
Dynamic Management of Paratransit Vehicle Schedules

Zachary B. Rubinstein and Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
{zbr,sfs}@cs.cmu.edu

Abstract

In this paper we describe REVAMP, a mixed-initiative tool
for real-time management of paratransit vehicle schedules.
Like many applications, paratransit scheduling is a dynamic,
execution-driven process, where unexpected events (e.g.,
traffic, breakdowns, new requests, cancelations) continually
force changes to precomputed schedules. The design of RE-
VAMP aims at support for this dynamic, real-time scheduling
process. Real-time information on the status and location of
vehicles and pending trips is used by REVAMP to maintain a
“live” schedule and provide the coordinating Dispatcher with
early visibility of potential delays. In response to detected
problems or opportunities, REVAMP can be used to generate
options for rearranging vehicle schedules to achieve better
quality of service. REVAMP is being developed to support
daily operations at ACCESS transportation systems, which
provides an advance reservation, shared ride paratransit ser-
vice for the greater Pittsburgh area in southwestern Pennsyl-
vania. We are currently integrating REVAMP into the existing
technology base used to support daily operations by one of
ACCESS’s service providers for an initial pilot test. We de-
scribe the principal components of REVAMP and the current
state of our solution to the ACCESS scheduling problem.

1 Overview
Paratransit transportation is one of the primary means for
people with disadvantages to get around in their daily lives.
Typically, this door-to-door service is booked in advance and
is publicly subsidized. As the demand for paratransit ser-
vices increases and availability of public funding decreases,
there is a constant balancing act between maintaining a high
quality of service while keeping the operations financially
feasible. One of the key activities in striking this balance
is efficient allocation of vehicles to service trips, especially
over the myriad of events that make it difficult to anticipate
how a schedule is going to have to evolve throughout its ex-
ecution during the day. The effectiveness and efficiency of
paratransit operations depends heavily on the ability to dy-
namically manage vehicle schedules in response to execu-
tion dynamics.

To augment the ability of Dispatchers to manage their ve-
hicles over execution events, we have developed REVAMP
(REal-time Vehicle Allocation application for increased Mo-
bility in Paratransit operations), a mixed-initiative, dynamic
scheduling system. REVAMP receives real-time status and

location information from the vehicles in the field and main-
tains a “live” schedule that is constantly updated to reflect
what actually happens during execution. This active model
provides Dispatchers with better situational awareness of the
states of current and future trips and a basis for early detec-
tion of trips that are in jeopardy of having poor quality of
service. For these problematic trips, REVAMP generates op-
tions to present to Dispatchers for rerouting the trips in order
to improve their service.

The immediate target of REVAMP is to address the daily
operations problem faced by service providers of ACCESS
Transportation Systems, the largest paratransit organization
in the Southwestern Pennsylvania Region. ACCESS over-
sees seven individual service operations that are apportioned
geographically to the region. These service providers make
about 6000 trips daily throughout Allegheny County. Of
these about forty percent are subscription service (regularly
scheduled) and sixty percent are day-ahead reservations.
Over the past twelve months, ACCESS has provided ser-
vice to around 26,000 unique customers. We are currently
developing a system that integrates REVAMP into ACCESS’s
existing technology base, for the purpose of carrying out an
initial pilot test with one of their larger service providers.
Our overall goals are to improve customer quality of service,
while simultaneously decreasing provider costs and provid-
ing the opportunity to offer expanded same-day request ser-
vice.

2 Paratransit Management Problem
The Paratranist management problem is an instance of the
Dial-a-Ride Problem (DARP) (Cordeau and Laporte 2003).
The objective in a DARP is to design vehicle schedules to
satisfy requests for travel between pick-up and drop-off lo-
cations at specified times. Typically, as input, DARPs spec-
ify a set of requests, a set of available vehicles, and a set
of constraints ensuring the quality of the service, e.g., time
windows within which pick-ups must be made or maximum
allowable ride time for a passenger. DARPs may be over-
subscribed, i.e., not all requests can be serviced within their
constraints, in which case the constraints may be relaxed in
order to help accommodate the extra requests. There often
are optimizing objectives for DARPs, such as minimizing
cost by minimizing the number of vehicles used while al-
lowing some level of constraint relaxation, or maximizing

service quality by determining the minimal number of vehi-
cles to satisfy the requests without relaxing constraints. For-
mally, there are two classes of DARPs, static and dynamic.
In a static DARP, all the requests and the available vehicle
are known up front. In a dynamic DARP, the requests are
serviced as they arrive and the available vehicles can be in-
creased. Most real-world DARPs are hybrids, with a major-
ity of the requests but not all being known up front and there
mostly being a static number of available vehicles but extra
ones are available at a cost.

We will focus on the version of DARP as it is instantiated
in ACCESS. Currently, ACCESS does not support day-of
requests, so the requests are known in advance. The one
exception to this advance knowledge is “will call” requests,
where passengers do not know the exact time of a return trip,
e.g., for a doctor’s appointment. These requests are handled
dynamically as soon as the call is received to pick up the
passenger.

The number of available vehicles is also known in ad-
vance. There are different types of vehicles available, each
providing capacity to carry a specified number of passen-
gers. Some types of vehicles provide wheelchair capacity,
while the others have strictly ambulatory capacity. In the
former case, wheelchair capacity can be converted to am-
bulatory capacity, so the overall carrying capacity will vary
depending on how the wheelchair capacity is used.

The service quality constraints for ACCESS are the fol-
lowing:

• Pick-Up-Window Constraint - The constraint on the win-
dow of time it is permissible to pick up a passenger is rel-
ative to time that ACCESS negotiates with the passenger
for his or her pick-up. Specifically, a pick-up should not
occur any earlier than ten minutes before the negotiated
time or any later than twenty minutes after the negotiated
time. For “will-calls”, the pick-up should occur no later
than forty-five minutes after receiving the call.

• Ride-Time Constraint - the ride time for a passenger
should be no longer than the maximum of twenty minutes
and the minimum of two hours and twice the estimated
time to go directly from the pick-up to the drop-off (i.e.,
max(20min,min(2hrs, 2 ∗ direct-tranisit-time))).

The providers are allowed to relax these constraints, but,
overall performance, is based on meeting them. If these
constraints are violated too often or by large magnitudes,
the provider risks having its service area reduced or loos-
ing its contract. The goal for the provider is to meet these
constraints while minimizing the resources it needs to use.

In preparation for the next day, providers generate a so-
lution , i.e., a set of vehicle schedules, to the DARP for the
following day’s requests. The solution is generated by us-
ing an offline scheduler based on (Jaw 1984) to create the
base schedules and then hand tweaking them. Complicating
this process is that, on average, there is a 15% request can-
cellation rate that occurs during the day of service. The hu-
man schedulers actually over allocate the vehicle timelines
in anticipation of these cancellations. That is, the start-of-
day schedules would require frequent relaxations of the con-
straints if they were to execute as scheduled, so the sched-

ules start with a number of trips that are already in jeopardy
of missing their service constraints. It is left to the Dispatch-
ers to resolve these problematic trips as cancellations arrive.

Although an advance reservation policy enables the ad-
vance development of a daily operations schedule, unex-
pected events that occur as execution proceeds (e.g., vehicle
breakdowns, traffic accidents, “will call” requests, trip can-
cellations) quickly force changes and degrade the quality of
originally planned vehicle itineraries. In current practice,
the Dispatchers responsible for coordinating the movements
of a service providers vehicles respond to these events in
a fire fighting fashion. Since the start-of-day schedule be-
comes an increasingly distant reference point as the day pro-
gresses, they often become aware of problems (e.g., poten-
tial late pickups) late, restricting their ability to effectively
respond. Although they have visibility of the real-time loca-
tion of vehicles, Dispatchers must often make decisions to
redirect vehicles without good understanding of the down-
stream consequences to subsequent trips scheduled for var-
ious vehicles. During peak request periods, the Dispatcher
can often become overwhelmed due to time pressure and
decision complexity. Ultimately, the quality of decisions de-
pends heavily on the Dispatchers expertise, and it is difficult
to find and retain experienced personnel in this position. As
a result, the decisions that are made are often suboptimal
with respect to maximizing customer quality of service, and
this has a cascading effect through the day. This situation is
typical of operations in other paratransit service contexts.

3 REVAMP
REVAMP is designed to address the problems identified
above and provide a basis for improving the real-time
decision-making of service provider Dispatchers. Most ba-
sically, it is designed to incrementally accept real-time up-
dates of vehicle status, and provide the Dispatcher with a
live schedule that continually reflects the current execution
state. Since this schedule encodes all relevant constraints
and requirements (e.g., expected travel durations, negotiated
pick-up times, maximum transit time limits), one immediate
benefit is the early detection and alerting of emerging prob-
lems (e.g., given the customer pick-up that was just reported,
the next scheduled pick-up after this current trip is projected
to be beyond its acceptable window). This capability alone
affords the Dispatcher with more time to take corrective ac-
tion, and in the worst case, enables the Dispatcher to inform
customers in advance of unavoidable delays (a service that
ACCESS has expressed an interest in providing). To sup-
port Dispatcher response to detected problems, REVAMP is
designed to generate options for rearranging trips across ve-
hicles to minimize the impact on customer quality of service.
This same options generation mechanism can also be used
as a basis for improving the efficiency of vehicle itineraries
when opportunities arise (e.g., trip cancelations) and for ac-
commodating new requests that arrive dynamically through
the day (e.g., “will call” return trips).

REVAMP consists of a suite of components whose un-
derlying object-model maps client requests and their cor-
responding pick-up and drop-off tasks to a Simple Tempo-
ral Network (STN) (Dechter, Meiri, and Pearl 1991). In-

cluded in that object model are vehicles and their timelines
(schedules) populated with the request and travel tasks. RE-
VAMP components include a schedule loader for installing
the start-of-day schedule, a schedule updater for integrating
real-time start and finish time information as well as can-
cellations into the schedule and for identifying problematic
trips and opportunities for improving existing schedule qual-
ity, and a gap finder for generating high-quality options for
inserting a request’s constituent tasks on vehicle timelines.

3.1 Object Model
The top-level objects in the model for REVAMP are vehicles,
requests, and tasks. There are three types of vehicles that dif-
fer in capacity and whether or not they are wheelchair acces-
sible. Each vehicle has a corresponding timeline (schedule),
which consists of an ordered set of tasks. A request repre-
sents the information provided when a client books a trip and
has attributes for the negotiated time (preferred pick-up time
or the time when a “will call” is received), the latitudes and
longitudes of the pick-up and drop-off locations, the number
of wheelchair passengers, the number of ambulatory passen-
gers, and whether or not it is a “will call” trip. A request also
indicates the provider to which the request has been assigned
by ACCESS and a unique identifying number for the request
known as a trip id.

When a request is created, both pick-up and drop-off tasks
are generated and mapped to the underlying STN. The STN
is a graph of time points connected by binary constraints
that determine the permitted intervals, i.e., lower and upper
bounds, for any given time point. An absolute constraint
emanates from the special, anchored calendar zero (cz) time
point and sets the lower and upper bounds of the target time
point to absolute times. A relative constraint sets the lower
and upper bounds of the target time point as offsets from the
source time point’s bounds. A task is represented in the STN
as a start time point and an end time point connected by a
duration constraint whose lower and upper bound values are
the time it takes to complete the task. As shown in Figure 1,
the pick-up-window constraint in ACCESS is represented as
an absolute constraint on the start time point of the pick-up
task. The ride time constraint is represented as a relative
constraint from the start time point of the pick-up task to the
start time point of the drop-off task.

In addition to the pick-up and drop-off tasks, there are
travel tasks, which are dynamically generated when insert-
ing the request tasks onto a vehicle timeline. The computa-
tion for determining the duration of a travel task depends on
the origin and destination of the travel and the time of day
when the travel occurs. The travel duration is calculated by,
first, using a great-circle computation to determine the dis-
tance between the origin and destination. Then, a speed is
selected based on whether or not the travel will occur during
rush hour. The final duration is the distance divided by the
speed. The non-rush-hour speed is used if there is enough
time within the bounds of the travel task to complete the
travel without having to travel during rush hour. Otherwise,
the rush-hour speed is used.

One of the complications of this duration model is that,
as travel tasks move in time, i.e., become earlier or later due

!"#$%&$'!(!#)*+,!$)&-.!/-.!&00+,!$)&-.!)1!23+!4)-52,/6-2!
!-2 !(!-+7)8/2+.!89+!1),!23+!064:;&0!2/5:!
!2. !(!96-69/#!2,/<+#!.&,/8)-!2)!7)!1,)9!52/,2!2)!+-.!

=64:;>0! ?,)0;@A!

"-
2;B
C%-

2D
EC
'!

"F%F'! "F%F'!"C%G'!

"C%96-HBEC%9/IHEC%EJ2.KK'!

064
:;&

0!*
6-.

)*
!

.&,/8)-! .&,/8)-!5+L&+-46-7!

,6.+!89+!

4M!

Figure 1: Request Tasks STN Mapping.

to changes in the schedule, their durations may change as
a result of moving in or out of rush-hour periods. To en-
sure proper travel durations, REVAMP adjusts the travel du-
rations of constituent tasks where necessary after any change
is made to a vehicle timeline. This process is elaborated be-
low in the descriptions of the components.

3.2 Schedule Loader
The schedule loader converts the provider’s start-of-day
schedule into the underlying object model. Complicating
this procedure is that the start-of-day schedules, in anticipa-
tion of the 15% cancellation rate, are oversubscribed and can
have many requests scheduled that will violate either or both
pick-up-window and ride-time constraints. For example, in
the start-of-day schedules of a particular service provider for
a 1 week period, approximately 2/3 of the scheduled re-
quests had constraint violations. A start-of-day schedule of
request tasks (i.e., pick-ups and drop-offs) for a given vehi-
cle is loaded into REVAMP by processing each task in order
from earliest to latest. Constraint violations are handled by
a constraint relaxation process (described below).

A given task is appended to a vehicle timeline by first
checking to see if the task is at a different location than that
of the previous task. In the case where the timeline is empty,
the vehicle is assumed to be at the location of the garage
of the provider. If the new task is at a different location,
then a travel task is created with the appropriate duration for
getting from the location of the previous task to the location
of the new task sometime between the earliest finish time of
the previous task and the latest start time of the new task.
If the travel task is created, it is inserted on the timeline by
adding a sequencing constraint between the end time point
of the previous task and the start time point of the new travel
task. A sequencing constraint dictates that the source time
point must occur before (or simultaneously with) the target
time point. Finally, the task being processed is added to the
timeline by inserting a sequencing constraint between the
last task on the timeline and it.

Since the start-of-day schedule can be overloaded, it may
not be possible to assert the sequencing constraint to the

new task without violating its upper bound constraint (either
the pick-up-window-constraint on a pick-up task or the ride-
time constraint on a drop-off task). If it cannot be added,
then the upper-bound constraint is relaxed by remembering
its original upper bound value and setting the upper bound
on the constraint to∞, i.e., unbounded. Then, once the se-
quencing constraint is asserted, the upper bound on the up-
per bound constraint is anchored to ensure that the current
tardy time does not slip any later.

The end result of the schedule loader is a complete start-
of-day schedule modeled with all necessary relaxations and
in a form that can continue to be modified to reflect the im-
pact of execution-time events on the schedule.

3.3 Schedule Updater
The schedule updater is responsible for keeping the inter-
nal model of the schedule in sync with how the sched-
ule is actually executing. It incorporates into the model
execution-time updates on the actual start and finish times of
request tasks and on cancellations. In each case, constraints
on downstream tasks are relaxed or tightened when neces-
sary/possible. The schedule updater also detects impending
requests that are in jeopardy of missing service quality con-
straints, and, in the case of cancellations, triggers the gener-
ation of options for the most imperiled requests in order to
improve overall schedule quality.

Actual start and finish times for request tasks are reported
by the vehicles as they make their stops. When the actual
start time for a task is received, the start time point of the
task is fixed at the reported time by adding an absolute con-
straint with the lower and upper bounds set to the reported
time. In the straightforward case where schedule updates on
the start and finish times of tasks are received in the order
specified by the schedule, the updater relaxes any constraint
that it must in order to achieve consistency with actual times.
If a task finishes later than expected, then the duration con-
straint on that task is lengthened. If there is a violation when
attempting to assert the new duration length, the STN re-
turns the set of constraints that are inconsistent with the new
constraint and the amount that the new constraint violates
the existing constraints. The returned constraints are used to
relax the downstream constraints in order to make it possi-
ble to assert the new duration constraint. First, the returned
set of constraints are searched for the first upper bound con-
straint found. Then, that constraint is relaxed by the mag-
nitude of the violation. Next, the new duration constraint is
attempted once more. If it fails, then the relaxation process
is invoked again with the new set of returned constraints.
This iteration continues until the duration constraint can be
asserted.

In the case where a task finishes early, the duration con-
straint is shortened, all subsequent relaxed tasks on the time-
line are tightened when possible. If a pick-up task starts
earlier than its pick-up-window constraint allows, that con-
straint is relaxed to accommodate the actual start time. After
any changes are made to the timeline, the scheduled tasks are
mapped over to ensure that relaxed constraints are as tight as
possible and travel tasks have their appropriate durations. A
possible side-effect of these modifications is that the upper-

bound constraints on downstream tasks may have to be tight-
ened or relaxed, depending on whether or not the new travel
durations are shorter or longer. Note that previously relaxed
constraints are never tightened beyond their original values.

Drivers are not required to pick up passengers in the or-
der of the schedule and, therefore, can report starting a task
that is not the next task expected to execute on the schedule.
In this case, the schedule updater moves the reported task
up in the schedule to follow the last completed task, insert-
ing travel tasks where needed to get from the last completed
task to the reported task and from the reported task to the
task that was scheduled to execute next. This insertion may
require relaxation of some of the upper-bound constraints
on pending tasks that were expected to execute earlier. Af-
ter the insertion, the durations of the travel tasks among the
subsequent tasks are corrected when necessary.

As the actual start and finish times are reported, the sched-
ule updater keeps a running list of all tasks that have had one
or more of their constraints relaxed. This list is used to deter-
mine if REVAMP should alert the human dispatcher of trips
that are likely to violate the service constraints. The current
policy alerts the dispatcher of trips in jeopardy that are to
be serviced within the next two hours. However, if desired
the dispatcher can also request to view all endangered trips,
along with the expected magnitude of delay in each case.

The schedule updater also updates the schedules of vehi-
cles when requests are cancelled. When a request is can-
celled, its pick-up and drop-off tasks are removed from the
timeline as well as their corresponding travel tasks. Then,
when necessary, new travel tasks are inserted to bridge the
distance between tasks on either side of the removed tasks.
As with all timeline modifications, the travel tasks on the
timeline are checked to ensure that they have the correct du-
rations. There is a restricted cancellation that occurs when
a driver arrives at a pick-up task and discovers that no one
is there. In this “no-show” case, the drop-off task for the
request is removed from the timeline. A cancellation po-
tentially represents an opportunity for remedying an endan-
gered trip by moving it to the timeline with the cancellation
that now has more slack on it. The schedule updater will
trigger the gap finder on cancellations to present reschedul-
ing options to the dispatcher for rerouting problematic trips.

3.4 Gap Finder
The gap finder generates scheduling options for servicing
a given request. It is triggered either automatically by the
schedule updater in the case of cancellations or deliberately
by the Dispatcher via the list of problematic or unscheduled
requests. In the latter case, if the request is already sched-
uled, it is temporarily unscheduled before searching for op-
tions. The general strategy of the gap finder is to search
all vehicle timelines for feasible slots between scheduled re-
quest tasks for the request’s pick-up and drop-off tasks. A
slot is feasible for a task if a) the time window of the slot can
accommodate the constraints of the task plus any additional
travel required, and b) the current available ambulatory and
wheelchair capacity is sufficient to accommodate the pas-
senger demands on the request

All pairs of feasible slots for a request on a given vehi-
cle timeline are found by traversing the timeline and trying
the eligible slots for the pick-up task on the request. For
each slot within the pick-up window, the pick-up task is in-
serted and required travel tasks are inserted and adjusted as
required. If no violation occurs, the slot is feasible. Then,
with the pick-up task temporarily inserted, the downstream
slots on the timeline are checked to see if they are feasible
slots for the drop-off task. The valid slots for the drop-off
task are found by searching the remaining slots on the time-
line that have time bounds within the constraints of the drop-
off task and hypothetically inserting the drop-off task and as-
sociated travel into each of these slots. Any time a drop-off
task is successfully added, the travel tasks of other surround-
ing tasks are adjusted to ensure that they have the correct du-
rations. If those durations cannot be enforced without a vio-
lation, the drop-off slot is not feasible. For each pair of fea-
sible slots found, a candidate is generated and saved. Then,
the drop-off task is unscheduled and the subsequent slots are
checked to see if they are valid for the drop-off task. Once
there are no more slots to search for the drop-off task, the
pick-up task is unscheduled and the subsequent slots on the
timeline are examined to see if they are valid slots for the
pick-up task. This process continues until all feasible candi-
dates for that request on that timeline have been generated.
All possible candidates are generated by searching all the
vehicles’ timelines.

For each candidate option generated, the following per-
formance measures are computed and associated as the can-
didate is generated:

• Pick-Up Tardiness - the maximum of zero or the amount
of time by which the earliest start time of the pick-up task
exceeds the negotiated time.

• Drop-Off Tardiness - the amount of time by which the ear-
liest start time of the drop-off task exceeds the earliest
possible start time of drop-off task (assuming direct travel
from pick-up location to drop-off location).

• Additional Travel Duration - the amount of travel time
that had to be added to the vehicle timeline to accommo-
date the candidate.

• Additional Total Tardiness - the sum of the pick-up tar-
diness and any tardiness introduced to other tasks on
the timeline due to the shifting required to accommodate
scheduling the candidate.

These metrics are used to prioritize the candidates. Which
metrics are optimized depends on what is most valued in
the organization. For ACCESS, the most important quality
is to service all the requests without violating their service
constraints. To match this priority, the gap finder prioritizes
candidates to minimize Additional Travel Duration, which
minimizes the amount of overall time that has to be allocated
to service a request and, thus, leave more available capacity
to meet future requests. A subset of the top candidates are
presented to the Dispatcher as possible options, since the
Dispatcher may have additional knowledge about the exe-
cuting environment that might give preference to a lesser
ranked candidate. In automated mode, REVAMP would sim-

ple select the top-ranked choice and add this commitment to
the schedule.

When the timelines are tight, it is possible that no candi-
date can be found for a request. In this case, the upper bound
constraints on the pick-up and drop-off tasks of the request
are iteratively relaxed by set amounts until candidates can be
found for the request. Before a candidate is generated, the
upper bound constraints are tightened to their original (sat-
isfied) values, the feasible relaxation values determined for
these upper bound constraints by this search are stored with
the candidate. As before, the candidates are prioritized. But,
for relaxation, we chose to minimize the sum of the pick-
up and drop-off tardiness, since in this case this alternative
metric tends to better minimize worst case tardiness. When a
relaxed candidate is scheduled, the upper bound constraints
on the pick-up and the drop-off tasks are first relaxed to their
stored values on the candidate.

4 Current State
The individual components of REVAMP are implemented
and have been tested on the types of events present in histor-
ical data provided by ACCESS. These events include start-
of-day requests and routes, actual start and finishes time,
cancellations, no-shows, and vehicle downtimes. We are
currently integrating REVAMP into the existing technology
base provided by ACCESS to its providers, in preparation
for an initial pilot test of developed capabilities with a par-
ticular ACCESS provider. This effort involves developing
an API for the base system to convey to REVAMP the initial
schedule, real-time tracking information, and the changes
made to the schedule by Dispatchers, and for REVAMP to
inform the base system of changes in the schedule during
execution, of updates to the list of requests that are currently
expected to violate service constraints, and of options for re-
assigning requests to vehicles to improve overall schedule
quality. Where appropriate, we will use the base system’s
user interface to minimize user training, but we are also
exploring use of other graphical display formats that bet-
ter convey real-time schedule status and dynamic scheduling
options.

We are currently running experiments to evaluate the po-
tential improvement REVAMP can provide to Dispatchers.
We have from ACCESS the start-of-day information, includ-
ing all requests, initial schedules, and vehicles used, and the
corresponding end-of-day information, including the actual
times for the stops on the routes, the cancellations (including
no-shows), and the information on the “will call” requests.
We are using this data to simulate the use of REVAMP in
fully autonomous mode to manage the schedule over the
events of those days and compare its performance to the
actual performance of the Dispatchers on those days. The
metrics we use for comparing performances are the num-
ber of relaxed requests, the number of relaxed pick-ups, the
mean/median/maximum relaxation for pick-ups, the average
relaxation for pick-up over all pick-ups, the number of re-
laxed drop-offs, the mean/median/maximum relaxation for
drop-offs, and the average relaxation for drop-offs over all
drop-offs. This comparison is obviously an approximation,

since the moment REVAMP diverges from the actual sched-
ule, actual travel times are no longer available nor are the
effects of drivers servicing stops in a different order than the
schedule. To make the experiments more realistic, we have
formed models based on the year’s worth of data that we cur-
rently have. These models vary the duration appropriately
on the new trips and report stops out of order in appropriate
contexts with representative frequency.

As a preliminary result to demonstrate that there is room
for improvement, we took start-of-day schedules, loaded
them, and collected the comparison metrics. Then, we used
the gap-finder (in automated mode) to schedule all requests
in the start-of-day schedules using the same configuration
of vehicles. We ran this experiment on a week’s worth of
data from one of the providers. Table 1 shows the sched-
ule comparison for one day, which is representative of the
other days’ results. As can be seen by the far fewer relax-

provider REVAMP
total-requests 902 902
total-relaxed-requests 577 17
total-relaxed-pickups 386 17
avg-relaxed-pickup-overall 25m 25.84s 44.80s
avg-relaxed-pickup 59m 25.57s 39m 37.29s
median-relaxed-pickup 31m 9s 42m 29s
max-relaxed-pickup 5h 1m 17s 1h 15m 17s
total-relaxed-dropoffs 327 9
avg-relaxed-dropoff-overall 7m 59.65s 13.63s
avg-relaxed-dropoff 22m 3.07s 22m 46s
median-relaxed-dropoff 13m 14s 16m 5s
max-relaxed-dropoff 4h 10m 11s 50m

Table 1: Start-of-Day Schedule Comparison

ations, reduced maximum relaxations, and mostly reduced
averaged relaxations, there appears to be substantial room
for improvement. A caveat to this result is that the human
schedulers at the provider may be considering other con-
straints, such as stability of subscription routes, driver famil-
iarity with particular areas, etc., that REVAMP does not cur-
rently model. And, as noted earlier, the start-of-day sched-
ule is formed with the expectation of a 15% cancellation
rate. Nevertheless, the difference is so dramatic that it ap-
pears that substantial improvement is likely. In particular,
just having the start-of-day schedule that is better aligned
within customer service constraints reduces the initial de-
mand on the Dispatcher to pay attention and manage those
trips that are already in jeopardy of being delayed.

5 Future Work
Our short-term focus is on refining and hardening REVAMP
in its integration with ACCESS’s existing technology base
to ensure its performance and reliability in the pilot and in
wider deployment in ACCESS. A large part of that effort
will be focused on developing the user interface that will al-
low the Dispatchers to grasp the situational awareness and
options provided by REVAMP, evaluate the alternatives, and
take quick effective actions. If the pilot is successful and RE-
VAMP is able to quickly offer good scheduling solutions to

unscheduled requests, we would like to work with ACCESS
to offer a limited same-day service.

We are also investigating incorporation of more sophisti-
cated option generation capabilities within REVAMP. First,
the current method for relaxing a request that cannot be fea-
sibly scheduled has a limited degree of freedom in that the
only constraints relaxed are those of the tasks constituting
the unscheduled request. It may be possible to find better
solutions by adjusting multiple trips on timelines to accom-
modate a given unscheduled request. One approach we are
exploring is a variant of task swapping (Kramer and Smith
2004), where other temporally overlapping requests are tem-
porarily unscheduled to create space for a target request and
then reinserted in a feasible manner.

Second, we would like to expand REVAMP to include
backward search from the drop-off time, i.e., given when
a person needs to be at a destination, schedule backward to
establish the pick-up time. In this case, the drop-off time
would be treated as a hard, upper-bound constraint. In ad-
dition to better servicing appointment constraints of passen-
gers, it also could be used to improve multi-modal travel-
ing where paratransit transportation is used to connect with
other fixed route services. In general, REVAMP should pro-
vide a basis for better coordination of multi-modal trips in-
volving ACCESS transport to a public transit gateway (or
other fixed route service) and vice versa. By incorporating
external schedules and capitalizing on real time information
of the locations and status of ACCESS vehicles (and, in the
future, potentially the real-time location of public transit ve-
hicles), we believe that better synchronization of multi-leg
trips can be achieved, resulting in less customer wait time
and shorter overall travel times. To facilitate this type of
planning by passengers, we envision use of on-line browser-
based and mobile-based applications for planning and book-
ing both basic paratransit trips and multi-modal trips.

Acknowledgements The research described in this paper
was funded in part by a grant from the 2010 Federal Transit
Administration New Freedoms Initiative and the Robotics
Institute at Carnegie Mellon University.

References
Cordeau, J.-F., and Laporte, G. 2003. The dial-a-ride prob-
lem (darp): Variants, modeling issues and algorithms. Quar-
terly Journal of the Belgian, French and Italian Operations
Research Societies 1:89–101.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Jaw, J.-J. 1984. Solving large-scale dial-a-ride vehicle
routing and scheduling problems. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology. Dept. of Aeronautics and
Astronautics., Cambridge, MA.
Kramer, L., and Smith, S. F. 2004. Task swapping for
schedule improvement - a broader analysis. In Proceedings
14th International Conference on Automated Planning and
Scheduling (ICAPS 04).

