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Abstract

Agents with incomplete knowledge of their actions can either
plan around the incompleteness, learn by querying a domain
expert, or learn through trial and error. In deciding what to
learn, an agent must consider whether an incomplete action
feature is relevant to achieving its goals. In deciding how to
learn an action feature, the agent can i) try to execute the ac-
tion and passively observe the outcome, ii) react by querying
a domain expert when it fails to learn by passive observation,
or iii) proactively query a domain expert prior to executing
the action. The challenge is that by learning about incom-
plete action features an agent may determine its plan will fail
and re-plan, and thus change which action features are rele-
vant to achieving it goals. We desire agents that can ask as
few questions as possible in achieving their goals.

We present a number of strategies for i) planning with incom-
plete knowledge of actions to identify relevant incomplete ac-
tion features (preconditions and effects), ii) reasoning about
plan failure explanations to identify which features will be
learned passively or proactively, and iii) techniques for diag-
nosing action failures to reactively learn about actions when
passive learning fails. We test the following configurations of
our agent: i) learning only passively and asking no questions;
ii) asking questions and re-planning until the plan is guar-
anteed to succeed; iii) planning, acting until the plan fails,
diagnosing the failure, and re-planning; and iv) while diag-
nosing failures, proactively querying about a subset of the
future action features that are likely to cause failures. We find
that passive learning alone can lead to dead-ends, perfecting a
plan prior to execution requires many questions, and balanc-
ing passive learning with reactive learning strikes a good bal-
ance between avoiding dead-ends and minimizing the number
of questions.

Introduction

Knowledge engineering (Bertoli, Botea, and Fratini 2009)
and machine learning (Wu, Yang, and Jiang 2007; Oates and
Cohen 1996) have been applied to constructing representa-
tions for planning, but pose intensive human and/or data re-
quirements, only to leave a potential mismatch between the
environment and model (Kambhampati 2007). Recently, we
(Weber and Bryce 2011) showed that instead of placing ef-
fort upon making domains complete it is possible for our
planner DeFAULT to plan with incomplete knowledge of an
agent’s action descriptions (i.e., plan around the incomplete-
ness). Agents executing such robust plans fail and re-plan

less often than agents that ignore incompleteness when plan-
ning (Chang and Amir 2006). While we demonstrated that
planning in incomplete domains can help agents passively
learn about domains, we ignore cases where domain experts
are available to help engineer the agent’s knowledge. We
extend our prior work (Weber and Bryce 2011) to consider
agents that can query a domain expert, as in instructable
computing (Mailler et al. 2009), but must carefully select
their questions.

Selecting questions is a problem that has been studied
in problems such as preference elicitation (Boutilier 2002),
machine learning (Gervasio, Yeh, and Myers 2011), and
model-based diagnosis (de Kleer, Mackworth, and Reiter
1992). Incomplete action knowledge is unique in that plans
have rich causal structure that makes questions highly cou-
pled, and frequent re-planning can change which questions
are relevant.

We seek to understand whether asking questions is at all
necessary, and if so, how to select the fewest questions.
Agents that passively learn by trial and error can reach sce-
narios where it is impossible to learn about actions that im-
pact goal achievement without asking questions. For exam-
ple, an agent might apply an action with n possible precon-
ditions that are unsatisfied in the current state, and to know
why the action failed (i.e., which of the possible precondi-
tions are actual preconditions), it would need to apply the
action again in several different states (some of which may
be unreachable) to isolate the problem. Instead, the agent
could reactively query the domain expert to determine the
problem, or prior to executing the action proactively query
the domain expert. Reactive agents take a risk that the ac-
tion will not fail (i.e., the possible preconditions are not re-
quired), and proactive agents will not risk failure.

We systematically test different approaches to planning,
acting, and learning with incomplete actions that:

1. Ask no questions, but learn passively.

2. Proactively ask questions and re-plan until a plan is guar-
anteed to succeed.

3. Reactively ask questions only when learning passively in-
sufficiently learns about an action.

4. Proactively ask about highly impactful future failures and
3.



We find that the first approach can lead to dead-ends where
the agent fails or because of its passive learning it is inca-
pable of formulating an effective plan. The second tech-
nique is highly successful, but asks many questions. The
third, asks fewer questions and overcomes the problems of
passive learning. The fourth asks more questions but reaches
dead-ends less often.

Our presentation includes a discussion of incomplete
STRIPS, belief maintenance and planning in incomplete do-
mains, strategies for selecting questions, an empirical evalu-
ation in several domains, related work, and a conclusion.

Background & Representation

Incomplete STRIPS relaxes the classical STRIPS model to
allow for possible preconditions and effects (Garland and
Lesh 2002). Incomplete STRIPS domains are identical to
STRIPS domains, with the exception that the actions are in-
completely specified. Much like planning with incomplete
state information (Bonet and Geffner 2000), the action in-
completeness is not completely unbounded. The precon-
ditions and effects of each action can be any subset of the
propositions P ; the incompleteness is with regard to a lack
of knowledge about which of the subsets correspond to each
precondition and effect.

Incomplete STRIPS Domains: An incomplete STRIPS do-
main D defines the tuple (P , A, I , G, F ), where: P is a set
of propositions, A is a set of incomplete action descriptions,
I ⊆ P defines a set of initially true propositions, G ⊆ P
defines the goal propositions, and F is a set of proposi-
tions describing incomplete domain features. Each action
a ∈ A defines pre(a) ⊆ P , a set of known preconditions,
add(a) ⊆ P , a set of known add effects, and del(a) ⊆ P ,
a set of known delete effects. The set of incomplete do-
main features F is comprised of propositions of the form
pre(a, p), add(a, p), and del(a, p), each indicating that p is
a respective possible precondition, add effect, or delete ef-
fect of a.

Consider the following incomplete domain:

P = {p, q, r, g},
A = {a, b, c},
I = {p, q},
G = {g}, and

F = {pre(a, r), add(a, r), del(a, p), del(b, q), pre(c, q)}.
The known features of the actions are defined:

pre(a) = {p, q},
pre(b) = {p}, del(b) = {p}, add(b) = {r}, and

pre(c) = {r}, add(c) = {g}.
An interpretation F i ⊆ F of the incomplete STRIPS do-

main defines a STRIPS domain, in that every feature f ∈ F i

indicates that a possible precondition or effect is a respective
known precondition or known effect; those features not in
F i are not preconditions or effects.

Incomplete STRIPS Plans: A plan π for D is a sequence
of actions, that when applied, can lead to a state where
the goal is satisfied. A plan π = (a0, ..., an−1) in an
incomplete domain D is a sequence of actions, that cor-
responds to the optimistic sequence of states (s0, ..., sn),
where s0 = I , pre(at) ⊆ st for t = 0, ..., n, G ⊆ sn,

and st+1 = st\del(at) ∪ add(at) ∪ {p|add(a, p) ∈ F} for
t = 0, ..., n− 1.

For example, the plan (a, b, c) corresponds to the state
sequence (s0 = {p, q}, s1 = {p, q, r}, s2 = {q, r}, s3 =
{q, r, g}), where the goal is satisfied in s3. We note that
r ∈ s1 even though r is only a possible add effect of a;
without listing r in s1, the known precondition of b would
not be satisfied. While it is possible that in the true domain
r is not an add effect of a, in the absence of contrary infor-
mation we optimistically assume r is an add effect so that
we can synthesize a plan. Pessimistically disallowing such
plans is admissible, but constraining, and we prefer to find a
plan that may work to finding no plan at all. Naturally, we
prefer plans that succeed under more interpretations.

Belief Maintenance & Planning
An agent can act, ask questions, and plan. Acting and asking
a question provide observations of the incomplete domain
that can be learned from, and planning involves predicting
future states (in the absence of observations). In the follow-
ing, we discuss how observations can be filtered to update
an agent’s knowledge φ (defined over the literals of F ), and
what can be assumed about predicted states (when taking
knowledge into account). We denote by d(π) a plan’s failure
explanations/diagnoses, which is represented by a proposi-
tional sentence over F .

We use φ to reason about actions and plans by making
queries of the form φ |= add(a, p) (“Is p a known add ef-
fect of a?”), φ 6|= add(a, p) and φ 6|= ¬add(a, p) (“Is p
a possible/unknown add effect of a?”), or φ |= d(π) (“Is
the current knowledge consistent with every interpretation
where π is guaranteed to fail?”). It is often the case that it is
unknown if an incomplete feature f ∈ F exists in the true
domain that is consistent with φ (i.e., φ 6|= f and φ 6|= ¬f ),
and we denote this by “φ?f”.
Filtering Observations: An agent that acts in incomplete
STRIPS domains will start with no knowledge of the in-
complete features (i.e., φ = ⊤), however, taking actions
provides state transition observations of the form o(s, a, s′),
and asking questions (i.e., “Is f true or false?”) provides ob-
servations of the form f or ¬f . Thus the function filter

returns the updated knowledge φ′ after an observation, and
is defined:

filter(φ, f) = φ ∧ f

filter(φ,¬f) = φ ∧ ¬f

filter(φ, o(s, a, s)) = φ ∧ ((fail ∧ o−) ∨ o+)

filter(φ, o(s, a, s′)) = φ ∧ o+, s 6= s′

where

o− =
∨

pre(a,p)∈F :
p6∈s

pre(a, p)

o+ = opre ∧ oadd ∧ odel

opre =
∧

pre(a,p)∈F :
p6∈s

¬pre(a, p)
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Figure 1: Labeled Plan

oadd =
∧

add(a,p)∈F :
p∈s′\s

add(a, p) ∧
∧

add(a,p)∈F :
p6∈s∪s′

¬add(a, p)

odel =
∧

del(a,p)∈F:
p∈s\s′

del(a, p) ∧
∧

del(a,p)∈F :
p∈s∩s′

¬del(a, p)

We assume that the state will remain unchanged upon ex-
ecuting an action whose precondition is not satisfied, and
because the state is observable, filter(φ, o(s, a, s)) ref-
erences the case where the state does not change and
filter(φ, o(s, a, s′)), the case where it changes. If the state
does not change, then either the action failed (o−) and one
of its unsatisfied possible preconditions is a precondition or
the action succeeded (o+). We use the fail literal to de-
note interpretations under which a plan failed because it is
not always observable that the plan has failed. If the state
changes, then the agent knows that the action succeeded. If
an action succeeds, the agent learns that i) each possible pre-
condition that was not satisfied is not a precondition (opre),
ii) each possible add effect that appears in the successor but
not the predecessor state is an add effect and each that does
not appear in either state is not an add effect (oadd), iii) each
possible delete effect that appears in the predecessor but not
the successor is a delete effect and each that appears in both
states is not (odel).

Planning: We label predicted state propositions and ac-
tions with domain interpretations that will respectively fail
to achieve the proposition or fail to achieve the precondi-
tions of an action. That is, labels indicate the cases where a
proposition will be false (i.e., the plan fails to establish the
proposition). Labels d(·) are represented as propositional
sentences over F whose models correspond to failed domain
interpretations.

Initially, each proposition p0 ∈ s0, in the state from which
a plan is generated, is labeled d(p0) =⊥ to denote that there
are no interpretations in the current state where a proposition
may be false (the state is fully-observable), and each p0 6∈ s0

is labeled d(p0) = ⊤ to denote they are known false. For all
t ≥ 0, we define:

d(at) =d(at−1) ∨
∨

p∈pre(a) or

φ|=pre(a,p)

d(pt) ∨
∨

p:φ?pre(a,p)

(d(pt) ∧ pre(at, p))

d(pt+1) =





d(pt) ∧ d(at) : p ∈ add(at)
or φ |= add(at, p)

d(pt) ∧ (d(at)∨ : φ?add(at, p)
¬add(at, p))

⊤ : p ∈ del(at)
or φ |= del(at, p)

d(pt) ∨ del(at, p) : φ?del(at, p)
d(pt) : otherwise

where d(a−1) =⊥. The intuition behind the label propaga-
tion is that an action will fail in the domain interpretations
d(at) where a prior action failed, a known precondition is
not satisfied, or a possible precondition is not satisfied. As
defined for d(pt+1), the plan will fail to achieve a propo-
sition at time t + 1 in all interpretations where i) the plan
fails to achieve the proposition at time t and the action fails,
ii) the plan fails to achieve the proposition at time t and the
action fails or it does not add the proposition in the inter-
pretation, iii) the action deletes the proposition, iv) the plan
fails to achieve the proposition at time t or in the interpreta-
tion the action deletes the proposition, or v) the action does
not affect the proposition and prior failures apply.

A consequence of our definition of action failure is that
each action fails if any prior action fails. This definition fol-
lows from the semantics that the state becomes undefined
if we apply an action whose preconditions are not satisfied.
While we use this notion in plan synthesis, we explore the
semantics that the state does not change (i.e., it is defined)
upon failure when acting in incomplete domains. The prag-
matic reason that we define action failures in this manner
is that we can determine all failed interpretations affecting
a plan d(π), by defining d(π) = d(an−1) ∨

∨
p∈G d(pn)

(i.e., failure to execute an action is propagated to a failure to
achieve the goal).

For example, consider the plan depicted in Figure 1. The
propositions in each state and each action at each time are
labeled by the propositional sentence below it. The edges
in the figure connecting the propositions and actions de-
note what must be true to successfully execute an action or



achieve a proposition. The dashed edges indicate that action
incompleteness affects the ability of an action or proposition
to support a proposition. For example, a possibly deletes p,
so the edge denoting its persistence is dashed. The proposi-
tional sentences d(·) below each proposition and action de-
note the domain interpretations where a action will fail or a
proposition will not be achieved. For example, b at time one,
b1, will fail if either pre(a, r) or del(a, p) is true in the inter-
pretation. Thus, d(π) = pre(a, r) ∨ del(a, p) ∨ (del(b, q) ∧
pre(c, q)) and any domain interpretation satisfying d(π) will
fail to execute the plan and achieve the goal.
Incomplete Domain Relaxed Plans: The DeFAULT plan-
ner (Weber and Bryce 2011) guides its expansion of plans
that are labeled with failure explanations by computing re-
laxed plans with failure explanations. Finding a relaxed
plan that attempts to minimize failure explanations involves
propagating failed interpretation labels in a planning graph.
Propagating labels relies on selecting an action to support
each proposition, and we select the supporter at+k(p) at step
k of the planning graph for state st with the fewest failed in-

terpretations, denoted by its label d̂(at+k(p)).
A relaxed planning graph with propagated labels

is a layered graph of sets of vertices of the form
(Pt,At, ...,At+m,Pt+m+1). The relaxed planning graph
built for a state st defines Pt = {pt|p ∈ st}, At+k =
{at+k|∀p∈pre(a)pt+k ∈ Pt+k, a ∈ A ∪ A(P )}, and

Pt+k+1 = {pt+k+1|at+k ∈ At+k, p ∈ add(a) ∪ {p|φ 6|=
¬add(a, p)}, for k = 0, ...,m. Much like the successor
function used to compute next states, the relaxed planning
graph assumes an optimistic semantics for action effects by
adding possible add effects to proposition layers, but, as we
will explain below, it associates failed interpretations with
the possible adds.

Each planning graph vertex has a label, denoted d̂(·). The

failed interpretations d̂(pt) affecting a proposition are de-

fined such that d̂(pt) = d(pt), and for k ≥ 0,

d̂(at+k) =
∨

p∈pre(a) or

φ|=pre(a,p)

d̂(pt+k) ∨
∨

φ?pre(a,p)

(d̂(pt+k) ∧ pre(a, p))

d̂(pt+k+1) =





d̂(at+k(p)) : p ∈ add(at+k(p))
or φ |= add(at+k(p), p)

d̂(at+k(p))∨ : φ?add(at+k(p), p)
¬add(at+k(p), p)

Every action in every level k of the planning graph will fail
in any interpretation where their preconditions are not sup-
ported. A proposition will fail to be achieved in any inter-
pretation where the chosen supporting action fails to add the
proposition.

The relaxed planning graph expansion terminates at the
level t+k+1 where the goals have been reached at t+k+1.
The h∼FF heuristic makes use of the chosen supporting ac-
tion at+k(p) for each proposition that requires support in
the relaxed plan, and, hence, measures the number of ac-
tions used while attempting to minimize failed interpreta-
tions. The failure explanation of the relaxed plan is defined

by d(π̂) =
∨

p∈G

d̂(pt+m+1). We also use the hFF heuristic

Algorithm 1: Passive(s,G, Ã)

Input: state s, goal G, actions Ã
φ← ⊤; π ← Plan(s,G, Ã, φ);1

while π 6= () and G 6⊆ s do2

ã← π.first(); π ← π.rest();3

if pre(ã) ⊆ s and φ 6|=
∨

fpre(ã,p)∈F :p6∈s

p̃re(ã, p) then
4

s′ ← Execute(ã);5

φ← φ ∧ o(s, ã, s′);6

s← s′;7

else8

φ← φ ∧ fail;9

end10

if φ |= fail then11

φ← ∃failφ;12

π ← Plan(s,G, Ã, φ);13

end14

end15

(Hoffmann and Nebel 2001) for comparison, which does not
select supporting actions based on failure explanations.

Passive Learning

A passive learner would rather act under uncertainty and ask
no questions of the domain expert. Passive learning agents
are potentially reckless because they apply actions whose
preconditions may be unsatisfied.

Using their knowledge φ, it is possible to determine if the
next action in a plan, or any subsequent action, can or will
fail. If φ ∧ d(π) is satisfiable, then π can fail, and if φ |=
d(π), then π will fail. Algorithm 1 is the strategy used by the
passive learning agent. The algorithm involves initializing
the agent’s knowledge and plan (line 1), and then while the
plan is non-empty and the goal is not achieved (line 2) the
agent proceeds as follows. The agent selects the next action
in the plan (line 3) and determines if it can apply the action
(line 4). If it applies the action, then the next state is returned
by the environment/simulator (line 5) and the agent updates
its knowledge (line 6) and state (line 7), otherwise the agent
determines that the plan will fail (line 9). If the plan has
failed (line 11), then the agent forgets its knowledge of the
plan failure by projecting over fail (line 12) and finds a new
plan using its new knowledge (line 13).

For example, the passive agent might observe the state
transition o1 = o({p, q}, a, {p, q}) upon executing a, and
φ′ = filter(φ, o1) = ¬del(a, r). The agent must re-plan
because φ′ |= d(π).

Proactive Learning

Proactive learning relies on planning under uncertainty and
asking about action features that are relevant to the plan. The
extent to which an agent is proactive is determined by how
many of the relevant questions they ask before starting to ex-
ecute actions. We explore three levels of proactivity: com-
plete, asking all questions prior to execution; partial, inter-



leaving execution (to learn passively) and question asking;
and none, asking no questions prior to executing the rele-
vant actions. In the following, we discuss how to identify
relevant questions, given a plan, and how to rank the ques-
tions so that the agent can prove a plan will fail as quickly
as possible.
Relevant Questions: A question is relevant to a plan π if the
incomplete feature f is entailed by a potential diagnosis δ of
plan failure. Each diagnosis δ of the plan failure explanation
d(π) is a conjunction of incomplete features that must inter-
act to destroy the plan. Thus, if δ |= d(π) and δ |= f , then
the set of relevant questions is:

Qd(π) ={f |δ |= d(π), δ |= f or δ |= ¬f}

The example plan defines Qd(π) =
{pre(a, r), del(a, p), del(b, q), pre(c, q)} because each
feature appears in a diagnosis.
Ranking Relevant Questions: The features in smaller car-
dinality diagnoses have more impact on the plan because a
smaller number of unfavorable answers are needed to prove
the plan will fail; asking about these features will enable
an agent to fail fast. Moreover, features appearing in more
diagnoses have a high impact on plan failure. We define a
diagnosis-impact measure, where we prefer questions about
the incomplete action feature f where

f = argmax
f∈Qd(π)

∑

δ:δ|=d(π),
δ|=f

1

|{f |δ |= f}|2

The denominator of the expression above is squared to pe-
nalize the contribution of larger diagnoses. This measure
determines the incomplete feature most likely to cause the
plan to fail.

Using this measure for the example plan questions will
select pre(a, r) and del(a, p) as equally preferred questions
because both appear in a size one diagnosis. These features
are single points of failure.
Partial Proactivity: Asking about every relevant feature
will lead to a potentially large set of questions. Agents may
be able to passively learn about many of the features, so ask-
ing questions only about the most impactful features can re-
duce the number of questions. There are a number of meth-
ods for defining the partial set of questions, such as defin-
ing a threshold on the diagnosis impact measure or selecting
the features that appear in unit cardinality diagnoses (single
faults). The strategy that we evaluate in the empirical eval-
uation is to opportunistically ask about features that appear
in a unit cardinality diagnosis of d(π).

Reactive Learning

Agents that passively learn may fail to learn about impor-
tant action features. For example, if the agent executes
action a1, which has the possible precondition q (which
is unsatisfied in the current state) and the possible add ef-
fect p, but the resulting state does not change, then φ =
(fail ∧ pre(a1, q)) ∨ ¬add(a1, p). At this point, the agent
is not sure that it failed, and because φ 6|= pre(a1, q) and
φ 6|= add(a1, p) the agent cannot modify its actions prior to

re-planning. If the agent re-plans (deterministically), then it
will generate the same plan starting with a1 because it did
not learn definitively about a1. The agent will continue to
re-plan and fail indefinitely (i.e., it reaches a learning dead-
end).

Instead, the agent can realize that it may have failed
and diagnose whether it failed and why. By asking about
pre(a1, q) and add(a1, p), the agent can learn about the ac-
tion and potentially generate a different plan. For example,
if it learns that pre(a1, q) holds, then it will not plan the ac-
tion because q is not satisfied in the current state. If it learns
that ¬add(a1, p) holds, then the action is useless and will
not be planned.

The agent can rank the questions that create ambiguity
(multiple diagnoses) in φ in the same manner as proactive
questions. Reactive agents will continue to ask questions
until φ has a single implicant δ where δ |= φ. Having a
single implicant means that the agent knows if it failed or
not, and if it did fail why it failed. For example, after asking
about add(a1, p), the agent may know fail ∧ pre(a1, q) ∧
add(a1, p) or ¬add(a1, p). In the first, case the agent can
infer φ |= pre(a1, q) and that a1 will not be applicable. In
the second case, the agent can infer φ |= ¬add(a1, p) and
that a1 is irrelevant.

Empirical Evaluation

The empirical evaluation is divided into three sections: the
domains used for the experiments, the test setup used, and
results. The questions that we would like to answer include:

• Q1: Will adding reactive learning to passive learning im-
prove agent success?

• Q2: Does proactive learning improve reactive strategies
without asking too many questions?

• Q3: Does the type of planner used by the agent affect
success and number of questions across the strategies?

Domains: We use four domains in the evaluation: a modi-
fied Pathways, Bridges, a modified PARC Printer, and Barter
World (Weber and Bryce 2011). In all domains, we derived
multiple instances by randomly (with probabilities 0.25, 0.5,
0.75, and 1.0 for each action) injecting incomplete features.
With these variations of the domains, the instances include
up to ten thousand incomplete features each. All results are
taken from ten random instances (varying F ) of each prob-
lem and ten ground-truth domains selected by the simulator.

The Pathways domain from the International Planning
Competition (IPC) involves actions that model chemical re-
actions in signal transduction pathways. Pathways is a nat-
urally incomplete domain where the lack of knowledge of
the reactions is quite common because they are an active re-
search topic in biology.

The Bridges domain consists of a traversable grid and the
task is to find a different treasure at each corner of the grid.
In Bridges, a bridge might be required to cross between
some grid locations (a possible precondition), many of the
bridges may have a troll living underneath that will take all
the treasure accumulated (a possible delete effect), and the
corners may give additional treasures (possible add effects).
Grids are square and vary in dimension (2-16).



Strategy Solved Learning Dead-End Physical Dead-End Timeout

Passive Only 4110 / 4314 1053 / 588 2510 / 2251 0 / 522
Passive/Reactive 4934 / 4766 0 / 0 2732 / 2385 0 / 523
Passive/Reactive/Proactive 5439 / 5004 0 / 0 2213 / 1916 0 / 755
Proactive Only 7531 / 6537 0 / 0 22 / 63 54 / 1072

Table 1: Summary of results on 7675 instances across the domains using two heuristics (hFF /h∼FF ) within the agent. Results
include the number of solved problems, number of learning dead-ends reached, number of physical dead-ends reached, and
timeouts.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive Only 2.72 / 2.18 1.72 / 1.18 12.91 / 13.03 0.80 / 1.78 0 / 0
Passive/Reactive/Proactive 3.33 / 2.77 1.39 / 1.01 11.58 / 12.11 0.94 / 2.32 2.54 / 2.03
Proactive Only 6.27 / 5.47 0 / 0 10.07 / 10.50 3.14 / 8.73 5.27 / 4.47

Table 2: Domains solved by all techniques (3422 instances), with an average of 81.8 actions per domain, and an average of 24
incomplete action features.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive/Reactive 8.23 / 4.14 7.23 / 3.14 16.20 / 15.02 2.06 /4.48 2.04 / 0.75
Passive/Reactive/Proactive 6.64 / 4.03 4.70/ 2.10 13.11 / 13.18 2.26 / 5.77 6.44 / 3.81
Proactive Only 14.34 / 12.44 0 / 0 9.82 / 10.32 7.86 / 28.28 13.34 / 11.42

Table 3: Barter World instances solved by all techniques (662 instances), with an average of 99.11 actions per domain, and an
average of 59.59 incomplete action features.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive/Reactive 8.87 / 6.07 7.87 / 5.07 16.13 / 16.18 1.73 / 6.29 2.41 / 1.53
Passive/Reactive/Proactive 7.09 / 4.93 5.15 / 2.96 12.86 / 13.61 1.52 / 8.26 6.72 / 4.39
Proactive Only 15.70 / 14.24 0 / 0 9.52 / 10.02 6.21 / 34.99 14.70 / 13.21

Table 4: Pathways instances solved by all techniques (310 instances), with an average of 85.05 actions per domain, and an
average of 56.55 incomplete action features.

The PARC Printer domain from the IPC involves planning
paths for sheets of paper through a modular printer. A source
of domain incompleteness is that a module accepts only cer-
tain paper sizes, but its documentation is incomplete. Thus,
paper size becomes a possible precondition to actions using
the module.

The Barter World domain involves navigating a grid and
bartering items to travel between locations. The domain is
incomplete because actions that acquire items are not always
known to be successful (possible add effects) and traveling
between locations may require certain items (possible pre-
conditions) and may result in the loss of an item (possible
delete effects). Grids vary in dimension (2-16) and items in
number (1-4).

Test Setup: The tests were run on a Linux machine with
a 3 Ghz processor, with a 2GB memory limit and 60 min-
utes time limit for each instance. All code was written in
Java and run on the 1.6 JVM. The DeFAULT planner uses
a greedy best first search with deferred heuristic evaluation
and a dual-queue for preferred and non-preferred operators
(Helmert 2006).

Results: Tables 1 to 4 list the performance of the various
strategies on the instances in each domain. Within each ta-
ble, the results are listed as DeFAULT using different heuris-

tics “hFF /h∼FF ” – DeFAULT uses best first search, so
its ability to find plans that reason about incompleteness is
solely directed by the heuristic. The rows in the tables corre-
spond to the previously mentioned strategies: passive learn-
ing only; passive and reactive learning; passive, reactive,
and proactive learning; and proactive learning only. The
columns in Table 1 are the number of instances solved (the
agent achieves the goal), the number of instances where a
failure to learn prevents the agent from achieving the goal
(a learning dead-end), the number of instances where the
agent cannot re-plan (a physical dead-end), and the number
of instances where the agent runs out of time. Table 2 to 4
list the average number of planner invocations, number of
planner invocations after executing at least one action, num-
ber of actions executed, total time, and number of questions.
Table 2 lists results for three strategies and includes only
those instances where all three strategies were able to solve
the same instance; we did not include all strategies because
reactive strategies do not engage if the passive strategy suc-
ceeds. Tables 3 and 4 list respective results for Barter World
and Pathways because in these two domains it is possible
to have learning dead-ends (where the agent cannot success-
fully learn passively).



To answer Q1, Table 1 and 2 indicate that adding reactive
learning to passive learning or using only proactive learning
do improve upon passive learning alone. All other strategies
improve upon passive learning by solving more problems,
encountering no learning dead-ends, re-planning less dur-
ing execution, and executing fewer actions. However, these
improvements come at the cost of spending more time and
potentially running out of time, generating more plans, and
asking more questions. These results match our intuitions
about reactive learning because we are able to diagnose ac-
tion failures and avoid the same action failure when we re-
plan.

The tables indicate that for Q2, yes, in conjunction with
passive and reactive learning proactive learning is beneficial,
solving more problems, encountering fewer dead-ends, gen-
erating fewer plans, taking less actions, and using less total
time than passive and reactive strategies. Proactive strategies
can avoid executing actions that will lead to dead-ends by
asking about the actions early. Purely proactive strategies,
while typically more successful, tend to ask nearly twice
as many questions as mixed proactive, passive, and reac-
tive strategies. Limiting the number of proactive questions
and attempting to learn passively (while addressing learning
dead-ends with reactive learning) seems to strike a useful
balance between avoiding failure and overburdening a do-
main expert with questions.

In terms of Q3, we see that the type of planner used by the
agent does have an impact, verifying our prior results (We-
ber and Bryce 2011). We see that using a classical planning
heuristic that ignores action incompleteness can often solve
more problems, but the problems that it doesn’t solve are
mostly due to reaching dead-ends. The heuristic that reasons
about incompleteness reaches fewer dead-ends, asks fewer
questions, re-plans less, and tends to fail more often because
of timeouts; this suggests that improving the heuristic while
still reasoning about incompleteness is a promising direction
for future work.

Related Work

Our investigation is an instantiation of model-lite planning
(Kambhampati 2007), and is motivated by work on in-
structable computing (Mailler et al. 2009). This work is a
natural extension of the Garland and Lesh (2002) model for
evaluating plans in incomplete domains, but our method for
computing plan failure explanations is slightly different in
that we actually synthesize plans in incomplete domains as
well as investigate learning strategies.

Prior work of Chang and Amir (2006) addresses planning
with incomplete models, but does not attempt to synthesize
robust plans, which is similar to our planner that uses the
FF heuristic. We have shown that incorporating knowledge
about domain incompleteness into the planner can lead to a
more effective agent in both execution and question asking.
We also differ in that we do not assume direct feedback from
the environment about action failures, we can learn action
preconditions, and we can query a domain expert.

Safra and Tennenholtz (1994) also address the issue of
learning about transition models during planning, but only

focus on the complexity of planning and learning under var-
ious restrictions on the size of possible plans and transition
models. Our framework falls under the most general of those
considered by Safra and Tennenholtz (1994) and is thus not
tractable.

While similar in motivation, our work is related to, but
significantly different from the ARMS (Wu, Yang, and Jiang
2007) action learning system. ARMS is an offline system
for generating action models from partial observations of
plans (states and actions). ARMS encodes its observations
as a weighted Max-SAT problem and derives action models
that best match the observations. Our approach learns from
partial observations of actions due to fully-observable state
transitions and can actively learn through executing actions
or querying an expert. ARMS also learns PDDL operator
schemas, where we learn ground STRIPS actions.

Conclusion

We have presented three techniques for learning about in-
complete actions that either passively learn by execution,
reactively diagnose execution failures, or proactively seek
to learn about features that may cause future plan failure.
The learning methods are focused by plans so that learn-
ing is goal-directed, allowing us to ignore irrelevant action
features. We found that i) proactively asking to learn all
relevant incomplete action features leads to a large number
of questions; ii) passively learning can lead to dead-ends;
iii) reactively diagnosing failures while passively learning
avoids dead-ends; and iv) combining reactive, passive, and
proactive learning increases success without asking pro-
hibitively more questions.
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