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Abstract 

The Universität der Bundeswehr München is conducting re-
search in the field of single-operator multi-aircraft guidance. 
This article describes the Mixed-initiative Mission Planner 
(MMP) as far as requirements, concept, design and imple-
mentation are concerned. The MMP is applied to a time-
constrained multi-aircraft in-flight mission planning prob-
lem. It works in conjunction with a cognitive assistant sys-
tem for an Uninhabited Aerial Vehicle (UAV) operator, 
who generates and modifies multi-aircraft mission plans in-
crementally. The assistant system is able to evaluate, com-
plete, and generate such plans with the aid of the MMP and 
to communicate with the operator, which results in a mixed-
initiative planning approach. Mixed-initiative planning sys-
tems need to be able to evaluate the partial or complete hu-
man plans as well as the problem itself. For this reason there 
are two instances of the MMP in our system design. One is 
configured as a slave to the human input to assume what the 
human is planning and the other as a free planner that gen-
erates reference plans. The assumed human plan includes 
temporal information about already planned and future 
tasks, and it can be compared to the reference plan by the 
assistant system, allowing it to decide whether and when to 
take initiative. The MMP prototype implementation consists 
of a Planning Process Manager that dynamically generates 
problem descriptions, a freely available PDDL 2.2 compati-
ble planner, and multiple domain descriptions. 

 Introduction  

Uninhabited Aerial Vehicles (UAVs) in use today are typi-

cally performing preprogrammed missions that can be 

manually altered in-flight by a crew of at least two human 

operators. With the advent of multi-UAV scenarios and 

Manned-Unmanned Teaming (MUM-T), which stands for 

the joint operation of manned and unmanned assets, the 

operator-to-vehicle ratio shall be inverted in future applica-

tions. For this reason the Institute of Flight Systems at the 

Universität der Bundeswehr München is conducting re-

search on artificial cognitive systems that aid the UAV 

operator in coping with high work demands caused by 

multi-vehicle guidance and mission management. On the 

one hand, these systems can be deployed onboard of the 

UAVs to let them become semi-autonomous, cooperative, 

and guidable on a task-based level, which is more abstract 

than programming waypoints (Uhrmann, Strenzke, and 

Schulte 2010). On the other hand, the operator shall be 

supported in mission planning and UAV tasking by a cog-

nitive assistant system (Donath, Rauschert, and Schulte 

2010). In this article we describe the mission planning 

module, which enables interactive online multi-vehicle 

mission planning, in which both the human (UAV opera-

tor) and the machine (assistant system) can take initiative. 

Hence, we call it Mixed-initiative Mission Planner (MMP).  

 Of the many mixed-initiative planning systems that we 

examined, to our knowledge only (Funk et al. 2005) ex-

plicitly deals with online planning, i.e. dynamic changes of 

the situation or the goals during the human problem-

solving process and the associated re-planning under time 

pressure. Their approach allows the user to delegate tasks 

on different levels of a task hierarchy, which leaves the 

planning of details unspecified by the user to the automa-

tion. This human-automation integration approach is called 

supervisory control (Miller et al. 2005). In contrast to this, 

we implemented cooperative control with real automation-

initiative, i.e. the assistant system can initiate dialogs with 

the user, which is a step into the direction that (Ferguson 

and Allen 1998) have chosen. But our approach differs by 

following the Cooperative Automation and assistant sys-

tem paradigms of (Onken and Schulte 2010), who proclaim 

a rather passive and invisible assistant, that only interacts 

with the human operator on its own initiative and does this 

solely in case he/she shows suboptimal behavior. The as-

sistant system is otherwise invisible and silent, thereby 

leaving mission responsibility to the human and keeping 

him/her in the control and decision loop. 



 First, this article describes the requirements posed by the 

MUM-T application problem and our assistant system 

approach. Then, the concept of the MMP is derived from 

these requirements. After that, we explain its design and 

give an overview of the implementation. Also, evaluation 

approaches and first results are presented, and current 

problems as well as future work are outlined. 

Requirements for the MMP 

The UAV operator’s workplace is located inside a helicop-

ter cockpit, which is part of a large-scale Manned-

Unmanned Teaming simulation (Uhrmann, Strenzke, and 

Schulte 2010). The MMP shall enable the helicopter crew 

to accomplish experimental MUM-T missions with man-

ageable workload. In this section, we describe the MUM-T 

application scenario and the assistant system with respect 

to the requirements they generate for the MMP. 

Helicopter and UAV Mission Application Scenario 

In our MUM-T scenario, a manned transport helicopter is 

supposed to carry troops from a pickup zone to an opera-

tion area with two possible drop zones nearby (cf. figure 

1). In order to get there, the helicopter has to cross the 

forward line of own troops (FLOT) by the use of defined 

corridors within specified time windows. In total, there are 

about 25 mission-relevant locations in the scenario. Three 

UAVs are taking over the preceding reconnaissance of the 

helicopter routes and of the drop zone. The more UAVs 

perform the reconnaissance of a route, the broader is their 

sensor footprint, thereby increasing safety for the manned 

high value asset. Prior to the start of the mission, a mission 

order is provided, which includes certain constraints, e.g. 

the preferred drop zone, the preferred ingress and egress 

corridors, the mandatory pickup zone, the permitted times 

to land at the pickup and drop zones, the corridor opening 

times, the takeoff clearance time (earliest mission start), as 

well as the final destinations of all aircraft and troops. 

Hence, the automated planning of such a mission makes 

concurrent actions and temporal planning necessary. 

 During execution of the mission the operator enters a 

mission plan into the system stepwise by allocating a series 

of individual tasks to each of the UAVs via a task-based 

guidance graphical user interface (GUI) (Strenzke et al. 

2011). The generated tasks are chronologically ordered, 

but do not contain any time tags. The following task types 

can be given to the UAVs: take off, land, transit, cross 

FLOT, recce route, recce area, and object surveillance. The 

semi-autonomous UAVs possess restricted planning capa-

bilities that allow them to insert mandatory tasks that the 

operator left out. In the course of the mission, ground ob-

jects are spotted by the UAVs. These events can lead to the 

necessity of re-planning the mission (e.g. primary landing 

site or corridor are threatened, cf. figure 1). Also, after the 

first mission is accomplished, a second troop transport 

order is given to the helicopter crew, making re-planning 

of the egress phase necessary.  

Figure 1: Manned-Unmanned Teaming Mission Scenario 

 In this simulated scenario we do not regard the move-

ment of any dynamic objects which are not under control 

of the human (e.g. ground vehicles). The helicopter is also 

under his/her control (constraint-based guidance, e.g. 

which corridor and landing site to use) because in our 

MUM-T scenario the UAV operator and the helicopter 

commander is the same person. Hence, the mission plan-

ning problem is deterministic. 

 In the helicopter domain, time plays an important role. A 

mission plan always has to be complete, i.e. including 

landing in safe territory before fuel runs out. In addition to 

that, timely coordination is necessary (e.g. site has to be 

reconnoitered before landing). Therefore, all agents have to 

be included in the plan. This makes the problem complex. 

The solution process and end state are not well-defined 

(i.e. there are multiple possible ways of solving the prob-

lem and these are not known in advance). Hence, we need 

optimality criteria, merged together in a cost function. This 

function shall represent the minimization of risk to human 

life (i.e. the helicopter crew), risk to equipment (i.e. risk to 

the manned and unmanned aircraft), violation of the mis-

sion order, as well as financial costs (i.e. short flight paths).  

Manned-Unmanned Teaming Assistant System 

The MUM-T assistant system is realized as a knowledge-

based system that supports the UAV operator upon detec-

tion or anticipation of suboptimal behavior. It mainly holds 

knowledge about the modes of interaction with the human 

operator (Donath, Rauschert, and Schulte 2010). In the 

mentioned cases, the assistant system has three options to 

aid the operator. It can provide a warning, suggest an ac-

tion proposal, or initiate an action (e.g. reconfiguration of 

some system). To communicate with the operator, the 

assistant system instantiates a dialog or makes an an-

nouncement via speech synthesis and the displaying of a 

message box in the task-based UAV guidance GUI. When-

ever appropriate, this message box includes a few buttons 



that allow the operator to invoke further aid by the assis-

tance system or to either accept or reject its proposals. E.g. 

• Assistant takes initiative: “UAV1 needs follow-up task”  

• Operator presses “proposal” button 

• Assistant proposes: “Add task transit HB PZ for UAV1” 

• Operator presses “accept” button 

• Assistant affirms: “Added task for UAV1” 

 These dialogs can either refer to a single task to be allo-

cated to or executed by a UAV, or to a complete plan to 

cover the remaining mission goals. Following the Coopera-

tive Automation and assistant system paradigms of (Onken 

and Schulte 2010) the assistant system initiates these dia-

logs only if it is found necessary to support the human 

operator, i.e. he/she made an error (i.e. his/her behavior is 

below a certain optimality threshold) or an error is antici-

pated by the assistant system (i.e. his/her plan seems below 

a certain optimality threshold). To decide whether, when, 

and how assistance should be provided to the operator 

• the assistant system has to be able to anticipate, which 

tasks the operator has to execute and when he/she is 

supposed to do this (i.e. plan is incomplete and has to be 

evolved soon due to time constraints), and 

• the assistant system has to be able to notice sub-

optimality in the past planning performance of the opera-

tor (i.e. his/her plan is too suboptimal). 

 Accordingly, during the execution of the mission the 

assistant system has to check the completeness and opti-

mality of the operator-given UAV tasks upon any operator 

input that is conflicting with the current plan, any relevant 

tactical situation change (e.g. new threat enters the scenar-

io), and any mission order change (i.e. new mission objec-

tives received or mission objectives have already been 

met). The assistant system also needs the ability to propose 

a new plan to the operator in case his/her plan is infeasible 

or suboptimal. Taking all this together, the system requires 

•  the ability of temporal planning to complete, generate 

from scratch, and monitor a task agenda, as well as 

• the ability of plan evaluation (cost comparison).  

 Hence, the world model of the MMP has to incorporate 

the conceptions of time and costs, and it has to be able to 

perform the necessary calculations in order to provide a 

basis for assistant system decisions. These decisions have 

to be made fast, therefore anytime planning is useful. 

Concept of the MMP 

In order to develop a Mixed-initiative Mission Planner for 

the MUM-T domain, we first have to analyze the role of 

the human and of the automation as well as their mixed-

initiative interplay. The starting point is that the human 

shall be able to enter mission plan into the system com-

pletely on his own. This is due to our passive assistant 

system approach and the mentioned responsibility he/she 

has concerning the mission and the involved systems. This 

planning task has to be performed by means of a graphical 

user interface that only allows the incremental generation 

of a single plan.  

 Now we suppose that the human has at least one plan in 

his/her mind and that he/she enters this (the best one or the 

primary) into the UAV guidance system. Therefore, we can 

distinguish between the plan(s) in the human mind (human 

plans – HuP) and the plan that is stored in the system (sys-

tem plan – SyP), i.e. the current active plan for the auto-

matic UAV guidance, that is recognized and modified by 

the human operator and the assistant system in mixed-

initiative fashion. Because it is difficult to get hold of the 

HuP, the assistant system can only evaluate the SyP.  

 Plans generated by the assistant system (assistant sys-

tem plans – AsP) constitute a third type of plans in our 

concept. Figure 2 shows the concept that incorporates all 

these plan types. Both human and machine shall be able to 

take initiative in order to manipulate the system plan ac-

cording to their understanding.  

Figure 2: Mixed-initiative planning concept for the MMP 

 The assistant system plans (AsP) can be further divided 

into what the machine computes as the best possible plan 

(reference plan – ReP) and what the machine supposes that 

the human is planning (assumed human plan – aHuP). In 

theory, multiple plans of each subtype can be stored by the 

assistant system, but this is not regarded in the following. 

The assumed human plan (aHuP) converges to the true 

human plan (HuP) with each additional detail the human 

discloses by tasking the UAVs and thereby expanding the 

SyP. Furthermore, the operator is driven to detail his plan 

by the warnings and proposals of the assistant system, 

possibly letting the HuP and SyP converge to either the 

aHuP or the reference plan of the machine (ReP). 

 Similar to (Miller et al. 2005) our concept follows a 

shared task model that allows human and machine to 

communicate about tasks for the aircraft, goals and plans. 



This is explained in more detail in (Strenzke et al. 2011). 

Furthermore, our MMP concept is based on planning the 

mission as reaching a defined world state (which is in our 

case the end state of the mission) and optimizing the way 

to this state. Hence, partial human plans must be completed 

in the machine's mind to evaluate them. 

Design of the MMP 

During the mission, the assistant system receives infor-

mation about the mission order, the current tactical situa-

tion, and the aircraft task agendas out of SyP (cf. figure 3). 

From this information, the assistant system has to generate 

the aHuP as well as the ReP. In order to accomplish this, 

different constraint sets have to be transferred to the MMP. 

For this purpose the assistant system uses the Simple Tem-

poral Constraint Interface (STCI) as input interface of the 

MMP. We therefore deploy two instances of the MMP. 

One is intended to create the aHuP, and the other shall 

generate the ReP at the same time. 

Figure 3: Integration of the assistant core and MMP instances 

Slave and Free MMP Instances 

Both instances of the MMP receive the information about 

the current tactical situation, but they differ with respect to 

the constraints they take into consideration.  

 The so-called Slave instance of the MMP is slave to the 

human input, i.e. it uses the constraints expressed by the 

SyP (aircraft tasks) and the mission order to check the 

feasibility and completeness SyP. If the SyP is feasible, the 

assistant core receives the start times and durations of the 

tasks that were calculated by the MMP, which is needed 

for monitoring the execution of already planned tasks. In 

case the SyP is incomplete (partial), the missing tasks will 

be added by the MMP, thereby assembling the aHuP, 

which allows the assistant system to monitor if the operator 

evolves the plan early enough to stay in schedule. 

 The Free instance of the MMP is responsible for the 

generation of the ReP. It receives only the mission order 

constraints, i.e. it is meant to disregard the SyP completely. 

Thereby, it checks if the problem is solvable in general, 

and in this case it generates a complete Free plan (i.e. the 

ReP), which can then be compared with the best scoring 

Slave plan (i.e. the aHuP) by the assistant system (see 

Evaluation chapter). This comparison reveals if the human 

operator inserted some elements into the SyP which might 

be suboptimal or even counterproductive and can therefore 

be used by the assistant system as basis for the decision 

whether to offer the ReP as the new SyP to the human. 

Simple Temporal Constraint Interface 

The STCI has been developed as an interface for the assis-

tant system core to the MMP to transfer planning con-

straints. Each constraint refers either to a task to be per-

formed or a state to be reached by an agent (i.e. aircraft or 

troops). State constraints are “be at ground position”, “be 

at air position” and task constraints include “transit”, “un-

load troops”, “load troops”, “cross FLOT”, “land”, “take 

off”, “recce route”, “recce area”, “object surveillance”. To 

generate multiple (and also open) time windows the tem-

poral specifiers for constraints are “at beginning”, “at end”, 

“anytime”, “not before”, “not after”. The latter two are 

associated with a single time value. “Anytime” means the 

task has to be done or the state has to be reached at some 

unspecified point in time or interval. The specification of a 

closed or half-open interval is possible with the addition of 

“not before” and/or “not after” constraints. An “at end” 

constraint specifies a goal state for the planner (non-

temporal) and “at-begin” constraints are needed to model 

tasks that are already in progress at the time of planning 

and therefore can be finished (before the agent starts exe-

cuting any other task). The constraints can be specified as 

either hard (mandatory) or soft (associated with definable 

violation costs). 

Implementation of the MMP 

Although many mission planning systems with symbolic 

focus used in the aerospace domain are based upon the 

HTN (Hierarchical Task Network) knowledge-based plan-

ning approach, there is a reason for us to prefer a classical 

operator-based planner. An HTN planner is designed to 

explore different predefined possibilities of task decompo-

sition and perform scheduling. This provides less flexibil-

ity compared to an operator-based planner, which is ex-

ploring combinations of atomic actions. Also, HTN plan-

ners have problems at planning for individual and inter-

leaving actions for multiple agents (Goldman 2006). For 

example in the HTN-based Playbook™ Approach, a play 

(cooperative action of multiple UAVs) has to be defined 

before it can be invoked by the operator (Miller et al. 

2004), which lowers flexibility. To find fine-granular solu-



tions of non-prescribed multi-agent cooperation in a central 

planning approach seems to be a strong advantage in the 

complex and dynamic environment of a MUM-T mission, 

although it poses a heavy burden on solution search per-

formance. This article briefly shows that for the MUM-T 

scenario described above good solutions can be found 

sufficiently fast by the MMP in principle. Performance 

details can be found in (Strenzke and Schulte 2011b). 

Figure 4: MMP internal structure and functionality 

 We chose the PDDL (Planning Domain Definition Lan-

guage) 2.2 (Edelkamp and Hoffmann 2004) representation 

due to its temporal expressiveness. In our implementation, 

the assistant system sends plan requests and constraints via 

the STCI to the Planning Process Manager (PPM). The 

PPM then translates the constraints dynamically into a 

PDDL 2.2 problem definition and starts multiple planner 

processes, which work upon this problem and use different 

static Domain Knowledge Configurations (DKCs) (see 

figure 4). The DKCs contains slightly varying MUM-T 

world models in order to try out different problem-solving 

heuristics. The generated plans (task agendas) are finally 

collected by the PPM and provided to the assistant system.   

Planning Process Manager 

As soon as the PPM receives a planning command via the 

STCI, it dynamically generates a PDDL problem file con-

taining the complete MUM-T problem with all aircraft. 

The current tactical situation, which includes all vehicle 

data (type, position, state) and all mission-relevant loca-

tions, is used as the initial state for the problem description. 

Also, all distances between the locations are calculated and 

set as numerical values (i.e. PDDL functions). As men-

tioned before, the human operator guides the UAVs on a 

task-based level, i.e. he/she provides tasks to the individual 

UAVs. Each task can be seen as a declaration of the opera-

tor’s intent. Hence, these operator-given UAV tasks consti-

tute constraints to the further planning process in addition 

to the externally given mission order when generating the 

aHuP. These and the constraints from the mission order are 

processed as follows. 

 The conversion of hard temporal constraints into PDDL 

works with timed initial literals (Edelkamp and Hoffmann 

2004) in combination with denying or allowing precondi-

tions for actions defined in the domain. E.g. if a constraint 

states that the takeoff of a specific aircraft from a specific 

location is allowed only after 10:00 (“not before” con-

straint), then via a timed initial literal at 10:00 a predicate 

“takeoff_denied” for this aircraft at this airport becomes 

false, which is a precondition for the “takeoff” action.  

The hard “at end”- and “anytime”-constraints are direct-

ly translated into goal states for the PDDL planner (see 

figure 5). In case of task constraints (“anytime”), a post-

condition is defined for the action corresponding to the 

task, which leads to the fulfillment of the predicate con-

tained in the goal state upon action execution. Soft con-

straints are realized via a benefit that is calculated into the 

total costs of the solution in case the constraint is met (e.g. 

normally the costs for landing are zero, but if landing is 

preferred at a specific location then the cost function for 

this location is set to a negative value). Unfortunately it is 

not possible to generate soft temporal (“not before”/”not 

after”) constraints with the current implementation. 

Figure 5: PDDL goals example including constraint sources 

Planning Engine 

As planning engine we use the PDDL 2.2 compatible LPG-

td (Local Search for Planning Graphs – timed initial literals 

and derived predicates) 1.0 (Gerevini, Saetti, and Serina 

2004) due to its full support of temporal planning capabili-

ties defined in PDDL 2.2 and its good performance. Also, 

due to its local search algorithm, it seems to work well 

with giving it the SyP as a goal chain that will be followed 

strictly by the resulting plan (i.e. each next UAV action 

fulfills one goal in the chain). The planner is used in best-

quality mode, i.e. it incrementally puts out the best plan 

found so far (evaluated by cost minimization constraint) 

until there has been provided a new planning request by the 

assistant system. The different LPG planning processes 



that are set off by the PPM perform their search each with 

a distinct initial random seed. Each MMP instance uses 12 

LPG processes in the current setup. 

Domain Definition 

The PDDL domain definition includes the description of   

object types, predicates, functions and actions. In the 

MUM-T world model there are location, aircraft and troop 

objects. In total, around 60 predicates and functions have 

been defined for the locations and their interconnections 

(in order to allow coarse route planning) and the descrip-

tion of the agents (aircraft, troops), e.g. location, speed etc. 

 All tasks that can be assigned via the task-based UAV 

guidance interface are represented as durative actions. Like 

the UAVs, the helicopter is of the aircraft object type but it 

is excluded from reconnaissance and surveillance actions. 

However, it has additional abilities, i.e. the loading and 

unloading of troops. Some tasks need multiple action mod-

els to cover different situations (e.g. “finish departure” as a 

special case of “departure” when this task is already in 

progress while starting the planner). This results in 30 

different durative actions implemented in total.  

 The MMP works with multiple PDDL domain configu-

rations in parallel in order to favor different heuristics. E.g. 

one DKC contains the additional very costly action “land 

at unrecc’d site”, allowing a solution including this action 

in principle. Because not all DKCs include this action and 

the pool of LPG processes is fed with the different DKCs 

in equal amounts (cf. figure 4), certain effort is spent on 

the search for solutions excluding this costly action per se. 

 All costs can be implemented via functions in PDDL 

and therefore need not to be part of the domain model but 

can be generated dynamically in the problem file. The cost 

model is still being tuned to satisfy test persons’ needs and 

optimize MMP as well as assistance system performance, 

therefore we do not present any numbers here. 

Evaluation of the MMP 

In this chapter we give preliminary evaluation results from 

the first experimental campaign that includes the MUM-T 

assistant system and the MMP. Then, some facts about 

typical problem sizes are provided and an evaluation meth-

od for assistant system decisions based on data generated 

by the MMP is outlined. More detailed data about the sub-

jective and objective MMP evaluation can be found in 

(Strenzke and Schulte 2011b). 

Subjective Evaluation 

The test persons were four German Army helicopter pilots 

acting as UAV operator, each solving two training mis-

sions with assistance system aid, then solving two experi-

mental missions without, and then two experimental mis-

sions again with assistance system aid. All of the missions 

were different but following the scheme described above. 

Subjective questionnaires about the MUM-T assistant 

system delivered the following results, which show a 

slightly positive trend, but also improvement potential: 

• Slightly better efficiency through automated task inser-

tion by the assistant system (when automated task exe-

cution was turned off) 

• Proposals to insert tasks lowered workload slightly 

• Proposals to insert tasks were considered rather useful 

• Proposals to insert tasks seemed rather necessary 

Objective Evaluation 

The most critical situation for the MMP in terms of per-

formance is the early phase of the mission after the opera-

tor has entered the UAV tasks into the system. In this situa-

tion the longest action sequence has to be generated in 

order to accomplish the mission and bring the aircraft back 

home again. Some rounded benchmark data for this case 

are given below: 

• 35 tasks to be given to the UAVs to fulfill mission 

• 600 facts about the 25 locations and their relations 

• 45 facts about the 5 agents 

• 35 timed initial literals 

• 50 goal predicates (Slave MMP) 

• 75 action steps in the solution 

• 20-30 seconds
1
  to find a satisfactory plan  

 (viewpoint of developer) 

Figure 6: Example of a good aHuP (Slave plan, red) 

 To analyze situations of false alarms as well as actions 

missed by the assistant system, it is interesting to compare 

the plan quality generated over time by the Free and the 

Slave MMP instances because a future version of the assis-

tant system will perform exactly this comparison in order 

to decide whether to take initiative to propose not only a 

                                                 
1 Each MMP instance is running on a high-performance PC with 6 hyper-
threading processors (i.e. 12 virtual processors, 1 per LPG process). 



single additional UAV task but a completely new mission 

plan. At the moment this is only done in special use cases. 

Two thresholds can be set in order to tune the decision 

process: the time to wait until a decision is made and the 

cost difference between the Free and the Slave plan. Figure 

6 shows an example of a good Slave plan (aHuP) beats the 

Free plan (ReP) after 16 seconds of incremental planning. 

This means that the human planning heuristics were more 

effective than those of the machine. Because of the chang-

es in the situation (e.g. aircraft moving, threat blocking 

primary corridor) and the goals (e.g. follow-up mission), it 

is not possible to compare the aHuP against any baseline or 

against the optimal solution because it is not known. 

Therefore, it is necessary to analyze these graphs in certain 

mission situations, where re-planning should be proposed 

by the assistance system. The threshold values could be set 

to start checking for a cost difference of e.g. 10.000 after 

waiting 20 seconds after starting both planners (see figure 

7). This analysis process is not yet completed. 

Figure 7: Applying time and cost thresholds to compare quality 

A Critical View on the MMP Implementation  

Our Cognitive Skill Merging approach to mixed-initiative 

has the goal to combine general human strengths and gen-

erals machine strengths in order to optimize overall hu-

man-machine system performance and compensate each 

other’s weaknesses (Strenzke and Schulte 2011a). Howev-

er, we see weak points in our implementation that are in 

conflict with the concept of this approach.  

 The first is the uninformed search concerning route plan 

generation. Routes that are longer than necessary can be-

come optimized through the incremental mode of the LPG 

over time. But these optimizations are associated with 

relatively small costs (e.g. in comparison to landing at 

threatened site) and therefore can lead to a time-intensive 

optimization process, while the sub-optimality of the route 

is easily visible for the human operator. From the human-

automation integration standpoint one would think that the 

route planning is a machine’s strength and not a weakness. 

The missing of explicit geometrical planning and reasoning 

leads also to problems concerning reconnaissance coverage 

optimization, which is an important issue for reconnais-

sance UAV mission planning. 

 Another weak point of the MMP is the lack of continu-

ous planning. This means that plan fragments that have 

already proven to be useful are not re-used. Instead every 

planning request by the assistant system makes the MMP 

generate a completely new plan (however, certain frag-

ments will reoccur due to the constraints the MMP re-

ceives). On the one hand, this leads to the problem that the 

operator can be confronted with a new machine plan that 

differs in many aspects from the previous one, which can 

cause confusion. However, this problem arises rarely in our 

current configuration because the Slave planner regards the 

human input as hard constraints, and therefore all aHuPs 

overlap in all tasks that these constraints refer to. On the 

other hand, the plan optimization process is interrupted and 

reset very often, even if there are only minor changes to the 

problem to solve. Hence, it is difficult to maintain or im-

prove plan quality in the long term. This problem could be 

addressed by remembering constraints that improved the 

solution and re-applying them. But this leads into the prob-

lem of having to try out hard constraint combinations. 

 A further problem is associated with the plan feasibility 

checking feature of the MMP. Because the search of the 

LPG does not terminate in case only temporal constraints 

deny the solution and there is no other possibility than to 

define these constraints as hard, the only workaround is to 

set a timeout concerning the waiting for planner output. To 

relieve the problem a little, one of the twelve LPG process-

es is fed with an “emergency plan” problem file with in-

creased helicopter travel speed (near helicopter vmax).  

 One drawback of operator-based planning in comparison 

to HTN planning also is that critical decision points (e.g. 

which corridor, which drop zone) are rather implicitly 

modeled and “lost” in combinatorial space. Test persons 

reported that they do not tend so much to plan hierarchical-

ly. Instead they liked our forward planning style interface. 

However, they are indeed used to plan their missions by 

means of suchlike critical decision points. 

Future Work 

Figure 8 visualizes two main trends in the development of 

planners today, which can be seen as the generalization and 

flexibilization on the one hand (e.g. triggered by the Inter-

national Planning Competition’s current focus on domain-

independent planning). On the other hand, many real-world 

applications need not only the flexibility of a planning 

engine but also performance, which is why Hierarchical 

Task Network (HTN) planning is used widely in real-world 

applications (Nau et al. 2005). As depicted in our Sigma-



Delta scheme (figure 8), such domain-configurable plan-

ners usually lack the flexibility of classical, domain-

independent planning. We explained before, that this was 

one reason for choosing a domain-independent planner. 

For planning more complex missions during human-in-the-

loop experiments with an acceptable response time, we 

consider a hybrid approach of classical operator-based and 

HTN planning, which would be similar to (Estlin, Chien, 

and Wang 1997; Biundo and Schattenberg 2001; Castillo, 

Fernández-Olivares, and González 2001), who set a trend 

towards efficient planning in a dynamic and unforeseeable 

real world. Further steps that alleviate real-world planning 

problems, like portfolio-based planning (Gerevini, Saetti, 

and Vallati 2009) or the situation-dependent assemblage of 

algorithms and a modular planner (Jameson et al. 2005), 

will not be taken in the near future. 

Figure 8: Planning approaches: Trends, performance, flexibility 

 Our future human-machine interaction research will 

address brittle (suboptimal) machine solutions (plans and 

advices) (Strenzke and Schulte 2011b). We will also regard 

different interaction timing configurations, i.e. the thresh-

old concerning the cost difference between the assumed 

human plan and the reference plan can be lowered to in-

crease and antedate automation-initiative or raised to make 

the assistant system intervention less intrusive. Further 

human-in-the-loop experiments to prove the concept of the 

MMP and investigate the above mentioned research topics 

are planned for the near future. 
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