3 dimensions are defined for
the conceptual space. One for each source object property
and one for each target object property (2n). Furthermore,
one for the spatial relation in each dimension (+3) which
means the relative position of the source to the target ob-
ject. This will be the basis to learn in terms of objects, their
properties and relations between objects.

If in a demonstration a red cube is put on a green cylinder
twice, a cluster of two knoxels will occur. Each knoxel of
this cluster will describe the key event between a red cube
and a green cylinder. If in another demonstration a red ob-
ject is put on a green object twice (both objects of different
shapes), then a cluster can be found again, if we apply a
specific projection on the conceptual space. This is the core
idea of the presented work. If all detected key events be-
tween source and target objects within a demonstration are
represented in the described conceptual space, then under a
certain projection, conceptual similarities among key events
will always build a cluster. Furthermore, every abstract con-
cept class can be represented with a single projection matrix.

In the search for clusters, various projections have to
be tried. Each projection combines only specific source
and target object property dimensions. Hereby, the projec-
tions change from concrete to more general concepts. That
means, that with the first search, the data is projected by
an identity projection matrix. At each search step, rows in
the projection matrix referring to object property dimensions
are changed or removed until one or more clusters are found
under a certain projection. All source/target object property
combinations can be tried systematically. If n object prop-
erties are provided, 22n projections have to be tried. Thus,
having m knoxels in the conceptual space using hierarchi-
cal clustering, the computational complexity is O(22nm3),
which seems very high. In practice, the amount of provided
object properties usually is low. Furthermore, in a demon-
stration of n objects and m OMUs, only (n − 1)m knoxels
are produced. However, dimensionality reduction methods

should be applied, if learning complex concepts on objects
of many properties.

If the origin of a workdesk is treated as a virtual target
object, absolute positions can be learned, too. This can be
useful e.g. to teach a robot how to load objects on certain
positions on a machine. For further processings of found
clusters, their average knoxel is used, which is called cluster
knoxel.

4.8 Relation Prototypes
We assume a demonstration where a green, yellow and red
object are stacked, and a second demonstration repeating the
first. This will generate three clusters. One of them repre-
sents the spatial relation between the red object at the top and
the green one at the bottom, but we do not want this clus-
ter to be considered for a concept. Furthermore, there can
be different types of spatial relations, and the robot should
distinguish between them. Therefore, conceptual prototypes
(introduced in Section 3.2) can be used.

In the presented framework, a spatial relation is treated as
a concept. Thus, it has its own representation in the con-
ceptual space. In the simulated environment, object extents
are known. Therefore, a further dimension is added to the
perceptual space, describing the distance between the near-
est points of source and target objects in z. This enables the
definition of the relational prototype on. An object is on an-
other object if their relational positions in x and y and further
their distance in z all are about 0. This applies to the simu-
lated world where all objects which the robot can manipulate
have primitive shapes and similar sizes. In a more complex
world this might not apply, but this does not affect the for-
malized method. In a more complex world, more detailed
object descriptions, further dimensions and more complex
prototypes might be required. Another possibility to be more
precise in the definition of relation prototypes is to consider
more object properties, for example the functional type of
an object (e.g building block, container or food).

Since a prototype only considers a subspace, a domain
can be defined for it. A domain has its own projection and
further an own context (weight vector). For the prototype
on, the dimensions for the relations in x and y might be
weighted less then the one for the distance in z. Such a
resulting prototype has the form of a hyper-ellipsoid.

In the example, each of the three found cluster knoxels is
now checked regarding its membership to the prototype on
in the corresponding domain. If a cluster knoxel is a mem-
ber of the prototype (under the corresponding projection and
weights), then it is considered for further processing. This
will filter the detected relation between the red and the green
object at the top and the bottom. On the other hand, a de-
tected relation between an object and the workdesk origin
should always be considered as concept.

4.9 Symbol Grounding
The PDDL world model is defined in advance, but we face
the symbol grounding problem when recognized concepts
(clusters) have to be formulated as PDDL goals. Further-
more, when an initial PDDL state has to be defined in a cer-
tain situation. Both have to be derived from sensor data. In

general, three grounding types are used. They are explained
in the following.

Direct Mapping (Hash Table): Some object properties
are known in advance. Often, they are already discrete and
can directly be mapped to symbols in PDDL. This kind of
grounding is used to define certain object property constants
as the functional type. For example, the properties build-
ing block or container are simply mapped to PDDL con-
stants of the same name, which can then be used in the pred-
icate functional type.

Prototype Membership in Conceptual Space: This was
explained in Section 4.8. In the framework, it is used to de-
termine if a knoxel describes a specific spatial relation (be-
tween the source and the target object) in a relation domain
(subspace). If so, the prototype name is directly mapped to a
corresponding predicate. Such a relation concept has a natu-
ral form of a hyper-sphere (or a hyper-ellipsoid if the dimen-
sions are weighted differently). A grounding with an if-else
cascade over the same dimensions would have an unnatu-
ral, cuboid form. That would not be problematic for simple
concepts, but it might be for more complex ones.

Nearest Prototype in Conceptual Space: This is similar
to the prototype membership, but here, the membership of
a knoxel to a concpt is defined by the nearest concept pro-
totype. In the framework, it is used to define focal colors
of objects from sensor data. The prototype name is directly
mapped to a corresponding constant. For example, several
variations of red all result in a single PDDL constant red.

4.10 Transfer to PDDL
Each found cluster of knoxels refers to a certain concept.
Since the aim was to detect similarity clusters in terms of ob-
jects, their properties and relations between them, these con-
cepts now have a certain structure. Concretely, each cluster
refers to a certain bivalent relation between objects of cer-
tain properties, which can now be formalized. Let x and y
be variables for source and target objects, Ps and Pt each a
conjunction of predicates describing source object and tar-
get object properties, and R a bivalent spatial relation, then
a realized concept can be described as a fact of the form:

∀x ∃y Ps(x)⇒ Pt(y) ∧R(x, y) (3)

whereas Ps(x) and Pt(y) are defined as

Ps(x) = p1(x, cs1) ∧ p2(x, cs2) ∧ ... ∧ pn(x, csn)
Pt(y) = p1(y, ct1) ∧ p2(y, ct2) ∧ ... ∧ pn(y, ctn)

p1...pn denoting object property predicates (e.g. color),
whereas {cs1...csn} and {ct1...ctn} refer to property con-
stants (e.g. red) of source or target objects, respectively.
Every found cluster in the conceptual space refers to such a
concept. During the transfer of a knoxel cluster to PDDL,
the projection matrix P , under which the cluster was found
is needed again. Each 1 from the elements ofP , which refers
to a source or target object property dimension, activates a
certain property predicate in Ps(x) or Pt(y), respectively.

Activation means, that this property predicate will be present
in the term derived from Formula 3. As an example, we con-
sider stacking objects in a traffic lights color order, which
results in two recognized concepts (which then have to be
translated to PDDL goals):

∀x ∃y color(x, yellow) ∧ color(y, green) ⇒ on(x, y)
∀x ∃y color(x, red) ∧ color(y, yellow) ⇒ on(x, y)

The corresponding generated PDDL code would be:

(FORALL (?X) (EXISTS (?Y)
(IMPLY (COLOR ?X YELLOW)
(AND (COLOR ?Y GREEN) (ON ?X ?Y)))))

(FORALL (?X) (EXISTS (?Y)
(IMPLY (COLOR ?X RED)
(AND (COLOR ?Y YELLOW) (ON ?X ?Y)))))

Often, concepts are demonstrated concerning concrete ob-
jects, not objects of certain properties. In such cases, con-
cepts can be learned over a property instance of , which
describes an object of a specific, unique object class. Apart
from that, quantifying over all target objects which fulfill
Pt(y) is not possible. Not every source object can form a
spatial relation with every target object. If there is more than
one target object, there would be no solution, therefore the
existential quantifier.

In general, the presented method allows to learn concepts,
as they usually are instructed in natural language, e.g. ”put
cuboid objects into box A and cylindric objects into box B”.

Special Cases: However, Formula 3 does still not cover
all constellations. Each target object usually has a capacity
regarding its possible amount of relations with source ob-
jects. If there are more source objects than the sum of target
objects capacities, there is no solution. For example, assum-
ing a scene with ten red objects and two green pallets, each
taking four objects. If the robot should put red objects into
green pallets, using Formula 3 the robot will not find a so-
lution. But a human would expect the robot to put at least
eight objects into the pallets. Simply exchanging the quan-
tifiers of x and y will cause the robot to put only one red
object into each green pallet. In fact, the solution has to
deal with target object capacities. We invent the functions
capacity(x) and amount(x), capacity(x) returns the num-
ber of relations a target object x can form with source ob-
jects. The number of relations a target object x already has
formed with source objects in a current state is returned by
amount(x). PDDL2.1 allows the definition of such func-
tions. In a PDDL problem file, a capacity can be set in the
initial state. In preconditions of actions, which cause the
forming of a relation the relations amount of the target ob-
ject has to be smaller than its capacity. In the action effects,
the relations amount has to be increased. A further predicate
equals(x, y) is used, it returns true, if x = y. Now, the
problem concerning the pallets example can be solved. Us-
ing the terms from Formula 3 again, the alternative concept
description is:

Figure 6: Demonstration: objects of arbitrary shapes are
stacked as traffic lights.

∀x ∀y Pt(y)⇒ [equals(capacity(y), amount(y)) (4)
∧ (R(x, y)⇒ Ps(x))]

The Formula is explained with regard to the pallets example:
If a pallet is green then its capacity must be exhausted, and
if there is an object that is in the pallet, it must be red. That
will cause the robot to put eight red objects into the two
green pallets. The overall concept formalization can now be
defined as a disjunction of the formulas 3 and 4. This can be
set as overall goal in the PDDL problem file.

Experiments with Metric-FF show that often this takes
very long to find a plan. Probably, the planner remains
searching in one of the two branches of the disjunction. This
practical problem can be solved, if it is first determined,
which formula has to be applied to find a plan.

A last special case is, when Ps and Pt are not distin-
guishable. In such a case, Formula 3 has to be extended
by R(x, y)⇔ R(y, x).

5 EXPERIMENTS
5.1 Experiment 1
Demonstration: In the first experiment, the demonstrat-
ing robot is doing a demonstration of stacking objects ac-
cording to traffic lights. It starts from the setup shown in
Figure 2. The objects are stacked independent to their shape,
only the color is considered. The last step of the demonstra-
tion is shown in Figure 6.

Learning and Reproduction: Regarding colors, the
framework provides an own conceptual HSV color space of
the three dimensions hue, saturation and value (brightness).
Color symbols (color constants in PDDL) of observed ob-
jects are defined by the nearest color prototype in the color
space. In this space only red, green, blue and yellow are
defined as prototypes so far. That is why the rather orange
cylinder from the demonstration is treated as red. The fact,
that humans refer to colors more by the hue value than by
saturation and brightness is considered in the weight vector
of [1, 0.2, 0.2]. In the main conceptual space, source and
target objects each have one discrete color dimension de-
scribing discretized colors obtained in the HSV color space.
The properties shape and instance of are stored before-
hand for each known object. While searching for concepts,

Figure 7: The learning robot applies the concept of stacking
by colors on arbitrary objects.

Figure 8: Demonstration: cubes are put into the bright pallet,
cylinders into the dark.

under a projection which considers only source and target
object colors (and of course relative positions) three clusters
were found. Two of them fitted to the concept prototype of
the relation on. Two ones from the projection matrix acti-
vated the predicate color for the source and the target ob-
ject. The corresponding color constants where obtained as
already explained. From each knoxel cluster, one of the fol-
lowing concepts was derived:

∀x ∃y color(x, yellow) ∧ color(y, green) ⇒ on(x, y)
∀x ∃y color(x, red) ∧ color(y, yellow) ⇒ on(x, y)

The corresponding concept from Formula 4 is also consid-
ered. Applied in the virtual environment with new objects
of prismatic shapes, the learning robot stacks them accord-
ing to the learned concept (Figure 7).

5.2 Experiment 2
Demonstration: For the second experiment, two objects a
and b being instances of the object classes bright pallet and
dark pallet, each with a capacity of four relations are added
to the environment. Since we know object extents, three fur-
ther spatial relation dimensions are added to the conceptual
space, describing the spatial intersection of source and target
object in each dimension. This data can simply be derived
from the relative positions and the extents. A new relational
concept prototype in is defined using the intersections. The
last step of the demonstration is shown in Figure 8.

Figure 9: The learning robot applies the concept of sorting
objects in specific pallets by shapes. Hereby, the robot also
gets objects from other workdesks.

Learning and Reproduction: Under a projection, which
considers the shape of the source object, the instance of the
target object and the spatial intersections, two clusters were
found. The clusters fit to the relational concept in. From
each knoxel cluster, one of the following concepts was de-
rived:

∀x ∃y shape(x, cube)
∧ is instance(y, bright pallet) ⇒ in(x, y)

∀x ∃y shape(x, cylinder)
∧ is instance(y, dark pallet) ⇒ in(x, y)

Again, the corresponding concept from Formula 4 is also
considered. Applying the concepts to new situations, the
robot fills the specific pallets with cubes and cylinders cor-
rectly. Hereby, the robot also gets objects from other
workdesks, if necessary (Figure 9).

6 CONCLUSIONS
The presented work reflects upon three insights. First, con-
ceptual spaces are a proper mean for representing and learn-
ing abstract concepts. Furthermore, they are a proper so-
lution to the symbolic grounding problem. Second, skills
can be learned from demonstration at an abstraction level,
that is similar to concepts as being described in natural lan-
guage. This is in terms of objects, their properties and re-
lations among them. Third, PDDL is a proper language to
represent abstract concepts, while corresponding performant
planners can be used to plan at the symbolic level.

7 ACKNOWLEDGMENTS
This work was supported by the Collaborative Center of Ap-
plied Research on Service Robotics (ZAFH Servicerobotik,
http://www.zafh-servicerobotik.de).

References
Adams, B., and Raubal, M. 2009. A metric conceptual space
algebra. In Proceedings of the 9th international conference
on Spatial information theory, COSIT’09, 51–68. Berlin,
Heidelberg: Springer-Verlag.
Arkin, R. C. 1998. Behavior-Based Robotics. MIT Press.

Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1996. Locally
weighted learning. Artificial Intelligence Review submitted.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Siciliano, B., and
Khatib, O., eds., Handbook of Robotics. Springer. In press.
Bonasso, R. P. 1991. Integrating reaction plans and layered
competences through synchronous control. In Proceedings
of the 12th international joint conference on Artificial intel-
ligence - Volume 2, 1225–1231. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Brooks, R. A. 1985. A robust layered control system for a
mobile robot. Technical report, Cambridge, MA, USA.
Chella, A.; Coradeschi, S.; Frixione, M.; and Saffiotti, A.
2004. Perceptual anchoring via conceptual spaces. In Pro-
ceedings of the AAAI-04 Workshop on Anchoring Symbols
to Sensor Data, AAAI. AAAI Press.
Chella, A.; Dindo, H.; and Infantino, I. 2006. Learning
high-level tasks through imitation. In 2006 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), October 9-15, 2006, Beijing, China, 3648–3654.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Ekvall, S., and Kragic, D. 2008. Robot learning from
demonstration: A task-level planning approach. Interna-
tional Journal on Advanced Robotics Systems 5(3):223–234.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Firby, R. J. 1989. Adaptive execution in complex dy-
namic worlds. Ph.D. Dissertation, New Haven, CT, USA.
AAI9010653.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gärdenfors, P. 2000. Conceptual Spaces: The Geometry of
Thought. Cambridge, MA, USA: MIT Press.
Harnad, S. 1990. The symbol grounding problem. Physica
D: Nonlinear Phenomena 42:335–346.
Hoffmann, J. 2003. The metric-ff planning system: translat-
ing ’ignoring delete lists’ to numeric state variables. Journal
of Artificial Intelligence Research (JAIR) 20:291–341.
Knoop, S.; Pardowitz, M.; and Dillmann, R. 2007. Auto-
matic robot programming from learned abstract task knowl-
edge. In Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oc-
tober 29 - November 2, 1651–1657. IEEE.
Nilsson, N. J. 1984. Shakey the robot. Technical Report
323, AI Center, SRI International, 333 Ravenswood Ave.,
Menlo Park, CA 94025.
Pednault, E. P. D. 1989. ADL: exploring the middle ground
between strips and the situation calculus. In Proceedings of
the first international conference on Principles of knowledge
representation and reasoning, 324–332. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

