
Learning Domain Control Knowledge for TLPlan and Beyond
Tomás de la Rosa

Departamento. de Informática
Universidad Carlos III de Madrid

Leganés (Madrid). Spain
trosa@inf.uc3m.es

Sheila McIlraith
Computer Science Department

University of Toronto
Toronto, Ontario, Canada

sheila@cs.toronto.edu

Abstract

Domain control knowledge has been convincingly shown to
improve the efficiency of planning. In particular, the for-
ward chaining planner, TLPlan, has been shown to perform
orders of magnitude faster than other planning systems when
given appropriate domain-specific control information. Un-
fortunately, domain control knowledge must be hand coded,
and appropriate domain control knowledge can elude an un-
skilled domain expert. In this paper we explore the problem
of learning domain control knowledge in the form of domain
control rules in a subset of linear temporal logic. Our ap-
proach is realized in two stages. Given a set of training exam-
ples, we augment the feature space by learning useful derived
predicates. We use these derived predicates with the domain
predicates to then learn domain control rules for use within
TLPlan. Experimental results demonstrate the effectiveness
of our approach.

Introduction
Hand-tailored automated planning systems augment plan-
ning systems with extra domain-specific control knowl-
edge (DCK) and a means of processing that knowledge to
help guide search. They have proven extremely effective
at improving the efficiency of planning, sometimes show-
ing orders of magnitude improvements relative to domain-
independent planners and/or solving problems that evade
other planners. One of the keys to their success has been
their ability to drastically reduce the search space by elim-
inating those parts of the space that do not comply with
the DCK. The best-known hand-tailored planning systems
are TLPLAN (Bacchus and Kabanza 2000), TALPLANNER
(Kvarnström and Doherty 2000), and SHOP2 (Nau et al.
2003). SHOP2 provides DCK in the form of Hierarchical
Task Networks (HTNs) – tasks that hierarchically decom-
pose into subtasks and ultimately into primitive actions. In
contrast, both TLPLAN and TALPLANNER exploit DCK in
the form of control rules specified in Linear Temporal Logic
(LTL) (Pnueli 1977).

Unfortunately, the effectiveness of hand-tailored plan-
ning systems relies on the quality of the DCK provided by
an expert, and while even simple DCK has proven help-
ful, the provision of high-quality DCK can be time con-
suming and challenging. In 2003, Zimmerman and Kamb-
hampati surveyed the use of machine learning techniques
within automated planning, identifying offline learning of
domain knowledge and search control as promising avenues
for future research (Zimmerman and Kambhampati 2003).

Since then there has been renewed interest in the appli-
cation of machine learning techniques to planning in or-
der to automatically acquire control knowledge for domain-
independent planners. However, there has been no work on
learning LTL domain control rules.

In this paper we explore the problem of learning DCK in
the form of domain control rules in a subset of LTL. The
control rules are learned from a set of training examples,
and are designed to serve as input to TLPLAN. TLPLAN is
a highly optimized forward-chaining planner that uses do-
main control rules, specified in LTL, to prune partial plans
that violate the rules as it performs depth-first search. Con-
trol rules are typically encoded using the predicates of the
original domain together with new derived predicates that
capture more complex relationships between properties of a
state. As such the challenge of learning LTL control rules for
input to TLPLAN requires not only learning the rules them-
selves but also the derived predicates that act as new features
in the feature space of the learning task.

The contributions of this paper include: an algorithm
for learning LTL domain control rules from training exam-
ples, exploiting techniques from inductive logic program-
ming (ILP); and a technique for generating derived predi-
cates in order to expand the feature space of a learning prob-
lem. The creation of a good feature space is central to effec-
tive learning. As such the ability to generate relevant derived
predicates has broad applicability in a diversity of learning
problems for planning. We evaluate our techniques on three
benchmarks from previous IPC competitions. The results
demonstrate the effectiveness of our approach, since the new
learning-based TLPLAN is competitive with state-of-the-art
planners. In the next section, we briefly review LTL and the
planning model we consider in our work. This is followed
by a more precise statement of the learning task, including
the language, the generation of the training examples and the
learning algorithm. Next we discuss our experimental eval-
uation. We conclude with a summary of our contributions
and a discussion of related and future work.

Preliminaries
In this section we define the class of planning problems we
consider and review LTL notation and semantics.

Planning: Our planning formalism corresponds to the non-
numeric and non-temporal version of the Planning Domain
Definition Language (PDDL). For simplicity, we assume
that our domains are not encoded with conditional effects

and that preconditions are restricted to conjunctions of lit-
erals. We use first-order predicate logic notation, but our
planning problems range over finite domains and thus can
be expressed as propositional planning problems.

A planning domain D has a first-order language L with
the standard first-order symbols, variables and predicate
symbols. We assume our language is function-free with the
exception of 0-ary constant terms. A planning task Π is de-
fined as the tuple (C,O,X , s0, G) where:

1. C is a finite set of constants in Π. We refer to L(Π) as the
domain language extended with task-specific constants.
L(Π) defines the state space for the task. A state s of Π is
a conjunction of atoms over L(Π).

2. O is the set of operators, where each o ∈ O is a pair
(pre, eff) where pre is a first-order formula that stipulates
the preconditions of an operator, and eff is the effect of
o, normally expressed as a conjunction of literals. The
set of operators O define the set of applicable actions A
by grounding variables in o with suitable constants drawn
from C. An action a ∈ A is applicable in a state s if pre
holds in s. When an action is applied, the result is a new
state s′ where atoms in s are modified according to eff .

3. X is a set of axioms where each δ ∈ X is the pair
(head, body) with head an atom and body a first-order
formula. Axioms in X define the set of derived predi-
cates. The rest of predicates in L(Π) are called fluent
predicates.

4. s0 is the set of atoms representing the initial state.
5. G is the set of atoms representing the goals.

A solution to the planning task Π is a plan
π = (a1, . . . , an) where ai ∈ A and each ai is ap-
plied sequentially in state si−1 resulting in state si. sn is
the final state and G ⊆ sn. If there is no a plan with fewer
actions than n then the plan is said to be optimal.

LTL: First-order linear temporal logic (FOLTL) is an exten-
sion of standard first-order logic with temporal modalities.
The first-order language L is augmented with modal oper-
ators � (always), ♦ (eventually), U (until), and # (next).
We refer to this new language as LT . Formulas in LT are
constructed using logical connectives in the standard man-
ner and if φ1 and φ2 are well-formed formulas (wff), then
�φ1,♦φ1,#φ1 and φ1Uφ2 are wff as well. Formulas are
interpreted over a sequence of states σ = 〈s0, s1, . . . 〉where
each si shares the same universe of discourse (i.e., in a par-
ticular planning task Π). Here we briefly describe the se-
mantics of temporal operators. For a more general descrip-
tion refer to (Emerson 1990) or in the planning context to
(Bacchus and Kabanza 2000). If φ1 and φ2 are LT formu-
las, and υ is a function that substitutes variables with con-
stants of LT , we say temporal operators are interpreted over
a state sequence σ as follows:

1. 〈σ, si, υ〉 � �φ1 iff for all j ≥ i, 〈σ, sj , υ〉 � φ1. i.e., φ1

is true for all states in σ.
2. 〈σ, si, υ〉 � #φ1 iff 〈σ, si+1, υ〉 � φ1. i.e., φ1 is true in

next state in σ.
3. 〈σ, si, υ〉 � ♦φ1 iff there exists j ≥ i, such that
〈σ, sj , υ〉 � φ1. i.e., φi will eventually become true in

some state in the future.
4. 〈σ, si, υ〉 � φ1Uφ2 iff there exists j ≥ i such that
〈σ, sj , υ〉 � φ2 and for all k, with i ≥ k < j, 〈σ, sk, υ〉 �
φ1. i.e., φ1 is and remains true until φ2 becomes true.

LTL and TLPLAN: As in TLPLAN, we will not use the
♦ (eventually) modal operator, since it does not result in
pruning of the planning search space. (I.e. ♦φ will always
hold in the current state, because the planner expects φ to
become true sometime in the future.) Note that TLPLAN
also exploits an additional goal modality, which is helpful
for planning and which we also exploit. GOALf expresses
that f is a goal of the planning problem being addressed.
In order to determine whether or not a plan prefix, gener-
ated by forward chaining planner, TLPLAN, could lead to
a plan that satisfies an arbitrary LTL formula, TLPLAN ex-
ploits the notion of progression over LTL with finite domain
and bounded quantification. Intuitively, progression of an
LTL formula breaks a formula down into a formula that must
hold in the current state, conjoined with a formula that must
hold in the rest of the plan being constructed. The progres-
sion algorithm is defined for each LTL modality, and is de-
scribed in detail in (Bacchus and Kabanza 2000).

Learning Restricted LTL
The task we address in this paper is to automatically learn
domain control rules for input to TLPLAN. Following (Bac-
chus and Kabanza 2000) consider the Blocksworld example
�(∀x:clear(x)goodtower(x)→

#(clear(x) ∨ ∃y:on(x,y)goodtower(y))
where goodtower(x) is a derived predicate encoding that
block x and all others blocks below are in their final posi-
tion. The rule in the example indicates that all good towers
will remain the same in the next state or if another block is
stacked on the top of a good tower, it is also well placed.

The learning paradigm we use is similar to the one used in
the learning track of IPC-2008. A learning component takes
as input a set of high-quality problem- or domain-specific
bootstrap plans from which plan properties are learned that
are used to augment the planner or planning domain so that
subsequent plan generation over related planning instances
is improved.

In this particular instance, we generate our own set of
training examples from a set of training problems, as de-
scribed in detail below. Normally training examples are
plans for simpler (generally smaller) formulations of the
planning problem being addressed. From here they may
be transformed into a representation suitable for input to
the learning component. In our problem, the input to our
learning component ultimately takes the form of sequences
of states that result from the execution of (optimal) plans.
Given this training input, we proceed in two steps: first
learning new features of our training examples through
the generation of derived predicates, and then from these
augmented training examples, learning our domain control
rules. The first step – generation of derived predicates – is
an optional step and we evaluate the quality and impact of
our control rules both with and without the use of our learned
derived predicates.

As noted in the introduction, TLPLAN exploits LTL do-
main control rules by pruning partial plans (states) that vio-
late the domain control rules. As noted by the developers of
TLPLAN, only a subset of LTL formulas have the capacity
to prune states. For example, if in every state the property
ϕ must hold, then the corresponding TLPLAN LTL formula
will be �ϕ, i.e., always ϕ. Indeed, every control rule re-
ported in (Bacchus and Kabanza 2000) was of this form. As
such, we restrict the problem to finding ϕ restricted to for-
mulas over L ∪ {#,U}.
Definition 1 (R-LTL formula) An R-LTL formula is a re-
stricted LTL formula of the form �ϕ, where ϕ is a well-
formed formula in the language L∪ {#,U} (written LT R).

These R-LTL formulas will be learned from the input to
our learning component which, as described above, takes the
form of sequences of states obtained from simpler related
planning problems that we have solved.

Definition 2 (Optimal state sequence) Given a planning
task Π, an optimal state sequence σ+ = 〈s0, . . . , sm〉
is a state sequence where every si belongs to a state se-
quence resulting from the execution of an optimal plan π =
〈a1, . . . , an〉 from the initial state, with m ≤ n.

Definition 3 (Suboptimal state sequence) Given a plan-
ning task Π, a suboptimal state sequence σ− =
〈s0, . . . , sm〉 is a state sequence where at least one si, with
i > 0, does not belong to any state sequence resulting from
the execution of every optimal plan π = 〈a1, . . . , an〉 from
the initial state.

Although we use optimal sequences to induce DCK, we
do not expect to learn control formulas that generate solely
optimal plans. The inherent process of induction over a
restricted set of examples, and the complex structure of the
hypothesis spaces hinder this.

The Control Rule Learning Task: Given,
• the language LT R for the target formula.
• the universe of discourse1, H , for the target formula.
• background knowledge B on LT R(H), expressed as a

(possibly empty) set of axioms.
• A set of positive and negative examples, such that:

– for each example indexed by i, 1 ≤ i ≤ n there is an
associated universe of discourse, D1, . . . , Dn

– A set of positive examples E+ in LT R(Di), represent-
ing optimal state sequences σ+.

– A set of negative examplesE− inLT R(Di), represent-
ing suboptimal state sequences σ−.

The target of learning is to find a (hypothesis) formula ϕ in
LT R(H) such that all examples inE+ are interpretations of
ϕ and all examples in E− are not interpretations of ϕ.

Training Examples
As noted above, the input to our R-LTL learning compo-
nent is a set positive and negative examples. I.e., a set of

1Recall that a universe of discourse is the set of objects about
which knowledge is being expressed.

sequences of states that results from the execution of actions
from optimal (respectively, suboptimal) plans. In order to
generate this input, we start with a set of training problems
– a set of planning problems to be solved. These prob-
lems are solved with a Best-first Branch-and-Bound algo-
rithm (BFS-BnB) using the FF relaxed plan heuristic (Hoff-
mann and Nebel 2001). After finding a first plan, the al-
gorithm tries to find shorter plans until it has explored the
entire search space. The right way of achieving this is
with an admissible heuristic. In practice, however, using
known domain-independent admissible heuristic leads the
algorithm to only solve very small problems, many times
uninteresting from learning perspective. The FF heuristic
works reasonably well for meaningful small problems with
rare over-estimation during the exhaustive BFS-BnB search.
Exceptions are treated as noise in the training data. After
solving each of the problems in the original suite, the result
is a set of all possible (optimal) solutions. Training prob-
lems should be small enough to allow BFS-BnB to perform
the exhaustive search, but also should be big (interesting)
enough to deliver some knowledge to the training base.

We have characterized the control rule learning task with
respect to a set of optimal and suboptimal state sequences.
However, the relevant feature of these sequences is the good
and bad transitions that exist between consecutive states.
A good transition, as characterized by a 2-sequence σT =
〈si, si+1〉, maintains the plan on an optimal path. In con-
trast, a bad transition, also characterized by a 2-sequence,
denotes the point at which a heretofore optimal plan devi-
ates from its optimal path, becoming suboptimal. Our train-
ing examples reflect this. E+ contains all good transitions
i.e., all 2-sequences σ+

T , while E− contains all bad transi-
tions, σ−T = 〈si, si+1〉 where si+1 is part of a suboptimal
path. Note that those 2-sequences where both states are in a
suboptimal path are not of interest for learning because they
don’t reflect the transition from an optimal to a suboptimal
path, which we want our control rules to avoid.

Thus, given a planning task Π and the sequence σT =
〈si, si+1〉, an example for our learning component will com-
prise the following information for each 2-sequence:
class: positive or negative
current state: all atoms in si

next state: for every atoms in si+1 such that its predicate
symbol, P , appears in some effect of an operator in O,
assert a new predicate next P , with parameters corre-
sponding to the original atom. It is irrelevant to have static
atoms in both current and next state. This simplification
does not confer additional meaning but does reduces the
size of the example.

goal predicates: assert new predicates as follows,
• for every P in G assert a new predicate goal P .
• for every P inG that is true in si, assert a new predicate
achievedgoal P .
• for every P in G that is false in si, assert a new predi-

cate targetgoal P .
These new meta-style predicates are used within the learn-

ing algorithm to induce particular LTL formulas. For ex-
ample, the next meta-predicate serves to induce ©ϕ sub-

formulas, and goal serves to induce the goal modality used
in TLPLAN. achieved and targetgoal are pre-defined pred-
icates for all domains with the appropriate semantics.

LTL Formula Learning Algorithm
In the previous subsection, we described the control rule
learning task and the form of our example input. In order to
realize this algorithm, we use the ICL Tool (Inductive Clas-
sification Logic) which is part of the ACE Toolkit (Raedt et
al. 2001). ICL learns first-order formulas (in DNF or CNF
format) with respect to a specific class of examples. For
our work, we learn the positive class described in the learn-
ing examples. The ICL algorithm performs a beam search
within the hypothesis space, using as successor the possi-
ble refinement of rules. Since handling all formula refine-
ments is in general intractable, ICL and many others ILP
algorithms imposes declarative constraints to the inductive
hypothesis search called language bias. The language bias
in ICL is defined in a language called Dlab (Nedellec et al.
1996). In Dlab one can indicate how many and which pred-
icates of the language can be introduced to the refinement of
a single formula. In our work we automatically construct the
language bias in Dlab syntax using the types and predicate
definition of the domain. The only restriction we impose is
to have one or zero literals in the head of a clause. In the
latter case the head is the false constant. After learning first-
order formulas with ICL, we translate them into R-LTL for-
mulas (i.e., changing next P and goal P meta-predicates
as explained previously).

To this point, we have not addressed the issue of learning
formulas containing the U modal operator. We argue that it
is not necessary as a result of the following theorem.

Theorem 1 An R-LTL formula �ϕ1, where ϕ1 only has
temporal modalities over first-order expressions (non-nested
#and U), has an equivalent formula �ϕ2 where ϕ2 is over
the language L ∪ {#}.

Proof Sketch:If we treat any first-order expression with a
modal operator as an atomic formula, the formula ϕ1 could
be written in DNF or CNF format. � operator is distributive
over ∧ and ∨, so we can for any sub-formula containing U,
get the sub-formula in the form �(φ1Uφ2). Following the
rules for progression of LTL (Bacchus and Kabanza 2000):

�(φ1Uφ2) ≡ φ1Uφ2 ∧#�(φ1Uφ2)
φ1Uφ2 ≡ φ2 ∨ (φ1 ∧#(φ1Uφ2))

Additionally, the sub-formula #(φ1Uφ2) cannot be false in
�(φ1Uφ2) because it is actually true in every state of the
sequence being progressed, thus �(φ1Uφ2) ≡ �(φ2 ∨ φ1).

Learning Derived Predicates
In the previous section we described our approach to learn-
ing R-LTL formulas for input to TLPLAN. In the introduc-
tion, we noted that LTL control rules are often specified in
terms of additional derived predicates that capture additional
properties of the state of the world. In this section we dis-
cuss how to generate such derived predicates with a view to
improving the quality of the R-LTL formulas we learn.

Derived predicates serve two purposes within planning.
They serve as a parsimonious way of encoding certain pre-
conditions, and they capture more complex properties of the
state of the world. Given a set of predicates that are suf-
ficient for planning, our goal is to learn derived predicates
that will be of utility in the expression of control knowledge.
We have identified three types of derived predicates that are
found in DCK reported by (Bacchus and Kabanza 2000) as
well as in other learning approaches detailed in the related
work section. They are:

Compound Predicates: The union of two predicates. For
instance, in the Blocksworld domain, predicates (clear A)
and (on A B) produce the new predicate (clear on A B).

Abstracted Predicates: A new predicate that is created by
ignoring a variables. For instance, predicate (on A B)
produces the new predicate (abs on A), representing that
block A is on another block.

Recursive Predicate: A predicate with at least two argu-
ments of the same type begets a predicate that encodes
transitive relations between constants. For instance

above(A, B) ≡ on(A, B) ∨ (on(A, X) ∧ above(X, B))

These types of derived predicates are primitive schemas,
analogous to relational clichés (Silverstein and Pazzani
1991), which are patterns for building conjunctions of pred-
icates, together with constraints on the combination of pred-
icates and variables.

The above mentioned predicates can also be combined in
different ways to produce more complex predicates. For in-
stance, in the Parking domain, a new predicate that relates
the curb where a car is parked can be derived by abstracting
a compound predicate as follows:

behind car at curb num(Car, FrontCar, Curb) ≡
behind car(Car, FrontCar)∧
at curb num(FrontCar, Curb)

abs behind car at curb num(Car, Curb) ≡
∃x(behind car(Car, x) ∧ at curb num(x, Curb)

In this work, we learn derived predicates to augment the
background knowledge used to learn the R-LTL formulas.
The syntactic form of the above three derived predicate types
is described in terms of the head and body of axioms.

Definition 4 (Compound predicate) Given two pred-
icates, pred1(a1, . . . , an) and pred2(b1, . . . , bm) a
compound predicate is an axiom δ = 〈head, body〉 where
head is a new predicate pred1 pred2(c1, . . . , co) and
body = pred1(a1, . . . , an) ∧ pred2(b1, . . . , bm). The
predicate symbol in head is the string concatenation of
pred1 and pred1 predicate symbols with an ” ” in between,
and the arguments c1, . . . , co are the free variables in body.

Definition 5 (Abstracted predicate) Given a predicate
pred(a1, . . . , an), an abstracted predicate is an ax-
iom δ = 〈head, body〉 where head is a new predicate
abs pred(c1, . . . , co) and body is pred(a1, . . . , an) with
one ai existentially bound, called typed variable. Arguments
c1, . . . , co are the free variables in body.

Quantifications in TLPLAN is bounded, so to build ab-
stracted predicates, the typed variable is bounded to the
unary predicate encoding the argument type. Therefore, the
semantics of an abstracted predicate is that the typed vari-
able may be replaced by any constant of the variable type.

Definition 6 (Link-recursive predicate) Given a
2-ary predicate pred(a1, a2), a link-recursive
predicate is an axiom δ = 〈head, body〉 where
head = link rec pred(a1, a2) and body has the form:

pred(a1, a2) ∨ ∃ax.(pred(a1, ax) ∧ link rec pred(ax, a2)

Definition 7 (End-recursive predicate) Given a 2-
ary predicate pred1(a1, a2) and a n-ary predicate
pred2(ax, b1, . . . , bn−1) with n ≥ 1, an end-recursive
predicate is an axiom δ = 〈head, body〉 where
head = end rec pred(ax) and body has the form:

pred2(ax, b1, . . . , bn−1)∨∃ay.(pred(a1, a2)∧end rec pred(ay))

with substitutions [ax/a1], [ay/a2] for right recursion or
[ax/a2], [ay/a1] for left recursion.

The task of learning derived predicates consists of search-
ing through the space of new derived predicates until reach-
ing certain criteria for improving the task of learning the
R-LTL formula. We elaborate on the form of this criteria
below. The space of new derived predicates is defined by
the possible compound, abstracted, and recursive predicates
that can be constructed from the original predicates of the
domain model. Formally, we say that given the inputs (with
empty background knowledge) for the learning task of a for-
mula ϕ in LTR(H), the task of acquiring derived predicates
for the learning task consists of selecting background knowl-
edge Bi in the form of logic programs, such that ϕ improves
a given evaluation criterion.

Derived Predicates Learning Algorithm
The learning algorithm performs a beam search in the space
of possible new derived predicates. As with most ILP al-
gorithms a best-first search is not feasible. Figure 1 shows
the pseudo-code for the algorithm. Derived predicate func-
tions (i.e., compound, abtracted and recursive) compute
all possible combinations of each type of derived predicate,
given a list of current predicates in node n. Each successor
adds a single new derived predicate to the current predicates
from the combinations computed by these functions. The
algorithm stops when at depth d+ 1 any node improved the
best evaluation at depth d. It returns the best set of predi-
cates found so far. The argument eval set is a set of prob-
lems (different from the training set) used for evaluation pur-
poses. At each node, a set of rules is induced with the cur-
rent predicates and function feval evaluates how good these
rules are with regard to problems in eval set. The function
feval could obviously be replaced by the accuracy of the rule
learner. However, we found in empirical evaluations that
guiding the search with this accuracy does not guarantee an
increase in the number of solved problems.

The translation of derived predicate into TLPLAN DCK
is straightforward. Each derived predicate returned by
LEARNDERIVEDPREDS is defined as a new predicate using

LEARNDERIVEDPREDS (preds, feval, eval set, k): preds

beam← {preds}; irrelevant← ∅
repeat

best fn← facc(first(beam)); successors← ∅
for all n in beam do

Add {compound(n) ∪ abstracted(n) ∪
recursive(n)} − irrelevant

to successors
for all n′ in successors do

evaluate facc(n
′, eval set)

if facc(n
′, eval set) < best fn then

Add n′ to irrelevant
beam← first k n′s in sorted(successors, facc)

until facc(first(beam))> best fn
return first(beam)

Figure 1: Algorithm for learning derived predicates.

(def-defined-predicate (abs_2_targetgoal_on ?block1)

(exists (?block2) (block ?block2)

(targetgoal_on ?block1 ?block2)))

Figure 2: TLPLAN abstracted predicate (Blocksworld)

the formula that is the body of the axiom definition. Fig-
ure 2 shows the definition of an abstracted predicate for the
Blocksworld domain, using the TLPLAN DCK language. R-
LTL formulas learned with the best set of derived predicates
are translated as described in the previous section, but may
now refer to one or more derived predicates.

Experimental Evaluation
We have implemented the ideas presented in previous sec-
tions within an extension to TLPLAN that we call LELTL,
which stands for LEarning Linear Temporal Logic. In this
section we present the experimental evaluation we have per-
formed with LELTL. The aim of this evaluation is two-fold:
we want to evaluate the strength of the LELTL planner com-
pared to a state-of-the-art planner; and we want to compare
the control rules we learned to DCK that a planning expert
has encoded for the domains we consider. As an additional
outcome of our evaluation, we will provide a comparison of
the TLPLAN approach to current state-of-the-art planners,
since previous comparisons were done 8 years ago and the
state of the art has advanced significantly in that period. We
used the following configurations for our experiments:

LAMA: IPC-2008 winner. Serves as a baseline for com-
parison (Richter, Helmert, and Westphal 2008). It was
configured to stop at the first solution to make compari-
son with depth-first algorithms fair.

TLPLAN: TLPLAN using hand-coded control rules cre-
ated by a planning expert.

LeLTL (Basic): TLPLAN using R-LTL formulas contain-
ing only domain predicates and additional goal predicates.

LeLTL-DP (Fully automated): TLPLAN with DCK
comprising learned derived predicates and R-LTL
formulas over domain and derived predicates.

We evaluated these configuration over three benchmarks:
Blocksworld, Parking, and Gold Miner. The Blocksworld
domain is known to be a good example of a domain requir-
ing extra predicates in order to learn useful DCK, and it’s
also one of the domains in which TLPLAN had the most sig-
nificant gain in performance. The Parking and Gold Miner
domains were part of the IPC-2008 Learning Track.

The evaluation involved several steps. The first step was
to learn the control rules with and without the derived pred-
icates. To do so, training examples were produced from a
set of 10 small problems generated by random problem gen-
erators freely available to the planning community. A val-
idation set of 20 problems was generated for the LEARN-
DERIVEDPRED algorithm, which was run with k = 3. Ex-
ploratory tests revealed that increasing k beyond 3 did not
yield significant changes to the quality of the rules. The rule
learner took up to 57 seconds to induce a set of rules.

Once the rules had been learned, they were evaluated in
the context of the various planners. For each domain we
tested 30 instances. The Parking and Gold Miner prob-
lem sets have 30 problems. For Blocksworld we selected
the 30 larger typed instances from IPC-2000. To evaluate
TLPLAN, we used the Blocksworld DCK reported in (Bac-
chus and Kabanza 2000), simplified to only handle goals
with on and ontable predicates. (i.e., goals are rarely speci-
fied with holding or clear predicates). No TLPLAN control
rules existed for several of the domains. In these cases, we
hand-coded the control rules. Each planner was run with a
time bound of 900 seconds.

We appeal to the scoring mechanism used in the IPC-2008
learning track to present our results. With respect to the plan
length, for each problem the planner receivesN∗i /Ni points,
whereN∗i is the minimum number of actions in any solution
returned by a participant for the problem i (i.e., the shortest
plan returned by any of the planners), and Ni is the number
of actions returned by the planner in question, for the prob-
lem i. If the planner did not solve the problem it receives
a score of 0 for that problem. The metric for measuring the
performance of a given planner in terms of CPU time is com-
puted with the same scheme but replacing N by T , where T
is the measure of computation time. Since we used 30 prob-
lems for the test sets, any planner can get at most 30 points
for each metric. In both cases, high scores are good.

Table 1 shows the number of problems solved by each
configuration in the evaluated domains. Table 2 shows the
scores for the plan length metric and Table 3 shows the
scores for the CPU time metric. We comment on the results
for each domain separately.

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 17 30 0 28
Parking 29 12 16 30
Gold-miner 29 27 30 27

Table 1: No. problems solved in test sets of 30 problems

Blocksworld: TLPLAN is clearly the best planner in this
domain with LELTL-DP a close 2nd with respect to prob-
lems solved, topping TLPLAN on quality. LAMA did not

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 7.21 29.78 0.00 28.00
Parking 28.13 4.24 1.43 18.57
Gold-miner 28.63 13.27 16.96 15.44

Table 2: Plan length scores. High score is good.

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 0.24 30.00 0.00 0.16
Parking 10.50 9.49 1.87 25.00
Gold-miner 29.00 1.89 4.10 1.45

Table 3: CPU Time scores obtained by different planners.

solve 13 problems because it did not scale well. LELTL-
DP learned the recursive derived predicate depicted in Fig-
ure 3. The control formula contains ten clauses, seven of
them exploiting this derived predicate. As we explained be-
fore, predicate (abs 2 targetgoal on A) encodes that block
A needs to be placed somewhere else. Therefore, the se-
mantic of the recursive predicate is that block A is not well
placed or it is on another block (B) that recursively follows
the same condition (i.e.,B or a block beneath is in the wrong
place). Interestingly, this actually represents the concept
of “bad tower”, which was originally defined as the nega-
tion of the well-known “good tower” concept in the original
TLPLAN control formula for Blocksworld.

Figure 4 shows the planner execution times in the
Blocksworld domain. The x-axis is the instance number and
the y-axis is the CPU time in logarithmic scale. TLPLAN
performs two orders of magnitude faster than LAMA
or LELTL-DP. LAMA solved 12 problems faster than
LELTL-DP. However, LELTL-DP performance shows that
it is more reliable for solving problems. Moreover, LELTL-
DP found the best-cost solution in the 28 problems it solved.
Both TLPLAN and LELTL-DP scale as a function of the
problem size. LAMA’s performance seems to be influenced
by other properties, such as the problem difficulty.
Parking: The objective of this domain is to arrange a set
of cars in a specified parking configuration where cars can
be single or serially parked at a set of curbs. In this do-
main we were unable to manually code an effective control
formula for TLPLAN. LAMA performs quite well in this
domain and got the top score for the quality metric. LELTL
solved 16 problems, performing reasonably well using a 15-
clauses control formula without the use of derived predi-
cates. LELTL-DP improves the basic configuration and got
the top score for the time metric. It used two new compound
predicates and 14 clauses in its control formula. Some of
these clauses can be understood intuitively, giving us feed-
back to our hand-coded formulas. An example of a clause in
the Parking domain is presented in Figure 5. The compound
predicate specifies that Car S should be placed at Curb U,
which is now clear. The clause imposes the restriction of
(def-defined-predicate

(rec_1r_on_abs_2_targetgoal_on ?a)

(or (abs_2_targetgoal_on ?a)

(exists (?b) (block ?b)

(and (on ?a ?b)

(rec_1r_on_abs_2_targetgoal_on ?b)))))

Figure 3: Learned recursive derived predicate (Blocksworld)

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

T
im

e

Problem No.

blocksworld domain

LAMA
TLPlan

LeLTL-DP

Figure 4: Comparative execution time (Blocksworld)

(forall (?s) (car ?s)

(forall (?t) (car ?t)

(forall (?u) (curb ?u)

(implies (and (targetgoal_behind_car ?t ?s)

(curb_clear_targetgoal_at_curb_num ?s ?u)

(next (behind-car ?s ?t)))

(false)))))

Figure 5: A clause with a learned compound predicate (Parking)

not parking cars in the opposite way whenever the curb at
which they should be parked is available in the current state.
Gold-miner: The objective of this domain is to navigate in
a grid of cells, destroying rocks with a laser and bombs until
reaching a cell containing the gold. All configurations eas-
ily found plans, but only LAMA could find plans of good
quality. Even using derived predicates, it is difficult to rep-
resent concepts for a grid navigation, such as ”good path”.
Recursive predicates can represent paths connecting cells re-
cursively, but there is no way to indicate if a path is better
than another (i.e., related cells in a link-recursive predicate
can say that two cell are connected, but do not express any-
thing about the length). LELTL-DP learned a compound
predicate to represent a cell next to the gold, but it slightly
degrades the performance of the basic configuration.
Performance Note: We tried to learn DCK for other do-
mains such as Satellite, Rovers and Depots, but we did not
achieve good results. Even optimized hand-tailored DCK
does not lead TLPLAN to good performance. TLPLAN
does not perform action grounding as most of state-of-the-
art planners do. Thus, it is overwhelmed by continuous
variable unifications when progressing control formulas in
problems with large numbers of objects. On the other hand,
TLPLAN is still reported as competitive. This is achieved
by precondition control rather than control formulas. I.e.,
action preconditions are augmented to preclude execution of
actions leading to bad states. Consequently, there is no for-
mula to progress and the instantiation of actions is restricted
to those leading to a plan.

Discussion and Related Work
While the objective of our work was to learn R-LTL con-
trol rules, it is interesting to contrast what we have done to

the general use of DCK in TLPLAN. TLPLAN supports the
expression of DCK in a diversity of forms as well as per-
forming various preprocessing procedures. In the work re-
ported here, we did not attempt to replicate TLPLAN’s ini-
tialization sequence. This is a procedure that modifies the
initial state for domain knowledge enrichment. It includes
the use of techniques such as propagating type hierarchy as
unary types, and removing useless facts or pre-computing
some derived predicate. We also did not attempt to learn
derived predicates for use within domain operators for the
purpose of precondition control. This would necessitate a
modification to the domain representation (changing opera-
tor preconditions and effects) to permit the planner to only
generate the successors satisfying a control formula, rather
than representing the control formula as an explicit rule. The
version of TLPLAN submitted to IPC-2002 exploited signif-
icant precondition control as an alternative to control formu-
las. The main benefit of this approach is that it eliminates
the need to progress LTL formulas, which in some circum-
stances can be computationally expensive. By way of il-
lustration, consider a Blocksworld problem where all “good
towers” are pre-computed by the initialization sequence and
the Unstack operator is re-written as:

(def-adl-operator (stack ?x ?y)

(pre (?x) (block ?x) (?y) (block ?y)

(and (holding ?x) (clear ?y)

(goodtowerbelow ?y)))

(and (del (holding ?x)) (del (clear ?y))

(add (clear ?x)) (add (handempty))

(add (on ?x ?y))

(add (goodtowerbelow ?x))))

While neither learning precondition control nor mod-
ifying the domain representation were objectives of our
work, precondition control from our control rules could be
achieved via regression.

On a different topic, Theorem 1 implies that when LTL
is used to express pruning constraints, the formula inside
2 need only exploit the # modality. This suggests that the
two-stage approach presented here could be exploited within
a diversity of planning systems without explicit LTL. Such
a system would need a representation language able to en-
code information regarding the current state and changes re-
alized when an action is applied (reaching the next state)
and also would need an inference engine that computes ax-
iom rules. An example of such a language is the one used in
Prodigy (Veloso et al. 1995), which uses IF-THEN control
rules for pruning purposes, though they were used combined
with preferred and direct selection rules.

Regarding our rule learner, the use of the rule learner ICL
was not a limitation for learning the necessary set of LTL. In
this work we focused on only using the # modality because
this was consistent with expert DCK examples we analyzed
and because of Theorem 1.

This work is closely related to work that tries to learn
generalized policies for guiding search. For example,
L2ACT (Khardon 1999) induces a set of rules from training
examples, but a set of axioms must be given to the system
as background knowledge. Some equivalence can be found
between axioms in LELTL-DP and L2ACT. LELTL-DP
gets its axioms by deriving them from the domain defini-
tion (e.g., (achieved goal on x y)) or by learning them via

the derived predicate learning process. (Martin and Geffner
2004) presented a technique for learning a set of rules for the
Blocksworld domain without the definition of background
knowledge. In this case DCK was represented in a concept
language which was suitable for encoding different object
(block) situations. A grammar specified how to combine
different concepts in order to produce complex concepts, in-
cluding the recursive ones needed for Blocksworld. This
approach has the limitation that actions are restricted to one
parameter, therefore both the domain model and DCK need
different representations.

Recently, (Yoon, Fern, and Givan 2008) and (De la Rosa,
Jiménez, and Borrajo 2008) achieved more significant re-
sults from learning in a variety of domains because they
use learned DCK in combination with heuristic search tech-
niques. The former learns a set of rules in taxonomic syntax
and the latter learns a set of relational decision trees. These
systems attempt to reproduce the search path observed in
the training data. Their result is often referred to as a gen-
eralized policy, since given a state, problem goals, and in
some cases extra features, the policy can return the action
to be applied. In contrast, LELTL is focused on pruning
and as such tries to characterize the whole space of possible
”correct” paths (positive class), rather than a particular path.
Learning-assisted planning is not restricted to systems that
learn generalized policies or similar DCK.

Conclusions and Future Work
In this paper we presented an approach to learning domain
control knowledge for TLPlan in the form of control rules in
a subset of LTL. We achieved this in two stages. 1) We used
an off-the-shelf rule learner to induce control formulas in a
subset of LTL, designed to prune suboptimal partial plans.
Our technique is easily extendable to learning LTL for other
purposes, such as recognizing user preferences or tempo-
rally extended goals. 2) We also proposed a greedy search
technique to discover new concepts in the form of derived
predicates that, when used as background knowledge, im-
prove the generation of more complex but useful rules. To
do so, we used a general ILP approach that can be applied
in other learning-based planners that use a predicate logic
representation. The following were some of the key insights
and contributions that made our approach work:

• Adaptation of the planning problem representation so that
LTL formulas could be learned with a standard first-order
logic rule learner.

• Characterization of the state space in terms of two classes
of state sequences, allowing the learning component to
learn from both positive and negative examples.

• Identification of a core subset of LTL that yielded pruning
in TLPLAN control rules.

• Development of a technique for automated generation of
derived predicates that enhance the feature space in which
rules are hand-coded or induced by a learning algorithm.

• Evaluation of the proposed approach, illustrating that with
appropriate training examples it is feasible to generate
DCK for TLPLAN and that with effective DCK, TLPLAN
remains a state-of-the-art planning system.

In future work we wish to extend our approach in order
to integrate the learned DCK into the domain model via pre-
condition control. Experimental results revealed that con-
trol formulas represented in CNF adversely affect the scal-
ability of the planner. We further wish to investigate the
use of learned derived predicates as background konwledge
for learning-based planners such as ROLLER (De la Rosa,
Jiménez, and Borrajo 2008).

Acknowledgments This work has been partially sup-
ported by the spanish projects TIN2008-06701-C03-03 &
CCG08-UC3M/TIC-4141, and by the Natural Sciences and
Engineering Research Council of Canada (NSERC) .

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artificial Intelli-
gence 116(1-2):123–191.
De la Rosa, T.; Jiménez, S.; and Borrajo, D. 2008. Learning
relational decision trees for guiding heuristic planning. In Pro-
ceedings of the 18th ICAPS.
Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Science.
MIT Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Khardon, R. 1999. Learning action strategies for planning do-
mains. Artificial Intelligence 113:125–148.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A temporal
logic based forward chaining planner. Annals of Mathematics and
Artificial Intelligence 30:119–169.
Martin, M., and Geffner, H. 2004. Learning generalized policies
from planning examples using concept languages. Appl. Intell
20:9–19.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D.;
and F.Yaman. 2003. SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nedellec, C.; Rouveirol, C.; Bergadano, F.; and Tausend, B. 1996.
Declarative bias in ilp. In Raedt, L. D., ed., Advances in ILP, vol
32 of Frontiers in AI and Applications. IOS Press.
Pnueli, A. 1977. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS-77), 46–57.
Raedt, L. D.; Blockeel, H.; Dehaspe, L.; and Laer, W. V. 2001.
Three companions for data mining in first order logic. In Dze-
roski, S., and Lavrac, N., eds., Relational Data Mining. Springer-
Verlag. 105–139.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proceedings of the 23rd AAAI Conference (AAAI-
08), 975–982. AAAI Press.
Silverstein, G., and Pazzani, M. J. 1991. Relational clichés: Con-
straining induction during relational learning. In Proceedings of
the 18th International Workshop on Machine Learning, 203–207.
Veloso, M. M.; Carbonell, J.; Pérez, M. A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating planning and learning: The
PRODIGY architecture. JETAI 7(1):81–120.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control knowl-
edge for forward search planning. JMLR 9:683–718.
Zimmerman, T., and Kambhampati, S. 2003. Learning-assisted
automated planning: looking back, taking stock, going forward.
AI Magazine 24:73 – 96.

