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Abstract

Dora, the robot, is trying to find object in its environment.
Instead of just exhaustively searching everywhere, Dora is
equipped with probabilistic reasoning, representations, and
planning to exploit uncertain common-sense knowledge, such
as that cornflakes are usually found in kitchens, while also
accounting for the uncertainty of sensing in the real-world.
Dora demonstrates how to combine task and observation
planning in the presence of uncertainty by autonomously
switching between contingent and sequential planning ses-
sions. The demonstration emphasises the benefit of employ-
ing a robot with common-sense knowledge and the benefit of
the switching planner.

Introduction
With Dora, we are presenting results of our efforts to build
a robot capable of performing tasks on demand in dynamic
real-world environments. With this paper and demonstra-
tion we explicitly address the challenge to perform task and
observation planning under uncertainty in pursuit of current
robot goals by presenting a new planning approach to reason
with new representations of space. For Dora we integrate
probabilistic models of background conceptual knowledge,
and the visual appearance of objects and of room categories,
to solve an object search task. These models are used to
create and maintain a probability distribution over possible
states with respect to the spatial structure, the categories of
objects and rooms, and their relations to each other. Dora,
as presented in this paper, is a successor of a previous sys-
tem (Hawes et al. 2011) that did not make use of probabilis-
tic representations and featured only a classical, sequential
planner (Helmert 2006) to achieve exploration and categori-
sation of rooms.

Related Work
Probabilistic representations are employed for many lo-
calised functions in robots operating in the real world. For
example, Thrun et al. (2000) use such representations in
most of their system’s individual components, but their robot
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behaviour is generated using a reactive controller rather than
a domain-independent planner as here.

A number of recent integrated robotic systems incorpo-
rate a high-level continual planning and execution monitor-
ing subsystem (Talamadupula et al. 2010; Kraft et al. 2008).
For the purpose of planning, sensing is modelled determin-
istically, and beliefs about the underlying state are modelled
qualitatively. We are not aware of any robot system that
features both a unifying probabilistic representation, and a
domain-independent planner which is able to reason quickly
over that unified decision-theoretic model to generate be-
haviour.

Object search with mobile robots has been studied for al-
most 20 years (Shubina and Tsotsos 2010), yet no previous
system reasons with uncertain conceptual knowledge about
room and object categories. Instead, most dedicated systems
treat the problem as a geometric one. Closest to our ap-
proach is the work by Sjöö et al. (2010) who used common-
sense knowledge encoded into a rule-based ontology to in-
form a deterministic planner which previously categorised
room to search for a particular object. Bouguerra, Karlsson,
and Saffiotti (2007) extended this approach to treat some of
the conceptual knowledge as uncertain, although restricted
to the number of occurrences of object types in rooms. Va-
sudevan and Siegwart (2008) went beyond this to perform
room categorisation through Bayesian reasoning about the
presence of objects, but did not (as none of these did) in-
clude observation models in their reasoning (thus perception
was still considered to be deterministic).

The Dora System
In order to perform its object search task Dora is equipped
with a camera on a pan-tilt unit, a laser scanner, and one
laptop accommodating all the processes. The system archi-
tecture itself is an extension of PECAS (Hawes, Brenner,
and Sjöö 2009) composed of many components function-
ally structured into subarchitectures. In general, Dora fea-
tures speech understanding and dialogue components to re-
ceive commands from humans, a goal management subsys-
tem (Hanheide et al. 2010) translating commands into goals
for the planning subsystem, and many other utility compo-
nents whose description goes beyond the scope of this ex-
tended abstract. At the core of the system is the switching
planner. Its role is to deliberate Dora’s behaviour to ef-



ficient object search, exploiting common-sense, relational,
and conceptual knowledge. It operates on the probabilis-
tic belief state defined by the conceptual layer of the spatial
representation. This probabilistic representation utilises a
chain graph model (Lauritzen and Richardson 2002) for in-
ference and integrates conceptual and instance knowledge as
detailed by Hanheide et al. (2011), with the latter continu-
ously being maintained by perceptual processes.

Among these are processes that maintain metric and topo-
logical maps (Pronobis et al. 2009). Following an approach
described by Hawes et al. (2011) the map is discretised into
places and rooms, yielding discrete instances to plan with.
Also, we employ a continuously running process recognis-
ing properties which are evident of the category of rooms
following work by Pronobis et al. (2010). Properties being
recognised here are the shape of rooms and their visual ap-
pearance. Also, we employ an object detector (Mörwald et
al. 2010), pre-trained for a set of 19 objects of interest. The
planning system can invoke this object detector as part of
a sensing action to get evidence about the existence of an
object in the current view of the robot.

The probabilistic relations in the conceptual layer have
to be quantified appropriately. For probabilistic relations
between instances and concepts these are derived from the
sensing processes. For the relations of common-sense and
conceptual knowledge we either derive them from training
sets or from harvesting information from the web. As will
be demonstrated, Dora is capable of exploiting the proba-
bilistic knowledge about the co-occurrence of objects and
rooms. This relation was quantified employing a combina-
tion of qualitative bootstrapping from the Open Mind Indoor
Common Sense database1 and queries to an online image
search engine. This offline acquisition process yields con-
ditional probabilities, such as P (room = kitchen|object =
cereal box) = 0.33.

The Switching Planner
To generate flexible goal-oriented behaviour our system em-
ploys a domain-independent planner. The object search sce-
nario poses several challenges to the planning system: On
the one hand, planning and execution monitoring must be
lightweight, robust, timely, and should span the lifetime of
the robot. Those processes must seamlessly accommodate
exogenous events, changing objectives, and the underlying
unpredictability of the environment. On the other hand, in
order to act intelligently the agent must perform computa-
tionally expensive reasoning about contingencies, and possi-
ble revisions of subjective belief according to quantitatively
modelled uncertainty in acting and sensing.

In our work we take a concrete step towards addressing
the challenges we outlined. We have developed a switching
domain-independent planning system that operates accord-
ing to the continual planning paradigm. It uses first-order
declarative problem and domain representations, expressed
in a novel extension of PPDDL (Younes et al. 2005) called
Decision-Theoretic (DT)PDDL, for modelling stochastic de-
cision problems that feature partial observability. The sys-

1http://openmind.hri-us.com/

Figure 1: An abstract view of the processes and represen-
tations of the system. Sensing processes (at the bottom)
discretise and categorise sensor input into instances (shown
as ellipses) and acquired relations in conceptual layer. This
layer also comprises knowledge about concepts (rectangles)
of which only an excerpt in shown. The switching planner
reasons upon the state distribution given by the conceptual
map.

tem switches, in the sense that the underlying planning pro-
cedure changes depending on our robot’s subjective degrees
of belief, and progress in plan execution. When the un-
derlying planner is a deterministic sequential planner, i.e.,
a classical planner, we say planning is in a sequential ses-
sion, and otherwise it is in a contingent session. Finally,
planning is continual in the usual sense that, whatever the
session, plans are adapted and rebuilt online in reaction to
changes to the planning model (e.g. when objectives are
modified, or when our robot’s path is obstructed by a door
being closed). By autonomously mixing these two types
of sessions our robot is able to be robust and responsive to
changes in its environment and make appropriate decisions
in the face of uncertainty. We will give a brief overview of
the approach, a more detailed description can be found in
the literature (Göbelbecker, Gretton, and Dearden 2011).

Sequential Planning
During a sequential session, a rewarding trace of a possible
execution is computed using a modified version of the cost-
optimising satisficing planner Fast Downward (Helmert
2006) which trades action costs, goal rewards, and deter-
minacy.

The planning model we use for specifying
the sequential planning problems is an extended
SAS+formalism (Bäckström and Nebel 1995). In contrast
to probabilities in more expressive models like MDPs,
actions do not have multiple possible outcomes, they just
can succeed with probability p(a) or transition into a sink
state with probability of 1 − p(a). “Real” probabilistic
actions can be approximated by creating a separate action
for every possible outcome (Yoon, Fern, and Givan 2007).
The planner plans according to a cost function c that



weights the cost of a plan against its probability. There
are several possible choices for how to combine costs
and probabilities, we chose a function that resembles the
expected reward adjusted to our restricted planning model.
With R being a reward constant, we minimise the formula
c(π) =

∑
a∈π c(a) +R

(
1−

∏
a∈π p(a)

)
. For small values

ofR the planner will prefer cheaper but more unlikely plans,
for larger values more expensive plans will be considered.

Assumptions To model uncertain initial states (which are
an essential feature of exploration problems), we introduce
the concept of assumptive actions. The initial state of the
planning problem is the set of necessarily true propositions.
Assumptive actions are then used to add other, uncertain,
propositions (assumptions) to the state. Provided that the
plan is optimal, only assumptions that help achieving the
goal will be included, preferring ones that are more likely.

If, for example, the initial state contains uncertainty about
the category of a room, with P (cat(room) = kitchen) =
0.5, P (cat(room) = office) = 0.3 P (cat(room) =
corridor) = 0.2. We would then add the assumptions:

pre(a1) = pre(a2) = pre(a3) = {defcat(room) = ⊥}
eff(a1) ={cat(room) = kitchen,defcat(room) = >}
p(a1) =0.5 c(a1) = 0

eff(a2) ={cat(room) = office,defcat(room) = >}
p(a2) =0.3 c(a2) = 0

eff(a3) ={cat(room) = corridor,defcat(room) = >}
p(a3) =0.2 c(a3) = 0

The def-variable makes sure that we cannot make more
than one assumption about the same variable.

To utilise background conceptual knowledge, e.g. the
probability of finding an object in a certain type of room,
we use operators that model the conditional dependencies2:

(:action object-in-room
:parameters (?cl - class ?r - room

?c - category)
:probability (P-obj-given-category ?cl ?c)
:precondition (= (cat ?r) ?c)
:effect (obj-exists ?cl in ?r))

where (P-obj-given-category ?cl ?c) are
fluents containing the probabilities. Using these operators,
we do not have to construct the entire initial state descrip-
tion of the problem explicitely (as we did in the original
description of the switching planner).

The system always begins with a sequential session, and
once Fast Downward produces a trace, plan execution pro-
ceeds by applying actions from that trace in sequence until
the applicability of the next scheduled action is too uncer-
tain according to a threshold parameter (here, set at 95%).
A contingent session then begins which tailors sensory pro-
cessing to determine whether the assumptions made in the

2def-conditions and effects are omitted for clarity

(a) BHAM: 19 runs. (b) KTH: 10 runs.

Figure 2: Box and whisker diagrams of total runtime to
achieve the given task in two environments comparing the
’full’ system (FC) to the ’lesioned’ case (LC).

trace hold, or which otherwise acts to achieve the overall
objectives.

Contingent Planning
Because decision-theoretic planning in large problems is too
slow for our purpose (we seek response times in seconds),
contingent sessions plan in an abstract decision process de-
termined by the current trace and underlying belief-state.
This abstraction is constructed by first excluding all propo-
sitions that are not true of any state in the trace, then adding
them back, using as a heuristic the entropy of the trace as-
sumptions conditional on a candidate proposition. Proposi-
tions are added, one at a time, until the number of states in
the initial belief-state reaches a given threshold (here, 150
states). To the resulting abstract model we also add dis-
confirm and confirm actions that the contingent session can
schedule in order to judge an atomic assumption in the trace.
In the abstract model these actions yield a small reward if
the corresponding judgement is true (or small penalty other-
wise). Once a judgement action is scheduled for execution
the contingent session is terminated, and control is returned
to a sequential session.

Experimental Evaluation
In order to test the effectiveness of (i) exploiting default
probabilistic knowledge in a conceptual layer of our repre-
sentation, (ii) the switching planner, and (iii) our implemen-
tation of the overall system, we ran two configurations (’full’
and ’lesioned’) of the system in two natural world environ-
ments; a residential house in Birmingham (BHAM) and a
floor of offices and a kitchen at KTH Stockholm (KTH).

Our evaluation compares the full system with a lesioned
system in which the categorisation of visual appearance
and shape properties has been disabled, emulating the lim-
ited reasoning capabilities available in our previous sys-
tem (Hawes et al. 2011), where no such evidence was avail-
able. The task in all these runs was to find a box of corn-
flakes. The starting position of the robot was either the living
room (in BHAM) or an office (in KTH), i.e. rooms that ac-
cording to the acquired common-sense knowledge are quite



unlikely to contain objects of type cornflakes. This was cho-
sen to showcase the benefit of the probabilistic representa-
tion and planning.

Fig. 2 shows the overall runtime to complete the object
search task in the lesioned (denoted as ’LC’ in the figure)
and the full system (’FC’) in both environments. What
can clearly be seen from the figure is that the full system
which can exploit the evidence about the categories of rooms
achieves the task significantly faster (Mann-Whitney test
p < 0.01 for both environments) on average. It benefits from
the probabilistic common-sense knowledge that it is quite
unlikely to find cornflakes in the room the robot was in and
made it decide to first drive to the kitchen to start the search
there. On the contrary, in the lesioned case the robot had less
information and had to conduct a full exhaustive search. So
it started its search in the living room or office, respectively,
because the object is as likely to be in this room than in any
other. Further details and a more exhaustive analysis of the
results are given in (Hanheide et al. 2011).
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