
Temporal Planning for Co-Design of Host Scheduling and Workflow Allocation
in Mobile Environments∗

Qiang Lu1, Yixin Chen2, Mart Haitjema2, Catalin Roman2, Christopher Gill2, Guoliang Chen1

1School of Computer Sci. & Tech., Univ. of Sci. & Tech. of China, Hefei, Anhui, 230026, China
2Department of Computer Sci. & Eng., Washington Univ. in St. Louis, St. Louis, MO, 63130, USA

rczx@mail.ustc.edu.cn, {chen, mah5, roman, cdgill}@cse.wustl.edu, glchen@ustc.edu.cn

Abstract

Workflows have been successfully applied to model collabo-
rations with a well-defined structure, which has a common re-
striction that the network settings are stable. Recently, a new
challenging domain, collaborations among groups of hosts
in an ad hoc mobile network, attracts many interests. Some
key features of this application domain, such as ad hoc in-
teractions among hosts and high levels of mobility, introduce
many challenges for designing a workflow management sys-
tem. The main difficulty is to design an efficient planning al-
gorithm that automatically schedules not only workflow allo-
cation but also the actions (movement and communication) of
hosts. Existing works only consider workflow allocation but
do not specify how the hosts should act to achieve the plan in
a mobile environment.
In this paper, we propose a framework that co-designs the
host schedule and workflow allocation in a unified way. We
transform the collaboration problem into a temporal planning
model and then solve it using automated planners that can
also minimize the total makespan of the plan in an anytime
fashion. We integrate this framework into a workflow man-
agement system CiAN. The experimental results show that
our approach significantly broadens the scope of previous
works by removing the requirements of knowing host sched-
ule. Our approach is also very efficient in finding high-quality
solution plans with short makespans.

Introduction
Workflows have been successfully applied to model collab-
orations that have a well-defined structure, which has a com-
mon restriction that the network settings are stable. (Sen et
al. 2007) presents an initial investigation into the possibility
of using workflows in a challenging new domain - that of
supporting arbitrary collaborations among groups of hosts
in a mobile ad hoc network (MANET). This application do-
main shares several key features: ad hoc interactions among
people, high levels of mobility, the need to respond to unex-
pected developments, the use of locally available resources,
prescribed rules of operation, and specialized knowhow. Ef-
forts toward using workflow in ad hoc wireless environments
are relatively new. Workow allocation in MANETs has wide

∗This work is supported by China Scholarship Council, NSF
grants IIS-0713109, CNS 1017701, and Microsoft Research New
Faculty Fellowship.

applications such as geological monitoring, emergence co-
ordination, and robot communities.

Designing a workflow management system (WfMS) for
this domain faces many challenges, as hosts may move, and
service availability may depend upon which hosts are within
communication range. These challenges make most existing
workflow management algorithms inadequate since they do
not consider the mobility and communication constraints in
ad hoc settings.

A few research efforts toward this new domain have been
carried out. (Sen et al. 2007) introduces a simple heuristic
allocation algorithm which gives the tasks that are harder to
satisfy higher priorities to be allocated and divides the al-
location of the workflows into sub-problems recursively. A
workflow management system for MANETs, CiAN, is in-
troduced in (Sen, Roman, and Gill 2008) based on this allo-
cation algorithm. (Haitjema et al. 2010) solves this workflow
allocation problem by transforming it to a numeric temporal
planning problem and calling SGPlan (Chen, Wah, and Hsu
2006) to find a feasible allocation.

All the above works have a major limitation. They all
assume knowing the activity schedule of each host before
using an allocation algorithm to assign each task to a suit-
able host. However, such an assumption is very restrictive
since they fix the host schedule during allocation and hence
limit the decision space of the workflow allocation algo-
rithms. The scheduling of hosts has significant impacts to
the feasibility and quality of workflow allocation, since it
is a main source of freedom for coping with the commu-
nication, dependency, and geometrical constraints. In an ad
hoc mobile environment, two hosts usually have a commu-
nication range (e.g. the bluetooth range), and they cannot ex-
change data unless they are within the communication range.
Since the tasks have dependencies that require notification
of completion and exchange of results, such communication
limits greatly complicate the workflow allocation and make
the problem much harder. Existing works separate the host
scheduling problem from workflow allocation. They only
solve the allocation problem and do not address how to pre-
compute a feasible host schedule. In fact, we observe that it
is necessary to consider the host schedule and workflow al-
location simultaneously in a co-design approach, in order to
design a complete algorithm that can always find a feasible
solution if there exists one.



Figure 1: The construction site safety report problem.

In order to address these challenges for collaboration
in MANETs, we propose an approach to co-design host
scheduling and workflow allocation in a unified framework.
Our approach automatically translates the collaboration-in-
MANETs problem to a temporal planning problem, and calls
a temporal planner to find suitable host schedule and work-
flow allocation for WfMS. Our model can handle dynamic
initial and goal states to support online insertion of new
tasks. Moreover, it provides the ability to optimize the to-
tal makespan in an anytime fashion by leveraging on the ad-
vance of AI planning research.

System Model: CiAN on MANETs
We develop our planning approach on the CiAN architec-
ture (Sen, Roman, and Gill 2008), although in principle our
approach can be generalized to other workflow systems for
ad hoc mobile environments. A workflow engine provides
the build time environment for process modeling (definition,
design, and evolution) and the runtime environment for ac-
tivating, managing, and executing workflow processes (My-
ers and Berry 1999). Process modeling will build a library of
process templates which usually integrate information flow
requirements, activity decomposition, and communication
constraints. In the runtime environment, it usually contains
three phases:

• Process Selection: The engine will respond to some new
requests by selecting and instantiating suitable process
templates from the library.

• Task Allocation: Once the processes are instantiated, the
engine will assign tasks to suitable processing entities ac-
cording to some predefined rules or algorithms. This task
allocation can be viewed as a scheduling problem, which
can also be solved by automated planners.

• Enactment Control, Execution Monitoring, and Failure
Recovery: The engine will maintain all the knowledge and
internal control data to identify the state of each activity,
transition conditions, connections among processes, and
performance metrics.

In most of the existing workflow engines, they take a
centralized role in coordinating the operation of process-
ing entities, as the hosts report to the central host during
execution and wait for instructions. However, designing a
workflow management system targeted to MANETs faces
a new challenge: coordination among the various partici-
pants becomes more complex due to the dynamic topology
of the MANET which often allows only transient connectiv-
ity among hosts. To bring workflows to this dynamic type
of mobile networks, CiAN is designed as a lightweight and
choregraphed engine that facilitates the workflow execution
in MANETs (Sen, Roman, and Gill 2008). Specifically, it
uses a publish-subscribe-like protocol that takes results from
a task and delivers them to the host responsible for execut-
ing the immediately succeeding tasks without going through
a central coordinating entity. Note that CiAN allows decen-
tralized information exchange during execution, but still re-
quires centralized workflow allocation before execution.

Task Allocation Problems in CiAN
We use an example on construction site coordination to
help describe the task allocation problem in CiAN. Our
planning-based approach is general for workflow allocation
in MANETs and not limited to this example.

Example 1 Consider a group of construction workers mov-
ing around a large construction site like the one shown in
Figure 1. All the workers are equipped with mobile devices
(e.g. PDAs and smart phones) and are moving around the



Figure 2: The workflow of the construction site safety report
problem.

site working according to their individual schedules, which
may be known to the management.

Now imagine that the management wants to perform a
safety inspection check ad hoc and demands that a safety
inspection report to be compiled. The various steps in creat-
ing the report are shown as a workflow in Figure 2.

In an ad hoc mobile environment, tasks that make up the
workflow can only be done in specific locations and may re-
quire certain qualifications in order to be performed. For ex-
ample, only a structural engineer working near the scaffold-
ing can perform the inspect scaffolding task. A further com-
plication is that after a task is executed, the results will need
to be communicated to the person(s) executing the subse-
quent task(s) in the workflow. This transfer of results is nor-
mally done over a network. But, since the construction site
is large, there may be no network infrastructure and we as-
sume two people can only communicate when their mobile
devices are within the communication range of one another.
This means that even if a worker can execute a task, we must
consider whether or not the worker will be able to pass the
result onto the person we have chosen to perform the subse-
quent task. All of these constraints can make the process of
choosing a worker for a given task a non-trivial problem. In
fact, deciding whether or not there is an allocation of tasks
to workers such that the workflow could possibly complete
in this manner is NP-hard (Haitjema et al. 2010).

In the CiAN model, each task is associated with the fol-
lowing features:

• Locations: the locations where the task can be performed.
Specified as a coordinate pair (x,y). Note that a task can
be performed at one or more locations.

• Duration: the time required to execute the task.

• Hosts: the hosts who can perform the task. Note that a task
can be performed by one or more hosts.

• Qualifications: a list of the qualifications necessary to per-
form the task. It also includes the task dependencies, a list
of the tasks in the workflow that must be completed be-
fore the task to be executed. A host must know that all
dependent tasks have been finished before executing the
task.

• Status: whether the task has been performed.

We also have a set of workers which we will call hosts.
CiAN requires to know the exact schedule of each hosts be-

fore performing task allocation, specified by the following
features:
• Location: the location where the host is at for a certain

time.
• Move speed: the speed of the host moving from one loca-

tion to another.
The goal of the problem is to determine if there is a feasi-

ble allocation. A feasible allocation is a mapping of tasks to
hosts such that each host can execute all its assigned tasks.
In order for a host to execute a task t, the host must have the
qualifications required by t, be in the location for the dura-
tion specified by t, and must be able to receive the results
from the host(s) executing the dependencies of t. Note that
the requirement that a host receives results for all the depen-
dencies before executing its task ensures that the workflow is
completed in the order specified by the workflows ordering
constraints.

Limitations
CiAN requires to know the schedule of each host before
performing task allocation (Sen, Roman, and Gill 2008;
Haitjema et al. 2010). Each schedule entry contains a start
time, location at the start time, end time, and location at
the end time, which indicates when a host will be at cer-
tain location. In ad hoc mobile networks, locations of hosts
may dynamically change and two hosts must meet up within
a range before exchanging data when one host requires re-
sults from the other. Fixing the schedules of all hosts, CiAN
can pre-compute the exact locations of moving hosts and the
availability of communication between hosts for any given
time. Such a strong assumption greatly simplifies the plan-
ning problem.

However, in real-world applications, a host may arrange
its schedule according to the tasks it will execute. Thus,
the schedules of hosts are usually unknown when per-
forming task allocation in WfMS. Moreover, considering
the host schedule and workflow allocation together gives a
larger decision space which may leads to more preferable
(e.g. shorter) plans. The co-design of both host schedule
and workflow allocation, while considering the dependency,
communication, and temporal constraints, is beyond the ca-
pability of the allocation algorithm in CiAN, or any other
existing workflow algorithms we know of.

Temporal Planning for Co-Design
To overcome the limitations of the existing allocation algo-
rithms, we formulate the host/workflow co-design problem
into a temporal planning problem in PDDL and use state-
of-the-art temporal planners to solve it. In our approach, we
discard the assumption of knowing the host schedule a pri-
ori and aim at finding task allocation and host schedule at
the same time.

Using the Planning Domain Definition Language (PDDL)
2.2 (Edelkamp and Hoffmann 2003), we define the temporal
problem for the co-design problem as follows.
Objects. We define four objects: host, task, location, and
token. Each host can execute certain tasks at certain loca-
tions. Each token is associated with a task to indicate that



the task is finished. A token is consequently also an edge be-
tween two tasks representing the dependency. A host must
have all the relevant tokens for a task (one for each depen-
dency) before executing it.
Predicates. Based on the definition of objects, we define
four kinds of predicates representing the status of hosts and
tasks.

• at ?h - host ?l - location: a host h is at location l.

• free ?h - host: a host h is free, which means it can exe-
cute a task, move to other locations, or communicate with
another host.

• done ?t - task: a task t is finished.

• has-token ?h - host ?t - token: a host h has token t,
which means the host t knows that task t has been exe-
cuted. Note that we use the same name for task t and the
token associated with t.

Durative Actions. We consider three kinds of durative ac-
tions: an execute action of a host to execute a task at a
given location by a given host, a move action of a host be-
tween two locations, and a communicate action between
two hosts. These three kinds of durative actions are defined
as follows.

• execute ?h - host ?l - location ?t - task: 1) Duration: a
positive rational number indicating the executing time of
task t. 2) Preconditions: (at start (at h l)), (at start (free
h)), (over all (at h l)), and (at start (has-token h t′)) for
all dependent tasks t′ of the task t. Since PDDL2.2 is able
to describe numeric resources, we also can describe some
other qualifications, such as resource requirements. 3) Ef-
fects: (at start (not (free h))), (at end (free h)), (at end
(done t)), and (at end (has-token h t)). The last two ef-
fects represent that task t is finished and host h has token
t.

• move ?h - host ?l1 ?l2 - location: 1) Duration: a positive
rational number indicating the time for host h to move
from l1 to l2. It equals to the distance between l1 and l2
divided by the speed of the host. Note that all the move
actions together encode the map information of the envi-
ronment. 2) Precondition: (at start (at h l1)). 3) Effects:
(at start (not at h l1)) and (at end (at h l2)).

• communicate ?h1 h2 - host ?l1 ?l2 - location ?t - task:
1) Duration: a positive rational number indicating the time
for transferring a message (token t). 2) Preconditions: (at
start (at h1 l1)), (at start (at h2 l2)), (at start (free h1)),
(at start (free h2)), (at start (has-token h1 t)), (over all (at
h1 l1)), and (over all (at h2 l2)). 3) Effects: (at start (not
(free h1))), (at start (not (free h2))), (at end (free h1)),
(at end (free h2)), and (at end (has-token h2 t)). The last
predicate represents that the host h2 has the token t after
communicating with h1.

The precondition (over all (at h l)) indicates that the the
host h cannot move to other locations when executing a task
or communicating with another host. The precondition (at
start (free h)) and effect (at start (not (free h))) guarantee
that the host h cannot perform two actions at the same time.

Note that since dependent tasks are different in different ex-
ecute actions, we cannot define all execute actions in an un-
grounded way. Therefore, all actions are grounded in the do-
main definition of PDDL.
Initial State. The initial state of the problem includes predi-
cates: 1) (free ?h - host) and (at ?h -host ?l - location) which
indicate that host h is free now and at location l. 2) (at n
(free ?h - host)) and (at ?h - host ?l - location) which in-
dicate that host h will be free at time n (a positive rational
number) and at location l then. This timed initial literals, (at
n (free ?h - host)), is a feature of PDDL2.2 (Edelkamp and
Hoffmann 2003) which represents facts that become true or
false at certain time points.

Note that we use this feature to support dynamic plan-
ning. During the execution of a plan, when a set of new task
requirements come in, a host may be executing some tasks
currently and will be free in the future time n. If the host is
required for a task, we need to add the host as an object in the
planning problem. Thus we use the timed initial predicates
to represent the initial status of such hosts. By exploiting the
timed initial literals in PDDL2.2 planning, our approach can
support dynamic planning in response to new tasks during
execution.
Goal State. The goal state includes predicates (done ?t -
task) for all required tasks t. Again, our approach can sup-
port dynamic planning. When new tasks are added during
execution, we generate a new planning problem with the dy-
namic initial state discussed above and goal state using these
new tasks, and then call a planner to solve it.

Based on the above PDDL model, any solution plan found
by a temporal planner will give a co-design solution, which
specifies the workflow allocation as well as a schedule of
movement and communication for each host.

The resulting temporal problem is temporally simple
without required concurrency (Cushing et al. 2007). A tem-
poral problem has required concurrency (called temporally
expressive) when, in any solution, there exist two actions a1
and a2 such that: 1) a1 has two effects (at start f ) and (at
end (not f )) (which means f is an interval add-effect), and
2) a2 has a precondition (at start f ). These two conditions
require a1 and a2 to be executed concurrently. Clearly, in
our PDDL2.2 model, no two actions satisfy these two con-
ditions. Note that temporally simple problems are typically
more tractable than temporally expressive ones. Hence, our
formulation can be efficiently solved using existing tempo-
rally simple planners.

Note that although the problem is temporally simple, it
is essential to exploit the durative natures and concurrency
of actions in our model in order to generate efficient plans
with short makespans. In real-world applications, the tem-
poral feature is very important because users usually want
to finish all tasks as soon as possible. In our implementa-
tion, we use an anytime temporal planner, TFD (Eyerich,
Mattmüller, and Röger 2009), to optimize the makespan.

We show three grounded actions of Example 1 in Figure 3.
The optimal solution found by Temporal Fast-

Downward (TFD) (Eyerich, Mattmüller, and Röger 2009) is
shown as follows. The first column is the scheduled time of
each action and the last column is the action duration. The



(execute Foreman-0 crane-zone compile-report
:duration (= ?duration 30)
:condition (and
(at start (at Foreman-0 crane-zone))
(at start (free Foreman-0))
(at start (has-token Foreman-0 inspect-firefighting-equipment))
(at start (has-token Foreman-0 perform-crane-safety-check))
(at start (has-token Foreman-0 inspect-scaffolding))
(over all (at Foreman-0 crane-zone))

)
:effect (and
(at start (not (free Foreman-0)))
(at end (has-token Foreman-0 compile-report))
(at end (done compile-report))
(at end (free Foreman-0))

)
)

(communicate Foreman-0 crane-zone Site-Manager crane-zone compile-report
:duration (= ?duration 1)
:condition (and
(at start (at Foreman-0 crane-zone))
(at start (at Site-Manager crane-zone))
(at start (free Foreman-0))
(at start (free Site-Manager))
(at start (has-token Foreman-0 compile-report))
(over all (at Foreman-0 crane-zone))
(over all (at Site-Manager crane-zone))

)
:effect (and
(at start (not (free Foreman-0)))
(at start (not (free Site-Manager)))
(at end (free Foreman-0))
(at end (free Site-Manager))
(at end (has-token Site-Manager compile-report))

)
)

(move Foreman-0 crane-zone firefighting-zone
:duration (= ?duration 2)
:condition (at start (at Foreman-0 crane-zone))
:effect (and
(at start (not (at Foreman-0 crane-zone)))
(at end (at Foreman-0 firefighting-zone))

)
)

Figure 3: Three grounded actions of Example 1.



total time (makespan) of the solution is 120.18 seconds.

– 0.01 (move site-manager init-loc crane-zone ) [2]

– 0.02 (move foreman-1 init-loc crane-zone ) [2]

– 0.03 (move construction-worker-4 init-loc firefighting-
zone ) [3]

– 0.04 (move engineer init-loc scaffloding-zone ) [3]

– 0.05 (move mechanic init-loc crane-zone ) [2]

– 2.06 (execute foreman-1 crane-zone create-safety-report-
document ) [20]

– 22.07 (communicate foreman-1 crane-zone mechanic
crane-zone create-safety-report-document ) [1]

– 23.08 (execute mechanic crane-zone perform-crane-
safety-check ) [60]

– 23.09 (communicate foreman-1 crane-zone construction-
worker-4 firefighting-zone create-safety-report-document
) [1]

– 24.10 (execute construction-worker-4 firefighting-zone
inspect-firefighting-equipment ) [30]

– 24.11 (communicate foreman-1 crane-zone engineer
scaffloding-zone create-safety-report-document ) [1]

– 25.12 (execute engineer scaffloding-zone inspect-
scaffolding ) [45]

– 54.13 (communicate construction-worker-4 firefighting-
zone foreman-1 crane-zone inspect-firefighting-
equipment ) [1]

– 70.14 (communicate engineer scaffloding-zone foreman-
1 crane-zone inspect-scaffolding ) [1]

– 83.15 (communicate mechanic crane-zone foreman-1
crane-zone perform-crane-safety-check ) [1]

– 84.16 (execute foreman-1 crane-zone compile-report )
[30]

– 114.17 (communicate foreman-1 crane-zone site-
manager crane-zone compile-report ) [1]

– 115.18 (execute site-manager crane-zone sign-report ) [5]

Task execution
Once the planning process is completed, the execution of
the workflow begins. When an agent is assigned an action, it
adds an entry to its schedule that contains all the necessary
information to execute the appropriate service as directed by
the manager. The agent is free to roam, but is responsible for
completing assigned tasks, including moving to certain loca-
tions, executing tasks, and exchanging task execution infor-
mation. The execution phase of this workflow is in a decen-
tralized and distributed manner.

The flexibility of such a dynamic domain is much higher
than normal workflow problems, due to the high variability
of agent speeds and task completion probability. The change
of speed may cause an agent not able to arrive at a required
location in time for executing tasks or communicating with
another agent. A failed execution of a task may break the de-
pendencies of other tasks and cause the whole plan to crash.

Thus, the ability to handle these execution exceptions is very
important for the workflow management system.

In our system model, we can handle these exceptions
since our planning algorithm, as we discussed in this pa-
per before, can support dynamic planning by exploiting the
timed initial literals. During the execution of a plan, when
an agent fails to execute an action, it will first try to re-do
it if there is enough time before the start time of the next
action in its schedule. The replanning process will be trig-
gered if the re-do fails. We first collect the current state of
free agents and timed future state of working agents if nec-
essary to generate the new initial state, and the unfinished
goal tasks to generate the new goal state. Then we generate
a new planning problem with the dynamic timed initial state
and goal state, and then call a planner to solve it. As we will
show in our experimental results, we can solve the planning
problem efficiently (under 10 seconds for the largest prob-
lem with 30 hosts). Hence, it is feasible to plan dynamically
during execution.

Related Work
AI Techniques for Workflow Management
An overview of early uses of AI techniques in workflow
engines is presented in (Myers and Berry 1999). The pa-
per overviews three major areas: 1) reactive control systems
providing adaptive process management, 2) AI scheduling
providing adaptive resource allocation, and 3) AI planning
providing process synthesis and repair (with a focus on re-
planning).

There are several other work on applying AI planning
techniques to WfMS. (Moreno and Kearney 2002) describes
an integration of AI planning techniques with an existing
workflow management system. It uses AI planning to au-
tomatically generate a sequence of instantiated activities.
(Schuschel and Weske 2003) outlines a framework for an
integrated planning and coordination system, which uses
AI planning to support business processes. (Shi, Yang, and
Sun 2011) presents a workflow management system with
dynamic goal tasks, using AI planning to solve these goal
driven workflow planning problems. However, none of these
works considers ad hoc mobile environments and the plan-
ning of host activities as this paper does.

WfMS with Temporal Constraints
Modeling temporal constraints in WfMS is first proposed
in (Marjanovic and Orlowska 1999; Eder, Panagos, and Ra-
binovich 1999). (Marjanovic and Orlowska 1999) proposes
a framework for time modeling in production workflows.
Relevant temporal constraints are presented, and rules for
their verification are defined. Furthermore, to enable visual-
ization of some temporal constraints, a concept of “duration
space” is introduced. (Eder, Panagos, and Rabinovich 1999)
proposes modeling primitives for expressing temporal con-
straints between activities and binding activity executions to
certain fixed dates. It presents techniques for checking sat-
isfiability of temporal constraints, and enforcing these con-
straints at run-time. The techniques for temporal constraint
management are based on the timed activity graph.



(Son and Kim 2001) proposes a scheme to maximize the
number of workflow instances satisfying given deadlines.
It develops a method to determine the minimum number
of servers (MNS) for any critical activities, an activity that
should be finished without delay for a given input arrival
rate. (De Maria, Montanari, and Zantoni 2005) proposes to
use the finite timed automata as a tool to specify timed work-
flow schemas and to check their consistency. Temporal con-
straints are often set when complex e-science processes are
modeled as scientific workflow specifications. (Chen and
Yang 2010) systematically investigates how to localize a
group of fine-grained temporal constraints so that temporal
violations can be identified locally for better cost effective-
ness. Most of these works are designed to derive or check
certain properties of a temporally constrained system. How-
ever, they cannot be directly used to solve workflow allo-
cation problems, nor the more complex co-design problem.
An interesting future work is to incorporate these analysis as
heuristic guidance and pruning conditions to further improve
our planning approach.

Experimental Results
We evaluate our method by designing a simulator. In our
implementation, we use two state-of-the-art temporal plan-
ners, SGPlan (Chen, Wah, and Hsu 2006) and TFD (Eyerich,
Mattmüller, and Röger 2009), to solve the compiled tempo-
ral planning problem in PDDL2.2. We generate a series of
random problems and measure the time taken to find a solu-
tion plan and the temporal makespan. The main parameters
of generated problems include:

– n h: the number of hosts.

– n t: the number of tasks.

– n c: the number of dependencies for each task.

– max x,max y: location range (0 ≤ x ≤ max x, 0 ≤
y ≤ max y) that hosts may work at. We set max x =
max y = 400m.

– s: the moving speed of hosts. We set it to 1.7 m/s which
is close to human walking speed.

– d: the duration of actions. The duration of execute is
randomly chosen from [60, 300] seconds, the duration of
communicate is set to 1 second, and the duration of move
is set to the distance of two locations divided by speed
(dis(l1, l2)/s).

n h, n t, and n c are the main parameters deciding the
complexity of the generated problems. In (Sen et al. 2007),
the largest problem’s parameters are n h = 12, n t =
2∗n h, and the probability for each task to be assigned a task
dependency equals to 0.3. Since the host schedule in (Sen
et al. 2007)’s testing problem is randomly generated and a
large number of task dependencies may lead to a low chance
of finding a feasible task allocation, it sets a low probability
of having task dependencies. In our evaluation, we generate
a series of problem with n h ∈ [1, 30], n t = 2 ∗ n h, and
n c is randomly chosen from [0,3]. The dependencies be-
tween tasks are randomly generated with the guarantee that
no cycle exists. We set this higher dependency probability

than (Sen et al. 2007) because real-world applications usu-
ally require a large number of task dependencies as shown
in Example 1.

All experiments are conducted on a workstation with
2.8GHz CPU and 2GB memory. The running time limit for
each problem instance is set to 30 seconds. We set this rela-
tively low time limit in order to ensure the practicability of
our approach in real-world applications, where users prefer
short planning time.

From experiments, we see that our approach can solve the
co-design problems efficiently. Specifically, it requires no
more than 2 seconds to find a solution on any problems with
up to 30 hosts and 60 tasks, a problem size much larger than
the largest problem previous work considered (12 hosts and
24 tasks) (Sen et al. 2007). The running time and makespans
are shown in Figure 4.

Since the allocation algorithms in (Sen et al. 2007; Hait-
jema et al. 2010) and our approach are based on different
assumptions, we cannot compare them directly using our
testing problems. However, some quantitative comparisons
can be made here. Comparing our approach against the al-
location algorithm in (Sen et al. 2007), we found that our
approach is still very efficient even though it is solving a
much harder problem (which considers host scheduling un-
der a higher degree of task dependencies). For example, for a
problem with n h = 12 and n t = 24, the mean time to per-
form CiAN’s allocation algorithm is about 1.2 seconds (Sen
et al. 2007) while the solution time of our method is 0.25
second.

(Haitjema et al. 2010) usually cannot find a feasible al-
location on our problems where n h ≥ 8 as the randomly
generated host schedule. This clearly shows the limitation
of that approach and the need for co-design. Also, it spends
more time to solve allocatable problems than our approach.
For a problem with n h = 4 and n t = 8, using the same
planner SGPlan, it takes 3.74 seconds to find an allocation
while our approach takes only 0.03 second.

Another advantage of our method is that we can minimize
the temporal makespan (the total time of finishing all tasks)
by using TFD, an anytime planner which can optimize the
makespan. Figure 4 shows the solution time and makespan
of a feasible solution found by SGPlan and of the best so-
lution found by TFD under 30 seconds. Obviously, SGPlan
is faster and solves more problems than TFD under 30 sec-
onds. On the other side, TFD usually finds better plans (with
hundreds of seconds shorter makespans) at the cost of more
planning time. For example, on the problem with n h = 10,
TFD finds a plan with a makespan 2313s in 1.96 seconds
while SGPlan found a solution with a makespan 4384s in
0.08 second. Considering the large saving of execution time,
users are likely willing to spend a little more time on plan-
ning.

Conclusions and Future Work
Workflows have been extensively studied and applied to
model collaboration in well-defined and stable networks. In
this paper, we consider a new challenging environment of
ad hoc mobile networks for workflow allocation. Existing



0 5 10 15 20 25 30

Number of hosts n_h
10-2

10-1

100

101

102

S
o
lv

in
g
 t

im
e
 (

se
co

n
d
s)

SGPlan
TFD

0 5 10 15 20 25 30

Number of hosts n_h
0

2000

4000

6000

8000

10000

M
a
ke

sp
a
n
 (

se
co

n
d
s)

SGPlan
TFD

Figure 4: The running time and solution quality (in terms of makespan) of SGPlan and TFD. Note that n t = 2 ∗ n h.

workflow engines for this domain can find a workflow allo-
cation based on the restrictive assumption of knowing and
fixing schedules of all hosts a priori. In this paper, we have
presented a framework that co-designs the host schedule and
workflow allocation in a unified way. We transform the col-
laboration problem into a temporal planning model and use
automated planners to solve it efficiently. Our experimental
results show that it is practical to use temporal planners to
find feasible and even optimized schedule that coordinates
hosts and workflows together under complex temporal, com-
munication, and dependency constraints.

A practical workflow allocation algorithm on MANETs
has many applications. Responding to catastrophes such as
chemical spills, conducting geological surveys of remote ar-
eas, and even managing a community of robots exploring
hazardous areas are only a few examples of the many activ-
ities that would potentially benefit from this approach. We
plan to explore such real applications in our future work.

References
Chen, J., and Yang, Y. 2010. Localising temporal constraints
in scientific workflows. Journal of Computer and System
Sciences 76(6):464 – 474.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal
planning using subgoal partitioning and resolution in sgplan.
Journal of Artificial Intelligence Research 26:323–369.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In Proc.
of IJCAI.
De Maria, E.; Montanari, A.; and Zantoni, M. 2005. Check-
ing workflow schemas with time constraints using timed au-
tomata. In On the Move to Meaningful Internet Systems
2005: OTM Workshops, volume 3762, 1–2.
Edelkamp, S., and Hoffmann, J. 2003. Pddl2.2l the lan-
guage for the classical part of the 4th international planning
competition. Technical Report N. 194, ALbert Ludwigs Uni-
versity Institue for Informatik, Freiburg, Germany.

Eder, J.; Panagos, E.; and Rabinovich, M. 1999. Time con-
strains in workflow systems. In Proc. of CAiSE, 286–300.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In ICAPS.
Haitjema, M.; Chen, Y.; Roman, C.; and Gill, C. 2010. Au-
tomated planning: Workflow allocation in a mobile setting.
http://www.cse.wustl.edu/ chen/workflow/.
Marjanovic, O., and Orlowska, M. E. 1999. On modeling
and verification of temporal constraints in production work-
flows. Knowl. Inf. Syst. 157–192.
Moreno, M. D. R., and Kearney, P. 2002. Integrating
AI planning techniques with workflow management system.
Knowledge-Based Systems 15(5-6):285 – 291.
Myers, K. L., and Berry, P. M. 1999. At the boundary of
workflow and AI. In Proc. of AAAI.
Schuschel, H., and Weske, M. 2003. Integrated workflow
planning and coordination. In In 14th International Con-
ference on Database and Expert Systems Applications, 771–
781. Springer-Verlag.
Sen, R.; Hackmann, G.; Haitjema, M.; Roman, G.-C.; and
Gill, C. D. 2007. Coordinating workflow allocation and ex-
ecution in mobile environments. In COORDINATION, 249–
267.
Sen, R.; Roman, G.-C.; and Gill, C. D. 2008. Cian: A work-
flow engine for manets. In COORDINATION, 280–295.
Shi, Y.; Yang, M.; and Sun, R. 2011. Goal-driven workflow
generation based on AI planning. Computer and Computing
Technologies in Agriculture IV 346:367–374.
Son, J. H., and Kim, M. H. 2001. Improving the perfor-
mance of time-constrained workflow processing. Journal of
Systems and Software 58(3):211 – 219.


