
�

�

�

COPLAS 2011
Proceedings of the Workshop on

Constraint Satisfaction Techniques for
Planning and Scheduling Problems

Freiburg, Germany
June 13, 2011

Edited by
Miguel A. Salido, Roman Barták and Nicola Policella

�

Preface

The area of AI planning and scheduling has seen important advances thanks to the application of
constraint satisfaction and optimization techniques. Efficient constraint handling is important for
real-world problems in planning, scheduling, and resource allocation to competing goal activities
over time in the presence of complex state-dependent constraints. Approaches to these problems
must integrate resource allocation and plan synthesis capabilities. We need to manage complex
problems where planning, scheduling, and constraint satisfaction must be interrelated, which
entail a great potential of application.

The workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems, or
COPLAS, aims at providing a forum for meeting and exchanging ideas and novel works in the
field of AI planning, scheduling, and constraint satisfaction techniques, and the many
relationships that exist among them. In fact, most of the accepted papers are based on combined
approaches of constraint satisfaction for planning, scheduling, and mixing planning and
scheduling. This makes the COPLAS workshop an attractive place for both researchers and
practitioners (COPLAS is ranked as CORE B in ERA Conference Ranking).

The sixth edition of the workshop, COPLAS 2011, was held in June 2011 in Freiburg, Germany
during the International Conference on Automated Planning and Scheduling (ICAPS'11). All the
submissions were reviewed by at least three anonymous referees from the program committee.
The nine papers accepted for oral presentation in the workshop, provide a mix of constraint
satisfaction and optimization techniques for planning, scheduling, and related topics, as well as
their applications to real-world problems.

We hope that the ideas and approaches presented in the papers and presentations will lead to a
valuable discussion and will inspire future research and developments for all the readers.

The Organizing Committee.
June, 2011

Miguel A. Salido
Roman Barták
Nicola Policella

Organization

Organizing Committee
Miguel A. Salido, Universidad Politécnica de Valencia, Spain
Roman Barták, Charles University, Czech Republic
Nicola Policella, European Space Agency - ESA/ESOC, Germany

Programme Committee
Federico Barber, Universidad Politécnica de Valencia, Spain

Roman Barták, Charles University, The Czech Republic

Amedeo Cesta, ISTC-CNR, Italy

Minh Binh Do, PARC, USA

Enrico Giunchiglia, Universita di Genova, Italy

Peter Jarvis, NASA Ames Research Center, USA

Michela Milano, Università di Bologna, Italy

Alexander Nareyek, National University of Singapore, Singapore

Eva Onaindía, Universidad Politécnica de Valencia, Spain

Nicola Policella, European Space Agency, Germany

Francesca Rossi, University of Padova, Italy

Hana Rudová, Masaryk University, The Czech Republic

Migual A. Salido, Universidad Politecnica Valencia, Spain

Pascal Van Hentenryck, Brown University, USA

Ramiro Varela, Universidad de Oviedo, Spain

Gérard Verfaillie, ONERA, Centre de Toulouse, France

Vincent Vidal, CRIL-IUT, France

Petr Vilím, ILOG, France

Toby Walsh, University of New South Wales, Australia and NICTA, Australia

Neil Yorke-Smith, American University of Beirut, Lebanon and SRI International, USA

Content

A Logic-Based Benders Approach to Scheduling with Alternative Resources and Setup
Times
Tony T. Tran, J. Christopher Beck ... 7

Applying Iterative Flattening Search to the Job Shop Scheduling Problem with Alternative
Resources and Sequence Dependent Setup Times
Angelo Oddi, Riccardo Rasconi, Amedeo Cesta, Stephen F. Smith .. 15

Solving Resource Allocation/Scheduling Problems with Constraint Integer Programming
Stefan Heinz, J. Christopher Beck, .. 23

Optimization of Partial-Order Plans via MAXSAT
Christian Muise, Sheila Mcilraith, J. Christopher Beck ... 31

Exploiting MaxSAT for Preference-Based Planning
Farah Juma, Eric Hsu, Sheila Mcilraith ... 39

A SAT Compilation of the Landmark Graph
Vidal Alcazar, Manuela Veloso ... 47

A Constraint-based Approach for Planning and Scheduling Repeated Activities
Irene Barba, Carmelo Del Valle ... 55

A CFLP Approach for Modeling an Optimization Scheduling Problem
Ignacio Castiñeiras, Fernando Sáenz-Pérez ... 63

The Distance-Optimal Inter-League Schedule for Japanese Pro Baseball
Richard Hoshino, Ken-Ichi Kawarabayashi ... 71

�

A Logic-Based Benders Approach to Scheduling with Alternative Resources and
Setup Times

Tony T. Tran and J. Christopher Beck
Department of Mechanical and Industrial Engineering

University of Toronto, Toronto, Ontario, Canada
{tran,jcb}@mie.utoronto.ca

Abstract

We study an unrelated parallel machines scheduling problem
with sequence and machine dependent setup times. A logic-
based Benders decomposition approach is proposed to mini-
mize the makespan. The decomposition approach is a hybrid
model that makes use of a mixed integer programming master
problem and a travelling salesman problem subproblem. The
master problem is a relaxation of the problem and is used to
create assignments of jobs to machines, while the subprob-
lem obtains optimal schedules based on the master problem
assignments. Computational results comparing the Benders
decomposition and mixed integer program formulation show
that the Benders model is able to find optimal solutions to
problems up to five orders of magnitude faster as well as solv-
ing problems four times the size possible previously.

1 Introduction
In many practical scheduling problems, the scheduler is
faced with both resource alternatives and sequence depen-
dent setup times. That is, a job may be assigned to one
of a set of resources and consecutive jobs on the same re-
source must have a minimum setup time between them.
For example, in a chemical plant, reactors must be cleaned
when changing from processing one mixture to another. The
cleaning times may depend on which specific job comes
before the cleaning and which comes after. If the preced-
ing chemical affects the succeeding one, cleaning may take
longer to ensure that the reactor is properly prepared. The
products processed in the reverse order may not have the
same ill effects because the offending product in the previ-
ous example may not suffer the same contamination and so,
cleaning may take less time. Further examples can be found
in the plastic, glass, paper and textile industries where setup
times of significant length exist (França et al. 1996). Al-
lahverdi et al.(1999) review the importance of setup times in
real world problems.

This paper addresses the unrelated parallel machines
scheduling problem (PMSP) with machine and sequence de-
pendent setup times. In this problem, jobs must be assigned
to one of a set of alternative resources. Jobs assigned to the
same resource have a setup time which is defined as the time

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that must elapse between the end of one job and the start
of the next. This setup time is sequence and machine de-
pendent in that the elapsed time between jobs j and k will
differ depending on whether j precedes k or k precedes j and
which machine the pair of jobs are assigned to. We concern
ourselves with minimizing the makespan or the maximum
completion time of a schedule, Cmax, as the objective func-
tion. Using the three-field notation given by Graham et al.
(1979), this problem can be denoted as (R|sds|Cmax).

We develop an exact method to solve the PMSP based on
logic-based Benders decomposition. This approach was de-
veloped to verify logic circuits by Hooker (1995) and further
explained later (Hooker and Ottosson 2003). Hooker (2005)
applied logic-based Benders decomposition to a problem
similar to the PMSP with release and due dates, but with-
out setup times. The Benders decomposition introduced in
this paper makes use of a Mixed Integer Program (MIP)
master problem and either a Constraint Program (CP) solver
or a specialized Travelling Salesman Problem (TSP) solver
for the subproblems. The MIP model is used to find tight
lower bounds and machine assignments, while the CP or
TSP solvers sequence the jobs on machines. The new model
is compared to an existing MIP model which finds the opti-
mal solution.

2 Background
In this section, we will define the PMSP with sequence and
machine dependent setup times. A review of related work
is presented and finally, an existing MIP model to solve the
PMSP is shown.

2.1 Problem Definition
In the PMSP, a set of N jobs are to be scheduled on M ma-
chines with the objective of minimizing the makespan. Each
job has a processing time pij , the time to process job j on
machine i. The machines in this system are unrelated, i.e.,
a job j can have a processing time greater than k on one
machine, but the reverse could be true on another machine.
There is a sequence and machine dependent setup time, sijk,
which is the time that must elapse before a machine can
begin processing job k if job j precedes it on machine i.
The setup times are assumed to follow the triangle inequal-
ity sijk ≤ silk + sljk and are only incurred when switching

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

7

from one job to another. The goal of the problem is to de-
termine how to assign jobs to machines and then sequence
these jobs, independently on each machine.

2.2 Related Work
Most research has been focused on the PMSP with identical
machines (Graves 1981; Cheng and Sin 1990; Dunstall and
Wirth 2005; Kurz and Askin 2001). Research on the PMSP
with unrelated machines has concentrated on the problem
without setup times. An exact algorithm was developed
by Lancia (2000) to minimize makespan. A genetic algo-
rithm, simulated annealing, and tabu search were compared
by Glass et al. (1994).

The PMSP with sequence and machine dependent setup
times is strongly NP-Hard because the single machine
scheduling problem with sequence dependent setup times
(1|sds|Cmax) is equivalent to a travelling salesman problem
(TSP) (Baker 1974). Thus, the PMSP with setup times can
be thought of as an allocation and routing problem where
cities are allocated to salesmen who then must find their
own tour. Even in the case where all machines are identical
(P|sds|Cmax), the problem is strongly NP-hard (França et
al. 1996; Mendes et al. 2002). The combinatorial complex-
ity of the PMSP has resulted in little research in exact opti-
mization methods. A MIP model does exist (Guinet 1991)
which obtains the optimal schedule for the PMSP with setup
times with total completion time or total tardiness as objec-
tives. However, this MIP model is only able to solve for
small instances:9 jobs, 2 machines or 8 jobs, 4 machines.
The sizes of these problems are not very practical for real
life use where the number of jobs can be much larger.

Al-Salem (2004) developed a constructive heuristic
named the partitioning heuristic to solve large instances of
the PMSP with setup times. Helal et al. (2006) developed a
tabu search to solve the same problem. Rabadi et al.(2006)
presented a meta-heuristic titled Meta-RaPS to minimize
makespan. An ant colony optimization method was im-
plemented and shown to perform better then the partition-
ing heuristic, tabu search, and Meta-RaPS for the unrelated
PMSP with setup times (Arnaout, Rabadi, and Musa 2008).
In all these studies, optimal makespans were not the goal be-
cause the problem sizes were too large for current methods
to find optimality. The performance of the heuristics was
evaluated by comparison of the solutions they provided with
lower bounds on the makespan for any instances with more
than 10 jobs. All heuristics tested performance for instances
of sizes up to 100 jobs and 10 machines; Rabadi et al. (2006)
and Arnaout et al. (2008) tested problems of 120 jobs and
12 or 8 machines respectively.

Focacci et al. (2000) proposed a two phase algorithm
based on CP to optimize both the makespan and the sum
of setup times for a similar problem to the PMSP with se-
quence dependent setup times. In this paper, jobs consist
of multiple activities and precedence constraints exist be-
tween these activities. In the first phase of the algorithm, a
time limited, incomplete branch-and-bound method is used
to find solutions with small makespan. The second phase
minimizes the sum of setup times with the constraint that
any schedule found must have a makespan equal to or less

than the makespan found in the first phase. They run their
model on problems of up to 16 jobs, each consisting of 12
activities, and 16 machines.

2.3 Mixed Integer Programming Model
A MIP model used to find optimal solutions for the unrelated
PMSP with setup times is presented by various researchers
(Helal, Rabadi, and Al-Salem 2006; Rabadi, Moraga, and
Al-Salem 2006). This formulation is based on a similar
problem by Guinet (1991) with different objectives of total
completion time or total tardiness.

min Cmax

s.t.

N∑
j=0,j �=k

M∑
i=1

xijk = 1, k ∈ N (1)

N∑
j=0,j �=h

xijh =

N∑
k=0,k �=h

xihk, h ∈ N, i ∈ M (2)

Ck ≥ Cj +

M∑
i=1

xijk(sijk + pik) + V (

M∑
i=1

xijk − 1)

j ∈ N, k ∈ N (3)

N∑
j=0

xi0j = 1, i ∈ M (4)

Cj ≤ Cmax, j ∈ N (5)

C0 = 0 (6)

Cj ≥ 0, j ∈ N (7)

xijk ∈ (0; 1), j ∈ N,
k ∈ N, i ∈ M (8)

where
Cmax: Maximum completion time (makespan)

Cj: Completion time of job j
xijk: 1 if job k is processed directly after job j on

machine i
xi0k: 1 if job k is the first job to be processed on

machine i
xij0: 1 if job j is the last job to be processed on

machine i
si0k: setup time before job k if it is the first job on

machine i
V: A large positive number

Constraint (1) ensures that each job is scheduled on a sin-
gle machine only and after exactly one other job. Constraint
(2) ensures that each job cannot be preceded or succeeded
by more than one job. Constraint (3) sets the completion
times of each job such that if job j precedes job k, job k can-
not also precede job j to create an infeasible cycle. If job
k is processed directly after job j,

∑M

i=1
xijk − 1 = 0 and

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

8

the constraint makes it so that Ck ≥ Cj + sijk + pik with i
being the machine on which the two jobs are assigned. If
job k is not scheduled directly after job j on a machine,∑M

i=1
xijk − 1 = −1 and the large V term makes the con-

straint redundant. Constraint (4) guarantees that only one
job can be scheduled first on each machine. Constraint (5)
sets the makespan to be at least as large as the largest com-
pletion time of all jobs. Constraint (6) sets the completion
time of job 0, an auxiliary job used to enforce the start of
a schedule, to zero and constraint (7) ensures positive com-
pletion times. Constraint (8) defines the decision variables
as binary.

3 Logic-Based Benders Decomposition
The PMSP with setup times can be decomposed into an as-
signment master problem and sequencing subproblem. In
the assignment master problem, the jobs are assigned to ma-
chines. This assignment results in multiple subproblems
where each machine is a scheduling problem to sequence
the assigned jobs. A MIP model is presented for the master
problem. The use of MIP takes advantage of operations re-
search tools to obtain tight lower bounds on the PMSP with
setup times. Sequencing is accomplished in the subproblem
where CP and TSP solvers are more adept to obtaining an-
swers quickly.

3.1 Assignment Master Problem
The MIP formulation of the master problem is a relaxation
of the PMSP with setup times. In this relaxation, jobs are
assigned to machines, but instead of solving for a single se-
quence of jobs on each machine, many smaller subsequences
are allowed. The setup times are calculated for each subse-
quence; their sum is a lower bound on the actual total setup
time on a machine. This assignment and subsequencing
leads to an infeasible schedule if multiple subsequences are
created. However, the relaxation gives a tighter lower bound
than if setup times are completely ignored, while being sig-
nificantly less difficult than the full problem. The master
problem is,

min Cmax

s.t.
∑
j∈N

xijpij + ξi ≤ Cmax i ∈ M (9)

∑
i∈M

xij = 1 j ∈ N (10)

ξi =
∑
j∈N

∑
k∈N,k �=j

yijksijk i ∈ M (11)

xik =
∑
j∈N

yijk k ∈ N ; i ∈ M (12)

xij =
∑
k∈n

yijk j ∈ N ; i ∈ M (13)

cuts (14)

xij ∈ {0; 1} j ∈ N ; i ∈ M (15)

0 ≤ yijk ≤ 1 j, k ∈ N ; i ∈ M (16)

where
Cmax: Makespan of the master problem

ξi: Total setup time incurred from all sequences
on machine i

xij: 1 if job j is processed on machine i
yijk: 1 if job k is processed directly after job j on

machine i
yi0k: 1 if job k is processed first on machine i
yij0: 1 if job j is process last on machine i

The makespan on each machine with the relaxed setup
times is defined in constraint (9) as the summation of pro-
cessing times for all jobs that are assigned to that machine
and the relaxed total setup times. Setting the makespan to
be greater than or equal to the relaxed makespan of each
machine enforces that the MIP model optimizes the maxi-
mum makespan across all machines. Constraint (10) ensures
that each job is assigned to exactly one machine. Constraint
(11) assigns the relaxed setup time of a machine i, ξi, to be
a lower bound on the additional time required from the se-
quencing of jobs, yijk, and their respective setup times, sijk.
The relaxation of setup times allows, instead of a sequence
of jobs from the first to last job processed on a machine,
many smaller sequences independent of each other. For ex-
ample, given jobs j, k, j3, j4, and j5, a feasible sequence is
[start - j - k - j3 - j4 - j5 - end]. However, (12) and (13)
set each job to have exactly one other job scheduled directly
before and after it without the restriction of cycles as was
seen in constraint (3). This will make it possible to assign
two sequences, [start - j - k - j3 - end] and the cycle [j4 -
j5 - j4 - j5...]. Constraint (14) are cuts added to the master
problem from the subproblem each time an infeasible solu-
tion is found. In the first iteration of the master problem, the
set of cuts is empty. The last constraints, (15) and (16), force
the decision variables xij to be binary, i.e., either a job j is
assigned machine i or not and yijk to be between 0 and 1.

This formulation is equivalent to solving the
(R|sds|Cmax), but instead of solving for the exact sin-
gle sequence of jobs to process on a machine, many
subsequences are allowed which will include all jobs.
This relaxation creates a tight lower bound for the actual
makespan of a machine and is similar to solving the
assignment problem. Therefore, the makespan found from
solving the master problem may be infeasible given a proper
sequencing of jobs.

3.2 Sequencing Subproblem
Once a solution of the master problem is found, the set of
jobs to schedule on each machine is known. These sets
of jobs create m subproblems, one for each machine. In
this section, two different subproblem formulations are pre-
sented: a CP and a TSP model. Both models will create a
sequence of jobs on a machine such that the makespan is

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

9

minimized. This objective can also be thought of as mini-
mizing the sum of setup times since the set of jobs to be pro-
cessed and their processing times are already determined.

Constraint Program Let tj and ej be the start and end
times for job j respectively. Chi

max represents the makespan
for machine i in iteration h. The CP formulation of the sub-
problem is shown below.

min Chi
max

s.t. tj + pij = ej j ∈ N ′ (17)

tj ≥ ek + sijk ∨ tk ≥ ej + sjk k, j ∈ N ′; k �= j (18)

t0 = 0 (19)

disjunctive(tj , pij) (20)

The objective of the subproblem is to sequence the jobs
in such a way as to minimize the makespan. The set of jobs
to schedule is N ′ which are the jobs chosen in the master
problem with an additional auxiliary job (job 0) which has
setup times and processing times equal to 0. This extra job
acts as the first job in the sequence which incurs no setup
times for the job that is scheduled after it. Constraint (17)
sets the end time of each job to be the start time plus the
processing time. Constraint (18) ensures that setup times
are adhered to. If a job k is processed directly after a job
j, then constraint (18) becomes an equality constraint. In
the case where job k is not directly processed after a job j,
but still processed later, the constraint holds given that setup
times adhere to the triangle inequality. Constraint (19) sets
the start time of job 0 to zero. Finally, constraint (20) is a
global constraint that ensures the unary resource constraint
is satisfied.

We implement this model in IBM ILOG Scheduler. Each
job is an activity in IBM ILOG Scheduler, represented by
the variables tj and ej . The machine that these jobs are as-
signed to is represented by a unary resource and the setup
times, sjk, are assigned as the elements of an IloTransition-
Param matrix. The IloTransitionParam matrix is an asym-
metric square matrix that defines the sequence dependent
setup times in IBM ILOG Scheduler for each activity pair.

Travelling Salesman Problem We know that the se-
quencing of jobs on a single machine is equivalent to a TSP
with directed edges, also known as an asymmetric TSP. In
this TSP, jobs are the nodes and distances between nodes
are the setup time between the two connected jobs and the
processing time of the job which is the start node. This rep-
resentation ensures that travelling along any edge from node
a to node b will contribute the cost of processing job a and
the setup time from job a to job b. With this translation, it is
possible to see that the setup time problem on a single ma-
chine is equivalent to a TSP and a cycle of a TSP from a
start node to all other nodes and back to the initial start node
is the sequence of jobs to process and the distance travelled
being the makespan. This representation is shown in Figure
1.

Figure 1: TSP representation

It can be seen that if the order of jobs to be processed is 1,
3 then 2, the distance travelled would be, p1+s13+p3+s32+
p2. This tour distance is equal to the makespan of processing
jobs in that order. Therefore, it may be better to use a TSP
solver which has been optimized to solve such problems in
place of a generic CP solver which is more expressive, but
not as good at solving this problem.

Feasible Schedules from the Subproblem Solving the
sequencing subproblem leads to a feasible schedule. Of-
ten with Benders decomposition, a model is searching in the
infeasible region of solutions and the first feasible solution
found is the optimal one. In our logic-based Benders decom-
position approach, while the search is performed in the in-
feasible region, the sequencing subproblem solves the local
schedule once the jobs are allocated to machines. The so-
lution from the subproblem creates a feasible schedule with
a makespan equal to the largest makespan found across all
subproblems. Therefore, it is possible to stop the solving at
any time after the first complete iteration and obtain a feasi-
ble schedule. This schedule may not be optimal if the prob-
lem solving is stopped prematurely. However, it is possible
to compare this value against the makespan found from the
most recent master problem solution to calculate an upper
bound on how far the current schedule is from optimality.
Therefore, the Benders decomposition will store the best so-
lution found so far. At the completion of all subproblems
during an iteration, the schedule created will be compared
to the best solution found so far and it will be updated if
necessary.

3.3 Cuts
If the makespan found in the subproblem is less than or equal
to the master problem’s makespan Cmax, then this subprob-
lem is feasible and no cuts are added to the master problem.
In the case where the makespan found is greater than Cmax,
a cut is created and sent to the master problem. The master
problem is then re-solved with the added cut. The cut from
such a subproblem in an iteration h is,

Cmax ≥ Chi∗
max[1−

∑
j∈N′

(1− xij)] i ∈ M (C1)

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

10

Here, Cmax is the makespan variable in the master prob-
lem and Chi∗

max is the makespan found in iteration h when
solving the subproblem for machine i. The cut states that
the future solutions of the master problem can only decrease
the makespan if another assignment of jobs is given. That
is, if the same assignment is given to the subproblem, the
xij variables that are part of this cut will all equal to 1. If
this is the case, then (1−xij) = 0 for all j and the makespan
of the subproblem becomes a lower bound on Cmax. When
a different assignment is made and at least one of the xij

variables that previously had a value of 1 is 0, the cut be-
comes redundant as the right hand side will be at most zero.
This cut follows the 2 conditions defined by Chu and Xia
(2005) to be a valid cut; the cut removes the current solution
from the master problem and does not eliminate any global
optimal solutions.

The cut presented is a type of nogood cut (Hooker 2005),
stating that the current solution is infeasible and so is re-
moved from the search space. We can tighten the cut
by introducing the values minPrehj , minSuchj , maxPrehj ,
maxSuchj and minTranhj . minPrehj and maxPrehj are the
minimum and maximum setup times if job j directly suc-
ceeds another job that is assigned to the same machine in
iteration h respectively. Similarly, minSuchj and maxSuchj

are the minimum and maximum setup times if job j directly
precedes another job that is assigned to the same machine in
iteration h. Finally, minTranhj is the minimum setup time
between any two jobs in N ′ excluding job j. These values
are defined as,

minPrehj = MINk∈N′;k �=j(sikj)

minSuchj = MINk∈N′;k �=j(sijk)

maxPrehj = MAXk∈N′;k �=j(sikj)

maxSuchj = MAXk∈N′;k �=j(sikj)

minTranhj = MINk∈N′;l∈N′;k �=l(sikl)

A cut that uses more information is to find a tight upper
bound on the total reduction of the makespan when a job
is removed from a schedule. To find this upper bound, we
work backwards and calculate the increase in the makespan
if job j is added to an optimal sequence consisting of the
jobs in N ′ except j. Assume that the optimal makespan of
the schedule, C′, is known. If job j is inserted into the sched-
ule greedily, the insertion may occur at either a position that
minimizes the setup time to job j or from job j. In the worst
case scenario, if the insertion that occurred to minimize the
setup to (from) job j, the job that succeeds (precedes) j may
result in the largest setup time from (to) job j. This insertion
will further remove a single setup time since job j may be
scheduled between any two other jobs. In the worst case,
the removed setup time is the minimum setup time between
any two jobs in N ′. We know that this insertion results in a
feasible schedule and in the best case will give the optimal
makespan for scheduling N ′. The increase in makespan of
adding job j is denoted as δhij . We know that,

Chi∗
max ≤ C′ + δhij

which rearranged is,

C′ ≥ Chi∗
max − δhij

Therefore, if the optimal makespan of a schedule consisting
of all jobs in N ′ is known, removing δhij from the optimal
makespan is guaranteed to result in a makespan less than or
equal optimal if job j is removed. The cut can then be,

Cmax ≥ Chi∗
max −

∑
j∈N′

(1− xij)δhij i ∈ M (C2)

where,

δhij = pij − minTranhj

+ MIN [(minPrehj + maxSuchj),
(maxPrehj + minSuchj)]

A third cut is developed to further improve upon (C2).
This cut attempts to not only include extra information about
the jobs being assigned, but also account for the jobs that are
not assigned to the subproblem machine. This is done by
incrementing the makespan by the processing time of a job
if that job is to be assigned to a machine. The cut is then,

Cmax ≥ Chi∗
max +

∑
k/∈N′ xikpik

−∑
j∈N′(1− xij)δhij i ∈ M (C3)

3.4 Stopping Condition
The Benders approach will iterate between master prob-
lem and subproblems until an optimal solution is found and
proved. Optimality is proven if one of two conditions is met.
The first condition that can prove optimality is if all subprob-
lems solved during an iteration find makespans less than or
equal to the Cmax from the master problem. This solution is
optimal because the master problem provides a lower bound
on the achievable makespan of the problem. If all subprob-
lems prove that a schedule can be created with the makespan
less than or equal to Cmax of the master problem, it is proven
that the schedule is optimal. The second condition that can
prove optimality and provide a stopping condition requires
that the Cmax found from the master problem be equal to the
best feasible makespan found so far as defined in Section
3.2.

4 Computational Results
The Benders decomposition model and MIP model were
tested on an Intel Pentium 4 CPU 3.00GHz Hypterthread
Tech with 2 MB cache per core, 1 GB of main memory,
running Red Hat 3.4.6-3. The MIP master problem and
MIP model were implemented with IBM ILOG CPLEX 12.1
and the CP subproblem was implemented with IBM ILOG
Solver 6.7 and IBM ILOG Scheduler 6.7. The TSP solver
used was tsp solve.1 Experiments were run for problem in-
stances of 10, 20, 30, and 40 jobs. For each job size, between
2 and 5 machines were tested. Each of these combinations

1A free TSP solver available online at (http://www.or.
deis.unibo.it/research pages/tspsoft.html) which is written in C++.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

11

had a total of 10 instances for a total of 160 instances. A
time limit of 3 hours was used. Processing times for each
machine job pair were generated from a uniform distribu-
tion between 1 and 100. To obtain setup times that were
sequence dependent and follow the triangular inequality as-
sumption, each job was given two different sets of coordi-
nates on a Cartesian plane for every machine. The setup
times are the Manhattan distances from one job’s coordi-
nates to the other’s. Distances between the second set of
coordinates is used to provide asymmetric setup times. For
example, job 0 and job 1 would be given coordinates χ0a,
χ0b, ψ0a, ψ0b, χ1a, χ1b, ψ1a, and ψ1b. Setup time from job
0 (1) to job 1 (0) would then be |χ0a − χ1a| + |ψ0a − ψ1a|
(|χ0b − χ1b|+ |ψ0b − ψ1b|).

Table 1 shows results comparing the MIP model, CP Ben-
ders, and TSP Benders. In both Benders decomposition
models, cut (C2) was used. For these results, the time un-
til an optimal solution was found and proved were recorded.
Where the solving timed out, 3 hours was used.

The Benders decomposition model’s results, both CP and
TSP versions, are a significant improvement over the MIP
performance. It is clear that the Benders decomposition ap-
proach is capable of solving much larger problems in signif-
icantly shorter run times. The Benders decomposition ap-
proach, with a CP solver, solves up to 20 jobs in the time
limit and the majority of instances of up to 30 jobs. Replac-
ing the CP solver with a TSP solver, the Benders model is
able to increase the number of solvable jobs up to 30 consis-
tently. This is in contrast to the MIP model which is able to
solve only 10 jobs in the 3 hour time limit.

We see that increasing the number of machines has a
greater effect on the performance of the models than increas-
ing the number of jobs. In both Benders models, the master
problem had difficulty solving for increased machines. In
fact, the TSP subproblem is able to solve each subproblem
in milliseconds while the MIP master problem can spend
hours searching for an assignment. The opposite is seen for
the MIP model. The MIP model has difficulties sequencing
large number of jobs on machines and so, in the case where
there are only 2 machines, the MIP model has a very high
runtime for instances of 10 jobs and 2 machines. When the
number of machines is increased to 5, the sequencing prob-
lem is simpler and results in fast runtimes.

Using the Benders decomposition model with the TSP
subproblem, the three different cuts presented in Section 3.3
are tested on the same set of instances for problem sizes of
10, 20, and 30 jobs. The results are presented in table 2.

Table 2 shows that the performance of cut (C2) is the best
overall. In most cases, the difference is not significant, but
there are cases where clear differences are found. Specifi-
cally, (C2) is able to, in a small number of instances, create
a cut that removes an assignment that (C1) would not. This
improved cut reduces the total number of iterations required
and the time needed to solve the problem. In the 20 jobs and
5 machines test case, the average number of iterations for
(C1) is 4.4 while cut (C2) was able to decrease this value to
4. This resulted in a 30 second runtime difference on aver-
age to reduce the runtime by about 25%.

One would then assume that cut (C3), using more in-

formation, would create better cuts. However, the results
showed that cut (C3) performs worst than cut (C2). This is
because cut (C3) created a more difficult master problem to
solve increasing the total solve time per iteration, while not
becoming much tighter than (C2) to reduce the overall num-
ber of iterations. The test case with 20 jobs and 5 machines
shows how (C3) only reduces the number of iterations by
a very small amount, a further 0.2 iterations from cut (C2),
but increases on average by 2 seconds of runtime. Including
into the cut all jobs that were not assigned to a machine ac-
counts for more information, but proves detrimental to the
performance of the Benders model.

In the 30 jobs and 4 machines case, we even see cut
(C3) increasing the number of iterations over cut (C2). This
seems to contradict the fact that (C3) is a tighter cut. The
increase in iteration occurs because some degeneracy exists
in the problem. Varying the cut may lead to different assign-
ments in the Benders master problem with equal objective
functions. In rare instances, it is possible that the other cuts
will lead to the optimal assignment while (C3) leads to an
equivalent master problem that does not extend to a global
solution.

5 Future Work
Though the Benders decomposition approach obtains signif-
icant speed ups, the problem sizes that can be solved are lim-
ited compared to what heuristic models are currently solv-
ing. For larger problems, the Benders decomposition is not
able to complete a single instance of the master problem.
Problem instances of 100 jobs are tested in previous papers
using heuristics and local search (Helal, Rabadi, and Al-
Salem 2006; Rabadi, Moraga, and Al-Salem 2006). Specif-
ically, in work done by Helal et al. (2006), schedules for
problem instances of 100 jobs and 10 machines are found
within minutes. The quality of these schedules is difficult
to assess, given that the optimal solutions are not known.
However, for smaller instances (8 jobs and 4 machines) the
optimal solution was known from the MIP model and the
heuristic used was experimentally shown to have on average
2.5% deviation from optimal.

If optimal solutions are not possible because of large in-
stances, it is clear that heuristic solutions are necessary.
Stopping the Benders program early and using the best
found schedule as shown in Section 3.2 is one approach to
increase the size of problems for which the Benders model
can obtain schedules. However, this approach is only use-
ful if the problems are small enough such that the Benders
model can solve for one complete iteration in a reasonable
time. From our experiments, we found some instances of 40
jobs and 5 machines where solving for one complete itera-
tion took more than one hour. Solve times of the subproblem
are almost instantaneous when the TSP solver is used on all
instances, but the MIP master problem may be intractable
once the size of the problem reaches 50 or more jobs and
5 machines. This means that for problems as large as 100
jobs, the Benders decomposition model is not likely to solve
the master problem within the time limit.

Therefore, we plan to investigate not solving the mas-
ter problem all the way to optimality. This would reduce

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

12

MIP CP Benders TSP Benders
n m Avg Runtime # uns. Avg Runtime # uns. Avg Runtime # uns.
10 2 9885.14 9 0.24 0 0.12 0

3 7924.16 7 0.29 0 0.22 0
4 1169.69 1 0.55 0 0.42 0
5 13.59 0 0.56 0 0.45 0

20 2 10800.00 10 9.79 0 1.08 0
3 10800.00 10 6.41 0 2.02 0
4 10800.00 10 239.15 0 53.12 0
5 10800.00 10 509.85 0 122.46 0

30 2 10800.00 10 7997.13 5 2.15 0
3 10800.00 10 3244.75 1 27.85 0
4 10800.00 10 10041.10 2 203.13 0
5 10800.00 10 8804.01 5 750.89 0

40 2 10800.00 10 10800.00 10 4.78 0
3 10800.00 10 10800.00 10 651.30 0
4 10800.00 10 10800.00 10 1538.69 0
5 10800.00 10 10800.00 10 7404.07 5

Table 1: CPU runtime in seconds. Comparison of MIP, CP Benders, and TSP Benders.

(C1) (C2) (C3)
n m Avg Runtime Avg # of Iter Avg Runtime Avg # of Iter Avg Runtime Avg # of Iter
10 2 0.24 2.1 0.12 2.1 0.12 2.1

3 0.25 1.9 0.22 1.9 0.26 1.9
4 0.42 1.8 0.42 1.8 0.40 1.7
5 0.56 1.5 0.45 1.4 0.47 1.4

20 2 1.15 4.5 1.08 4.5 1.09 4.5
3 2.06 2.7 2.02 2.7 2.05 2.7
4 56.87 3.9 53.12 3.9 70.06 3.9
5 153.33 4.4 122.46 4.0 124.30 3.8

30 2 2.17 4.4 2.15 4.4 2.28 4.4
3 29.31 5.4 27.85 5.2 30.52 5.2
4 224.67 4.9 203.13 4.5 222.83 4.7
5 784.39 5.6 750.89 5.3 817.22 5.3

Table 2: CPU runtime in seconds. Comparison of different cuts on the TSP-Benders model.

the effort required in the master problem at producing as-
signments and enable the model to generate feasible sched-
ules faster. Whether the method chosen is to allow the MIP
model to solve with an optimality gap tolerance in mind or
to solve the master problem through some other heuristic is
to be determined.

The change to the Benders decomposition master prob-
lem means that the master problem would no longer act as
a true lower bound. However, if the optimality gap sugges-
tion is the method of choice, it could be guaranteed that the
solution found would be within that chosen gap of optimal.
Experimental results from large instances show that the mas-
ter problem often spends most of time proving optimality or
obtaining optimality with a gap of less than 2%. If the mas-
ter problem was allowed to solve until it has proven it is
within 2% of optimal, the Benders approach would be able
to obtain solutions much faster. What is of concern however,
is whether prematurely solving the master problem with this

gap is detrimental to the quality of a solution if optimality is
not hard to find or prove for some problems.

Another extension to this work is to test the performance
of branch-and-check (Thorsteinsson 2001) on the PMSP
with setup times. Beck (2010) identified that using branch-
and-check, on problems with proportionately larger master
problems in comparison to subproblems, is better than logic-
based Benders. The Benders decomposition could benefit
from solving the subproblem more often and create feasible
schedules earlier.

6 Conclusion
In this paper, we presented a logic-based Benders decom-
position approach to minimize the makespan of an unrelated
parallel machine scheduling problem with sequence and ma-
chine dependent setup times. A MIP model was defined to
solve for the assignment of jobs to machines and produce

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

13

a lower bound on the achievable makespan of the problem.
Two subproblems, based on a CP and TSP solver, were im-
plemented to find optimal schedules for the assignment of
jobs on each individual machine. The computational results
show that the cooperation of MIP and TSP can effectively
find optimal solutions. We are able to solve instances four
times larger than what was previously possible using a MIP
formulation found in the literature and obtain optimal so-
lutions on problems of the same size up to five orders of
magnitude faster. Although finding optimal solutions was
the goal of the paper, possible heuristics based on the Ben-
ders decomposition approach are proposed to solve larger
instances.

References
Al-Salem, A. 2004. Scheduling to minimize makespan
on unrelated parallel machines with sequence dependent
setup times. Engineering Journal of the University of Qatar
17:177–187.
Allahverdi, A.; Gupta, J.; and Aldowaisan, T. 1999. A re-
view of scheduling research involving setup considerations.
Omega 27(2):219–239.
Arnaout, J.; Rabadi, G.; and Musa, R. 2008. A two-stage ant
colony optimization algorithm to minimize the makespan on
unrelated parallel machines with sequence-dependent setup
times. Journal of Intelligent Manufacturing 1–9.
Baker, K. 1974. Introduction to sequencing and scheduling.
John Wiley & Sons.
Beck, J. 2010. Checking-Up on Branch-and-Check. In Pro-
ceeings of the Sixteenth International Conference of Prin-
ciples and Practice of Constraint Programming (CP2010),
84–98. Springer.
Cheng, T., and Sin, C. 1990. A state-of-the-art review of
parallel-machine scheduling research. European Journal of
Operational Research 47(3):271–292.
Chu, Y., and Xia, Q. 2005. A hybrid algorithm for a class of
resource constrained scheduling problems. In Proceedings
of the 2nd Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Opti-
mization Problems, 110–124. Springer.
Dunstall, S., and Wirth, A. 2005. Heuristic methods for
the identical parallel machine flowtime problem with set-up
times. Computers & Operations Research 32(9):2479–2491.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving
scheduling problems with setup times and alternative re-
sources. In Proceedings of the 5th International Conference
on Artificial Intelligence Planning and Scheduling.
França, P.; Gendreau, M.; Laporte, G.; and Muller, F. 1996.
A tabu search heuristic for the multiprocessor scheduling
problem with sequence dependent setup times. International
Journal of Production Economics 43(2-3):79–89.
Glass, C.; Potts, C.; and Shade, P. 1994. Unrelated parallel
machine scheduling using local search. Mathematical and
Computer Modelling 20(2):41–52.
Graham, R.; Lawler, E.; Lenstra, J.; and Kan, A. 1979.
Optimization and approximation in deterministic sequenc-

ing and scheduling: A survey. Annals of Discrete Mathe-
matics 5(2):287–326.
Graves, S. 1981. A review of production scheduling. Oper-
ations Research 29(4):646–675.
Guinet, A. 1991. Textile production systems: a succession
of non-identical parallel processor shops. The Journal of the
Operational Research Society 42(8):655–671.
Helal, M.; Rabadi, G.; and Al-Salem, A. 2006. A tabu
search algorithm to minimize the makespan for the unrelated
parallel machines scheduling problem with setup times. In-
ternational Journal of Operations Research 3(3):182–192.
Hooker, J., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96(1):33–60.
Hooker, J. 1995. Verifying logic circuits by Benders de-
composition. Principles and Practice of Constraint Pro-
gramming: The Newport Papers, MIT Press, Cambridge,
MA 267–288.
Hooker, J. 2005. A hybrid method for the planning and
scheduling. Constraints 10(4):385–401.
Kurz, M., and Askin, R. 2001. Heuristic scheduling of par-
allel machines with sequence-dependent set-up times. In-
ternational Journal of Production Research 39(16):3747–
3769.
Lancia, G. 2000. Scheduling jobs with release dates
and tails on two unrelated parallel machines to minimize
the makespan. European Journal of Operational Research
120(2):277–288.
Mendes, A.; Muller, F.; França, P.; and Moscato, P. 2002.
Comparing meta-heuristic approaches for parallel machine
scheduling problems. Production Planning & Control
13(2):143–154.
Rabadi, G.; Moraga, R.; and Al-Salem, A. 2006. Heuristics
for the unrelated parallel machine scheduling problem with
setup times. Journal of Intelligent Manufacturing 17(1):85–
97.
Thorsteinsson, E. 2001. Branch-and-check: A hybrid frame-
work integrating mixed integer programming and constraint
logic programming. In Proceedings of the Seventh Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP2001), 16–30. Springer.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

14

Applying Iterative Flattening Search to the Job Shop Scheduling Problem with
Alternative Resources and Sequence Dependent Setup Times

Angelo Oddi 1 and Riccardo Rasconi 1 and Amedeo Cesta 1 and Stephen F. Smith 2

1 Institute of Cognitive Science and Technology, CNR, Rome, Italy
{angelo.oddi, riccardo.rasconi, amedeo.cesta}@istc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
sfs@cs.cmu.edu

Abstract

This paper tackles a complex version of the Job Shop Sched-
uling Problem (JSSP) that involves both the possibility to se-
lect alternative resources to activities and the presence of se-
quence dependent setup times. The proposed solving strategy
is a variant of the known Iterative Flattening Search (IFS)
metaheuristic. This work presents the following contribu-
tions: (1) a new constraint-based solving procedure produced
by means of enhancing a previous JSSP-solving version of
the same metaheuristic; (2) a new version of both the variable
and value ordering heuristics, based on temporal flexibility,
that capture the relevant features of the extended scheduling
problem (i.e., the flexibility in the assignment of resources
to activities, and the sequence dependent setup times); (3) a
new relaxation strategy based on the random selection of the
activities that are closer to the critical path of the solution,
as opposed to the original approach based on a fully random
relaxation. The performance of the proposed algorithm are
tested on a new benchmark set produced as an extension of an
existing well-known testset for the Flexible Job Shop Sched-
uling Problem by adding sequence dependent setup times to
each original testset’s instance, and the behavior of the old
and new relaxation strategies are compared.

Introduction
This paper describes an iterative improvement approach
to solve job-shop scheduling problems involving both se-
quence dependent setup-times and the possibility of select-
ing alternative routes among the available machines. Over
the last years there has been an increasing interest in solv-
ing scheduling problems involving both setup-times and
flexible shop environments (Allahverdi and Soroush 2008;
Allahverdi et al. 2008). This fact stems mainly from the ob-
servation that in various real-word industry or service en-
vironments there are tremendous savings when setup times
are explicitly considered in scheduling decisions. In addi-
tion, the possibility of selecting alternative routes among
the available machines is motivated by interest in develop-
ing Flexible Manufacturing Systems (FMS) (Sethi and Sethi
1990) able to use multiple machines to perform the same
operation on a job’s part, as well as to absorb large-scale
changes, such as in volume, capacity, or capability.

The proposed problem, called in the rest of the paper
Flexible Job Shop Scheduling Problem with Sequence De-
pendent Setup Times (SDST-FJSSP) is a generalization of

the classical Job Shop Scheduling Problem (JSSP) where
each activity requires a single machine and there are no
setup-times. This problem is more difficult than the clas-
sical JSSP (which is itself NP-hard), since it is not just
a sequencing problem; in addition to deciding how to se-
quence activities that require the same machine (involv-
ing sequence-dependent setup-times), it is also necessary to
choose a routing policy, i.e., deciding which machine will
process each activity. The objective remains that of mini-
mizing makespan.

Despite this problem is often met in real manufacturing
systems, not many papers consider both sequence depen-
dent setup-times in flexible job-shop environments. On the
other hand, a richer literature is available when setup-times
and flexible job-shop environments are considered sepa-
rately. In particular, on the side of setup-times a first refer-
ence work is (Brucker and Thiele 1996), which relies on an
earlier proposal presented in (Brucker, Jurisch, and Sievers
1994). More recent works are (Vela, Varela, and González
2009) and (González, Vela, and Varela 2009), which pro-
pose effective heuristic procedures based on genetic algo-
rithms and local search. In these works, the introduced lo-
cal search procedures extend an approach originally pro-
posed by (Nowicki and Smutnicki 2005) for the classical
job-shop scheduling problem to the setup times case. A
last noteworthy work is (Balas, Simonetti, and Vazacopou-
los 2008), which extends the well-known shifting bottleneck
procedure (Adams, Balas, and Zawack 1988) to the setup-
time case. Both (Balas, Simonetti, and Vazacopoulos 2008)
and (Vela, Varela, and González 2009) have produced refer-
ence results on a previously studied benchmark set of JSSP
with sequence dependent setup-times problems initially pro-
posed by (Brucker and Thiele 1996). About the Flexible Job
Shop Scheduling FJSSP an effective synthesis of the exist-
ing solving approaches is proposed in (Hmida et al. 2010).
The core set of procedures which generate the best results
include the genetic algorithm (GA) proposed in (Gao, Sun,
and Gen 2008), the tabu search (TS) approach of (Mastrolilli
and Gambardella 2000) and the discrepancy-based method,
called climbing depth-bound discrepancy search (CDDS),
defined in (Hmida et al. 2010). Among the papers dealing
with both sequence dependent setup times and flexible shop
environments there is the work (Rossi and Dini 2007), which
considers a shop type composed of pools of identical ma-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

15

chines as well as two types of setup times: one modeling the
transportation times between different machines (sequence
dependent) and the other one modeling the required recon-
figuration times (not sequence dependent) on the machines.
The other work (Ruiz and Maroto 2006) considers a flow-
shop environment with multi-purpose machines, such that
each stage of a job can be processed by a set of unrelated
machines (the processing times of the jobs depend on the
machine they are assigned to). (Vallada and Ruiz 2011) con-
siders a problem similar to the previous one, where the jobs
are composed by a single step, but setup-times are both se-
quence and machine dependent. Finally, (Valls, Perez, and
Quintanilla 1998) considers a job-shop problem with paral-
lel identical machines, release times and due dates but se-
quence independent setup-times.

This paper focuses on a family of solving techniques re-
ferred to as Iterative Flattening Search (IFS). IFS was first
introduced in (Cesta, Oddi, and Smith 2000) as a scalable
procedure for solving multi-capacity scheduling problems.
IFS is an iterative improvement heuristic designed to mini-
mize schedule makespan. Given an initial solution, IFS iter-
atively applies two-steps: (1) a subset of solving decisions
are randomly retracted from a current solution (relaxation-
step); (2) a new solution is then incrementally recomputed
(flattening-step). Extensions to the original IFS procedure
were made in two subsequent works (Michel and Van Hen-
tenryck 2004; Godard, Laborie, and Nuitjen 2005) and more
recently (Oddi et al. 2010) have performed a systematic
study aimed at evaluating the effectiveness of single com-
ponent strategies within the same uniform software frame-
work. The IFS variant that we propose relies on a core
constraint-based search procedure as its solver. This proce-
dure is an extension of the SP-PCP procedure proposed in
(Oddi and Smith 1997). SP-PCP generates consistent order-
ings of activities requiring the same resource by imposing
precedence constraints on a temporally feasible solution, us-
ing variable and value ordering heuristics that discriminate
on the basis of temporal flexibility to guide the search. We
extend both the procedure and these heuristics to take into
account both sequence dependent setup-times and flexibility
in machine selection. To provide a basis for embedding this
core solver within an IFS optimization framework, we also
specify an original relaxation strategy based on the idea of
randomly breaking the execution orders of the activities on
the machines with a activity selection criteria based on their
proximity to the solution’s critical path.

The paper is organized as follows. The first two sec-
tions define the SDST-FJSSP problem and its CSP repre-
sentation. The main contribution of the work is given by
two further sections which respectively describes the core
constraint-based search procedure and the definition of the
IFS meta-heuristic. An experimental section describes the
performance of our algorithm on a set of benchmark prob-
lems and explains the most interesting results. Some conclu-
sions end the paper.

The Scheduling Problem
The SDST-FJSSP entails synchronizing the use of a set of
machines (or resources) R = {r1, . . . , rm} to perform a set

of n activities A = {a1, . . . , an} over time. The set of activ-
ities is partitioned into a set of nj jobs J = {J1, . . . , Jnj}.
The processing of a job Jk requires the execution of a strict
sequence of nk activities ai ∈ Jk and cannot be modified.
All jobs are released at time 0. Each activity ai requires the
exclusive use of a single resource ri for its entire duration
chosen among a set of available resources Ri ⊆ R. No pre-
emption is allowed. Each machine is available at time 0 and
can process more than one operation of a given job Jk (recir-
culation is allowed). The processing time pir of each activity
ai depends on the selected machine r ∈ Ri, such that ei −
si = pir, where the variables si and ei represent the start and
end time of ai. Moreover, for each resource r, the value strij
represents the setup time between two generic activities ai
and aj (aj is scheduled immediately after ai) requiring the
same resource r, such that ei+ strij ≤ sj . As is traditionally
assumed in the literature, the setup times strij satisfy the so-
called triangular inequality (see (Brucker and Thiele 1996;
Artigues and Feillet 2008)). The triangle inequality states
that, for any three activities ai, aj , ak requiring the same
resource, the inequality strij ≤ strik + strkj holds. A solu-
tion S = {(s1, r1), (s2, r2), . . . , (sn, rn)} is a set of pairs
(si, ri), where si is the assigned start-time of ai, ri is the
selected resource for ai and all the above constraints are sat-
isfied. Let Ck be the completion time for the job Jk, the
makespan is the value Cmax = max1≤k≤nj{Ck}. An opti-
mal solution S∗ is a solution S with the minimum value of
Cmax. The SDST-FJSSP is NP-hard since it is an extension
of the JSSP problem (Garey and Johnson 1979).

A CSP Representation
There are different ways to model the problem as a Con-
straint Satisfaction Problem (CSP) (Montanari 1974), we
use an approach similar to (Oddi and Smith 1997). In par-
ticular, we focus on assigning resources to activities, a dis-
tinguishing aspect of SDST-FJSSP and on establishing se-
quence dependent setup time constraints between pairs of
activities that require the same resource, so as to eliminate
all possible conflicts in the resource usage.

Let G(AG, J,X) be a graph where the set of vertices AG

contains all the activities of the problem together with two
dummy activities, a0 and an+1, respectively representing the
beginning (reference) and the end (horizon) of the schedule.
Each activity ai is labelled with the set of available resource
choices Ri. J is a set of directed edges (ai, aj) representing
the precedence constraints among the activities (job prece-
dences constraints) and are labelled with the set of process-
ing times pir (r ∈ Ri) of the edge’s source activity ai. The
set of undirected edges X represents the disjunctive con-
straints among the activities requiring the same resource r;
there is an edge for each pair of activities ai and aj requir-
ing the same resource r (Ri = Rj = {r}) and the related
label represents the set of possible ordering between ai and
aj : ai � aj or aj � ai. Hence, in CSP terms, there are
two sets of decision variables: (1) a variable xi is defined
for each activity ai to select one resource for its execution,
the domain of xi is the set of available resource Ri: (2) A
variable oijr is defined for each pair of activities ai and aj

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

16

requiring the same resource r (xi = xj = r), which can take
one of two values ai � aj or aj � ai. It is worth noting that
in considering either ordering we have to take into account
the presence of sequence dependent setup times, which must
be included when an activity ai is executed on the same re-
source before another activity aj . As we will see in the next
sections, the previous decisions for oijr can be represented
as the following two temporal constraints: ei + strij ≤ sj
(i.e. ai � aj) or ej + strji ≤ si (i.e. aj � ai).

To support the search for a consistent assignment to the set
of decision variables xi and oijr, for any SDST-FJSSP we
define the directed graph Gd(V,E), called distance graph,
which is an extended version of the graph G(AG, J,X). The
set of nodes V represents time points, where tp0 is the ori-
gin time point (the reference point of the problem), while
for each activity ai, si and ei represent its start and end
time points respectively. The set of edges E represents all
the imposed temporal constraints, i.e., precedences and du-
rations. In particular, for each activity ai we impose the in-
terval duration constraint ei − si ∈ [pmin

i , pmax
i], such that

pmin
i (pmax

i) is the minimum (maximum) processing time
according to the set of available resources Ri. Given two
time points tpi and tpj , all the constraints have the form
a ≤ tpj − tpi ≤ b, and for each constraint specified in
the SDST-FJSSP instance there are two weighted edges in
the graph Gd(V,E); the first one is directed from tpi to tpj
with weight b and the second one is directed from tpj to tpi
with weight −a. The graph Gd(V,E) corresponds to a Sim-
ple Temporal Problem (STP) and its consistency can be effi-
ciently determined via shortest path computations; the prob-
lem is consistent if and only if no closed paths with nega-
tive length (or negative cycles) are contained in the graph
Gd (Dechter, Meiri, and Pearl 1991). Thus, a search for a
solution to a SDST-FJSSP instance can proceed by repeat-
edly adding new precedence constraints into Gd(V,E) and
recomputing shortest path lengths to confirm that Gd(V,E)
remains consistent.

A solution S is given as a affine graph GS(AG, J,XS),
such that each undirected edge (ai, aj) in X is replaced
with a directed edge representing one of the possible or-
derings between ai and aj : ai � aj or aj � ai. In
general the directed graph GS represents a set of tem-
poral solutions (S1, S2, . . . , Sn) that is, a set of assign-
ments to the activities’ start-times which are consistent
with the set of imposed constraints XS . Let d(tpi, tpj)
(d(tpj , tpi)) designate the shortest path length in graph
Gd(V,E) from node tpi to node tpj (from node tpj to
node tpi); then, the constraint −d(tpj , tpi) ≤ tpj − tpi ≤
d(tpi, tpj) is demonstrated to hold (Dechter, Meiri, and
Pearl 1991). Hence, the interval [lbi, ubi] of time values
associated with a given time variable tpi respect to the
reference point tp0 is computed on the graph Gd as the
interval [−d(tpi, tp0), d(tp0, tpi)]. In particular, given a
STP, the following two sets of value assignments Slb =
{−d(tp1, tp0),−d(tp2, tp0), . . . , −d(tpn, tp0)} and Sub =
{d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the STP vari-
ables tpi represent the so-called earliest-time solution and
latest-time solution, respectively.

Basic Constraint-based Search
The proposed procedure for solving instances of SDST-
FJSSP integrates a Precedence Constraint Posting (PCP)
one-shot search for generating sample solutions and an It-
erative Flattening meta-heuristic that pursues optimization.
The one-shot step, similarly to the SP-PCP scheduling pro-
cedure (Shortest Path-based Precedence Constraint Posting)
proposed in (Oddi and Smith 1997), utilizes shortest path
information in Gd(V,E) to guide the search process. Short-
est path information is used in a twofold fashion to enhance
the search process: to propagate problem constraints and to
define variable and value ordering heuristics.

Propagation Rules
The first way to exploit shortest path information is by in-
troducing conditions to remove infeasible values from the
domains of the decision variables xi, representing the as-
signment of resources to activities. Namely, for each activ-
ity ai we relax the disjunctive duration constraint into the
interval constraint ei − si ∈ [pmin

i , pmax
i], such that pmin

i
(pmax

i) is the minimum (maximum) processing time accord-
ing to the set of available resources Ri (Ri is the domain of
the decision variable xi). As the search proceeds, as soon
as the interval of distance between the start-time and the
end-time of ai [−d(si, ei), d(ei, si)] is updated, the duration
pir �∈ [−d(si, ei), d(ei, si)] is removed from the domain of
xi and a new interval [pmin

i , pmax
i] is recomputed accord-

ingly. In case of the domain of the decision variable xi be-
comes empty, the search reaches a failure state.

The second way to exploit shortest path is by introduc-
ing new Dominance Conditions (which adapt those pre-
sented in (Oddi and Smith 1997) to the setup times case),
through which problem constraints are propagated and
mandatory decisions for promoting early pruning of alterna-
tives are identified. The following concepts of slack(ei, sj)
and co-slack(ei, sj) (complementary slack) play a central
role in the definition of such new dominance conditions.
Given two activities ai, aj and the related interval of dis-
tances [−d(sj , ei), d(ei, sj)]

1 and [−d(si, ej), d(ej , si)]
2

on the graph Gd, they are defined as follows:

• slack(ei, sj) = d(ei, sj)− strij is the difference between
the maximal distance d(ei, sj) and the setup time strij .
Hence, it provides a measure of the degree of sequenc-
ing flexibility between ai and aj

3 taking into account the
setup time constraint ei + strij ≤ sj . If slack(ei, sj) < 0,
then the ordering ai � aj is not feasible.

• co-slack(ei, sj) = −d(sj , ei)− strij is the difference be-
tween the minimum possible distance between ai and aj ,
−d(si, ej), and the setup time strij ; if co-slack(ei, sj) ≥
0, then there is no need to separate ai and aj , as the setup
time constraint ei + strij ≤ sj is already satisfied.

1Between the end-time ei of ai and the start-time sj of aj
2Between the end-time ej of aj and the start-time si of ai
3Intuitively, the higher is the degree of sequencing flexibility,

the larger is the set of feasible assignments to the start-times of ai

and aj

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

17

For any pair of activities ai and aj that can compete for
the same resource r (Ri∩Rj �= ∅), given the corresponding
durations pir and pjr, the Dominance Conditions, describ-
ing the four main possible cases of conflict, are defined as
follows:
1. slack(ei, sj)< 0∧slack(ej , si)<0
2. slack(ei, sj)<0 ∧slack(ej , si)≥0∧co-slack(ej , si)<0
3. slack(ei, sj)≥0∧slack(ej , si) < 0∧co-slack(ei, sj)<0
4. slack(ei, sj)≥0 ∧slack(ej , si)≥0

Condition 1 represents an unresolvable conflict. There is
no way to order ai and aj taking into account the setup times
strij and strji, without inducing a negative cycle in the graph
Gd(V,E). When Condition 1 is verified there are four dif-
ferent interesting sub-cases generated on the basis of the car-
dinality of the domain sets Ri and Rj .
a. |Ri| = |Rj | = 1: the search has reached a failure state;
b. |Ri| = 1 ∧ |Rj | > 1: the resource requirement r can be

removed from Rj ;
c. |Ri| > 1 ∧ |Rj | = 1: the resource requirement r can be

removed from Ri;
d. |Ri| > 1 ∧ |Rj | > 1: the activities ai and aj cannot use

the same resource r.
Conditions 2, and 3, alternatively, distinguish uniquely

resolvable conflicts, i.e., there is only one feasible order-
ing of ai and aj when both the activities require r, and
the decision of which constraint to post is thus uncondi-
tional. In the particular case where |Ri| = |Rj | = 1 the
decision aj � ai is mandatory; if Condition 2 is verified,
only aj � ai leaves Gd(V,E) consistent. It is worth not-
ing that the presence of the condition co-slack(ej , si) < 0
entails that the minimal distance between the end time ej
and the start time si is shorter than the minimal required
setup time strji; hence, we still need to impose the con-
straint ej + strji ≤ si. In other words, the co-slack con-
dition avoids the imposition of unnecessary precedence con-
straints for trivially solved conflicts. Condition 3 works sim-
ilarly, and entails that only the ai � aj ordering is feasible.
In case there is at least one activity with more than one re-
source option (|Ri| > 1 ∨ |Rj | > 1), it is still possible
to choose different resource assignments for ai and aj , and
avoid posting a precedence constraint. Condition 3 works
similarly, and entails that only the ai � aj ordering is feasi-
ble when |Ri| = |Rj | = 1.

Condition 4 designates a class of resolvable conflicts with
more search options; in this case when |Ri| = |Rj | = 1
both orderings of ai and aj remain feasible, and it is there-
fore necessary to perform a search decision. When there is
at least one activity ai or aj with more than one resource op-
tion (|Ri| > 1 ∨ |Rj | > 1), then there is also the possibility
of choosing different resource assignment to ai and aj , and
avoid to post a precedence constraint.

Heuristic Analysis
Shortest path information in Gd can also be exploited to de-
fine variable and value ordering heuristics for the decision
variables xi and oijr in all cases where no mandatory de-
cisions are deduced from the propagation phase. The idea

is to evaluate both types of decision variables (xi and oijr)
and select the one (independently of type) with the minimum
heuristic evaluation. The selection of the variables is based
on the most constrained first (MCF) principle and the se-
lection of values follows the least constraining value (LCV)
heuristic.

Ordering decision variables. We start to analyze the case
of selecting an ordering decision variables oijr, under the
hypothesis that both the activity ai and aj use the same
resource r ∈ Ri ∩ Rj . As stated above, in this context
slack(ei, sj) and slack(ej , si) provide measures of the de-
gree of sequencing flexibility between ai and aj . More pre-
cisely, given a variable oijr, related to the pair (ai, aj), its
heuristic evaluation

V arEval(ai, aj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{ slack(ei,sj)√
S

,
slack(ej ,si)√

S
} :

if slack(ei, sj)≥0∧slack(ej , si)≥0
slack(ej , si) :

if slack(ei, sj)<0∧slack(ej , si)≥0
slack(ei, sj) :

if slack(ei, sj)≥0 ∧slack(ej , si)<0

where S =
min{slack(ei,sj),slack(ej ,si)}
max{slack(ei,sj),slack(ej ,si)}

4. The variable or-
dering heuristic attempts to focus first on the most con-
strained conflict (ai, aj), that is, on the conflict with the least
amount of temporal flexibility (i.e., the conflict that is closest
to previous Condition 1.a).

As opposed to variable ordering, the value ordering
heuristic attempts to resolve the selected conflict (ai, aj)
by simply choosing the activity pair sequencing that retains
the highest amount of temporal flexibility (least constrained
value). Specifically, ai � aj is selected if slack(ei, sj) >
slack(ej , si) and aj � ai is selected otherwise.

Resource decision variables. Decision variables xi are
also selected according to the MCF principle. Initially, all
the pairs of activities (ai, aj), such that (|Ri| > 1 ∨
|Rj | > 1 and Ri ∩ Rj �= ∅)) undergo a double-key sort-
ing, where the primary key is a heuristic evaluation based
on resource flexibility and computed as Fij = 2(|Ri| +
|Rj |) − |Ri ∩ Rj |, while the secondary key is the known
V arEval(ai, aj) heuristic, based on temporal flexibility5.
Then, we select the pair (a∗i , a

∗
j) with the lowest value of

the pair 〈Fij , V arEval(ai, aj)〉, where V arEval(ai, aj) is
computed for each possible resource r ∈ Ri ∩ Rj . Finally,
between x∗

i and x∗
j we select the variable whose domain of

values has the lowest cardinality.
Value ordering on the decision variables xi is also ac-

complished by using temporal flexibility measures. If Ri

4The
√
S bias is introduced to take into account cases where

a first conflict with the overall min{slack(ei, sj), slack(ej , si)}
has a very large max{slack(ei, sj), slack(ej , si)}, and a second
conflict has two shortest path values just slightly larger than this
overall minimum. In such situations, it is not clear which conflict
has the least temporal flexibility.

5The resource flexibility Fij increases with the size of the do-
mains Ri and Rj , and decreases with the size of the set Ri ∩ Rj ,
which is correlated to the possibility of creating resource conflicts.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

18

PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableDecisions(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseDecisionVariable(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. vc ← ChooseValueConstraint(S, C)
15. PostConstraint(S, vc)
16. end
17. end
18. end-loop
19. return(S)

Figure 1: The PCP one-shot algorithm

is the domain of the selected decision variable xi, then for
each resource r ∈ Ri, we consider the set of activities
Ar already assigned to resource r and calculate the value
Fmin(r) = minak∈Ar{V arEval(ai, ak)}. Then, for each
resource r we evaluate the flexibility associated with the
most critical pair (ai, ak), under the hypothesis that the re-
source r is assigned to ai. The resource r∗ ∈ Ri which max-
imizes the value Fmin(r), and therefore allows ai to retain
maximal flexibility, is selected.

The PCP Algorithm
Figure 1 gives the basic overall PCP solution procedure,
which starts from an empty solution (Step 1) where the
graphs Gd is initialized according to Section . Also, the pro-
cedure accepts a never-exceed value (Cmax) of the objec-
tive function of interest, used to impose an initial global
makespan to all the jobs. The PCP algorithm shown in Fi-
gure 1 analyses the decision variables xi and oijr, and re-
spectively decides their values in terms of imposing a du-
ration constraint on a selected activity or a setup time con-
straint (i.e., ai � aj or aj � ai, see Section). In broad
terms, the procedure in Figure 1 interleaves the applica-
tion of Dominance Conditions (Steps 4 and 7) with variable
and value ordering (Steps 10 and 14 respectively) and up-
dating of the solution graph Gd (Steps 8 and 15) to con-
duct a single pass through the search tree. At each cy-
cle, a propagation step is performed (Step 3) by the func-
tion Propagate(S), which propagates the effects of post-
ing a new solving decision (i.e., a setup time constraint)
in the graph Gd. In particular, Propagate(S) updates
the shortest path distances on the graph Gd. A solution S
is found when the PCP algorithm finds a feasible assign-
ment of resources ri ∈ Ri to activities ai (i = 1 . . . n})
and when none of the four dominance conditions is veri-
fied on S. In fact, when none of the four Dominance Con-
ditions is verified (and the PCP procedure exits with suc-
cess), for each resource r, the set of activities Ar assigned

IFS(S,MaxFail, γ)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S, γ)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)
end

Figure 2: The IFS schema

to r represents a total execution order. In addition, as the
graph Gd represents a consistent Simple Temporal Problem
(see Section), one possible solution of the problem is the
earliest-time solution, such that S = {(−d(s1, tp0), r1), (-
d(s2, tp0), r2), . . . , (−d(sn, tp0), rn)}.

The Optimization Metaheuristic
Figure 2 introduces the generic IFS procedure. The algo-
rithm basically alternates relaxation and flattening steps until
a better solution is found or a maximal number of iterations
is executed. The procedure takes three parameters as input:
(1) an initial solution S; (2) a positive integer MaxFail,
which specifies the maximum number of consecutive non
makespan-improving moves that the algorithm will tolerate
before terminating; (3) a parameter γ explained in . After
the initialization (Steps 1-2), a solution is repeatedly modi-
fied within the while loop (Steps 3-10) by applying the RE-
LAX procedure (as explained in the following section), and
the PCP procedure shown in Figure 1 used as flattening step.
At each iteration, the RELAX step reintroduces the possibil-
ity of resource contention, and the PCP step is called again
to restore resource feasibility. In the case a better makespan
solution is found (Step 6), the new solution is saved in Sbest

and the counter is reset to 0. If no improvement is found
within MaxFail moves, the algorithm terminates and re-
turns the best solution found.

Relaxation Procedure
The first part of the IFS cycle is the relaxation step, wherein
a feasible schedule is relaxed into a possibly resource infea-
sible, but precedence feasible, schedule by retracting some
number of scheduling decisions. Here we use a strategy sim-
ilar to the one in (Godard, Laborie, and Nuitjen 2005) and
called chain-based relaxation. Given the graph representa-
tion described above, each scheduling decision is either a
setup time constraint between a pair of activities that are
competing for the same resource capacity and/or a resource
assignment to one activity. The strategy starts from a solu-
tion S and randomly breaks some total orders (or chains)
imposed on the subset of activities requiring the same re-
source r. The relaxation strategy requires an input solution
as a graph GS(A, J,XS) which is a modification of the orig-
inal precedence graph G that represents the input scheduling

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

19

problem. GS contains a set of additional general precedence
constraints XS which can be seen as a set of chains. Each
chain imposes a total order on a subset of problem activities
requiring the same resource.

The chain-based relaxation proceeds in two steps. Firstly,
a subset of activities ai is randomly selected from the input
solution S, according to some criteria that will be explained
below. The selection process is generally driven by a param-
eter γ ∈ (0, 1) that indicates the probability that each activ-
ity has to be selected (γ is called the relaxing factor). For
each selected activity, the resource assignment is removed
and the original set of available options Ri is re-estabilished.
Secondly, a procedure similar to CHAINING – used in (Po-
licella et al. 2007) – is applied to the set of unselected ac-
tivities. This operation is in its turn accomplished in three
steps: (1) all previously posted setup time constraints XS

are removed from the solution S; (2) the unselected activi-
ties are sorted by increasing earliest start times of the input
solution S; (3) for each resource r and for each unselected
activity ai assigned to r (according to the increasing order of
start times), ai’s predecessor p = pred(ai, r) is considered
and the setup time constraint related to the sequence p � ai
is posted (the dummy activity a0 is the first activity of all
the chains). This last step is iterated until all the activities
are linked by the correct setup time constraints. Note that
this set of unselected activities still represents a feasible so-
lution to a scheduling sub-problem, which is represented as
a graph GS in which the randomly selected activities float
outside the solution and thus re-create conflict in resource
usage.

As anticipated above, we implemented two different
mechanisms to perform the random activity selection pro-
cess, respectively called Random and a Slack-based.

Random selection According to the random selection ap-
proach, at each solving cycle of the IFS algorithm in Fi-
gure 2, a subset of activities ai is randomly selected from
the input solution S, with each activity having an uniformly
distributed selection probability equal to γ. It is of great im-
portance to underscore that according to this approach, the
activities to be relaxed are randomly picked up from the so-
lution S with the same probability which, as we will see
shortly, entails a relaxation characterized by a greater dis-
ruption on S, compared to the following selection approach.

Slack-based selection As opposed to the random selec-
tion, at each iteration the slack-based selection approach re-
stricts the pool of the relaxable activities to the subset con-
taining those activities that are closer to the critical path con-
dition (critical path set). As known, an activity ai belongs to
the critical path (i.e., meets the critical path condition) when,
given ai’s end time ei and its feasibility interval [lbi, ubi], the
condition lbi = ubi holds. For each activity ai, the smaller
the difference ubi − lbi (informally called slack) computed
on ei, the closer is ai to the critical path condition. At each
IFS iteration the critical path set is built so as to contain any
activity ai with a probability directly proportional to the γ
parameter and inversely proportional to ai’s slack. For ob-

vious reasons, the slack-based relaxation entails a smaller
disruption on the solution S, as it operates on a smaller set
of activities; the activities characterized by a great slack will
have a minimum probability to be selected. As explained in
the following section, this difference has important conse-
quences on the experimental behaviour.

Experimental Analysis
The empirical evaluation has been carried out on a SDST-
FJSSP benchmark set synthesized on purpose out of the
first 20 instances of the edata subset of the FJSSP HU-
data testbed from (Hurink, Jurisch, and Thole 1994), and
will therefore be referred to as SDST-HUdata. Each one
of the SDST-HUdata instances has been created by adding
to the original HUdata instance one Setup-Time matrix
str(nJ × nJ) for each present machine r, where nJ is
the number of present jobs. The same Setup-Time ma-
trix was added for each machine of all the benchmark in-
stances. Each value stri,j in the Setup-Time matrix mod-
els the setup time necessary to reconfigure the r-th ma-
chine to switch from job i to job j. Note that machine re-
configuration times are sequence dependent: setting up a
machine to process a product of type j after processing
a product of type i can generally take a different amount
of time than setting up the same machine for the oppo-
site transition. The elements stri,j of the Setup-Time ma-
trix satisfy the triangle inequality (Brucker and Thiele 1996;
Artigues and Feillet 2008), that is, for each three activi-
ties ai, aj , ak requiring the same machine, the inequality
strij ≤ strik + strkj holds. The 20 instances taken from HU-
data (namely, the instances la01-la20) are divided in four
groups of five (nJ × nA) instances each, where nJ is the
number of jobs and nA is the number of activities per job for
each instance. More precisely, group la01-la05 is (10 × 5),
group la06-la10 is (15×5), group la11-la15 is (20×5), and
group la16-la20 is (10×10). In all instances, the processing
times on machines assignable to the same activity are iden-
tical, as in the original HUdata set. The algorithm used for
these experiments has been implemented in Java and run on
a AMD Phenom II X4 Quad 3.5 Ghz under Linux Ubuntu
10.4.1.

Results. Table 1 and Table 2 show the obtained results run-
ning our algorithm on the SDST-HUdata set using the Ran-
dom or Slack-based procedure in the IFS relaxation step, re-
spectively. Both tables are composed of 10 columns and 23
rows (one row per problem instance plus three data wrap-
up rows). The best column lists the shortest makespans
obtained in the experiments for each instance; underlined
values represent the best values obtained from both tables
(global bests). The columns labeled γ = 0.2 to γ = 0.9 (see
Section) contain the results obtained running the IFS proce-
dure with a different value for the relaxing factor γ. For each
problem instance (i.e., for each row) the values in bold indi-
cate the best makespan found among all the tested γ values
(γ runs).

For each γ run, the last three rows of both tables show re-
spectively (up-bottom): (1) the number B of best solutions

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

20

Table 1: Results with random selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 772 731 728 726 729 726 729 740
la02 749 785 785 749 749 749 749 749 768
la03 652 677 658 658 658 652 652 658 675
la04 673 673 673 673 689 689 680 680 690
la05 603 613 613 603 605 605 606 607 632
la06 950 965 950 954 954 971 997 995 1020
la07 916 946 916 925 919 947 950 987 1000
la08 954 973 961 964 954 963 958 1000 1001
la09 1002 1039 1002 1039 1020 1042 1020 1045 1068
la10 977 1017 977 1022 977 1027 1008 1042 1048
la11 1265 1265 1312 1285 1282 1345 1332 1372 1368
la12 1088 1088 1114 1130 1167 1165 1199 1209 1198
la13 1255 1255 1255 1255 1300 1280 1300 1316 1315
la14 1292 1292 1315 1344 1346 1362 1351 1345 1372
la15 1298 1298 1302 1338 1355 1352 1367 1388 1429
la16 1012 1028 1012 1012 1012 1012 1012 1012 1023
la17 864 881 885 885 864 888 864 864 902
la18 985 1021 1007 1029 999 985 985 985 985
la19 956 1006 992 975 956 956 978 959 981
la20 997 1008 1010 997 997 997 997 997 999
B (N) 12 6(1) 7(5) 6(4) 8(5) 6(5) 7(5) 5(3) 1(1)
Av.C. 20149 17579 14767 11215 10950 9530 7782 7588
Av.MRE 19.34 18.29 18.66 18.37 19.42 19.43 20.60 22.44

found locally (i.e., within the current table) and, underlined
within round brackets, the number N of best solutions found
globally (i.e., between both tables); (2) the average number
of utilized solving cycles (Av.C.), and (3) the average mean
relative error (Av.MRE)6 with respect to the lower bounds
of the original HUdata set (i.e., without setup times), re-
ported in (Mastrolilli and Gambardella 2000). For all runs, a
maximum CPU time limit was set to 800 seconds.

Table 2: Results with slack-based selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 739 736 726 726 726 726 726 726
la02 749 785 749 749 749 749 749 749 749
la03 652 658 658 658 658 658 652 658 658
la04 673 686 686 686 673 686 680 673 680
la05 603 613 603 613 605 603 604 603 605
la06 960 963 963 971 960 963 962 970 970
la07 925 941 966 941 925 931 946 972 1000
la08 948 983 963 948 964 993 967 994 973
la09 1002 1020 1020 1002 1002 1040 1069 1052 1042
la10 985 993 991 1007 1022 1022 1017 985 1024
la11 1256 1256 1257 1295 1295 1308 1318 1324 1332
la12 1082 1082 1097 1098 1159 1152 1188 1163 1207
la13 1215 1222 1240 1240 1223 1215 1311 1301 1311
la14 1285 1308 1285 1285 1311 1295 1335 1372 1345
la15 1291 1333 1291 1330 1302 1311 1383 1389 1412
la16 1007 1012 1012 1012 1007 1012 1012 1012 1012
la17 858 889 868 893 895 888 858 859 872
la18 985 1019 1025 1021 1007 985 985 985 985
la19 956 1006 976 987 984 956 980 956 959
la20 997 997 1033 997 997 997 1003 997 997
B (N) 17 3(3) 4(4) 5(5) 8(6) 7(7) 5(5) 8(7) 4(4)
Av.C. 21273 18068 15503 13007 10643 10653 8639 8575
Av.MRE 18.67 18.09 18.26 18.19 18.14 19.58 19.44 20.16

One significant result that the tables show is the differ-
ence in the average of utilized solving cycles (Av.C. row) be-
tween the random and the slack-based relaxation procedure.

6The individual MRE of each solution is computed as follows:
MRE = 100 × (Cmax − LB)/LB, where Cmax is the solution
makespan and LB is the instance’s lower bound

In fact, it can be observed that on average the slack-based
approach uses more solving cycles in the same allotted time
than its random counterpart (i.e., the slack-based relaxation
heuristic is faster in the solving process). This is explained
by observing that the slack-based relaxation heuristic en-
tails a less severe disruption of the current solution at each
solving cycle compared to the random heuristic, as the for-
mer generally relaxes a lower number of activities (given the
same γ value). The lower the disruption level of the current
solution in the relaxation step, the easier it is to re-gain so-
lution feasibility in the flattening step. In addition of this ef-
ficiency issue, the slack-based relaxation approach also pro-
vides the extra effectiveness deriving from operating in the
vicinity of the critical path of the solution, as demonstrated
in (Cesta, Oddi, and Smith 2000).

The good performance exhibited by the slack-based
heuristic can be also observed by inspecting the B(N) rows
in both tables. Clearly, the slack-based approach finds a
higher number of best solutions (17 against 12), which is
confirmed by comparing the number of locally found bests
(B) with the global ones (N), for each γ value, and for both
heuristics.

Another interesting aspect can be found analyzing the
γ values range where the best performances are obtained
(Av.MRE row). Inspecting the Av.MRE values, the fol-
lowing can in fact be stated: (1) the slack-based heuristic
finds solutions of higher quality w.r.t. the random heuristic
over the complete γ variability range; (2) in the random case,
the best results are obtained in the [0.3, 0.5] γ range, while
in the slack-based case the best γ range is wider ([0.3, 0.6]).

Conclusions
In this paper we have proposed the use of Iterative Flat-
tening Search (IFS) as a means of effectively solving the
SDST-FJSSP. The proposed algorithm uses as its core solv-
ing procedure an extended version of the SP-PCP procedure
presented in (Oddi and Smith 1997) which introduces a new
set of dominance conditions tailored to capture the SDST-
FJSSP’s features (i.e., alternative activity-resource assign-
ments plus sequence dependent setup times), as well as a
new relaxation strategy. The performance of the procedure
has been tested on a modified version of a known FJSSP
benchmark set (i.e., the Hurink edata), integrated with a se-
ries of sequence dependent setup time constraints. The new
relaxation strategy has been compared against a fully ran-
dom version, demonstrating a noteworthy improvement in
performance. To the best of our knowledge, no similar works
exist on the same problem version to allow direct compari-
son with different approaches. The benchmark used in this
analysis will be made available on the net so as to facilitate
experiment reproducibility and encourage research compe-
tition.

Acknowledgments
CNR authors are partially supported by EU under the
ULISSE project (Contract FP7.218815), and MIUR under
the PRIN project 20089M932N (funds 2008).

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

21

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Management
Science 34(3):391–401.
Allahverdi, A., and Soroush, H. 2008. The significance
of reducing setup times/setup costs. European Journal of
Operational Research 187(3):978–984.
Allahverdi, A.; Ng, C.; Cheng, T.; and Kovalyov, M. 2008. A
survey of scheduling problems with setup times or costs. Eu-
ropean Journal of Operational Research 187(3):985–1032.
Artigues, C., and Feillet, D. 2008. A branch and bound
method for the job-shop problem with sequence-dependent
setup times. Annals OR 159(1):135–159.
Balas, E.; Simonetti, N.; and Vazacopoulos, A. 2008. Job
shop scheduling with setup times, deadlines and precedence
constraints. Journal of Scheduling 11(4):253–262.
Brucker, P., and Thiele, O. 1996. A branch & bound
method for the general-shop problem with sequence depen-
dent setup-times. OR Spectrum 18(3):145–161.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49(1-3):107–127.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative Flatten-
ing: A Scalable Method for Solving Multi-Capacity Sched-
uling Problems. In AAAI/IAAI. 17th National Conference on
Artificial Intelligence, 742–747.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Gao, J.; Sun, L.; and Gen, M. 2008. A hybrid genetic
and variable neighborhood descent algorithm for flexible job
shop scheduling problems. Computers & Operations Re-
search 35:2892–2907.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Godard, D.; Laborie, P.; and Nuitjen, W. 2005. Random-
ized Large Neighborhood Search for Cumulative Schedul-
ing. In ICAPS-05. Proceedings of the 15th International
Conference on Automated Planning & Scheduling, 81–89.
González, M. A.; Vela, C. R.; and Varela, R. 2009. A Tabu
Search Algorithm to Minimize Lateness in Scheduling Prob-
lems with Setup Times. In Proceedings of the CAEPIA-TTIA
2009 13th Conference of the Spanish Association on Artifi-
cial Intelligence.
Hmida, A. B.; Haouari, M.; Huguet, M.-J.; and Lopez, P.
2010. Discrepancy search for the flexible job shop schedul-
ing problem. Computers & Operations Research 37:2192–
2201.
Hurink, J.; Jurisch, B.; and Thole, M. 1994. Tabu search
for the job-shop scheduling problem with multi-purpose ma-
chines. OR Spectrum 15(4):205–215.
Mastrolilli, M., and Gambardella, L. M. 2000. Effective
neighbourhood functions for the flexible job shop problem.
Journal of Scheduling 3:3–20.

Michel, L., and Van Hentenryck, P. 2004. Iterative Re-
laxations for Iterative Flattening in Cumulative Scheduling.
In ICAPS-04. Proceedings of the 14th International Confer-
ence on Automated Planning & Scheduling, 200–208.
Montanari, U. 1974. Networks of Constraints: Fundamental
Properties and Applications to Picture Processing. Informa-
tion Sciences 7:95–132.
Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of Sched-
uling 8(2):145–159.
Oddi, A., and Smith, S. 1997. Stochastic Procedures for
Generating Feasible Schedules. In Proceedings 14th Na-
tional Conference on AI (AAAI-97), 308–314.
Oddi, A.; Cesta, A.; Policella, N.; and Smith, S. F. 2010. It-
erative flattening search for resource constrained scheduling.
J. Intelligent Manufacturing 21(1):17–30.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007. From
Precedence Constraint Posting to Partial Order Schedules.
AI Communications 20(3):163–180.
Rossi, A., and Dini, G. 2007. Flexible job-shop schedul-
ing with routing flexibility and separable setup times using
ant colony optimisation method. Robotics and Computer-
Integrated Manufacturing 23(5):503–516.
Ruiz, R., and Maroto, C. 2006. A genetic algorithm for
hybrid flowshops with sequence dependent setup times and
machine eligibility. European Journal of Operational Re-
search 169(3):781 – 800.
Sethi, A. K., and Sethi, S. P. 1990. Flexibility in manufac-
turing: A survey. International Journal of Flexible Manu-
facturing Systems 2:289–328. 10.1007/BF00186471.
Vallada, E., and Ruiz, R. 2011. A genetic algorithm for
the unrelated parallel machine scheduling problem with se-
quence dependent setup times. European Journal of Opera-
tional Research 211(3):612 – 622.
Valls, V.; Perez, M. A.; and Quintanilla, M. S. 1998. A tabu
search approach to machine scheduling. European Journal
of Operational Research 106(2-3):277 – 300.
Vela, C. R.; Varela, R.; and González, M. A. 2009. Lo-
cal search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

22

Solving Resource Allocation/Scheduling Problems with
Constraint Integer Programming

Stefan Heinz∗
Zuse Institute Berlin

Berlin, Germany
heinz@zib.de

J. Christopher Beck
Department of Mechanical & Industrial Engineering

University of Toronto
Toronto, Canada

jcb@mie.utoronto.ca

Abstract

Constraint Integer Programming (CIP) is a generalization of
mixed-integer programming (MIP) in the direction of con-
straint programming (CP) allowing the inference techniques
that have traditionally been the core of CP to be integrated
with the problem solving techniques that form the core of
complete MIP solvers. In this paper, we investigate the ap-
plication of CIP to scheduling problems that require resource
and start-time assignments to satisfy resource capacities.
The best current approach to such problems is logic-based
Benders decomposition, a manual decomposition method.
We present a CIP model and demonstrate that it achieves
performance competitive to the decomposition while out-
performing the standard MIP and CP formulations.

Introduction
Constraint Integer Programming (CIP) (Achterberg 2007b;
2009) is a generalization of both finite domain constraint
programming (CP) and mixed integer programming (MIP)
that allows the native integration of core problem solv-
ing techniques from each area. With a CIP solver, such as
SCIP (Achterberg 2009), it is possible to combine the tradi-
tional strengths of MIP such as strong relaxations and cut-
ting planes with global constraint propagation and conflict
analysis. Indeed, SCIP can be seen as a solver framework
that integrates much of the core of MIP, CP, and SAT solv-
ing methodologies.

Our primary goal in this paper is to start a broad investi-
gation of CIP as a general approach to scheduling problems.
While CP tends to be very successful on a variety of schedul-
ing problems, it is challenged by problems that exhibit weak
propagation either due to their objective functions (Kovács
and Beck 2011) or to the need for a cascading series of in-
terdependent decisions such as encountered in combined re-
source allocation and scheduling problems (Hooker 2005).
We are interested to see if CIP techniques can address these
challenges.

Our investigations in this paper focus on problems which
combine resource allocation and scheduling. Given a set of

∗Supported by the DFG Research Center MATHEON Mathe-
matics for key technologies in Berlin.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

jobs that require the use one out of a set of alternative re-
sources, a solution will assign each job to a resource and
schedule the jobs such that the capacity of each resource
is respected at all time points. We address this problem in
CIP by the optcumulative global constraint in SCIP,
extending the cumulative constraint to allow each job to
be optional. That is, a binary decision variable is associated
with each job and resource pair and the corresponding cumu-
lative constraint includes these variables in its scope. This
approach is not novel in CP, dating back to at least (Beck
and Fox 2000). We handle the requirement that exactly one
resource must be chosen for a job in standard MIP fashion
by specifying that the sum of the binary variables for a given
job, across all resources, must be one.

Our experimental results demonstrate that our preliminary
implementation of the optcumulative constraint is suf-
ficient to allow a CIP model to be competitive with the state-
of-the-art logic-based Benders decomposition (LBBD) on
two problems sets with unary and discrete resource capac-
ity, respectively.

In the next section, we formally define the scheduling
problems and provide necessary background on CIP, LBBD,
and the cumulative global constraint which forms the ba-
sis for the optcumulative constraint. We then present
four models of our scheduling problems: MIP, LBBD, CP,
and CIP. The following section contains our empirical inves-
tigations, both initial experiments comparing the four mod-
els and a detailed attempt to develop an understanding of the
impact of primal heuristics for the CIP performance. In the
final section, we conclude.

Background
In this section we introduce the scheduling problem under
investigation and give background on CIP, LBBD, and the
cumulative constraint.

Problem Definition
We study two classes of scheduling problems referred to as
UNARY and MULTI (Hooker 2005; Beck 2010). Both prob-
lems are defined by a set of jobs J , and a set of resources K.
Each job has a release date, Rj , a deadline, Dj , a resource-
specific processing time, pjk, a resource assignment cost,
cjk, and a resource requirement, rjk. Each job, j, must be
assigned to one resource, k, and scheduled to start at or after

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

23

its release date, end at or before its due date, and execute for
pjk time units. Each resource, k ∈ K, has a capacity, Ck,
and an associated resource constraint which states that for
each time point, the sum of the resource requirements of the
executing jobs must not exceed the resource capacity. A fea-
sible solution is an assignment where each job is placed on
exactly one resource and no resource is over capacity. The
goal is to find an optimal solution, a feasible solution which
minimizes the total resource assignment cost.

In the UNARY problem, the capacity of each resource and
the requirement of each job is one. In the MULTI problem,
capacities and requirements may be non-unary.

Constraint Integer Programming
Mixed integer programming (MIP) and satisfiability testing
(SAT) are special cases of the general idea of constraint pro-
gramming (CP). The power of CP arises from the possibility
to model a given problem directly with a large variety of dif-
ferent, expressive constraints. In contrast, SAT and MIP only
allow for very specific constraints: Boolean clauses for SAT
and linear and integrality constraints for MIP. Their advan-
tage, however, lies in the sophisticated techniques available
to exploit the structure provided by these constraint types.

The goal of constraint integer programming (CIP) is to
combine the advantages and compensate for the weaknesses
of CP, MIP, and SAT. It was introduced by Achterberg and
implemented in the framework SCIP (Achterberg 2009).
Formally a constraint integer program can be defined as fol-
lows.

Definition 1. A constraint integer program (CIP) (C, I, c)
consists of solving

c� = min{cTx | C(x), x ∈ Rn, xj ∈ Z for all j ∈ I}
with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn →
{0, 1}, i = {1, . . . ,m}, a subset I ⊆ N = {1, . . . , n} of the
variable index set, and an objective function vector c ∈ Rn.
A CIP must fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : (1)

{xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′}
with C := N \ I , A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈
Z≥0.

Restriction (1) ensures that the sub-problem remaining af-
ter fixing all integer variables is a linear program. Note that
this does not forbid quadratic or other nonlinear, and more
involved expressions – as long as the nonlinearity only refers
to the integer variables.

The central solving approach for CIP as implemented in
the SCIP framework is branch-and-cut-and-propagate: as in
SAT, CP, and MIP-solvers, SCIP performs a branch-and-
bound search to decompose the problem into sub-problems.
Also as in MIP, a linear relaxation, strengthened by ad-
ditional inequalities/cutting planes if possible, is solved at
each search node and used to guide and bound search. Sim-
ilar to CP solvers, inference in the form of constraint prop-
agation is used at each node to further restrict search and

detect dead-ends. Moreover, as in SAT solving, SCIP uses
conflict analysis and restarts. In more detail, CIP solving in-
cludes the following techniques

• Presolving. The purpose of presolving, which takes place
before the tree search is started, is threefold: first, it re-
duces the size of the model by removing irrelevant infor-
mation such as redundant constraints or fixed variables.
Second, it strengthens the linear programming relaxation
of the model by exploiting integrality information, e.g.,
to tighten the bounds of the variables or to improve co-
efficients in the constraints. Third, it extracts information
from the model such as implications or cliques which can
be used later for branching and cutting plane separation.

• Propagation. Propagation is used in the same fashion as
in CP for pruning variable domains during the search.

• Linear Relaxation. A generic problem relaxation can be
defined that includes only linear constraints. The relax-
ation can be solved efficiently to optimality and used in
two primary ways: first to provide a guiding informa-
tion for the search and second as the source of the “dual
bound” a valid lower (upper) bound on the objective func-
tion for a minimization (maximization) problem.

• Conflict Analysis. The idea of conflict analysis is to rea-
son about infeasible sub-problems which arise during the
search in order to generate conflict clauses (Marques-
Silva and Sakallah 1999; Achterberg 2007a) also known
as no-goods. These conflict clauses are used to detect sim-
ilar infeasible sub-problems later in the search. In order to
perform conflict analysis, a bound change which was per-
formed during the search, due to a propagation algorithm
for example, needs to be explained. Such an explanation is
a set of bounds which imply the performed bound change.
The explanations are used to build up so-called conflict
graph which lead to derivation of valid conflict clauses.

A global constraint in the framework of CIP can, but does
not have too, contribute to all of these techniques. For ex-
ample, as in CP, it can provide propagation algorithms for
shrinking variable domains while also adding linear con-
straints to the linear programming relaxation, and supplying
explanations to the conflict analysis reasoning. The minimal
function of a global constraint is to “check” candidate solu-
tions returning whether it is satisfied or not by a given vari-
able assignment.

CIP has been applied to MIP (Achterberg 2009),
mixed-integer nonlinear programming (Berthold, Heinz, and
Vigerske 2009), nonlinear pseudo-Boolean programming
(Berthold, Heinz, and Pfetsch 2009), the verification of chip
designs (Achterberg, Brinkmann, and Wedler 2007), and
scheduling (Berthold et al. 2010). The final paper is most
relevant to the work here. Berthold et al. applied SCIP
to resource-constrained project scheduling problems and
demonstrated that CIP is competitive with the state-of-the-
art in terms of finding both high quality solutions and in
proving lower bounds on optimal solutions. This work forms
one of our motivations for a broader investigation of CIP for
scheduling problems.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

24

Logic-based Benders Decomposition
Logic-based Benders decomposition (LBBD) (Hooker and
Ottosson 2003) is a manual decomposition technique that
generalizes classical Benders decomposition. A problem
is modeled as a master problem (MP) and a set of sub-
problems (SPs) where the MP is a relaxation of the global
problem designed such that a solution to the MP induces one
or more SPs. Each SP is an inference dual problem (Hooker
2005) that derives the tightest bound on the MP cost func-
tion that can be inferred from the current MP solution and
the constraints and variables of the SP.

Solving a problem by LBBD is done by iteratively solv-
ing the MP to optimality and then solving each SP. If the
MP solution satisfies all the bounds generated by the SPs,
the MP solution is globally optimal. If not, a Benders cut is
added to the MP by at least one violated SP and the MP is re-
solved. For models where the SPs are feasibility problems,
it is sufficient for correctness to solve the SPs to feasibility
or generate a cut that removes the current MP solution.

In order for the MP search to be more than just a blind
enumeration of its solution space, some relaxation of the SPs
should be present in the MP model and the Benders cuts
should do more than just remove the current MP solution.

LBBD has been successfully applied to a wide range of
problems including scheduling (Beck 2010; Bajestani and
Beck 2011), facility and vehicle allocation (Fazel-Zarandi
and Beck 2011), and queue design and control problems
(Terekhov, Beck, and Brown 2009).

Models & Solution Approaches
In this section, we define the models used for the UNARY
and MULTI problems for MIP, LBBD, CP, and CIP.

Mixed Integer Programming
One of the standard MIP models for scheduling problems
is the so-called time-indexed formulation (Queyranne and
Schulz 1994). A decision variable, xjkt, is defined, which is
equal to 1 if and only if job j, starts at time t, on resource
k. Summing over appropriate subsets of these variables can
then enforce the resource capacity requirement. The model
we use, taken from (Hooker 2005), is as follows:

min
∑
k∈K

∑
j∈J

Dj −pjk∑
t=Rj

cjk xjkt

s. t.
∑
k∈K

Dj −pjk∑
t=Rj

xkjt = 1 ∀j ∈ J (2)

∑
j∈J

∑
t′∈Tjkt

rjk xjkt′ ≤ Ck ∀k ∈ K, ∀t (3)

xjkt ∈ {0, 1} ∀k ∈ K, ∀j ∈ J , ∀t,
with Tjkt = {t− pjk, . . . , t}.

The objective function minimizes the weighted resource
assignment cost. Constraints (2) ensure that each job starts
exactly once on one resource while Constraints (3) enforce
the resource capacities on each resource at each time-point.

To solve this model, we rely on the default branch-
and-bound search in the SCIP solver (Achterberg 2009).
The default search has been tuned for solving MIP mod-
els and consists of a variety of modern algorithm tech-
niques including: primal heuristics for finding feasible so-
lutions, reliability-based branching heuristics, conflict anal-
ysis, and cutting planes. Details can be found in Achterberg
and Berthold (2009).

Logic-based Benders Decomposition
The LBBD model (Hooker 2005; Beck 2010) defines two
sets of decision variables: binary resource assignment vari-
ables, xjk, which are assigned to 1 if and only if job j is
assigned to resource k, and integer start time variables, Sj ,
which are assigned to the start-time of job j. The former
variables are in the master problem while the latter are in
sub-problems, one for each resource.

Formally, the LBBD master problem (MP) is defined as
follows:

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (4)

∑
j∈J

xjk pjkrjk ≤ Ĉk ∀k ∈ K (5)

∑
j∈Jhk

(1− xjk) ≥ 1 ∀k ∈ K, h ∈ [H − 1]1 (6)

xkj ∈ {0, 1} ∀k ∈ K, ∀j ∈ J ,

with Ĉk = Ck · (maxj∈J {Dj} −minj∈J {Rj}).
As in the global MIP model, the objective function mini-

mizes the total resource allocation costs. Constraints (4) en-
sure that each job is assigned to exactly one resource. Con-
straints (5) are a linear relaxation of each resource capac-
ity constraint. They state that the area of the rectangle with
height Ck and width from the smallest release date to the
largest deadline must be greater than the sum of the areas of
the jobs assigned to the resource.

Constraints (6) are the Benders cuts. Let H indicate the
index of the current iteration and Jhk denote the set of jobs
that resulted in an infeasible sub-problem for resource k in
iteration h < H . The Benders cut, then, simply states that
the set of jobs assigned to resource k in iteration h should
not be reassigned to the same resource. This is a form of
no-good cut (Hooker 2005).

Because the MP assigns each job to a resource and there
are no inter-job constraints, the SPs are independent, single-
machine scheduling problems where it is necessary to assign
each job a start time such that its time window and the ca-
pacity of its resource are respected. The SP for resource k
can be formulated as a constraint program as follows, where
Jk denotes the set of jobs assigned to resource k:

1For an n ∈ N we define [n] := {1, . . . , n} and [0] := ∅.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

25

cumulative(S,p·k, r·k, Ck)

Rj ≤ Sj ≤ Dj −pjk ∀j ∈ Jk (7)
Sj ∈ Z ∀j ∈ Jk.

S, p·k, and r·k are the vectors containing the start time
variables and the processing times and demands for re-
source k with respect to subsets of jobs Jk.

The global constraint cumulative (Baptiste, Pape, and
Nuijten 2001) enforces the resource capacity constraint over
all time-points at which a job may run. Constraints (7) en-
force the time-windows for each job.

The MP and SPs are solved using the default search of
SCIP. As CIP models admit global constraints, the sub-
problems are example of where the CIP model is solved pri-
marily with CP technology.

Constraint Programming
As with MIP, we use the standard CP model for our prob-
lem (Hooker 2005). The start time of job j on resource k,
is represented by the integer variable, Sjk. The model is as
follows:

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J

optcumulative(S·k,x·k,p·k, r·k, Ck)

∀k ∈ K (8)
Rj ≤ Sj ≤ Dj −pjk ∀j ∈ Jk

xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K.

Except for Constraints (8), the model components are
analogous to those previously defined in the MIP and LBBD
models. The optcumulative constraint is equivalent to
the standard cumulative constraint with the addition that
the jobs are optional: the jobs do not necessarily have to ex-
ecute on this resource. The xjk variable is used to indicate
if job j executes on resource k and the optcumulative
constraint include these variables in its scope. Formally, an
assignment to the start time variables Sjk and binary choice
variables xjk for each job j and resource k is feasible if and
only if the following condition holds at each time-point t:∑

j∈J :t∈[Sjk,Sjk+pjk)

xjkrjk ≤ Ck.

We implement this model in IBM ILOG Solver and IBM
ILOG Scheduler version 6.7. The optcumulative con-
straint is implemented by placing the set of machines in an
alternative resource set and having each job require one re-
source from the set. The xjk variable is implemented via
the reification of the constraint stating that job j requires re-
source k.

To solve the problem, we use two pre-defined goals
in the following order: IloAssignAlternatives,

IloSetTimesForward. The first goal assigns jobs to re-
sources in arbitrary order. When all jobs are assigned (and no
dead-ends have been found via constraint propagation), the
second goal implements the schedule-or-postpone heuristic
(Pape et al. 1994) to assign start times to each job. Chrono-
logical backtracking is done when a dead-end is encoun-
tered.

Constraint Integer Programming
The CP model above is also the CIP model we use. Un-
like the CP model, we implement and solve the CIP model
using SCIP. As noted above, in CIP a global constraint
such as optcumulative can contribute to the search
in a number of ways. The current implementation of the
optcumulative global constraint provides the follow-
ing:

• Presolving. A number of problem reductions can be made
in presolving, including normalization of the demands
and the resource capacity and a detection of irrelevant jobs
that do not influence the assignment/feasibility of remain-
ing jobs on that resource. For example, if a job has a latest
completion time which is smaller than the earliest start
time of all remaining jobs then this job is irrelevant and
can be ignored.

• Propagation. Following (Beck and Fox 2000), we adapt
the standard bounds-based cumulative propagation (Bap-
tiste, Pape, and Nuijten 2001) in a somewhat naive man-
ner: we propagate all jobs that are known to execute on the
resource. For each job j that is still optional, we perform
singleton arc-consistency (SAC) (Debruyne and Bessière
1997): we assume that the job will execute on the resource
and trigger propagation. If the propagation derives a dead-
end, we can soundly conclude that the job cannot execute
on the resource and appropriately set the xjk variable.
Otherwise, we retain the pruned domains for Sjk. In ei-
ther case, the domains of all other variables are restored
to their states before SAC. This propagation is stronger,
but more costly, than the standard propagation of cumu-
lative constraints with optional jobs due to Vilı́m, Barták,
and Čepek (2005).

• Linear Relaxation. Each optcumulative constraint
adds Constraint (5) as in the LBBD model to the linear
programming relaxation.

• Conflict Analysis. Each time the optcumulative has
to explain a bound change it first uses the cumulative
explanation algorithm to derive an initial explanation. The
explanation is extended with the the bounds of all choice
variables which are (locally) fixed to one. In case of the
SAC propagation, a valid explanation is the bounds of all
choice variables which are fixed to one in the moment of
the propagation.

The default parameters of SCIP are used to solve the CIP
model. As these settings are tuned for pure MIP problems, it
is likely that future work will be able to find more appropri-
ate settings for CIPs.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

26

Experiments
In this section we present first experimental results which
indicate that the CIP model performs competitively with the
LBBD model while out-performing MIP and CP.

Experimental Set-up
For all computational experiments except for the CP
model we used the constraint integer programming solver
SCIP (Achterberg 2009) that includes an implementation of
the cumulative constraint (Berthold et al. 2010). As de-
scribed above, we have extended SCIP by implementing the
optcumulative global constraint. Using the same solver
helps to focus on the impact of the models and algorithms
used, controlling somewhat for different software engineer-
ing decisions made across different solvers. However, for the
CP model, we choose to use IBM ILOG Solver and IBM
ILOG Scheduler version 6.7 as they represent the commer-
cial state-of-the-art and we did not want to unfairly penal-
ize the CP approach due to using SCIP which has primarily
been developed to this point as a MIP solver.

We used the scheduling instances introduced by
Hooker (2005). Each set contains 195 problem instances.
For both problem sets the number of resources ranges is
from 2 to 4 and the number of jobs ranges from 10 to 38 in
steps of 2. The maximum number of jobs for the instances
with three and four resources is 32 while for two resources
the number of maximum number of jobs is 38. For each
problem size, we have five instances. For the MULTI prob-
lems the resource capacity is 10 and the job demands are
generated with uniform probability on the integer interval
[1, 10]. See Hooker (2005) for further details.

All computations reported were obtained on Intel Xeon
E5420 2.50 GHz computers (in 64 bit mode) with 6 MB
cache, running Linux, and 6 GB of main memory. We en-
forced a time limit of 7200 seconds. For all models other
than CP, we use version 2.1.0.3 of SCIP integrated with
SoPlex version 1.5.0.3 as the underlying linear program-
ming solver (Wunderling 1996). Thus, we only used non-
commercial software, with available source code.

Results
Tables 1 and 2 present the results for the UNARY test set
and MULTI test set, respectively. The first two columns de-
fine the instance size in terms of the number of resources
|K| and the number of jobs |J |. For each model (for now we
ignore the last four columns), we report the number of in-
stance solved to proven optimality “opt” and the number in-
stances for which we found a feasible solution “feas”, which,
of course, include the instances which are solved to optimal-
ity. We use the shifted geometric mean2 for the number of
“nodes” and for the running “time” in seconds.

The shifted geometric mean has the advantage that it re-
duces the influence of outliers. The geometric mean ensures
that hard instances, at or close to the time limit, are prevented

2The shifted geometric mean of values t1, . . . , tn is defined as(∏
(ti + s)

)1/n − s with shift s. We use a shift s = 10 for time
and s = 100.for nodes

of having a huge impact on the measures. Similar shifting re-
duces the bias of easy instances, those solved in less than 10
seconds and/or less than 100 nodes. For a detailed discussion
about different measures we refer to Achterberg (2007b).

For each resource-job combination, we display the best
running time over all four models in bold face. In case one
model could not solve any of the 5 instances for a particular
resource-job combination, we omitted to display the shifted
geometric mean of 7200.0 for the running time (instead we
state “–”).

UNARY On the UNARY problems, all four models are able
to find feasible solutions for each instance. The CIP model
finds and proves optimality for 194 out of 195 problem in-
stances (timing-out on an instance with 30 jobs and 4 re-
sources) followed by LBBD with 175, MIP at 161, and CP
with 143. The CIP model is about three times faster than
LBBD, using about half the number of nodes. However, note
that the LBBD statistic includes only the nodes in the mas-
ter problem search not the sub-problems. The time, however,
includes both master and sub-problem solving.

The LBBD results are consistent with those of an existing
implementation (not using SCIP) (Beck 2010). We found
20 time-outs for LBBD while Beck’s results had 14 time-
outs. We believe that this relatively small difference can be
attributed to the use of different solvers and different com-
puters.

Overall the CIP model dominates all other model for the
UNARY case.

MULTI The MULTI results are somewhat different. CIP is
not the dominant approach anymore. The performance of
LBBD and CIP are very similar with respect to number of
solved instances and overall running time. CIP manages 123
instances while LBBD solves 119. Both approach, however,
are superior to the MIP and CP model using the measure
of overall running time and number of solved instances to
proven optimality. MIP solves 98 instances and CP solves
only 62 instances.

This time, the LBBD results are not consistent with the
previous implementation of Beck. He solved 175 instances
which are 51 instances more than our LBBD model. We as-
sume that using SCIP for solving the sub-problems instead
of IBM ILOG Solver and IBM ILOG Scheduler leads to
this differences. We plan to further investigate this issue.

The results of the CP model coincide with those of
Hooker (2005) where it was shown that instances with 18
jobs or more could not be solved. The MIP results, in con-
trast, are substantially better than those reported by Hooker.
The reason is not clear but we tentatively attribute the differ-
ence to the advance in MIP solving technology in the past
six years.

Feasibility vs. Optimality It is of particular note that the
MIP model was able to find feasible solutions for all in-
stances in both problem sets. In fact, the optimality gap for
MIP was usually very low: on the MULTI set the largest gap
was 5.3% and 55 of the 97 instances not solved to optimality

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

27

Table 1: Results for the UNARY test set. Each resource-job combination consists of 5 instances. This adds up to a total of 195.
MIP LBBD CP CIP CIP (optimality proof)

|K| |J | opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time inst proved nodes time

2 10 5 5 1 0.0 5 5 61 0.2 5 5 96 0.0 5 5 25 0.0 5 5 1 0.0
12 5 5 3 0.6 5 5 115 0.5 5 5 256 0.0 5 5 58 0.0 5 5 4 0.0
14 5 5 93 2.4 5 5 566 1.5 5 5 741 0.1 5 5 130 0.1 5 5 4 0.0
16 5 5 249 5.0 5 5 80 0.3 5 5 2 433 0.2 5 5 139 0.1 5 5 4 0.0
18 5 5 221 11.0 5 5 75 0.3 5 5 6 767 0.5 5 5 216 0.1 5 5 8 0.0
20 5 5 222 10.4 5 5 440 2.1 5 5 11 174 1.1 5 5 269 0.2 5 5 2 0.0
22 5 5 16 898 139.5 5 5 195 1.6 5 5 47 460 4.8 5 5 117 0.1 5 5 1 0.0
24 3 5 5 273 191.5 5 5 22 15.9 5 5 105 056 10.8 5 5 162 0.1 5 5 1 0.0
26 5 5 13 359 174.8 4 4 300 33.7 5 5 326 528 34.8 5 5 439 0.5 5 5 18 0.0
28 2 5 115 839 1813.9 5 5 510 28.9 5 5 497 455 60.0 5 5 346 0.3 5 5 1 0.0
30 1 5 151 780 2432.7 4 4 1 836 74.2 5 5 4 231 229 490.2 5 5 2 139 8.9 5 5 114 1.2
32 3 5 3 596 285.8 5 5 287 2.3 5 5 6 786 880 832.5 5 5 706 0.8 5 5 8 0.0
34 1 5 125 588 2030.5 4 4 274 43.8 5 5 17 724 154 2239.7 5 5 897 1.2 5 5 9 0.0
36 3 5 46 420 1322.9 1 1 656 2011.8 3 5 35 832 546 4939.0 5 5 1 014 1.4 5 5 7 0.0
38 3 5 9 506 569.6 3 3 983 425.0 3 5 35 021 851 5151.3 5 5 1 076 0.8 5 5 1 0.0

3 10 5 5 1 0.1 5 5 356 0.6 5 5 584 0.0 5 5 73 0.1 5 5 15 0.0
12 5 5 1 0.2 5 5 191 0.4 5 5 2 801 0.2 5 5 119 0.1 5 5 13 0.0
14 5 5 7 1.6 5 5 2 759 5.0 5 5 13 431 1.0 5 5 314 0.5 5 5 68 0.2
16 5 5 9 3.1 5 5 223 0.9 5 5 58 688 4.4 5 5 322 0.4 5 5 4 0.0
18 5 5 7 2.6 5 5 444 0.8 5 5 236 227 20.3 5 5 632 1.4 5 5 24 0.1
20 5 5 2 949 28.4 5 5 1 898 9.0 5 5 1 277 898 106.5 5 5 956 3.0 5 5 50 0.2
22 5 5 602 29.6 5 5 1 106 12.2 5 5 9 746 557 873.9 5 5 1 217 3.5 5 5 51 0.2
24 5 5 2 555 47.6 5 5 1 745 5.7 4 5 47 841 477 4432.3 5 5 1 641 6.7 5 5 48 0.3
26 4 5 18 023 190.8 5 5 17 639 57.5 0 5 70 242 148 – 5 5 5 647 22.6 5 5 259 1.2
28 4 5 2 715 100.4 5 5 3 721 11.6 0 5 70 336 374 – 5 5 4 591 18.5 5 5 72 0.3
30 2 5 327 576 2904.1 3 3 11 963 133.8 0 5 68 045 013 – 5 5 18 901 103.9 5 5 605 12.1
32 3 5 44 141 1209.6 4 4 6 228 95.6 0 5 70 408 953 – 5 5 10 677 52.0 5 5 268 7.8

4 10 5 5 1 0.1 5 5 262 0.7 5 5 1 166 0.1 5 5 29 0.0 5 5 4 0.0
12 5 5 1 0.1 5 5 589 1.3 5 5 9 889 0.6 5 5 79 0.1 5 5 13 0.0
14 5 5 1 0.2 5 5 2 390 5.8 5 5 44 482 3.4 5 5 211 0.4 5 5 15 0.1
16 5 5 17 2.4 5 5 22 922 41.2 5 5 155 441 13.0 5 5 768 2.5 5 5 130 0.7
18 5 5 1 0.8 4 4 9 857 61.4 5 5 2 006 248 163.8 5 5 904 2.9 5 5 73 0.4
20 5 5 967 18.9 5 5 19 750 23.2 5 5 11 029 872 952.8 5 5 2 525 8.7 5 5 118 0.7
22 5 5 10 364 95.9 3 3 222 873 245.1 3 5 52 404 067 5026.7 5 5 8 912 44.4 5 5 603 4.8
24 5 5 2 343 55.4 4 4 43 687 70.5 0 5 81 261 130 – 5 5 7 355 38.5 5 5 209 2.4
26 4 5 4 426 119.3 4 4 151 494 256.6 0 5 76 244 443 – 5 5 37 140 179.3 5 5 919 9.8
28 3 5 137 997 1281.6 4 4 242 117 375.1 0 5 79 742 951 – 5 5 33 422 175.1 5 5 663 9.6
30 3 5 187 957 2226.1 4 4 129 582 129.4 0 5 73 680 622 – 4 5 63 047 378.3 5 5 2 236 42.1
32 2 5 15 488 831.6 4 4 526 447 487.3 0 5 71 281 227 – 5 5 73 517 491.8 5 5 642 5.5

161 195 2 059 74.1 175 175 2 177 27.9 143 195 620 577 204.9 194 195 1 111 9.9 195 195 84 1.7

had gaps of less than 2%. From another perspective, there-
fore, there is an argument that MIP is performing best on the
MULTI problems.

In general MIP solving, it is know that “good” primal so-
lutions which are detected early in the search can signifi-
cantly increase performance. A more detailed examination
of the MIP runs shows that the primary reason for the ability
of the MIP model to find feasible solutions is the use of such
primal heuristics. In case of CIP, the default primal heuris-
tics in SCIP are able to occasionally find feasible solution
for the UNARY instances but never for MULTI.

To evaluate the viability of future research to develop CIP
primal heuristics, we ran an additional experiment by pro-
viding the CIP model with the optimal value for all the
instances in which it is known: all 195 instances for the
UNARY problems and 176 instances for MULTI. The solver,
then, has only to prove that the instance has no better solu-

tions. If we are able to show that the proofs are short, we
have an indication that, if we were able to develop strong
primal heuristics for CIP, we would be able to substantially
improve the problem solving performance. The final four
columns in Tables 1 and 2 display the results. The “inst”
columns is the number of instances where an optimal solu-
tion is known and the column “proved” is the number of in-
stances that the CIP model was able to prove optimality hav-
ing been given the optimal cost as an upper bound. The other
two columns state again the shifted geometric mean of the
number of search “nodes” and the running “time”. For the
UNARY instances, we are able to solve all problems, proving
optimality in on average about a quarter of the time required
to find and prove optimality. On the MULTI instances, how-
ever, the picture is different. Some instances (e.g., two re-
sources and 30 or more jobs) show the same effect as for the
UNARY case. On other instances it was possible to find and

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

28

Table 2: Results for the MULTI test set. Each resource-job combination consists of 5 instances. This adds up to a total of 195.
MIP LBBD CP CIP CIP (optimality proof)

|K| |J | opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time inst proved nodes time

2 10 5 5 99 1.4 5 5 51 0.2 5 5 2 792 0.1 5 5 152 0.0 5 5 35 0.0
12 5 5 362 4.2 5 5 19 0.4 5 5 33 689 0.8 5 5 156 0.0 5 5 37 0.0
14 5 5 613 13.2 5 5 6 2.7 5 5 466 774 11.5 5 5 342 0.2 5 5 200 1.7
16 5 5 10 950 46.4 5 5 3 17.0 5 5 22 812 045 328.0 5 5 3 110 18.1 5 4 2 058 30.1
18 5 5 55 304 153.9 5 5 7 88.1 0 3 494 257 496 – 5 5 9 951 18.0 5 5 2 563 29.0
20 5 5 197 808 621.5 3 3 21 157.2 0 0 453 120 052 – 5 5 4 106 2.4 5 5 886 1.3
22 3 5 971 481 3289.6 2 2 10 702.9 0 0 397 205 523 – 2 2 338 309 1324.1 4 2 29 718 371.6
24 1 5 1 372 460 6912.5 0 0 1 – 0 0 339 570 055 – 3 3 353 667 706.1 5 2 14 242 508.7
26 1 5 561 690 3903.6 1 1 1 5192.4 0 0 302 945 001 – 1 1 1 714 440 5439.1 5 2 15 689 508.5
28 0 5 755 538 – 3 3 10 441.0 0 0 285 893 897 – 3 3 90 382 159.6 5 3 2 799 129.1
30 0 5 537 011 – 1 1 1 2971.1 0 0 289 896 816 – 0 0 2 389 029 – 2 2 1 0.0
32 1 5 447 812 5553.7 1 1 1 5679.1 0 0 285 549 706 – 3 3 494 763 281.7 3 3 1 0.0
34 0 5 378 116 – 1 1 1 3014.7 0 0 291 878 950 – 1 1 2 729 498 1396.4 1 1 1 0.0
36 0 5 459 463 – 1 1 1 2044.0 0 0 271 990 663 – 2 2 1 313 548 699.3 2 2 1 0.0
38 0 5 202 726 – 1 1 1 3368.3 0 0 256 182 585 – 3 3 6 441 053 1675.6 3 3 1 0.0

3 10 5 5 7 0.8 5 5 49 0.2 5 5 1 508 0.0 5 5 85 0.0 5 5 19 0.0
12 5 5 891 6.0 5 5 267 0.7 5 5 42 886 0.9 5 5 480 0.3 5 5 147 0.1
14 5 5 575 8.8 5 5 94 0.3 5 5 536 284 10.0 5 5 1 152 1.1 5 5 234 0.2
16 5 5 53 582 169.2 5 5 837 9.9 5 5 26 881 777 419.2 5 5 14 443 21.7 5 5 8 949 16.6
18 4 5 312 463 952.5 5 5 3 196 20.5 0 2 485 036 163 – 4 4 201 128 138.6 5 5 75 534 53.7
20 3 5 453 808 1629.4 5 5 1 613 5.8 0 1 460 840 309 – 5 5 37 498 34.8 5 5 5 612 38.3
22 2 5 591 165 3117.1 5 5 2 254 148.1 0 0 431 132 614 – 2 2 632 677 1351.4 5 2 793 451 960.1
24 3 5 577 419 5107.3 1 1 812 2323.8 0 0 410 966 318 – 1 1 1 660 912 3164.6 5 1 631 291 4709.2
26 0 5 578 821 – 4 4 1 340 1350.8 0 0 370 925 295 – 3 3 650 086 727.0 5 2 264 430 1469.2
28 0 5 418 861 – 0 0 8 – 0 0 337 254 114 – 2 3 725 799 1260.3 5 2 51 512 624.4
30 0 5 292 470 – 0 0 49 – 0 0 288 175 928 – 0 0 1 382 511 – 4 1 55 610 1383.1
32 0 5 95 543 – 0 0 3 – 0 0 265 357 963 – 1 1 1 747 365 6917.5 3 1 26 140 795.1

4 10 5 5 1 0.2 5 5 13 0.1 5 5 2 055 0.1 5 5 105 0.1 5 5 13 0.0
12 5 5 544 5.1 5 5 30 0.1 5 5 30 179 1.0 5 5 242 0.2 5 5 32 0.0
14 5 5 2 004 13.9 5 5 388 1.1 5 5 1 136 699 26.9 5 5 1 118 1.7 5 5 149 0.3
16 5 5 1 539 29.3 5 5 251 0.6 5 5 6 907 787 111.8 5 5 1 094 1.3 5 5 290 0.3
18 4 5 453 646 921.9 5 5 3 296 3.5 2 3 496 600 144 6994.2 5 5 28 359 20.1 5 5 2 118 4.0
20 3 5 739 750 2188.5 5 5 1 298 26.4 0 1 479 264 386 – 5 5 34 834 28.6 5 5 9 271 3.9
22 3 5 432 934 1957.6 5 5 3 363 45.3 0 0 471 200 720 – 4 4 77 455 166.3 5 3 7 883 135.6
24 0 5 712 175 – 2 2 1 979 1445.7 0 0 413 825 956 – 2 2 1 796 900 3021.0 5 2 596 525 2190.7
26 0 5 430 563 – 1 1 15 646 4069.6 0 0 399 153 422 – 0 1 2 436 109 – 5 0 2 952 736 7200.0
28 0 5 479 513 – 1 1 679 2803.2 0 0 407 550 307 – 1 1 1 309 160 6575.0 5 1 158 262 1925.8
30 0 5 237 592 – 1 1 186 2105.0 0 0 401 058 271 – 0 0 1 781 515 – 5 1 348 307 1982.5
32 0 5 218 931 – 0 0 136 – 0 0 353 061 759 – 0 0 1 972 257 – 4 0 1 029 999 7200.0

98 195 62 568 778.8 119 119 222 227.3 62 70 34 504 645 1311.1 123 125 61 323 212.0 176 125 5 656 83.2

prove optimality in our previous experiment, but not here
when the optimal cost was given (e.g., an instances with 2 re-
sources and 16 jobs). Clearly, the pattern of remaining open
nodes and the conflict clauses learning in finding the optimal
solution in the previous experiment helps in also proving it.

Overall, these results indicate that strong primal heuris-
tics would be a clear benefit on the UNARY problems and for
some of the MULTI instances. However, it is also clear from
the MULTI results that research is also needed to speed-up
the proofs of optimality (e.g., to strengthen the linear relax-
ation to improve bounding).

Summary Overall, the best performing approaches in
terms of finding and proving optimality are CIP and LBBD.
The former clearly dominates on the UNARY instances while
their performance is similar on the MULTI instances. We
conclude, therefore, that the CIP model is the best non-

decomposition based approach for solving these combined
resource allocation/scheduling problems.

The performance of MIP is not as strong as the two top
approaches but better than both CP and the MIP results re-
ported by Hooker (2005). However, only MIP is able to find
provable good feasible solutions for all instances.

The relatively poor performance of CP is surprising given
its usual success in scheduling problems. We plan to inves-
tigate more informed CP search heuristics (Beck and Fox
2000).

Conclusion
We studied four models for solving combined resource op-
timization and scheduling using mixed integer program-
ming, constraint programming, constraint integer program-
ming, and logic-based Benders decomposition. Previous re-
sults indicated the logic-based Benders decomposition was

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

29

the dominant approach. Our results demonstrated that on
problems with unary capacity resources, constraint integer
programming is able to solve 194 out of 195 instances to
optimality compared to only 175 for logic-based Benders
decomposition. However, on problems with non-unary re-
source capacity, the picture is not as clear as logic-based
Benders and constraint integer programming showed sim-
ilar performance. The results for the logic-based Benders,
however, are weaker than previous results (Beck 2010). In-
teresting, the mixed integer programming model is able to
find feasible solutions with a small optimality gap to all
problems instances in both sets, unlike all other techniques.
The constraint programming model is the worse performing
model over both problem sets. Based on these results, we
conclude that constraint integer programming represents the
state-of-the-art for non-decomposition based approaches to
these problems.

There are a number of avenues for future work includ-
ing the investigation of primal heuristics for constraint in-
teger programming and ways to improve the search done
in constraint programming. Most significantly, we believe
that our results here demonstrate that constraint integer pro-
gramming may be a promising technology for scheduling in
general and therefore we plan to pursue its application to a
variety of scheduling problems.

References
Achterberg, T., and Berthold, T. 2009. Hybrid branching.
In van Hoeve, W.-J., and Hooker, J. N., eds., Integration of
AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR 2009), volume
5547 of LNCS, 309–311.
Achterberg, T.; Brinkmann, R.; and Wedler, M. 2007. Prop-
erty checking with constraint integer programming. ZIB-
Report 07-37, Zuse Institute Berlin.
Achterberg, T. 2007a. Conflict analysis in mixed integer
programming. Discrete Optimization 4(1):4–20. Special is-
sue: Mixed Integer Programming.
Achterberg, T. 2007b. Constraint Integer Programming.
Ph.D. Dissertation, Technische Universität Berlin.
Achterberg, T. 2009. SCIP: Solving Constraint Integer Pro-
grams. Mathematical Programming Computation 1(1):1–
41.
Bajestani, M. A., and Beck, J. C. 2011. Scheduling an air-
craft repair shop. In Proceedings of the Twenty-Fifth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS2011). to appear.
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001. Constraint-
based Scheduling. Kluwer Academic Publishers.
Beck, J. C., and Fox, M. S. 2000. Constraint directed tech-
niques for scheduling with alternative activities. Artificial
Intelligence 121(1–2):211–250.
Beck, J. C. 2010. Checking-up on branch-and-check. In
Cohen, D., ed., Principles and Practice of Constraint Pro-
gramming – CP 2010, volume 6308 of LNCS, 84–98.
Berthold, T.; Heinz, S.; Lübbecke, M. E.; Möhring, R. H.;
and Schulz, J. 2010. A constraint integer programming ap-

proach for resource-constrained project scheduling. In Lodi,
A.; Milano, M.; and Toth, P., eds., Integration of AI and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR 2010), volume 6140
of LNCS, 313–317.
Berthold, T.; Heinz, S.; and Pfetsch, M. E. 2009. Nonlinear
pseudo-boolean optimization: relaxation or propagation? In
Kullmann, O., ed., Theory and Applications of Satisfiability
Testing – SAT 2009, volume 5584 of LNCS, 441–446.
Berthold, T.; Heinz, S.; and Vigerske, S. 2009. Extending
a cip framework to solve MIQCPs. ZIB-Report 09-23, Zuse
Institute Berlin.
Debruyne, R., and Bessière, C. 1997. Some practicable fil-
tering techniques for the constraint satisfaction problem. In
Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI97), 412–417.
Fazel-Zarandi, M. M., and Beck, J. C. 2011. Using logic-
based benders decomposition to solve the capacity and dis-
tance constrained plant location problem. INFORMS Jour-
nal on Computing. in press.
Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96:33–60.
Hooker, J. N. 2005. Planning and scheduling to minimize
tardiness. In van Beek, P., ed., Principles and Practice of
Constraint Programming – CP 2005, volume 3709 of LNCS,
314–327.
Kovács, A., and Beck, J. C. 2011. A global constraint for
total weighted completion time for unary resources. Con-
straints 16(1):100–123.
Marques-Silva, J. P., and Sakallah, K. A. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE Trans-
actions on Computers 48(5):506–521.
Pape, C. L.; Couronné, P.; Vergamini, D.; and Gosselin,
V. 1994. Time-versus-capacity compromises in project
scheduling. In Proceedings of the Thirteenth Workshop of
the UK Planning Special Interest Group.
Queyranne, M., and Schulz, A. S. 1994. Polyhedral ap-
proaches to machine scheduling problems. Technical Report
408/1994, Departement of Mathematics, Technische Univer-
sitat Berlin, Germany. Revised 1996.
Terekhov, D.; Beck, J. C.; and Brown, K. N. 2009. A con-
straint programming approach for solving a queueing de-
sign and control problem. INFORMS Journal on Computing
21(4):549–561.
Vilı́m, P.; Barták, R.; and Čepek, O. 2005. Extension of
O(n log n) filtering algorithms for the unary resource con-
straint to optional activities. Constraints 10(4):403–425.
Wunderling, R. 1996. Paralleler und objektorientierter
Simplex-Algorithmus. Ph.D. Dissertation, Technische Uni-
versität Berlin.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

30

Optimization of Partial-Order Plans via MaxSAT

Christian Muise and Sheila A. McIlraith
Dept. of Computer Science

University of Toronto
Toronto, Canada. M5S 3G4

{cjmuise,sheila}@cs.toronto.edu

J. Christopher Beck
Dept. of Mechanical & Industrial Engineering

University of Toronto
Toronto, Canada. M5S 3G8

jcb@mie.utoronto.ca

Abstract

Partial-order plans (POPs) are attractive because of their least
commitment nature, providing enhanced plan flexibility at
execution time relative to sequential plans. Despite the ap-
peal of POPs, most of the recent research on automated plan
generation has focused on sequential plans. In this paper we
examine the task of POP generation by relaxing or modify-
ing the action orderings of a sequential plan to optimize for
plan criteria that promote flexibility in the POP. Our approach
relies on a novel partial weighted MaxSAT encoding of a se-
quential plan that supports the minimization of deordering or
reordering of actions. We further extend the classical least
commitment criterion for a POP to consider the number of
actions in a solution, and provide an encoding to achieve least
commitment plans with respect to this criterion. Our partial
weighted MaxSAT encoding gives us an effective means of
computing a POP from a sequential plan. We compare the
efficiency of our approach to a previous approach for POP
generation via sequential-plan relaxation. Our results show
that while the previous approach is proficient at producing the
optimal deordering of a sequential plan, our approach gains
greater flexibility with the optimal reordering.

1 Introduction
Partial-order planning reflects a least commitment strategy
(Weld 1994). Unlike a sequential plan that specifies a set of
actions and a total order over those actions, a partial-order
plan (POP) only specifies those action orderings necessary
to achieve the goal from the initial state. In doing so, a POP
embodies a family of sequential plans – a set of lineariza-
tions all sharing the same actions, but differing with respect
to the order of the actions.

The flexibility afforded by POPs makes them attrac-
tive for real-time execution, multi-agent taskability, and
a range of other applications that can benefit from their
least commitment nature (Veloso, Pollack, and Cox 1998;
Weld 1994). However, in recent years research on plan
generation has shifted away from partial-order planning to-
wards sequential planning, primarily due to the success of
heuristic-based forward-search planners. To regain the least
commitment nature of POPs while leveraging fast sequential
plan generation, it is compeling to examine the computation
of POPs via sequential planning technology. Indeed this ap-
proach has been realized in the planner POPF (Coles et al.

2010), which generated a POP by searching in a heuristic-
based forward-chaining manner.

Another possibility for leveraging the strengths of sequen-
tial planning is to generate a sequential plan with a state-of-
the-art planner, and subsequently relax the plan to a POP.
Removing ordering constraints from the sequential plan, re-
ferred to as a deordering, or allowing changes in the order-
ing constraints, referred to as a reordering, are approaches
that have been theoretically investigated (Bäckström 1998).
Unfortunately, finding the optimal deordering or reordering
is NP-hard to solve, and difficult to approximate within a
constant factor. Nevertheless, with the advent of powerful
optimization techniques (such as MaxSAT), we can effec-
tively solve many problems in practice.

In this paper we focus on the optimization problem of
computing the minimum deordering and minimum reorder-
ing of a sequential plan treated as a POP. The minimum de-
ordering of a POP minimizes the number of ordering con-
straints between actions, so long as the POP remains valid
and no two actions have their order reversed. Similarly, a
minimum reordering minimizes the number of ordering con-
straints, but has no restriction on which ordering constraints
are forbidden. These two notions cover a natural aspect of
least commitment planning – minimizing the ordering con-
straints placed on a POP. We extend this characterization to
consider the number of actions in a plan. In the spirit of
least commitment planning, we argue that a POP should first
commit to as few actions as possible before committing to
as few ordering constraints as possible. With the various
notions of least commitment planning in mind (deordering,
reordering, etc), we propose a set of criteria against which
we evaluate our work. These include the number of actions
and ordering constraints found in the transitive closure of a
POP, and the number of linearizations the POP represents.
The criteria serve as a measure of the flexibility of a POP.

Our approach is to use a family of novel encodings for
partial weighted MaxSAT whose solution corresponds to
an optimal least commitment plan. Unlike typical SAT-
based planning techniques, we represent an action occur-
rence once, giving us a succinct representation for use with
a modern MaxSAT solver. We compare our approach to
an existing algorithm for relaxing a sequential plan, due to
Kambhampati and Kedar (Kambhampati and Kedar 1994),
and evaluate our approach empirically. We demonstrate the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

31

efficiency of using our MaxSAT encoding to relax a sequen-
tial plan optimally, and demonstrate the strength of Kamb-
hampati and Kedar’s algorithm in computing a deording of
a sequential plan.

We find that the existing algorithm is extremely proficient
at computing the minimum deordering, matching the opti-
mal solution in every problem tested. However, we find that
the minimum reordering is usually far more flexible than the
minimum deordering (having fewer ordering constraints and
far more linearizations). Our approach to encoding the prob-
lem gives us the first technique, to the best of our knowledge,
for computing the optimal reordering of a POP. We further
see a benefit in the flexibility of a POP when we use the pro-
posed extension to least commitment planning that considers
the number of actions.

In the next section we provide background on the notation
we use throughout the paper. We follow with a description of
least commitment planning in Section 3, and then describe
our encoding for the various forms of optimization criteria
in Section 4. In Section 5 we describe the prior approach to
relaxing a plan, and we present the experimental results in
Section 6. We finish with a brief discussion and conclusion
in Sections 7 and 8.

2 Background
Propositional Planning
For the purposes of this document, we restrict ourselves to
STRIPS planning problems. In STRIPS, a planning problem
is a tuple Π = 〈F,O, I,G〉 where F is a finite set of fluents,
O is the set of operators, I ⊆ F is the initial state, and G ⊆
F is the goal state. We refer to a complete state (or just state)
as a subset of F . We interpret fluents that do not appear in a
complete state as being false in that state. We characterize an
operator o ∈ O by three sets: PRE(o), the fluents that must
be true in order for o to be executable; ADD(o), the fluents
that operator o adds to the state; and DEL(o), the fluents
that operator o deletes from the state. An action refers to
a specific instance of an operator, and it inherits the PRE,
ADD, and DEL sets of the matching operator. We say that
an action a is executable in state s iff PRE(a) ⊆ s. A
sequence of actions is a sequential plan for the problem Π
if the execution of each action in sequence, when starting in
state I , causes the goal to hold in the final state.

We will make use of two further items of notation with
respect to a set of actions A. We define adders(f) to be
the set of actions in A that add the fluent f (i.e., {a | f ∈
ADD(a)}), and we define deleters(f) to be the set of ac-
tions in A that delete the fluent f (i.e., {a | f ∈ DEL(a)}).

Partial-Order Plans
For this paper, we adopt the notation typically used by the
partial-order planning community. With respect to a plan-
ning problem Π = 〈F,O, I,G〉, a partial-order plan (POP)
is a tuple P = 〈A,O, C〉 where A is the set of actions
in the plan (all of which have a corresponding operator in
O), O is a set of orderings between the actions in A (e.g.,
(a1 ≺ a2) ∈ O), and C is a set of causal links between the

actions in A (Weld 1994). A causal link is an annotated or-
dering constraint where the annotation of the link is a fluent
from F that represents the reason for that link’s existence.

For a causal link (a1
f
≺ a2) ∈ C, we can assume that f ∈

ADD(a1) and f ∈ PRE(a2). The ordering constraints
found in C will always be a subset of the ordering constraints
in O, and we assume that O is transitively closed. Where
convenient, we will ignore the set C and simply use 〈A,O〉
to represent a POP. We refer to a total ordering of the actions
in A that respects O as a linearization of P . A POP provides
a compact representation for multiple linearizations.

Intuitively, a POP is valid for a planning problem if it is
able to achieve the goal. There are two related formal no-
tions of what a valid POP consists of. The first, only refer-
ring to A and O, says that a POP P is valid for a planning
problem Π iff every linearization of P is a plan for Π. While
simple and intuitive, this notion is rarely used to verify the
validity of a POP since there may be a prohibitively large
number of linearizations represented by the POP.

The second notion is slightly more involved, and refers
to open preconditions and threats. An open precondition is
a precondition p of an action a ∈ A that does not have an
associated causal link (i.e., �a′ ∈ A s.t. (a′

p
≺ a) ∈ C).

If a precondition is not open, we say that it is supported,
and we refer to the associated action in the causal link as the
achiever for the precondition.

A threat in a POP refers to an action that can invalidate a
causal link due to the ordering constraints (or lack thereof).
Formally, if (a′

p
≺ a) ∈ C, we say that an action a′′ threatens

the causal link if the following is true:
• We can order a′′ between a′ and a

(i.e., {(a′′ ≺ a′), (a ≺ a′′)} ∩ O = ∅)
• The action a′′ can delete p (i.e., p ∈ DEL(a′′))
The existence of a threat means that a linearization may exist
that is not executable because one of the preconditions of an
action in the linearization is not satisfied.

We will typically add two special actions to the POP, aI
and aG, that encode the initial and goal states through their
add effects and preconditions (i.e., PRE(aG) = G and
ADD(aI) = I). With this modification, we say that a POP
P = 〈A,O, C〉 is a valid POP for the planning problem Π
iff it has no open preconditions and no causal link in the set
C has a threatening action in A. The two notions of POP va-
lidity are similar in the sense that if the second notion holds,
then the first follows. If the first notion holds for A and O,
then a set of causal links C exists such that the second notion
holds for P = 〈A,O, C〉. Further details on these notions
of validity can be found in (Russell and Norvig 2009).

Partial Weighted MaxSAT
In boolean logic, the problem of Satisfiability (SAT) is to
find a True/False setting of boolean variables such that a
logical formula referring to those variables evaluates to True
(Biere et al. 2009). Typically, we write problems in Con-
junctive Normal Form (CNF) which is made up of a con-
junction of clauses, where each clause is a disjunction of

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

32

literals. A literal is either a boolean variable or its negation.
A setting of the variables satisfies a CNF formula iff every
clause has at least one literal that the setting satisfies.

The MaxSAT problem is the optimization variant of the
SAT problem in which the goal is to maximize the num-
ber of satisfied clauses (Biere et al. 2009, Ch. 19). Adding
non-uniform weights to each clause allows for a more natu-
ral representation of the optimization problem, and we refer
to this as the weighted MaxSAT problem. If we wish to
force the solver to find a solution that satisfies a particular
subset of the clauses, we refer to clauses in this subset as
hard, while all other clauses in the problem are soft. When
we have a mix of hard and soft clauses, we have a partial
weighted MaxSAT problem (Biere et al. 2009, Ch. 19.6).

In a partial weighted MaxSAT problem, only the soft
clauses are given a weight, and a valid solution corresponds
to any setting of the variables that satisfies the hard clauses in
the CNF. An optimal solution to a partial weighted MaxSAT
problem is any valid solution that maximizes the sum of the
weights on the satisfied soft clauses.

3 Least Commitment Criteria
The aim of least commitment planning is to find flexible so-
lutions that allow us to defer decisions regarding the execu-
tion of the plan. Considering only the ordering constraints
of a POP, two appealing notions for least commitment plan-
ning are the deordering and reordering of a POP. Following
(Bäckström 1998), we define these formally:

Definition 1. Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two
POPs, and Π a planning problem. Then,

1. Q is a reordering of P wrt. Π iff P and Q are valid POPs
for Π, and A = A′

2. Q is a deordering of P wrt. Π iff P and Q are valid POPs
for Π, A = A′, and O′ ⊆ O.
Recall that we assume the ordering constraints of a POP

are transitively closed. We define the optimal deordering and
optimal reordering as follows:

Definition 2. Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two
POPs, and Π a planning problem. Then,

1. Q is a minimum deordering of P wrt. Π iff
(a) Q is a deordering of P wrt. Π, and
(b) there is no deordering 〈A

′′

,O
′′

〉 of P wrt. Π s.t.
|O′′| < |O′|

2. Q is a minimum reordering of P wrt. Π iff
(a) Q is a reordering of P wrt. Π, and
(b) there is no reordering 〈A

′′

,O
′′

〉 of P wrt. Π s.t.
|O′′| < |O′|

Note that we use < rather than ⊂ for 1(b) and 2(b) since
the orderings in O′ and O′′ may only partially overlap. We
will equivalently refer to a minimum deordering (resp. re-
ordering) as an optimal deordering (resp. reordering). In
both cases, we prefer a POP that has the smallest set of
ordering constraints. In other words, no POP exists with
the same actions and fewer ordering constraints while re-
maining valid with respect to Π. The problem of finding

the minimum deordering or reordering of a POP is NP-hard,
and cannot be approximated within a constant factor unless
NP ∈ DTIME(npoly log n) (Bäckström 1998).

While the notion of a minimum deordering or reordering
of a POP addresses the commitment of ordering constraints,
in the spirit of least commitment planning we would like
to commit to as few actions as possible. To this end, we
provide an extended criterion of what a least commitment
POP (LCP) should satisfy:
Definition 3. Let P = 〈A,O〉 and Q = 〈A

′

,O
′

〉 be two
POPs valid for Π. Q is a least commitment POP (LCP) of P
iff Q is the minimum reordering of itself and there is no valid
POP 〈A

′′

,O
′′

〉 for Π such that A′′ ⊆ A and |A′′| < |A′|.
Intuitively, we can compute the LCP of an arbitrary POP

by first minimizing the number of actions, and then mini-
mizing the number of ordering constraints.

It may turn out that preferring fewer actions causes us to
commit to more ordering constraints, simply due to the inter-
action between the actions we choose. However, in practice
we usually place a much greater emphasis on minimizing the
number of actions in a POP, as, in the standard interpretation
of a POP, every every action must be executed.

Following the above criteria we will evaluate the qual-
ity of a POP by the number of actions and ordering con-
straints it contains, as these metrics give us a direct measure
of the least commitment nature of a POP. Another property
of interest is a POP’s flexibility, which provides a measure
of the robustness inherent in the POP. We measure the flex-
ibility, whenever computationally feasible, as the number of
linearizations a POP represents.

As we have discussed earlier, verifying a POP’s validity
by way of the linearizations is not always practical. As such,
we will not attempt to compute POPs that maximize the
number of linearizations, but rather we will compute POPs
that adhere to one of the above criteria: minimum deorder-
ing, minimum reordering, or LCP.

4 A Partial Weighted MaxSAT Encoding
To generate a POP, we encode the problem of finding a
minimum deordering or reordering as a partial weighted
MaxSAT problem. Solutions to the default encoding corre-
spond to a LCP. That is, no POP exists with a proper subset
of the actions, or with a proper subset of the ordering con-
straints. We add further clauses to produce encodings that
correspond to optimal deorderings or reorderings.

We use two types of propositional variables: action vari-
ables and ordering variables. For every action a ∈ A, the
variable xa indicates whether or not the action a appears in
the POP. For every pair of actions a1, a2 ∈ A, the variable
κ(a1, a2) indicates an ordering constraint between action a1
and a2 in the POP.

In a partial weighted MaxSAT encoding there must be a
distinction between hard and soft clauses. We first present
the hard clauses of the encoding as boolean formulae which
we subsequently convert to CNF, and later describe the soft
clauses with their associated weight. We define the formu-
lae that ensure the POP generated is acyclic, and the order-
ing constraints produced include the transitive closure (here,

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

33

actions are universally quantified, and for formula (4) we
assume aI
= ai
= aG):

(¬κ(a, a)) (1)
(xaI

) ∧ (xaG
) (2)

κ(ai, aj) → xai
∧ xaj

(3)
xai

→ κ(aI , ai) ∧ κ(ai, aG) (4)
κ(ai, aj) ∧ κ(aj , ak) → κ(ai, ak) (5)

(1) ensures that there are no self-loops; (2) ensures that
we include the initial and goal actions; (3) ensures that if we
use an ordering variable, then we include both actions in the
POP; (4) ensures that an action cannot appear before the ini-
tial action (or after the goal); and (5) ensures that a solution
satisfies the transitive closure of ordering constraints. To-
gether, (1) and (5) ensure the POP will be acyclic, while the
remaining formulae tie the two types of variables together
and deal with the initial and goal actions.

In contrast to the typical SAT encoding for planning prob-
lems, we do not require the actions to be placed in a partic-
ular layer. Instead, we represent each action only once and
handle the ordering between actions through the κ variables.

Finally, we include the formulae needed to ensure that ev-
ery action has its preconditions met, and there are no threats
in the solution:

Υ(aj , ai, p) ≡
∧

ak∈deleters(p)

xak
→ κ(ak, aj) ∨ κ(ai, ak) (6)

xai
→

∧
p∈PRE(ai)

∨
aj∈adders(p)

κ(aj , ai) ∧Υ(aj , ai, p) (7)

Intuitively, Υ(aj , ai, p) ensures that if aj is the achiever
of precondition p for action ai, then no deleter of p will be
allowed to occur between the actions aj and ai. Υ ensures
that every causal link remains unthreatened in a satisfying
assignment. Formula (7) ensures that if we include action
ai in the POP, then every precondition p of ai (the con-
junction) must be satisfied by at least one achiever aj (the
disjunction). κ(aj , ai) orders the achiever correctly, while
Υ(aj , ai, p) removes threats.

In order to achieve a POP that is least commitment, we
prefer solutions that first minimize the actions, and then min-
imize the ordering constraints. We achieve this by adding
a soft unit clause for every variable in our encoding. We
weight the κ variables with a unit cost and weight the action
variables high enough for the solver to focus on satisfying
them first:1

• w(¬κ(ai, aj)) = 1, ∀ai, aj ∈ A

• w(¬xa) = 1 + |A|2, ∀a ∈ A \ {aI , aG}

Note that the weight of any single action clause is greater
than the weight of all ordering constraint clauses. Since the
soft clauses are all unit clauses, we are able to use negation

1In domains with non-uniform action cost we could replace the
weight of 1 in the action clause with the cost of the action, allowing
us to minimize the total cost of the actions in the POP.

and solve the encoding with a MaxSAT procedure. A vio-
lation of any one of the unit clauses means that the solution
includes the action or ordering constraint corresponding to
the variable in the violated clause.
Proposition 1. Given a planning problem Π and a valid POP
P = 〈A,O〉, any variable setting that satisfies the formulae
(1)-(7) will correspond to a valid POP for Π where the or-
dering constraints are transitively closed.
Proof sketch. We have already seen that the POP induced
by a solution to the hard clauses will be a acyclic and tran-
sitively closed (due to formulae (1)-(5)). We can further see
that there will be no open preconditions since we include
aG, and the conjunction of (7) ensures that every precondi-
tion will be satisfied when the POP includes an action. Ad-
ditionally, there are no threats in the final solution because
of formula (6), which will be enforced every time a precon-
dition is met by formula (7). Since the POP corresponding
to any solution to the hard clauses will have no open pre-
conditions and no threats, the second notion of POP validity
allows us to conclude that the POP will be valid for Π. �
Proposition 2. Given a planning problem Π and a valid POP
P = 〈A,O〉, any valid POP Q = 〈A

′

,O
′

〉, where A′ ⊆ A
and O′ is transitively closed, has a corresponding variable
setting that satisfies formulae (1)-(7).
Proof sketch. The proposition follows from the direct en-
coding of the POP Q where xa = True iff a ∈ A′ and
κ(ai, aj) = True iff (ai ≺ aj) ∈ O′. If Q is a valid POP,
then it will be acyclic, include aI and aG, have all actions
ordered after aI and before aG, and be transitively closed
(satisfying (1)-(5)). We further can see that (6) and (7) must
be satisfied: if (7) did not hold, then there would be an action
a in the POP with a precondition p such that every potential
achiever of p has a threat that could be ordered between the
achiever and a. Such a situation is only possible when the
POP is invalid, which is a contradiction. �
Proposition 3. Given a planning problem Π and a valid POP
P = 〈A,O〉, a partial weighted MaxSAT solver will find a
solution to the soft clauses and formulae (1)-(7) that mini-
mizes the number of actions in the corresponding POP, and
subsequently minimizes the number of ordering constraints.
Proof sketch. With |A| actions, there can only be |A|2 order-
ing constraints. Since every soft clause that corresponds to
an ordering constraint has weight 1, the total sum of satisfy-
ing every ordering constraint clause will be |A|2. Since the
weight of satisfying any action clause is greater than |A|2,
the soft clauses corresponding to actions dominate the opti-
mization criteria. As such, there will be no valid POP for Π
which has a subset of the actions in P and has fewer actions
than a solution that satisfies formulae (1)-(7) while maxi-
mizing the weight of the satisfied soft clauses. �
Theorem 1 (Encoding Correctness). Given a planning prob-
lem Π, and a valid POP P for Π, a solution to our partial
weighted MaxSAT encoding is a LCP for P .
Proof sketch. This follows from propositions 1, 2, and 3. �

Observe that (1)-(7) never use the sequential plan. An op-
timal solution to the encoding will correspond to a LCP. To
enforce solutions that are minimum deorderings or reorder-
ings, we introduce two sets of hard clauses.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

34

All Actions For optimal deorderings and reorderings, we
require every action to be a part of the POP. We consider
a formula that ensures we use every action (and so the opti-
mization works only on the ordering constraints). To achieve
this, we simply need to add each action as a hard clause:

(xa), ∀a ∈ A (8)

Deordering For a deordering we must forbid any explicit
ordering that contradicts the sequential plan. Assume our
sequential plan is [a0, · · · , ak]. We ensure that the computed
solution is a deordering by adding the following family of
hard unit clauses:

(¬κ(aj , ai)), 0 ≤ i < j ≤ k (9)

Intuitively, (9) simply forbids any ordering that contra-
dicts the orderings found in the transitive closure of the se-
quential plan, thus ensuring the solution is a deordering.

Due to space limitations, we refrain from proving the cor-
rectness of the two encoding extensions (8) and (9).

5 Relaxer Algorithm
We investigate the efficiency of an existing algorithm for re-
laxing a sequential plan to produce a deordering. Originally
due to Kambhampati and Kedar (1994), the algorithm oper-
ates by removing ordering constraints from a sequential plan
in a systematic manner. A heuristic guides the procedure,
and as pointed out in (Bäckström 1998), the process does
not provide any guarantee that the resulting POP is mini-
mally constrained (that is, we may be able to remove further
ordering constraints and the POP remains valid). Despite
this lack of theoretical guarantee, we show later that the al-
gorithm produces excellent results.

The intuition behind the algorithm is to remove any
ordering (ai ≺ ak) from the sequential plan where ai
does not contribute to a precondition of ak and ai does
not threaten a precondition of ak (and vice versa). For
example, consider the case where our sequential plan is
[a1 · · · , ai, · · · , ak, · · · , an] and p ∈ PRE(ak). The al-
gorithm will keep the ordering (ai ≺ ak) only if leaving it
out would create a threat for a precondition of one of the ac-
tions, or if ai is the earliest action in the sequence where the
following holds:

1. p ∈ ADD(ai): ai is an achiever for p
2. ∀aj , i < j < k, p /∈ DEL(aj): p is not threatened.

Algorithm 1, which we will refer to as the Relaxer Algo-
rithm, presents this approach formally. We use index(a,�a)
to refer to the index of action a in the sequence �a.

If �a is a valid plan, line 11 will evaluate to true before
either line 8 evaluates to true or the for-loop at line 6 runs out
of actions. That is, we know that an unthreatened achiever
exists and the earliest such one is found.

The achiever is then added to the POP as a new causal link
(line 14), and the for-loop at line 17 adds all of the necessary
ordering constraints so the achiever remains unthreatened.
Note that for any deleter found in this for-loop, either line
18 or 20 must evaluate to true.

Algorithm 1: Relaxer Algorithm
Input: Sequential plan, �a, including aI and aG

Output: Partial-order plan, 〈A,O, C〉
1 A = set(�a);
2 O = C = ∅;
3 foreach a ∈ A do
4 foreach f ∈ PRE(a) do
5 ach = Null;
6 for i = (index(a,�a)− 1) · · · 0 do
7 // Stop if we find a deleter of f
8 if f ∈ DEL(�a[i]) then
9 break;

10 // See if we have an earlier achiever
11 if f ∈ ADD(�a[i]) then
12 ach = �a[i];

13 // Add the appropriate causal link

14 C = C ∪ {(ach
f

≺ a)};
15 O = O ∪ {(ach ≺ a)};
16 // Add orderings to avoid threats
17 foreach a′ ∈ deleters(f) \ {a} do
18 if index(a′,�a) < index(ach,�a) then
19 O = O ∪ {(a′ ≺ ach)};
20 if index(a′,�a) > index(a,�a) then
21 O = O ∪ {(a ≺ a′)};

22 return 〈A,O, C〉;

After going through the outer loop at line 3, every action
in the newly formed POP has an unthreatened causal link for
each of its preconditions. We are left with a valid POP, as
there are no open preconditions or causal threats.

6 Evaluation
We evaluate the effectiveness of using the partial weighted
MaxSAT solver, minimaxsat1.0 (Heras, Larrosa, and Oliv-
eras 2008), to optimally relax a plan using our proposed
encoding. To measure the quality of the POPs we gener-
ate, we consider the number of actions, ordering constraints,
and linearizations (whenever feasible to compute). Further,
we investigate the effectiveness of the Relaxer Algorithm to
produce a minimally constrained deordering.

For our analysis, we use six domains from the Interna-
tional Planning Competition (IPC)2 that allow for a par-
tially ordered solution: Depots, Driverlog, Logistics, TPP,
Rovers, and Zenotravel. These domains demonstrate both
the strengths and weaknesses of our approach. We con-
ducted the experiments on a Linux desktop with an eight-
core 3.0GHz processor. Each run was limited to 30 minutes
and 2GB of memory.

We generated an initial sequential plan by using the FF
planner (Hoffmann and Nebel 2001). The encodings pro-
vided in Section 4 were converted to CNF using simple dis-
tributive rules so they may be used with the minimaxsat1.0
solver. We investigated the possibility of using a starting
solution from the POPF planner (Coles et al. 2010), but

2http://ipc.icaps-conference.org/

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

35

Num FF Successfully
Domain Probs Solved Encoded
Depots 22 22 11

Driverlog 20 16 15
Logistics 35 35 30

TPP 30 30 7
Rovers 20 20 19
Zeno 20 20 15
ALL 147 143 97

Table 1: Number of instances successfully encoded. We in-
dicate the number problems per domain, the number of prob-
lems for which FF finds a sequential plan, and the number
of problems that our approach can encode successfully.

found that POPF failed to solve as many of the problems
as FF (albeit POPF handles a far richer set of planning prob-
lems). Of the problems that were mutually solved by FF
and POPF, we found that the POPs produced by the POPF
planner were quite over-constrained, having many more or-
dering constraints than necessary. Once relaxed (by way of a
similar encoding), the optimal deorderings, optimal reorder-
ings, and LCPs of both FF and POPF plans were very sim-
ilar. That is to say, there is usually little difference between
the POPs generated by relaxing a sequential FF plan and the
POPs generated by relaxing the POP found by POPF. For
this reason, we only present the results for FF.

With two extensions for the encoding (All Actions and
DeOrdering) we have 4 possible variations for every in-
stance. We will be primarily concerned with the following
combinations for the settings:
• ¬ AA, ¬ DO: No additional clauses correspond to the de-

fault encoding where an optimal solution gives us a least
commitment POP. We denote this setting as LCP.

• AA, ¬ DO: When we require all of the actions, solu-
tions correspond to a minimum reordering of the sequen-
tial plan. We denote this setting as MR.

• AA, DO: When we require all of the actions, and a de-
ordering, solutions correspond to a minimum deordering
of the sequential plan. We denote this setting as MD.
In the following evaluation, we only report on the prob-

lems where FF was able to find a sequential plan. We found
that many problems in the TPP and Depots domains are too
large to encode in CNF. In these cases, we found that the
combinatorial explosion for converting formulae (6) and (7)
to CNF caused the encoding size to become too large. In Ta-
ble 1 we present the number of problems per domain, solved
by FF, and successfully encoded. Below we discuss a poten-
tial solution to dealing with this drawback.

POP Quality We begin by examining the relative qual-
ity of the POPs produced with different optimization crite-
ria (LCP, MR, and MD), as well as the Relaxer Algorithm
(abbreviated as RX). We report the number of actions and
ordering constraints in the generated POP. Since the number
of actions for RX, MR, and MD are equal to the number of
actions in the sequential plan, we report the value only for
RX and LCP. Table 2 shows the results for all six domains on

|A| |O|
Domain RX LCP RX MD MR LCP

Depots (10) 34.2 30.9 451.8 451.8 407.9 339.1
Driverlog (15) 27.5 26.5 332.6 332.6 326.9 297.3
Logistics (25) 59.8 59.3 906.3 906.3 883.5 894.0

TPP (5) 13.4 13.4 74.8 74.8 74.8 74.8
Rovers (17) 30.6 30.1 214.3 214.3 208.8 200.2
Zeno (15) 19.8 19.8 137.1 137.1 136.6 136.6
ALL (87) 36.0 35.2 439.5 439.5 425.8 414.1

Table 2: Mean number of actions and ordering constraints
for the various approaches. Numbers next to the domain
indicate the number of instances solved by all methods (and
included in the mean).

the problems for which every approach succeeded in finding
a solution (87 of the 97 successfully encoded problems).

There are a few items of interest to point out. First,
columns 4 and 5 coincide perfectly. It turns out, perhaps
surprisingly, that the Relaxer Algorithm is able to produce
the optimal deordering in every case, even though it is not
guaranteed to do so. Since the algorithm can only produce
deorderings, this is the best we could hope for from the algo-
rithm. Second, we see the number of ordering constraints for
the LCP approach is greater than those for the MR approach
(on average) in the Logistics domain. The reason for this
is because POPs in the Logistics domain require more or-
dering constraints for a solution with slightly fewer actions.
For example, in prob15 the MR solution has 100 actions and
2278 ordering constraints, while the LCP solution reduces
the number of actions in the POP to 96 at the expense of
requiring 2437 ordering constraints.

In general, the LCP has fewer actions and ordering con-
straints than the optimal reordering, which in turn has fewer
ordering constraints than the optimal deordering. If the LCP
has the same number of actions as the sequential plan, then
the LCP and minimum reordering coincide. We can see this
effect in the TPP and Zenotravel where the number of ac-
tions and ordering constraints for LCP and MR are equal.

Finally, we note that in 4 problems (1 from Logistics,
and 3 from Rovers), we found that the number of actions
and constraints for either the LCP or MR POP matched that
of the Relaxer POP, but the number of linearizations dif-
fered. Further, the differences in linearizations were not in
the same direction (some better, and some worse). While the
number of ordering constraints in a POP (for a given number
of actions) usually gives an indication of the number of lin-
earizations for that POP, these 4 problems indicate that this
is not always the case.

Encoding Difficulty To measure the difficulty of solving
the encoded problems, we computed the average time min-
imaxsat1.0 required to find an optimal solution (since the
timing results had such a high standard deviation, we include
both the mean and median values). It should be noted that
an initial solution was consistently produced almost imme-
diately by minimaxsat1.0’s pre-processing step (a stochastic
local search that satisfies every hard clause and serves as a
lower bound on the optimal solution). Table 3 shows the
average solving time for each domain given a particular set-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

36

Figure 1: Ratio of Linearizations. The y-axis represents the
number of linearizations induced by the POP for the optimal
reordering divided by the number of linearizations induced
by the POP for the optimal deordering. The x-axis ranges
over all problems where the number of linearizations dif-
fered (∼40%), and is sorted based on the y-axis value.

ting. The largest solving time recorded was just under 500
seconds for a problem in the Rovers domain with the LCP
setting. For comparison, we additionally include the average
time the Relaxer Algorithm required to find a deordering.

For at least one of MR and LCP, 10 of the 97 problems
successfully encoded proved too difficult for minimaxsat1.0
to solve, causing the solver to time out. We found that MD
was on average easier to solve, but overall the majority of
the problems were readily handled by minimaxsat1.0: 74%
being solved in under 5 seconds. Being a polynomial al-
gorithm, Relaxer consistently found a solution very quickly.
The maximum time for a problem was just over 4 seconds.

Reordering Flexibility We have already seen that the Re-
laxer Algorithm is capable of producing the minimum de-
ordering. To further evaluate the flexibility of the optimal
deordering, we compare the number of linearizations in-
duced by the optimal deordering with the number of lin-
earizations induced by the optimal reordering. We found
that of the 78 problems we could successfully compute the
linearizations for, approximately 40% of the problems ex-
hibited a difference between the optimal deordering and op-
timal reordering. Figure 1 shows the number of lineariza-
tions for the optimal reordering divided by the number of
linearizations for the optimal deordering. For readability,
we omit the 47 instances where the linearizations matched.

The ratio of linearizations ranges from 0.9 (an anomaly
discussed below) to over two million. While the Relaxer Al-
gorithm is proficient at finding the optimal deordering, this
result demonstrates that there are still significant gains to be
had in terms of flexibility by using the optimal reordering.

7 Discussion
The results paint an overall picture of how the optimization
criteria compare to one another. We find that the Relaxer Al-
gorithm is extremely adept at finding the optimal deordering,
despite its lack of theoretical guarantee. In contrast, in many

of the domains we see gains in terms of flexibility of the POP
if we compute the optimal reordering or a least commitment
POP. The encoding for the optimal deordering is easier for
minimaxsat1.0 to solve compared to the optimal reordering
or LCP, but the majority of problems for all optimization
criteria were readily handled by minimaxsat1.0.

Whenever possible, we used the number of linearizations
a POP represents as a measure of the POP’s flexibility (this
may not always be possible to compute due to the struc-
ture and size of the POP). We found that there are prob-
lems where the number of actions and ordering constraints
in two POPs are equal, while the number of linearizations is
not. Since the objective function of the encoding includes
only the number of actions and ordering constraints, there
is no guarantee on the number of linearizations that will re-
sult from a computed POP. An optimal reordering may even
have fewer linearizations than an optimal deordering (which
was observed in one case, as seen in Figure 1).

For a concrete example, consider two POPs on four ac-
tions A = {a1, a2, a3, a4}. Ignoring causal links, Figure 2
shows the structure of the POPs P1 and P2. Both POPs have
the same number of actions and ordering constraints, but the
number of linearizations differ: P1 has 6 linearizations while
P2 only has 5. These POPs serve as a basic example of how
the LCP criteria does not fully capture the notion of POP
flexibility. However, we should point out that fewer order-
ing constraints usually indicates more linearizations.

a1

a2

a3

a4
(a) P1

a1 a2

a3 a4
(b) P2

Figure 2: Two POPs with the same number of actions and
ordering constraints, but different number of linearizations.

For the Depots and TPP domains, the encoding size be-
came prohibitive. The larger formulae (i.e., (6) and (7)) are
not too large in themselves, but when converting to CNF
the theory becomes large. In future work, we plan to use
the Tseitin encoding to convert the theory (Tseitin 1970).
The Tseitin encoding will allow us to avoid the exponen-
tial blow-up in theory size, at the expense of introducing
more variables. We also hope to investigate versions of par-
tial weighted MaxSAT solvers tailored to problems in which
only unit clauses are soft (as is the case with our encod-
ing). There are other optimization techniques we plan on
investigating, including constraint programming encodings,
mixed-integer programming models, and a restricted form
of partial-order causal link (POCL) search.

The encoding technique we have presented differs signif-
icantly from the standard SAT-based planning encodings. In
particular, we avoid the need to encode an action for every
layer in a planning graph by appealing to the fact that we
already know the (superset of) actions that will be in the so-
lution. The core of our encoding follows an approach similar

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

37

Mean Time Median Time Mean Mean # Clauses
Domain RX MD MR LCP RX MD MR LCP # Vars MD MR LCP
Depots 0.54 89.63 55.63 19.72 0.44 1.26 1.55 1.71 1346.55 398205.91 397566.36 397532.64

Driverlog 0.58 1.35 38.36 6.02 0.55 0.77 0.70 0.87 943.87 39082.60 38638.20 38610.67
Logistics 1.16 9.40 127.66 105.02 0.80 3.13 5.69 4.98 7378.00 927265.59 923648.79 923576.59

TPP 0.87 3.58 171.71 171.68 0.61 0.44 0.50 0.50 1024.57 110964.86 110477.00 110452.57
Rovers 1.14 3.88 72.78 81.21 1.00 1.90 1.97 2.34 1428.74 111052.00 110371.11 110337.63
Zeno 0.60 0.86 0.85 0.87 0.46 0.42 0.53 0.43 541.73 18728.53 18477.47 18457.67
ALL 0.89 14.48 77.99 63.65 0.61 1.16 1.28 1.38 2972.67 364842.46 363397.60 363356.12

Table 3: Average time for the MaxSAT encoding to be solved by minimaxsat1.0, average time for the Relaxer Algorithm to
compute a deordering, and average number of clauses and variables in the encoding. Mean and median values of run time are
given in seconds. The mean is used to compute the average number of variables and clauses.

to Variant-II of Robinson et al. (Robinson et al. 2010). We
similarly encode the ordering between any pair of actions
as a variable (κ(ai, aj)), but rather than encoding a relaxed
planning graph, we encode the formulae that need to hold
for a valid POP. There are also similarities between our work
and that of (Do and Kambhampati 2003). In particular, the
optimization criteria for minimizing the number of ordering
constraints coincide, as does the optional use of constraints
to force a deordering. However, while Do and Kambhampati
focus on temporal relaxation in the context of action order-
ing, we take the orthogonal view to minimize the number of
actions required.

It is natural to consider the impact the choice of initial
plan has on the final POP. As was mentioned earlier, the
choice of initial solution between FF and POPF makes little
difference in the quality of the optimally relaxed POP. The
question remains open, however, on how to best compute an
initial set of actions for our encoding.

8 Conclusion
In this paper we proposed a practical method for computing
the optimal deordering and reordering of a sequential plan.
Despite the theoretical complexity of computing the opti-
mal deordering or reordering being NP-hard, we are able
to compute the optimal solution by leveraging the power of
modern MaxSAT solvers. We further propose an extension
to the classical least commitment criterion that considers the
number of actions in a solution, and demonstrate the added
flexibility of a POP that satisfies this criterion.

Our approach uses a family of novel encodings for partial
weighted MaxSAT where a solution corresponds to an opti-
mal POP satisfying one of the three criteria we investigate
(minimal deordering, minimal reordering, and our proposed
least commitment POP). We solve the encoding with a state-
of-the-art partial weighted MaxSAT solver, minimaxsat1.0,
and find that the majority of problems are readily handled
by minimaxsat1.0. We do, however, find that two domains
present a problem for the encoding phase of our approach.
In TPP and Depots, we find that the encoding size becomes
too large to handle, which limits the applicability of our cur-
rent encoding technique. In the future, we hope to employ
the Tseiten encoding to limit this drawback.

We also investigated an existing algorithm for deordering
sequential plans, and discovered that it successfully com-
putes the optimal deordering in every problem we tested (de-

spite its lack of theoretical guarantee). Since the algorithm
is polynomial, and quite fast in practice, it is well suited for
relaxing a POP if we require a deordering. However, if a
reordering or least commitment POP is acceptable, then we
can produce a far more flexible POP by using one of the
proposed encodings.

Acknowledgements
The authors gratefully acknowledge funding from the On-
tario Ministry of Innovation and the Natural Sciences and
Engineering Research Council of Canada (NSERC). We
would also like to thank the anonymous referees for useful
feedback on earlier drafts of the paper.

References
Bäckström, C. 1998. Computational aspects of reordering plans.
Journal of Artificial Intelligence Research 9(1):99–137.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T. 2009. Hand-
book of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Twentieth International Con-
ference on Automated Planning and Scheduling (ICAPS 10).
Do, M., and Kambhampati, S. 2003. Improving the temporal flexi-
bility of position constrained metric temporal plans. In AIPS Work-
shop on Planning in Temporal Domains (AIPS 03).
Heras, F.; Larrosa, J.; and Oliveras, A. 2008. MiniMaxSAT: An ef-
ficient weighted Max-SAT solver. Journal of Artificial Intelligence
Research 31(1):1–32.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14(1):253–302.
Kambhampati, S., and Kedar, S. 1994. A unified framework for
explanation-based generalization of partially ordered and partially
instantiated plans. Artificial Intelligence 67(1):29–70.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2010.
Partial weighted maxsat for optimal planning. In Proceedings of
the 11th Pacific Rim International Conference on Artificial Intelli-
gence, Daegu, Korea, August 30 - September 02, 2010.
Russell, S., and Norvig, P. 2009. Artificial intelligence: a modern
approach. Prentice hall.
Tseitin, G. 1970. On the complexity of proofs in propositional
logics. In Seminars in Mathematics, volume 8, 1967–1970.
Veloso, M.; Pollack, M.; and Cox, M. 1998. Rationale-based mon-
itoring for planning in dynamic environments. In Artificial Intelli-
gence Planning Systems, 171–179.
Weld, D. 1994. An introduction to least commitment planning. AI
Magazine 15(4):27.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

38

Exploiting MaxSAT for Preference-Based Planning

Farah Juma and Eric I. Hsu and Sheila A. McIlraith
Department of Computer Science

University of Toronto
{fjuma, eihsu, sheila}@cs.toronto.edu

Abstract
In this paper, we explore the application of partial weighted
MaxSAT techniques for preference-based planning (PBP). To
this end, we develop a compact partial weighted MaxSAT
encoding for PBP based on the SAS+ formalism. Our en-
coding extends a SAS+ based encoding for SAT-based plan-
ning, SASE, to allow for the specification of simple pref-
erences. To the best of our knowledge, the SAS+ formalism
has never been exploited in the context of PBP. Our MaxSAT-
based PBP planner, MSPLAN, significantly outperformed a
STRIPS-based MaxSAT approach for PBP with respect to
running time, solving more problems in a few cases. Interest-
ingly, when compared to SGPlan5 and HPLAN-P, two state-
of-the-art heuristic search planners for PBP, MSPLAN consis-
tently generated plans with comparable quality, slightly out-
performing at least one of these two planners in almost every
case. For some problems, MSPLAN was competitive with
HPLAN-P with respect to running time. Our results illustrate
the effectiveness of our SASE based encoding and suggests
that MaxSAT-based PBP is a promising area of research.

1. Introduction
Many real-world planning problems consist of both a set of
mandatory goals and an additional set of desirable plan prop-
erties. The degree of satisfaction of these desirable proper-
ties, or plan preferences, determines the quality of a plan.
Preference-based planning (PBP) (e.g., (Baier and McIlraith
2008)) extends the well-known classical planning problem
in order to generate plans that achieve problem goals while
maximizing the satisfaction of other preferred properties of
the plan. In so doing, they allow a planner to generate plans
of high quality, often under situations with conflicting pref-
erences.

PBP has been the subject of substantial research in re-
cent years. The 2006 International Planning Competition
(IPC-2006) initiated a track on this topic which resulted in
the extension of the standardized Planning Domain Descrip-
tion Language (PDDL) to support the specification of pref-
erences (Gerevini et al. 2009). In PDDL3, desirable proper-
ties of a plan are expressed as preference formulae. These
formulae may describe properties of the final state as well
as properties that hold over intermediate states visited dur-
ing plan execution. The relative importance associated with
not violating these preference formulae is reflected in a met-
ric function, a weighted linear combination of preferences

whose violation is minimized by the planner. At IPC-2008,
this family of planning problems was extended to include
action costs. The objective of these so-called net benefit
problems is to maximize the sum of the utilities of the goals
and preferences that have been achieved, minus total costs.
Action costs can be incorporated into our partial weighted
MaxSAT-based PBP approach and it is something that we
are exploring, but do not address it in this paper.

To date, the most effective techniques for PBP have been
based on heuristic search (e.g., YochanPS (Benton, Kamb-
hampati, and Do 2006), SGPlan5 (Hsu et al. 2007), and
HPLAN-P (Baier, Bacchus, and McIlraith 2009)). There
have also been several planners that have used SAT, CSP,
or Answer Set solvers (e.g., SATPLAN(P) (Giunchiglia and
Maratea 2007), PREFPLAN (Brafman and Chernyavsky
2005), CPP (Tu, Son, and Pontelli 2007)). Most recently,
Giunchiglia and Maratea (2010) explored a partial weighted
MaxSAT-based approach to solving PBP problems by modi-
fying a version of SATPLAN (Kautz 2006). For the purposes
of this paper, we refer to this as GM. While all of these lat-
ter systems show promise, performance has generally been
inferior to heuristic search.

In this paper, we characterize the problem of computing
preference-based plans as a partial weighted MaxSAT prob-
lem. A major focus of our work is on how to construct an
effective encoding. To this end, we propose a SAS+ based
(Bäckström and Nebel 1995) encoding of PBP as MaxSAT
that is both compact and correct. Our encoding builds on
the success of Huang, Chen, and Zhang (2010)’s SASE,
a SAS+ based encoding recently developed for SAT-based
planning. To the best of our knowledge, the SAS+ formal-
ism has never been used in the context of PBP despite its
effectiveness in classical planning. Exploiting our character-
ization of PBP as a partial weighted MaxSAT problem, we
develop a system called MSPLAN that employs our SASE
based encoding.

We experimentally evaluated our system by comparing it
to Giunchiglia and Maratea’s GM on Simple Preferences
problems from IPC-2006. MSPLAN consistently outper-
formed GM with respect to running time, in some cases
by an order of magnitude, solving some problems that GM
could not solve. In all cases, plan quality was comparable.
We also compared the performance of MSPLAN, run with
two different MaxSAT solvers, to state-of-the-art heuris-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

39

tic search planners for PBP. MSPLAN generated plans of
comparable plan quality, sometimes slightly out- or under-
performing the best of the heuristic search planners we em-
ployed. However, consistent with our expectations, MS-
PLAN was not able to solve as many problems as the heuris-
tic search planners. While in some instances, one of the MS-
PLAN systems significantly outperformed HPLAN-P with
respect to running time, the heuristic search planners were
generally faster. Analysis showed that a significant part of
MSPLAN’s running time was attributed to the incremental
construction of makespans, rather than the search for a so-
lution. Given the consistent quality of MSPLAN solutions,
consistent superior performance to GM, and the variability
in the performance of all of these systems, we deem our
SASE based encoding to be effective compared to a STRIPS
encoding, and the use of MaxSAT and SAS+ encodings for
PBP to be promising areas of research.

2. PBP as Partial Weighted MaxSAT
In this section, we overview the correspondence between
PBP and partial weighted MaxSAT. For the purposes of this
paper, we restrict our attention to simple preferences – pref-
erences over properties of the final state of the plan.
Definition 1 (Planning domain) Let X be a set of state
variables. A planning domain is a tuple D = (S, A, γ),
where S is the set of all possible states; A is the set of ac-
tions; and γ is the transition function. A state s ∈ S is a set
of assignments to all of the variables in X . An action a ∈ A
is described by a tuple (pre(a), eff(a)), which denotes the
action’s preconditions and effects. A transition γ(s, a) mod-
ifies the values of the state variables mentioned in eff(a).
Definition 2 (Simple PBP problem) A simple PBP prob-
lem is a tuple P = (D, sI , sG, Pref, W), where D =
(S, A, γ) is the planning domain; sI ∈ S is the (complete)
initial state; sG represents the goal and is a partial set of as-
signments to the state variables; and Pref, the preferences, is
a partial set of assignments to the state variables. Optionally,
each element in Pref may have a positive weight associated
with it, W : Pref → R≥0, to capture the relative importance
of preferences.
We now define the partial weighted MaxSAT problem. Let φ
denote a CNF propositional formula over a set V of boolean
variables and let {C1, . . . , Cm} denote the clauses of φ.
Definition 3 (MaxSAT and (Partial) Weighted MaxSAT)
The MaxSAT problem is to find an assignment of values
for V that maximizes the number of satisfied clauses in φ.
Given a weight wi for each clause Ci in φ, the weighted
MaxSAT problem is to find an assignment of values for V
that maximizes the total weight of the satisfied clauses in
φ. When some clauses in φ are designated as hard clauses
and other clauses in φ are designated as soft clauses and
we are given a weight wi for each soft clause Ci in φ, the
partial weighted MaxSAT problem is to find an assignment
of values for V that satisfies all of the designated hard
clauses in φ and maximizes the total weight of the satisfied
soft clauses in φ.

If Pref, the preferences in a simple PBP problem, are en-
coded as soft clauses, and sI , sG, and D are encoded as

hard clauses, and weights drawn from W are assigned to the
soft clauses to indicate the relative importance of the pref-
erences, then from Definition 3, it follows that finding a so-
lution to the resulting partial weighted MaxSAT problem is
equivalent to finding a plan for the original PBP problem
that achieves all of the hard constraints while maximizing
the weight of the satisfied preferences. How we actually
encode these clauses is a challenge and is one of the contri-
butions of this paper.

3. Preference-Based Planning
3.1 A SAS+ Based Encoding
The SAS+ formalism (Bäckström and Nebel 1995) has been
increasingly exploited in the context of classical planning.
Unlike a STRIPS-based encoding, which consists of actions
and facts and represents a state using a set of facts, a SAS+

based encoding consists of transitions and multi-valued state
variables and represents a state using a set of assignments to
all of the state variables. A transition represents a change
in the value of a state variable. For example, consider a
transportation domain in which trucks can move packages
between locations with certain restrictions. To represent
the possible locations of a truck, a STRIPS-based encod-
ing might include a fact for each such location (e.g., (at
truck1 loc1), (at truck1 loc2)). On the other hand, a
SAS+ based encoding might include a state variable truck1
whose domain consists of all of the possible truck locations.
Moving truck1 from loc1 to loc2 would be represented
by an action in a STRIPS-based encoding. However, in a
SAS+ based encoding, this would be represented by a transi-
tion that changes the value of the state variable truck1 from
loc1 to loc2. In general, an action might result in changes
in the values of multiple state variables. In a SAS+ based
encoding, this would be represented by multiple transitions.
Because the number of transitions in an encoding based on
the SAS+ formalism is normally much less than the number
of actions in a STRIPS-based encoding, the search space in a
transition-based encoding is smaller than the search space in
an action-based encoding (Huang, Chen, and Zhang 2010).
The compactness of the SAS+ formalism along with the rich
structural information that can be derived from it are the ma-
jor advantages of this formalism. As demonstrated by its use
in (Helmert 2006), many state-of-the-art planners have been
adopting SAS+ based encodings.

The major limitation of previous STRIPS-based SAT en-
codings for classical planning problems has been the large
number of clauses that are produced. The SAS+ formal-
ism was recently used for the first time in the context of a
SAT-based classical planning approach with an impressive
reduction in the size of the SAT encoding (Huang, Chen,
and Zhang 2010). However, to the best of our knowledge,
the SAS+ formalism has never been used in the context of
PBP despite its effectiveness in classical planning. We ex-
plore this here.

Translating PBP Problems to SAS+ We consider PBP
problems from the Simple Preferences track of IPC-2006.
STRIPS problems can be compiled into the SAS+ represen-
tation using the parser created for the Fast Downward plan-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

40

ner (Helmert 2006). Since IPC-2006 Simple Preferences
problems are non-STRIPS problems, we first need to com-
pile them into STRIPS problems. We do so using the com-
pilation technique developed in (Giunchiglia and Maratea
2010). The compilation proceeds as follows. For each sim-
ple preference, a so-called dummy action is created. The
precondition of this dummy action is the simple preference
itself and the effect of this action is a dummy literal that rep-
resents the simple preference. This dummy literal is then
added to the definition of the goal for the problem instance
and the definition of the simple preference is then removed
from the problem. The execution of a dummy action indi-
cates that the corresponding simple preference has been sat-
isfied. For example, consider the following preference that
is expressed in PDDL3:

(preference time
(or (delivered pck1 loc3 t1)

(delivered pck1 loc3 t2)))

The time preference specifies that pck1 should be delivered
to loc3 at t1 or t2. The compilation technique replaces this
preference with the following dummy action:

(:action dummy-time
:parameters ()
:precondition (or (delivered pck1 loc3 t1)

(delivered pck1 loc3 t2))
:effect (dummy-goal-time))

The literal dummy-goal-time represents the satisfaction of
the time preference. After introducing dummy actions for
each simple preference, the resulting problems are compiled
into STRIPS using Gerevini and Serina’s ADL2STRIPS
tool. Note that we must also maintain the information about
which goals in the resulting STRIPS problems correspond
to simple preferences. These STRIPS problems can then be
translated into the SAS+ formalism.

After translating these STRIPS problems into SAS+,
there is a SAS+ goal variable that corresponds to each
dummy literal (i.e., simple preference). We will refer to
these SAS+ variables as preference variables. We will use
sP to denote the set of desired assignments to preference
variables in the final state. As such, sP (x) = p indicates that
in the final state, the desired value of the preference variable
x is p.

Encoding the Clauses To encode a SAS+ based PBP
problem as a partial weighted MaxSAT problem, we mod-
ify the SAS+ based SAT encoding, SASE, first proposed in
(Huang, Chen, and Zhang 2010). SASE is made up of tran-
sition variables U , action variables V , and eight classes of
clauses. We show these classes of clauses below. Note that
N denotes the number of time steps in the plan, τ(x) de-
notes the set of possible transitions for x, M(a) denotes the
transition set of action a, R is the set of all prevailing transi-
tions, δf→f ′ represents a change in the value of x from f to
f ′, Ux,f,f ′,t is a transition variable that indicates that vari-
able x changes from the value of f to a value of f ′ at time
step t, and Va,t is an action variable that indicates that the
action a is executed at time t.

1. Initial state - (∀x, sI(x) = f):
∨

∀δf→g∈τ(x) Ux,f,g,1

2. Goal - (∀x, sG(x) = g):
∨

∀δf→g∈τ(x) Ux,f,g,N

3. Transition’s progression - (∀δx
f→g ∈ τ and t ∈ [2, N]):

Ux,f,g,t →
∨

∀δx
f′→f

∈τ(x)

Ux,f ′,f,t−1

4. Transition mutex - (∀δ1∀δ2 such that δ1 and δ2 are transi-
tion mutex): Uδ1,t → ¬Uδ2,t

5. Existence of transitions - (∀x ∈ X):
∨

∀δ∈τ(x)

Uδ,t

6. Composition of actions - (∀a ∈ O): Va,t →
∧

∀δ∈M(a)

Uδ,t

7. Action’s existence - (∀δ ∈ τ\R): Uδ,t →
∨

∀a,δ∈M(a)

Va,t

8. Non-interference of actions - (∀a1∀a2 such that ∃δ, δ ∈
T (a1) ∩ T (a2) and δ �∈ R) : Va1,t → ¬Va2,t

These clauses encode the initial state, the goal state, the
transitions that are allowed to occur at various time steps,
the relationship between transitions and actions, and the fact
that mutually exclusive actions cannot be executed simulta-
neously. After finding a sequence of transitions that achieves
the goal, from the initial state, a corresponding action plan
is found.

The key challenge is determining how to encode the pref-
erences. We modify SASE to handle preference variables
(i.e., variables that we would like to achieve a certain value
in the final state) in addition to goal variables (i.e., variables
that must achieve a certain value in the final state). To this
end, we create a new class of clauses that represents the pref-
erences. Specifically, for each preference variable x, we cre-
ate a clause that is the disjunction of all transitions which
result in the desired value for x in the final state. Using the
notation described above, this new class of clauses can be
defined as follows:

Preferences - (∀x, sP (x) = p):
∨

∀δf→p∈τ(x) Ux,f,p,N

It is important to note that once a dummy action is ex-
ecuted, the dummy goal literal it produces persists indefi-
nitely, i.e., no action deletes a dummy goal literal. Because
the execution of a dummy action is meant to indicate that a
simple preference is satisfied in the final state of the plan, we
must ensure that once a dummy action has been executed,
no other action that can invalidate the precondition of this
dummy action can occur after it. As such, we restrict the
execution of dummy actions, denoted by Odummy , to the
final time step of the plan by only defining dummy action
variables that correspond to this time step, i.e.,

Dummy action variables - Va,N ,∀a ∈ Odummy

Because preference variables do not necessarily have to
achieve their desired value in the final state, unlike hard goal
variables, we treat all preference clauses as soft clauses. We
treat the clauses that encode the initial state, goal state, and
the planning domain, as hard clauses.

Weighting the Clauses We assign weights to all of the
soft clauses using the PDDL3 metric function. This metric
function is a linear function defined over simple preferences
and is used to determine the quality of a plan. An example of

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

41

a PDDL3 metric function over two preferences named time
and loc is shown below:

(:metric minimize(+
(* 10 (is-violated time))
(* 5 (is-violated loc))))

Note that the is-violated function returns 1 if the pref-
erence with the given name does not hold in the final state
of the plan and returns 0 otherwise. This metric function
indicates that satisfying the time preference is twice as im-
portant as satisfying the loc preference. An IPC-2006 Sim-
ple Preferences task can thus be viewed as the problem of
finding a plan that satisfies all of the hard goals while mini-
mizing the total weight of the preferences that are not satis-
fied (i.e., the task is to minimize the metric function). Since
each simple preference is represented by one soft clause in
our encoding, we assign a weight to this soft clause based on
the weight assigned to this preference in the PDDL3 metric
function from the original IPC-2006 problem instance. A
similar approach was used to weight clauses in (Giunchiglia
and Maratea 2010).

3.2 Planning with MaxSAT
With our SAS+ based partial weighted MaxSAT encoding
for PBP in hand, the next step is to determine how to find
a plan using such an encoding. As in SAT-based planning,
an incremental construction of makespans is required, i.e.,
for a specific value n for the makespan (the number of time
steps in the plan), we must encode a given PBP problem into
our SAS+ based partial weighted MaxSAT encoding with a
makespan of n, attempt to solve the problem using a partial
weighted MaxSAT solver, and continue on in this manner,
trying increasing values of n, until a solution is found. How-
ever, determining when a solution is found is not trivial, as
discussed in the next subsection.

Stopping Conditions Because the task of PBP involves
finding a high-quality plan, and not just a plan with the
minimum number of time steps (as in SAT-based planning),
determining when to stop trying increasing values for the
makespan is more difficult. One possibility we consider is
to stop trying increasing values for the makespan after the
first satisfiable partial weighted MaxSAT formula is found.
The solution to this formula corresponds to a plan with op-
timal makespan and optimal plan quality for that particular
makespan. However, this plan is not guaranteed to be glob-
ally optimal. Consequently, there could still be a plan with a
larger number of time steps but with better plan quality. We
also consider the case where a time limit is given and an in-
cremental construction of makespans is carried out until the
allotted time expires, at which point the plan returned is the
plan with the best quality that was found during the given
amount of time. We will refer to this algorithm as the BEST
algorithm.

Properties of the Plan We can show that for any fixed
makespan, our approach is guaranteed to return a solu-
tion with optimal plan quality with respect to that particu-
lar makespan and furthermore, we can show that when re-
stricted to plans with makespan bounded by k, our approach
is guaranteed to return a solution that is k-optimal.

Lemma 1 For any fixed makespan n, the solution to the
partial weighted MaxSAT problem encoded with makespan
n yields a plan with optimal quality with respect to the set of
all plans with makespan n, if such a plan exists.

Proof: Follows directly from the definition of the partial
weighted MaxSAT problem (Definition 3). �

From Lemma 1, we can conclude that any plan P that is
returned by our approach has optimal quality with respect to
the set of all plans with the same makespan as P .

In certain cases, we may want to restrict our attention to
plans with a makespan that is bounded by some value.
Definition 4 (k-Optimality) We can say that a partial
weighted MaxSAT-based PBP algorithm is k-optimal if it is
always able to find a plan that is optimal, in terms of quality,
with respect to the set of all plans with makespan i ≤ k.
Theorem 1 If the search is restricted to plans with
makespan bounded by k and the BEST algorithm is run long
enough for the PBP problem to be encoded into a partial
weighted MaxSAT formula using each makespan i ≤ k, then
the BEST algorithm is k-optimal.

Proof: For each makespan i ≤ k, the PBP problem will
be encoded into a partial weighted MaxSAT formula with
makespan i and if a solution to this formula is found, the
quality of the resulting plan will be determined. From
Lemma 1, each such plan will have optimal quality with re-
spect to the set of all plans with makespan i. Now, the result
follows since the BEST algorithm returns the plan with the
best quality among the plans that were found. �

4. Implementation and Evaluation
We implemented our planner, MSPLAN, by extending the
SASE planner. In order to compare the performance of
MSPLAN to GM, we tried two of the partial weighted
MaxSAT solvers which GM was evaluated with, namely,
MiniMaxSAT v1.0 (Heras, Larrosa, and Oliveras 2007) and
SAT4J v2.1 (Berre and Parrain 2010). We also attempted
a comparison using MSUncore (Marques-Silva 2009), an-
other partial weighted MaxSAT solver, but were unable to
get a version of the system from the developers that would
run on our hardware.

Most partial weighted MaxSAT solvers do not allow real-
valued weights to be assigned to clauses but the PDDL3
metric function does allow for real-valued weights to be as-
signed to preferences. Thus, we must multiply real-valued
weights in our encoding by an appropriate power of 10 in
order to remove decimals from the weights. Additionally,
many partial weighted MaxSAT solvers require a special
weight to be specified for hard clauses in addition to weights
for soft clauses. Following the convention used to specify
this special weight, we assign a weight to each hard clause
that exceeds the sum of the weights of all of the soft clauses.

Our evaluation of MSPLAN was motivated by two ob-
jectives. Specifically, we wanted to: (1) compare the per-
formance of our planner to a previous partial weighted
MaxSAT-based approach; and (2) compare our planner to
state-of-the-art heuristic search planners for PBP. In doing
so, we also hoped to gain some insight into the impact of the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

42

underlying MaxSAT partial weighted MaxSAT solver on the
performance of MSPLAN.

To support comparison with GM, the domains we eval-
uated were limited to those used in (Maratea 2010). Four
domains from the IPC-2006 Simple Preferences track were
used in our evaluation: trucks, storage, pathways, and open-
stacks. The trucks and openstacks domains contain both
simple preferences and hard goals. However, the pathways
and storage domains contain only simple preferences and it
is generally not possible to satisfy all of these preferences.
MSPLAN requires STRIPS-encodings of these problem in-
stances as input. Since such encodings were also used in
(Maratea 2010), we were able to obtain the problems from
the Simple Preferences track which Giunchiglia and Maratea
have been able to compile into STRIPS. The trucks and stor-
age domains consist of 7 problems, the pathways domain
consists of 20 problems, and the openstacks domain con-
sists of 1 problem.

We compared the performance of MSPLAN to GM. GM
uses a STRIPS-based partial weighted MaxSAT encoding
as opposed to a SAS+ based encoding. We also compared
the performance of MSPLAN to that of the top heuristic
search planners for PBP from IPC-2006, namely, SGPlan5

(Hsu et al. 2007) and HPLAN-P (Baier, Bacchus, and McIl-
raith 2009). SGPlan5 was the winner of all of the IPC-2006
Simple Preferences tracks. HPLAN-P did not formally com-
pete in this track and came in 2nd place in the Qualitative
Preferences track. Nevertheless, experiments performed in
(Baier, Bacchus, and McIlraith 2009) show that HPLAN-P
would have outperformed all entrants in the Simple Prefer-
ences track, other than SGPlan5.

All of our experiments were performed on an AMD
Opteron 1GHz processor. The memory usage in our exper-
iments did not exceed 1GB. We ran our experiments with
a timeout of 60 minutes. We were not able to obtain a
copy of GM. As such, the results for these experiments are
taken from (Maratea 2010). Different machines have thus
been used in our comparison. In (Maratea 2010), experi-
ments were performed on a Pentium IV 3.2GHz processor
with 1GB of RAM, a faster machine than ours. Note that
(Maratea 2010) gives only the time required for different
partial weighted MaxSAT solvers to find a solution to the
first satisfiable partial weighted MaxSAT formula. The to-
tal amount of time required to find a solution plan does not
appear in (Maratea 2010).

Table 1 shows the performance of MSPLAN compared to
GM when evaluating the time required for the solver to find
a solution to the first satisfiable partial weighted MaxSAT
formula when using MiniMaxSAT v1.0 and SAT4J v2.1 as
the underlying solvers. The results show that for all prob-
lem instances in the trucks and storage domains which could
be solved using both GM and MSPLAN, the time required
to find a solution to the first satisfiable partial weighted
MaxSAT formula was less, by an order of magnitude in
many cases, when using MSPLAN than when using GM,
regardless of the solver used. The value of the plan qual-
ity metric does not appear in (Maratea 2010) and we were
unable to obtain the corresponding quality values from the
authors. However, from a different encoding given to us by

the authors, we were able to generate an upper bound on
the quality values. This information indicated that the plan
quality was comparable in all cases. This information also
indicated that the number of clauses in our encoding was of-
ten significantly smaller, by a large constant factor. While
this comparison is not precise, it is the best that could be
done with the available data and gives an indication of the
positive properties of our approach. There were problems in
both the trucks and storage domains which could be solved
by MSPLAN with a particular solver but could not be solved
by GM when using the same solver. In fact, MSPLAN was
able to optimally solve three problems in the trucks domain
which GM could not solve using any of the partial weighted
MaxSAT solvers evaluated in (Maratea 2010). Neither MS-
PLAN nor GM could generate a plan for the one problem
instance in the openstacks domain. Finally, we were not
able to do a direct comparison between these two planners
for the pathways domain because we were not able to obtain
information about the running time of GM on these prob-
lems.

MiniMaxSAT SAT4J
Instance GM MSPLAN GM MSPLAN
trucks1 7.7 1.18 359.17 1.95
trucks2 308.92 44.803 - 24.868
trucks3 - 89.15* - 446.578*
trucks4 - 128.904* - -
trucks5 - 652.877* - -
trucks6 - - - -
trucks7 - - - -
storage1 0.21 0.008 0.32 0.171
storage2 0.44 0.032 0.65 0.21
storage3 0.59 0.032 1.45 0.503
storage4 0.71 0.084 2.8 0.667
storage5 58.79 13.721 16.35 1.228
storage6 - 43.059 70.6 2.564
storage7 - - 365.53 6.232

Table 1: Performance of MSPLAN compared to GM. Entries indicate
the time required by MiniMaxSAT and SAT4J to find a solution to the
first satisfiable partial weighted MaxSAT formula, in seconds. Dash
entries indicate that the problem could not be solved during the given
time. Starred entries indicate that the plan generated was optimal in
terms of quality.

Table 2 shows the performance of MSPLAN compared to
the two top heuristic search PBP planners from IPC-2006.
In this set of experiments, we ran MSPLAN with the BEST
algorithm that was described in Section 3.2, i.e., the plan re-
turned by MSPLAN was the highest quality plan found dur-
ing a 60 minute period. We evaluated the total running time
of all three planners and the quality of the plans found. The
results show that for all but one of the problems that all three
planners were able to solve, the quality of the plan generated
by MSPLAN was equal to or was superior to the quality of
the plan returned by at least one of SGPlan5 and HPLAN-
P, regardless of the partial weighted MaxSAT solver that
was used. As expected, SGPlan5 generated plans signifi-
cantly faster than MSPLAN in all cases. However, MSPLAN
solved some problems more quickly than HPLAN-P, while
returning a plan of equal or better quality.

The significance of the SGPlan5 comparison needs to be
evaluated carefully. SGPlan has been shown to have in-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

43

consistent performance on domains, depending on the en-
coding (Haslum 2007). Further, the version of SGPlan
that participated in IPC-2008 was hand-tuned to the IPC
problem encodings1 and it is believed that previous ver-
sions of SGPlan were similarly hand-tuned. If this is the
case, then the comparison between MSPLAN and SGPlan5

is best interpreted as a comparison between a domain-
independent MaxSAT-based preference-based planner and
a manually domain-tuned heuristic search preference-based
planner, and the generally (but not universally) superior
performance of the manually domain-tuned system is to
be expected. As such, a more reliable comparison is be-
tween MSPLAN and HPLAN-P since this heuristic search
preference-based planner outperformed all other IPC-2006
Simple Preferences track competitors (Baier, Bacchus, and
McIlraith 2009). Our comparison shows that MSPLAN
is competitive with HPLAN-P (what we believe to be the
top domain-independent heuristic search preference-based
planner). We are currently undertaking a comparison with
LAMA (Richter, Helmert, and Westphal 2008), a cost-
optimal planner, by exploiting a translation of soft goals into
action costs (Keyder and Geffner 2009).

As in SAT-based planning, a bottleneck in partial
weighted MaxSAT-based planning appears to be the itera-
tion required to determine the makespan for the solution.
In our experiments, we encoded the problem using each
possible makespan until the plan with the best quality was
found. This is clearly a worst-case scenario. Many SAT-
based planners first generate an estimate for the appropriate
makespan and use this as a starting point for incremental
search. As seen in Table 2, the time required for MSPLAN
to generate a plan when given, by an oracle, the makespan
that yields the plan with the best quality was typically much
smaller than the time required by MSPLAN to generate a
plan when this makespan was not known a priori. If an in-
cremental approach could be created, whereby the partial
weighted MaxSAT encoding of a problem with makespan k
is extended, instead of being encoded from scratch, in or-
der to generate the partial weighted MaxSAT encoding with
makespan k + 1, the running time of MSPLAN could likely
be improved. A similar incremental approach has recently
been investigated in the context of compiling PDDL plan-
ning problems into answer set programs (Knecht 2009).

Our planner appeared to be sensitive to the underlying
MaxSAT solver. With MiniMaxSAT, MSPLAN was able
to solve 12 of the 20 problems in the pathways domain
but when SAT4J was used instead, 17 of the 20 prob-
lems were solved. Most of the pathways problem instances
which could not be solved by MiniMaxSAT had a relatively
large number of simple preferences (usually between 35 to
50 simple preferences). Since partial weighted MaxSAT
solvers are believed to be very sensitive to the ratio of soft
constraints versus hard constraints (Ansótegui, Bonet, and
Levy 2009), the relatively larger proportion of soft con-

1See for example the function search ops modal in the
file Parser/inst utils.c in the SGPlan code located at
http://ipc.informatik.uni-freiburg.de/Planners
which contains hand-tuning for IPC domains.

straints in these problems might explain the superior perfor-
mance of SAT4J in the pathways domain. In contrast to the
branch-and-bound framework of MiniMaxSAT, SAT4J for-
goes the overhead of attempting to prune the search space
by computing lower bounds. This decision pays off on un-
derconstrained problems where such prunings are unlikely
to trigger.

5. Concluding Remarks
In this paper, we characterized the PBP problem as a partial
weighted MaxSAT problem. We developed a compact en-
coding of PBP as partial weighted MaxSAT by building on
the success of a SAS+ based SAT encoding. To the best of
our knowledge, this is the first time that the SAS+ formalism
has been used in the context of PBP. Our experimental eval-
uation showed that our MSPLAN system (with our SAS+

encoding), consistently outperformed an existing MaxSAT-
based planner (with a STRIPS encoding) with respect to
running time, while generating plans of comparable quality.
Remarkably, when run with two different MaxSAT solvers,
MSPLAN generated plans with comparable quality to those
generated by state-of-the-art heuristic search planners for
PBP. Although the heuristic search planners were generally
faster, there were problem instances for which at least one
of the two MSPLAN systems ran significantly faster than
HPLAN-P. The impressive performance of MSPLAN serves
to illustrate the effectiveness of our SAS+ encoding and sug-
gests that both MaxSAT and SAS+ encodings for PBP are
worthy areas of continued exploration.

In this paper, we focused on simple preferences to sup-
port comparison with GM. Following the compilation tech-
nique described in (Baier and McIlraith 2006), it is possible
to translate the full suite of PDDL3 qualitative preferences,
including temporally extended preferences, into simple pref-
erences. It is also possible to extend our work to net benefit
problems by creating negated unary clauses that represent
that an action is not executed at a particular time step and
associating the satisfaction of these clauses with a weight
corresponding to an action’s cost. These are topics of cur-
rent investigation. A current limitation of MSPLAN is that
it is k-optimal rather than optimal. (SGPlan5 is neither op-
timal nor k-optimal whereas HPLAN-P has the capacity to
be k-optimal with respect to plan length and optimal if run
to completion with certain restrictions on metric functions
(Baier and McIlraith 2008).) Optimality may be achievable
with a MaxSAT-based approach by exploiting a translation
of soft goals into action costs (Keyder and Geffner 2009) and
a cost-optimal planner based on partial weighted MaxSAT
(e.g., (Robinson et al. 2010)).

Acknowledgements
We thank Enrico Giunchiglia and Marco Maratea for provid-
ing us with their STRIPS-encodings of the IPC-2006 Simple
Preferences problems. We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), the Ontario Ministry of Innovation,
and MITACS.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

44

Instance MSPLAN: MiniMaxSAT MSPLAN: SAT4J HPLAN-P SGPlan5

Time (s) Time (s)
Soln Oracle Total M Soln Oracle Total M Time (s) M Time (s) M

trucks1 2.16 5.08 14.01 0 1.78 5.18 21.22 0 5.58 0 0.01 1
trucks2 36.51 41.3 165.91 0 36.04 37.66 173.63 0 92.28 0 0.04 0
trucks3 89.15 111.54 304.1 0 527.21 553.62 861.07 0 660.1 0 0.05 0
trucks4 128.9 426.26 596.18 0 - - - - 563.93 3 0.08 0
trucks5 652.88 675.59 2553.01 0 - - - - 1015.36 0 0.13 0
trucks6 - - - - - - - - - - 0.27 0
trucks7 - - - - - - - - - - 0.63 8
storage1 0.01 1.31 1.66 3 0.17 2.15 2.37 3 0.07 3 0.0 8
storage2 4.9 27.62 34.18 5 4.3 27.15 43.58 5 2.93 5 0.01 16
storage3 708.84 730.15 1192.33 18 1061.36 1083.39 2769.18 7 38.06 6 0.03 41
storage4 23.71 34.51 47.34 38 532.2 637.1 1063.3 24 183.37 9 0.06 49
storage5 70.08 123.29 214.77 107 677.02 705.96 937.9 76 76.57 94 0.13 136
storage6 43.06 71.49 73.19 173 1573.75 1605.23 1978.41 150 459.93 141 0.22 189
storage7 - - - - 127.5 168.81 183.76 277 1280.43 160 0.32 242
pathways1 0.05 1.48 1.6 2 0.18 2.56 3.09 2 3.88 2 0.01 2
pathways2 0.07 0.99 1.29 3 0.46 1.99 3.34 3 186.34 4 0.0 3
pathways3 0.36 3.12 4.95 3 0.59 5.0 7.42 3 115.6 3.7 0.03 3
pathways4 0.36 5.33 5.85 2 0.78 6.25 8.66 2 324.82 2 0.03 2
pathways5 6.47 36.59 45.26 6 2.08 35.39 42.73 6 413.42 9 0.14 6.5
pathways6 434.02 797.73 1468.57 6.4 114.92 103.81 296.1 6.4 0.04 12.9 1.92 7
pathways7 1251.16 1466.24 1710.57 11.5 1378.79 1406.88 2325.46 10.3 0.05 12.5 1.93 10.4
pathways8 201.349 229.51 823.23 18.2 993.28 1020.99 1370.69 18 0.05 20.2 0.92 12.9
pathways9 - - - - 2.33 31.50 32.31 15.7 0.07 15.7 1.4 10.6
pathways10 1182.02 1209.2 1744.95 12.9 775.77 803.84 1692.19 10.1 0.06 16.8 10.94 13.4
pathways11 5.56 32.88 37.85 11.8 1302.28 1332.93 2062.62 9.6 0.0 12.5 2.27 9
pathways12 37.29 47.72 62.02 18.8 2.81 28.77 29.88 18.8 0.04 18.8 14.93 15.4
pathways13 - - - - - - - - 0.03 22 12.6 16
pathways14 55.28 62.81 80.5 20.7 942.9 1008.96 1092.89 20 0.03 20.7 7.15 15.6
pathways15 - - - - - - - - 0.06 20.9 0.57 14.5
pathways16 - - - - 660.60 693.78 1060.91 25.7 0.11 25.7 18.4 18.5
pathways17 - - - - 582.82 603.99 615.12 22.3 0.1 22.3 41.94 20.3
pathways18 - - - - 2.26 30.35 30.75 22.8 0.1 22.8 27.68 20
pathways19 - - - - - - - - 0.05 26.5 41.24 22
pathways20 - - - - 8.31 40.08 41.64 24.7 0.08 24.7 6.53 15
openstacks1 - - - - - - - - 128.14 6 0.13 13

Table 2: Performance of MSPLAN when run with the BEST algorithm compared to the top PBP heuristic search planners from IPC-2006.
Let B be the makespan that results in the plan with the best quality within the time limit. Soln denotes the time required for MiniMaxSAT and
SAT4J to find a solution to the partial weighted MaxSAT formula with makespan B. This includes only the solver time to find the solution to
the formula. Oracle denotes the total running time of MSPLAN when given, a priori, the best makespan B. This time includes the time for
the translation to SAS+, the time for encoding the partial weighted MaxSAT formula with makespan B, and the solver time. Total denotes
the total running time when this best makespan B is not known ahead of time and must be determined through an incremental construction
of makespans. This time includes the time for the translation to SAS+, the time for repeatedly encoding a partial weighted MaxSAT formula
with increasing makespans, and the total solver times. The total running time of HPLAN-P and SGPlan5 is denoted by Time. M is the value
of the plan metric, the total value of the violated preferences in the plan found. (Low is good.) A dash indicates timeout.

References
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving (weighted)
partial MaxSAT through satisfiability testing. In SAT, 427–440.

Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.

Baier, J. A., and McIlraith, S. A. 2006. Planning with first-order
temporally extended goals using heuristic search. In AAAI, 788–
795.

Baier, J. A., and McIlraith, S. A. 2008. Planning with preferences.
AI Magazine 29(4):25–36.

Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A heuristic
search approach to planning with temporally extended preferences.
AIJ 173(5-6):593–618.

Benton, J.; Kambhampati, S.; and Do, M. B. 2006. YochanPS:
PDDL3 simple preferences and partial satisfaction planning. In
IPC-2006, 54–57.

Berre, D. L., and Parrain, A. 2010. The SAT4J library, release 2.2.
In Journal on Satisfiability, Boolean Modeling and Computation,
volume 7, 59–64.

Brafman, R., and Chernyavsky, Y. 2005. Planning with goal pref-
erences and constraints. In ICAPS, 182–191.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence 173(5-6):619–668.
Giunchiglia, E., and Maratea, M. 2007. Planning as satisfiability
with preferences. In AAAI, 987–992.
Giunchiglia, E., and Maratea, M. 2010. A pseudo-boolean ap-
proach for solving planning problems with IPC simple preferences.
In COPLAS, 23–31.
Haslum, P. 2007. Quality of solutions to IPC5 benchmark prob-
lems: Preliminary results. In ICAPS.
Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Heras, F.; Larrosa, J.; and Oliveras, A. 2007. MiniMaxSAT: a new
weighted Max-SAT solver. In SAT, 41–55.
Hsu, C.-W.; Wah, B.; Huang, R.; and Chen, Y. 2007. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. In IJCAI, 1924–1929.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

45

Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transition based
encoding scheme for planning as satisfiability. In AAAI, 89–94.
Kautz, H. A. 2006. Deconstructing planning as satisfiability. In
AAAI, 1524–1526.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away. JAIR 36:547–556.
Knecht, M. 2009. Efficient domain-independent planning using
declarative programming. Master’s thesis, Hasso Plattner Institute,
University of Potsdam.
Maratea, M. 2010. An experimental evaluation of Max-SAT and
PB solvers on over-subscription planning problems. In RCRA, vol-
ume 616.
Marques-Silva, J. 2009. The MSUncore MaxSAT solver.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In AAAI, 975–982.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2010.
Partial weighted MaxSAT for optimal planning. In PRICAI, 231–
243.
Tu, P. H.; Son, T. C.; and Pontelli, E. 2007. CPP: A constraint logic
programming based planner with preferences. In LPNMR, volume
4483 of LNCS, 290–296. Springer.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

46

A SAT Compilation of the Landmark Graph

Vidal Alcázar
Universidad Carlos III de Madrid

Avenida de la Universidad, 30
28911 Leganés, Spain
valcazar@inf.uc3m.es

Manuela Veloso
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

veloso@cmu.edu

Abstract

Landmarks are subgoals formed by sets of propositions
or actions that must be achieved at some point in a plan-
ning task. These landmarks have a series of ordering
relations between them that form what is known as the
landmark graph. Previous works have used information
from this graph with several purposes; however, few
have addressed some of the shortcomings of the current
representation of the graph, like landmarks having to be
true at several time steps. In this work we propose a SAT
encoding of the landmarks graph whose solution repre-
sents a more informative version of the original graph.

Introduction
Landmarks are disjunctive sets of propositions of which at
least one component must be achieved or executed at least
once in every solution plan to a problem (Hoffmann, Por-
teous, and Sebastia 2004). Currently landmarks are a very
prominent line of research in automated planning, as the suc-
cess of landmark-based planners like LAMA (Richter and
Westphal 2010) shows. Most approaches have focused on
using landmarks to partition the problem (Hoffmann, Por-
teous, and Sebastia 2004; Sebastia, Onaindia, and Marzal
2006) and to derive heuristics used in forward search plan-
ners (Richter and Westphal 2010; Karpas and Domshlak
2009; Bonet and Helmert 2010).

Finding the complete set of landmarks or even just prov-
ing that a proposition is actually a landmark is PSPACE-
complete (Hoffmann, Porteous, and Sebastia 2004). How-
ever, current methods can efficiently compute a subset of
the landmarks of the task based on a delete-relaxation repre-
sentation of the problem. A series of partial orders between
propositions can be computed with similar techniques too,
which applied to landmarks are used to build the landmark
graph. The landmark graph is the base of many of the tech-
niques that employ landmarks, as the order in which land-
marks should be achieved is often as important as finding
the landmarks themselves.

Even though the landmark graph provides important in-
formation it still has several shortcomings. First, the partial
orderings may not be enough to come up with a reasonable
total order, which is critical for things such as partitioning
the problem into smaller subproblems. Second, landmarks
appear only once, even when it is clear that they must be

achieved several times, like when they are causal precondi-
tions of other landmarks that cannot be true at the same time.
For example, in the well-known Blocksworld domain, (arm-
empty) appears only once despite being necessary before ev-
ery possible (holding x - block), which cannot be true at the
same time as any other proposition derived from the pred-
icate holding. Third, the exploitation of the cycles and the
unsound orderings in the graph is still unclear. In fact, most
techniques that use landmarks are designed to be applied to
acyclic graphs, so cycles are usually removed discarding un-
sound edges first before any kind of search begins.

An important remark is that the concept of time in a to-
tal order setting is absent in the landmark graph. In order to
introduce time, landmarks must be able to appear as needed
in different time steps. For this, they must be labeled with
some sort of time stamp. The planning graph (Blum and
Furst 1997) that is often used to represent the planning task
does specifically this, as every proposition and action is rep-
resented several times by nodes labeled with the level they
appear in. Hence, landmarks can be represented as several
nodes, one per different possible time step. There is a simi-
lar relationship between the orderings in the landmark graph
and the different edges of the planning graph: orderings are
constraints that represent causal relationships of precedence
between landmarks, and edges in the planning graph are
constraints of either action-proposition causality or mutual
exclusivity.

One of the most popular ways of exploiting the informa-
tion contained in the planning graph is encoding it into a
SAT problem (Kautz and Selman 1999). Using a SAT solver
to find a solution to the encoding allows to find a correspond-
ing solution plan to the problem or to prove that there is none
for a given number of parallel time steps. The encoding con-
sists in creating a variable per node in the planning graph and
a clause per constraint between nodes. Given the similarity
between the planning graph and the time-stamped landmark
graph, this can also be done for the latter in order to obtain an
enhanced version of the landmark graph that allows the pos-
sibility of landmarks being required at different time steps
and that represents a more consistent total order than the one
represented by the original graph. In addition, binary mutual
exclusive relationships (mutex) will be introduced explicitly
as another way of enforcing temporal constraints.

In this work we propose a SAT compilation for the land-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

47

mark graph. First, some background regarding automated
planning and landmarks will be given. Afterwards previous
related work will be analyzed making emphasis on how the
information of landmark graph has been exploited. The pro-
cess of encoding the landmark graph into a SAT problem
will be described next, going into detail for every feature
relevant to the compilation. Some experimentation will be
done to demonstrate the viability of the approach and finally
some conclusions will be drawn and a few remarks on future
lines of research will be presented.

Background
Automated planning can be described as the task of find-
ing an ordered sequence of actions (commonly referred to
as a plan) that achieves a set of goals from a given initial
state. In this work only propositional planning is considered.
A standard formalization of a planning problem is a tuple
P=(S,A,I,G) where S is a set of propositions, A is the set of
grounded actions derived from the operators of the domain, I
⊆ S is the initial state and G ⊆ S the set of goal propositions.
The actions that are applicable depend on several proposi-
tions being true and their effects can make propositions true
of false, which is commonly known as adding and deleting
the propositions, respectively. This way an action would be
defined as a triple {pre(a), add(a), del(a)} in which a ∈ A
and pre(a), add(a), del(a) ∈ S. Actions can have an asso-
ciated cost; in this work only non-negative cost actions are
used.

A planning graph is a directed leveled graph used to rep-
resent the constraints of a propositional planning problem.
There are two kind of levels, proposition levels and action
levels. Both kind of levels are alternated. Every node in the
graph is labeled with the proposition or action it represents
and the level (which actually represents a time step) it ap-
pears in. The first level is composed by the propositions s
∈ I. Subsequent levels contain propositions and actions that
could be true at that level. For instance, the actions in level
2 are those applicable from the initial state, and the propo-
sitions in level 3 are the propositions that appeared in level
1 plus those achieved by the actions in level 2. Edges in the
graph are derived from the triple {pre(a), add(a), del(a)}
that defines actions. There are also binary mutual exclusiv-
ity (mutex) relationships between nodes in the same level,
which represent that both nodes cannot be true at the same
time. Edges and mutexes represent the constraints of the
planning problem.

Landmarks were initially defined as propositions that had
to be true at some point in every solution plan to a problem.
This concept was extended later to disjunctive sets of propo-
sitions and actions that had be respectively achieved or exe-
cuted at some point (Richter and Westphal 2010) and more
recently also to conjunctive sets of propositions (Keyder,
Richter, and Helmert 2010). A general definition of land-
mark follows:

Definition 1 A landmark is a logical formula L over either
S (proposition landmark) or A (action landmark). Every so-
lution plan must satisfy every action landmark. For each
proposition landmark, at least one state in every sequence

Figure 1: Simplified landmark graph of the Sussman’s
anomaly.

of states generated by a solution plan must satisfy it.

Orderings between facts are relations between two sets of
propositions which represent the order in which they should
be achieved in a given problem. There are the following or-
derings:

• Natural ordering: A proposition a is naturally ordered be-
fore b if a must be true at some time before b is achieved

• Necessary ordering: A proposition a is necessarily or-
dered before b if a must be true one step before b is
achieved

• Greedy-necessary ordering: A proposition a is greedy-
necessarily ordered before b if a must be true one step
before b when b is first achieved

• Reasonable ordering: A proposition a is reasonably or-
dered before b if, whenever b is achieved before a, any
plan must delete b on the way to a, and re-achieve b after
or at the same time as a

Previous works classify reasonable orders as un-
sound (Hoffmann, Porteous, and Sebastia 2004), as not ev-
ery solution plan has to achieve a before b if b is ever
achieved. Obedient-reasonable orderings are a special case
of reasonable orderings which arise when all previously
computed reasonable orders are assumed to hold, although
they will not be considered to this work.

The landmark graph is the directed graph composed by
the proposition landmarks of a problem and the orderings
between them. It is not acyclic, as necessary and reasonable
orderings can induce cycles. Figure 1 shows the landmark
graph of the Sussman’s anomaly slightly simplified for the
sake of clarity.

Related Work
In this section a series of relevant previous works that have
dealt with the landmark graph will be discussed.

Partitioning using Disjunctive Landmarks
The first proposed way of using landmarks was partitioning
the problem into several smaller ones (Hoffmann, Porteous,
and Sebastia 2004). This has the advantage of potentially
obtaining an exponential gain by reducing the depth of the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

48

problem. It works by taking the leaves (landmarks not pre-
ceded by other unachieved landmarks) of an acyclic land-
mark graph and turning them into a disjunctive set of goals.
When this goal is achieved, the landmark graph is updated
and the search begins from the last state with a new subjunc-
tive goal until all landmarks have been achieved.

Although this achieves important speedups in some cases,
it does not take into account interactions between goals and
is forced to eliminate cycles from the landmark graph. Be-
sides, the total order is guessed in a rather random way, as
the search will almost always achieve the closest landmark
even if others belonging to the goal must come first.

Landmark Layering
A more elaborated way of partitioning the problem is com-
puting layers of conjunctive landmarks, as done in the
planning system STELLA (Sebastia, Onaindia, and Marzal
2006). In this case the motivation is the same, but mutexes
are taken into account along with the orderings to build
sets of conjunctive goals. Basically layers are built delaying
landmarks that are mutex with other landmarks depending
on whether their causal preconditions have been achieved or
not. Besides, cycles are dealt with by breaking them and as-
suming that one landmark must be achieved twice, guessing
which one and at which time through some intuitions.

This method is more informed, but it is not without disad-
vantages. First, its computation is substantially more com-
plex, to the point that in some instances the planner may
time out even before beginning the search. Besides, it is an
ad hoc approach based on a series of intuitions that make its
generalization complex.

Temporal Landmarks
With the extensions that appeared in PDDL2.1 (Fox and
Long 2003) and later versions time can also be character-
ized in a planning task. This lead to research on the discov-
ery of temporal landmarks (L. Sebastia 2007). In this case a
temporal planning graph is built after computing the regular
STRIPS landmarks and new temporal landmarks are found
for a given horizon. The most interesting point is that in
the same process both types of landmarks get ”activated” at
some point taking into account mutexes and orders, which
gives an intuition of when they may be needed for the first
time and even allows to prove that there is no solution for
a given horizon if some landmark could not be activated in
time.

In this case the novel concept of landmarks being required
at some time step regarding the problem and its possible so-
lution plans is introduced. However, landmarks still appear
as required only once, cycles and unsound orderings are ig-
nored and the whole computation of the activation times de-
pends on a given horizon that is chosen by hand and whose
viability is unknown.

Landmarks in a CSP to prove Solvability
With the deadline constraints introduced in
PDDL3.0 (Gerevini et al. 2009) a hard constraint on
the horizon of the planning task can be imposed. A dif-
ferent way of using the landmarks was proposed to detect

unsolvable problems due to these time constraints (Marzal,
Sebastia, and Onaindia 2008). In this case the landmark
graph was encoded as a CSP, in which the landmarks were
the variables, the time steps where the landmarks might be
needed for the first time the variables and the orderings,
mutexes and deadlines the constraints. Then, if the CSP had
no solution, the problem was deemed as unsolvable.

In this case a more general approach is taken. Even though
the goal is proving unsolvability, probably the most interest-
ing part is the new landmark graph obtained from a solution
assignment.

A SAT Compilation of the Landmark Graph
The planning graph and the landmark graph are two con-
ceptually close concepts. In fact, the planning graph is the
core of the most promising landmark discovery methods so
far (Keyder, Richter, and Helmert 2010). However, the re-
lationship between the two has not been further analyzed.
Landmarks are sets of propositions and actions, so they can
be represented in the planning graph as well. The main dif-
ference is that landmarks do not contain information regard-
ing time. When carrying landmarks over to the planning
graph, it is clear that a landmark is a proposition or action
that is true at at least one level out of all the possible levels
in which that proposition or action may appear. Hence, the
question of discovering at which levels they have to be true
involves finding both when and how many times.

Another related concept are the constraints that constitute
the edges in both graphs. These edges are causal relation-
ships between the nodes of the graph that encode time con-
straints. Since time steps are not represented in the landmark
graph, its edges are of a more general nature. However, they
share most of their properties and can be exploited in simi-
lar ways. Following this intuition, it is interesting to analyze
whether some of these commonalities allow applying tech-
niques used in the planning graph to the landmark graph.

An interesting approach commonly employed in auto-
mated planning is the encoding of the planning graph as a
SAT problem. This is done by planners like Blackbox (Kautz
and Selman 1999), which use a SAT solver to find an assign-
ment that corresponds to a valid solution plan. Despite be-
ing a relatively old concept, these planners still represent the
state of the art in parallel-length optimal planning as they ef-
fectively take advantage of the techniques developed by the
SAT community. The classical way of translating encodes
every proposition and action at every level as a variable, and
every constraint as a clause. Since the number of parallel
steps that the optimal solution has is unknown, the initial
number of levels is set to the minimum required for the goal
propositions to appear without being mutex. Then, the plan-
ning graph is converted into a SAT problem and solved using
a SAT solver. If no solution is found, the planning graph is
extended by one level and the process is repeated until a so-
lution is finally found or the planning graph levels off, also
known as the ”ramp-up” method.

Inspired by this approach a SAT compilation of the land-
mark graph is proposed. In this case, the variables repre-
sent the landmarks being true at every time step, and the
clauses their respective ordering constraints. Additionally

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

49

londex constraints (Chen, Xing, and Zhang 2007), which
are a generalization of static binary mutexes, are added to
the problem. This is because the landmark graph does not
contain explicit information regarding mutual exclusion, as
opposed to the planning graph. The previous computation
of hmax from the initial state for every landmark is also re-
quired for two reasons: first, landmarks should not be en-
coded as variables for levels in which they can not appear,
as there must be a minimum of parallel time steps before
some propositions can be achieved; and second, to obtain a
minimum horizon (number of levels) from which begin the
method, which is the maximum hmax among all the land-
marks.

The same method as with SAT-based planners is used.
Once the landmark graph has been computed, a SAT compi-
lation for a given number of time steps is computed. Then, a
SAT solver is used to find a solution assignment, and, if none
is found, the horizon is increased. An important difference
is that in this case the ”ramp-up” method is not complete in
the sense that it is only the compilation and not the landmark
graph which varies from level to level and hence there is no
equivalent concept to the planning graph leveling off.

Clause Encoding
Clauses can be divided in three types: existential clauses, or-
dering clauses and londex clauses. In these clauses, ini rep-
resents the time step at which a given proposition can be true
for the first time. Existential clauses represent the fact that
the landmarks must be true at some time at least once. They
have the following form:

• Existential clauses: Every landmark must be true at at
least one time step (aini ∨ ... ∨ an)

In the particular case of propositions that are true in the
initial state and goals these clauses are not necessary, as they
always appear at least in the first and last level respectively.
The variables that represent these landmarks must be intro-
duced in the problem, though, as they may be necessary at
different time steps. These propositions however can be used
to simplify the problem by setting the variables whose value
is known to true and applying unit propagation.

Ordering clauses are actually the edges of the landmark
graph. There is a different clause per type of sound ordering:

• Natural orderings: a must be true at some time step before
b is true (aini ∨ ... ∨ at−1 ∨ ¬bt)

• Necessary orderings: Either a or b must be true at the time
step before b is true (at−1 ∨ bt−1 ∨ ¬bt)

• Greedy-necessary orderings: Either a or b must be true at
some time step before b is true (aini ∨ ... ∨ at−1 ∨ bini ∨
... ∨ bt−1 ∨ ¬bt)

In this case a clause is needed for every edge and time step
in which a proposition can appear as the supported proposi-
tion, unless it is not possible to create the clause. The latter
can happen when the precondition propositions can not ap-
pear at the required time steps for being those lower than
their hmax value, in which case the supported proposition
is assigned the value of false. For example, if a is naturally

ordered before b, for every time step in which b can appear a
clause must be created; however, if hmax(a) ≥ t then a can
not be true before bt and so bt gets automatically assigned
the value of false.

Necessary orderings are worth of mention, as they can in-
duce cycles in the landmark graph. In this case though cy-
cles are not undesirable, as they are resolved implicitly when
finding a solution assignment. This allows to find important
structural information in the planning graph, such as loops or
a producer-consumer relationship between propositions. For
instance, in the aforementioned Blocksworld domain neces-
sary orders allow to discover that (arm-empty) is required
in every even time step, as it is necessarily ordered before
every (holding x - block).

Reasonable orders behave differently from the rest of the
edge constraints. Reasonable orders are said to be unsound
as they do not have to be respected in every solution plan.
However, they can be considered sound when regression on
the propositions is done. Reasonable orders hold among goal
propositions (Koehler and Hoffmann 2000). This means that
if a and b are goal propositions and a is reasonably ordered
before b, the last time a is made true must come before the
last time b is made true. When doing regression, this means
that b must be supported first whenever both a and b are true
if both must be true until the final state. In fact, this is true
for every pair of reasonable ordered propositions whenever
they are true in the same state. In terms of setting a con-
straint, this means that if a and b are true at the same time
and a is reasonably ordered before b, at least a must be true
in the previous time step, because if an action would have
added either proposition it should have been b. Both propo-
sitions staying as true until the last level is represented by
forcing them to be true after t in every level. They only case
in which this is not true is when there exists an action that
adds both propositions at the same time, but in that case cur-
rent methods would not report a reasonable order between
them (Richter and Westphal 2010). Their representation as a
SAT clause in the encoding of a landmark graph with n time
steps is the following:

• Reasonable orderings: If a and b are true at the same level,
a must be true at the time step before that level (at−1 ∨
¬at ∨ ¬bt ∨ ¬at+i ∨ ... ∨ ¬an ∨ ¬bt+i ∨ ... ∨ ¬bn)

Before defining londex clauses, some clarifications must
be done. Londexes are a generalization of mutexes that
introduce a relation of mutual exclusivity among several
time steps. For example, (holding a) and (holding b) in the
Blocksworld domain would form a londex of distance 2, as
at least 2 actions are needed to achieve one of the proposi-
tions from a state in which the other is true. Seen as a con-
straint, this means that both propositions could not be true
neither in the same time step nor in consecutive time steps.
A fact that is not mentioned in the definition of londex is that
londex are not necessarily symmetrical, in the sense that if
a and b are mutex the distance to achieve b from a state
in which a is true may not be the same as the distance to
achieve a from a state in which b is true. For example, in an
instance of the Sokoban domain with a single block and in
which the grid is a n×n one with no obstacles, a proposition

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

50

that represents the block being at some corner of the grid
and another one that represents the block being somewhere
at the center are mutex. However, the minimum number of
actions to move the block from the center to the corner is
finite, whereas moving the block from the corner to the cen-
ter is not possible at all (in which case the distance could
be considered as infinite). The clauses derived from the lon-
dex must take into account this fact, so they are based on the
distance between mutex propositions rather than in a single
londex constraint:

• Distance between londexes: a cannot be true at a time step
t’ if b is true at t such that t − distance(a, b) > t′ ≤ t
(¬at−(distance−1) ∨ ¬bt) ∧ ... ∧ (¬at ∨ ¬bt)

Disjunctive and Conjuctive Sets of Landmarks and
Action Landmarks
Landmark discovery methods are not limited to single
proposition landmarks. Disjunctive and conjuctive sets of
landmark propositions and action landmarks may also be
found. Regarding action landmarks, it is easy to see that their
preconditions and effects are proposition landmarks them-
selves. Therefore, actions can be easily encoded with an
additional variable with constraints over those landmarks.
These constraints can be represented by clauses equivalent
to those used when encoding the planning graph as a SAT
problem. Two differences exist: first, there are no action lev-
els in the landmark graph, so we must assume that either the
preconditions or the effects are true at the same time step
than the action; second, preconditions and added proposi-
tions are landmarks, but deleted propositions are not, so the
only case in which these constraint would be represented
is when the action deletes a proposition that is a landmark
itself and so appears in the landmark graph independently
from the action. In this case a regular mutex clause would
be used. These are the clauses if it is assumed that actions
occur at the same time their effects become true:

• Existential action clauses: Every action landmark must be
true at at least one time step (aini ∨ ... ∨ an)

• Precondition clauses: Precondition p must be true one
time step before action a is true (pt−1 ∨ ¬at)

• Add clauses: Added proposition p must be true at the
same time step than action a whenever a is true (pt∨¬at)

• Delete clauses: Deleted proposition p must be false if it is
a landmark at the same time step than action a whenever
a is true (¬pt ∨ ¬at)

Landmark actions can introduce non-causal landmark
propositions in the landmark graph, this is, propositions that
are not ordered before any other landmark and are added
only as a side effect in every solution plan. Although other
approaches ignore these landmarks in this case they are not
harmful and the additional londex constraints they introduce
may prove useful to add additional restrictions to the SAT
encoding.

The sets of conjunctive and disjunctive propositions can
be represented with auxiliary variables. Existential, natural
and greedy-necessary ordering clauses are built for these

auxiliary variables, whereas necessary and reasonable order-
ings and londex clauses are built for the propositions that
compose the set. Auxiliary variables and their composing
propositions are represented in the following way:

• Disjunctive landmarks: At least one proposition pi from
those that compose the set s must be true whenever s is
true (p0

t ∨ ... ∨ pn
t ∨ ¬st)

• Conjunctive landmarks: Every propositions pi from those
that compose the set s must be true whenever s is true
(p0

t ∨ ¬st) ∧ ... ∧ (pn
t ∨ ¬st)

Exploiting the Solution of the SAT Encoding
As described before, the SAT encoding is iteratively gener-
ated by increasing its horizon from an initial value. A SAT
solver is used for every resulting subproblem until a solution
assignment is found. First of all, it should be noted that the
solution may not be unique. First, there may be several solu-
tions for the same landmark graph encoding; second, if there
is a solution for an encoding with a given number of levels n,
there will be solutions for every encoding with a number of
levels greater than n. This means that the obtained graph is
not sound in the sense that the total order obtained does not
have to be respected by every solution plan. Besides, in the
case of disjunctive landmarks the propositions that appear as
true are not necessarily those that support the disjunctive set
for every solution plan.

On the other hand, the use of a Max-SAT solver that is
able to minimize the number of true variables is encouraged
in order to prevent unnecessary assignments to true. These
unnecessary assignments to true may occur when there are
variables whose values do not affect the satisfiability of the
solution. Nevertheless, Max-SAT is harder than regular SAT
and so not using it or settling with a local minimum on the
number of true variables is in most cases enough to get a
representative solution. Another possibility is computing the
backbone of the SAT problem; this is more informative but
it is also harder to compute and may leave some landmarks
with no value at all if they can appear as true at different
time steps in different solution assignments.

By solving the problem, a time-stamped landmark graph
is obtained. This assignment can be exploited in several
ways. The first relevant conclusion is that the number of lev-
els of the graph is a lower bound on the parallel length of
the original problem. When regular SAT-based planners that
employ the ramp-up method are used this does not repre-
sent a great advantage, as their running time is dominated
by proving that there is no solution at the level n-1 when
the optimal solution has n levels. However, for other ap-
proaches that are based on guesses over the minimal par-
allel length of the problem (Xing, Chen, and Zhang 2006;
Rintanen 2010) this can be used to reduce the range of hori-
zons considered.

Another advantage of the time-stamped landmark graph
is that an intuition about the times steps at which a landmark
may be necessary is obtained. This allows the construction
of some sort of roadmap that can be used to guide the search.
Closely related with this idea is the aforementioned parti-
tioning of the problem by using layers of conjunctive land-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

51

marks (Sebastia, Onaindia, and Marzal 2006), although in
this case the layers can be built just by choosing the land-
marks that appear as true at every particular level with no
additional computation.

An important difference with the original graph is that
here landmarks may appear as true several times. This can
mean two things: first, a landmark must not only be achieved
but also maybe kept as true across different levels; second,
it is often the case that a landmark l appears as true at non-
consecutive time steps ti, tj and there is another landmark l’
mutex with l which appears as true at some level t′ such that
ti < t′ < tj . If this can be proven for every solution plan
this means that l must be achieved, deleted and the achieved
again. In conjunction with landmark-based heuristics this
would allow to obtain more informative values; in partic-
ular, admissible landmark-based heuristics would keep their
admissibility while not being limited by the upper bound that
h+ imposes to admissible delete-effect relaxation heuristics.

An Example of Time-Stamped Landmark Graph
In Figure 1 a simplified landmark graph of the Sussman’s
anomaly is shown. Although the graph contains the most
relevant propositions and orderings, it gives little insight on
what the structure of the task may be like. In particular, the
cycles induced by the necessary orders on (arm-empty) and
which represent the concept of the arm as a common re-
source in Blocksworld are absent, apart from the lack of
minimum number of levels. For this reason this problem has
been chosen as an example of the proposed approach.

Table 1 represents the output of the encoding process.
LAMA (Richter and Westphal 2010) was used to generate
the landmark graph and domain transitions graphs were used
for the londex computation. Changes were done in its algo-
rithm, as LAMA does not compute necessary orders. Be-
sides, cycles in the landmark graph were not removed. The
table shows at which levels landmarks must be true to sat-
isfy the constraints. The opposite is not true; a landmark
does not have to be false when it appears as not required.
That a landmark must be false may be useful in some cases,
although this is trivially computable using the original con-
straints along with the solution.

This solution is a good example of how some of the short-
comings of the landmark graph can be overcome. First, the
number of levels is the minimum required; second, trivial
landmarks like (arm-empty) being required on every even
level but the last one are detected; third, the positions at
which landmarks appear as needed offer a great deal of in-
formation with regards to possible solutions. In this notable
case, the optimal solution plan always respects the required
landmarks at the exact times; the other way around, the only
sequence of actions that would comply with the solution of
the compilation of the landmarks graph is the optimal plan.

Experimentation
Although this work is centered around an alternative method
of exploiting the information contained in the landmark
graph as a departure point for novel approaches, an exper-
imental part has been added for the sake of completeness.

Level: 0 1 2 3 4 5 6
(arm-empty) x - x - x - -

(on a b) - - - - - - x
(on b c) - - - - x x x
(on c a) x - - - - - -
(clear a) - x x x x - -
(clear b) x - x - - x -
(clear c) x - x x - - -

(on-table a) x - - - - - -
(on-table b) x - - - - - -
(holding a) - - - - - x -
(holding b) - - - x - - -
(holding c) - x - - - - -

Table 1: Output of the solution of the SAT problem gener-
ated from the landmark graph

In this experiments the landmark layering approach used by
STELLA (described in subsection Landmark Layering) has
been emulated in the following way:
• The landmark graph is compiled into a SAT problem.
• A solution for the resulting SAT encoding is found us-

ing the ”ramp-up” method employed by conventional SAT
solvers.

• The problem is partitioned by creating a series of ordered
subgoals. Subgoals are sets of conjunctive landmarks that
appear as needed in a given layer of the new landmark
graph. These subgoals are ordered by the level they were
extracted from.

• A base planner is used to solve the different subproblems.
The initial state for every subproblem is the final state
from the previous one. The final solution is the concate-
nation of the solution plans of all the subproblems.
The base planner is Fast-Downward (Helmert 2006) with

greedy best-first search as the search algorithm, the FF
heuristic and preferred operators with boosting enabled. Ex-
periments have been done on a Dual Core Intel Pentium D
at 3.40 Ghz running under Linux. The maximum available
memory for the planner was set to 1GB, and the time limit
was 1800 seconds. Only non-disjunctive propositional land-
marks were used in the encoding of the landmark graph. No
parameter setting was necessary.

Experiments were done using the same domains that
were used when STELLA was compared to other plan-
ners: Blocksworld, Elevator, Freecell, Logistics, Depots,
Driverlog, Satellite and Zenotravel from the second and
the third international planning competitions. Mutexes were
computed using the invariant discovery process of Fast-
Downward. Since this method is unable to detect important
mutexes in some domains, three domains were left out: Ele-
vators, Depots and Freecell.

Regarding coverage, the results were exactly the same,
that is, both approaches were able to solve the same in-
stances. This is due to the fact that the base planner is able
to solve all the instances and that the domains have no dead-
ends, which may make the partitioning approach unable to

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

52

solve some problems due to its greediness. Therefore, we
will focus on quality and number of expanded nodes to com-
pare both approaches.

Table 2 shows the comparison between the base planner
and the partitioning approach in terms of evaluated states
and solution quality as length in the Blocksworld domain.
Instances that were solved by both approaches expanding
fewer than 100 were left out, as they are deemed to easy
to contribute with relevant information. Results show that
in many cases partitioning leads to an increase in quality.
Instances in which the partitioning approach finds shorter
plans usually require fewer nodes expansions for this ap-
proach as well. The opposite phenomenon can be observed
too: when the base planner finds shorter plans the number of
states is also smaller. In this case, the differences are greater,
which explains why the average number of expanded states
by the partitioning problem is considerably bigger.

Problem: Base-S Part-S Base-Q Part-Q
Prob-9-0 145 112 72 28
Prob-9-1 141 108 60 28
Prob-9-2 73 104 44 26

Prob-10-0 228 136 60 34
Prob-10-1 148 128 60 32
Prob-10-2 145 136 52 34
Prob-11-0 98 2994 54 72
Prob-11-1 327 628 104 64
Prob-11-2 150 3038 72 62
Prob-12-0 269 30836 74 125
Prob-12-1 131 248 102 52
Prob-13-0 678 284 108 68
Prob-13-1 391 674744 108 120
Prob-14-0 238 5968 88 140
Prob-14-1 268 390732 94 342
Prob-15-0 1504 11052 184 144
Prob-15-1 498 604 124 114
Prob-16-1 455 514 102 96
Prob-16-2 2006 29034 160 118
Prob-17-0 2424 190 280 48

Geometric Mean 299.91 1419.31 87.32 68.30

Table 2: Comparison between the base planner and the par-
titioning approach in terms of evaluated states (columns
”Base-S” and ”Part-S”) and solution quality as plan length
(columns ”Base-Q” and ”Part-Q”).

In the other domains the results are not so conclusive. The
geometric mean of the number of evaluated nodes and the
plan length was computed for every domain and the ratio
(the base planner mean divided by the partitioning approach
mean) displayed. Table 3 shows these results. On average the
number of expanded is greater, whereas quality remains the
same. This is explained by two factors: first, the base plan-
ner is already very competitive and so there is little margin
for improvement, and second the usage of preferred opera-
tors with the FF heuristic already guides the search towards
unachieved landmarks, which overlaps with the usage of the

landmark graph. A partitioning scheme with a planner based
in other paradigms like LPG(Gerevini and Serina 2002) and
VHPOP(Younes and Simmons 2003) would probably yield
more positive results.

Problem: Mean States Mean Quality
Driverlog 0.89 1.06
Logistics 0.8 0.87
Satellite 0.45 1.01

Zenotravel 0.54 1

Table 3: Comparison between the base planner and the par-
titioning approach for the rest of the evaluated IPC-2 and
IPC-3 domains

Conclusions and Future Work
In this work an alternative representation of the landmark
graph has been proposed. We have discussed the shortcom-
ings of the original landmark graph and analyzed previous
related work that has exploited the information contained in
it. The points in common between the planning graph and
the landmark graph have been brought up and a parallelism
between the SAT encoding of the constraints of both graphs
has been presented. Finally, we have described the SAT en-
coding of the landmark graph and analyzed its characteris-
tics.

We have also proposed several ways of exploiting the new
landmark graph that can lead to future lines of research.
Some of the information obtained after solving the SAT
problem generated by the landmark graph, like the minimum
number of levels, can be straightforwardly used with current
techniques. The structure of the graph itself can also be ex-
ploited as it has been done in the experimentation section
or in alternative ways, for example by using it as the seed
for local search planners like LPG. Also the fact that land-
marks can appear several times may lead to more accurate
landmark-based heuristics for forward search planners both
in satisfying and optimal search. Finally, generalizing the
SAT encoding of the landmark graph for temporal and nu-
meric domains by transforming it into a constraint satisfac-
tion problem is also a promising continuation of this work.

Acknowledgments
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03.

References
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artif. Intell. 90(1-2):281–300.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance mu-
tual exclusion for propositional planning. In IJCAI, 1840–
1845.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

53

Fox, M., and Long, D. 2003. Pddl2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs with action costs. In AIPS,
13–22. AAAI.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(5-6):619–668.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. (JAIR) 22:215–
278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Kautz, H. A., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In IJCAI, 318–325. Morgan Kauf-
mann.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335–340.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. J. Artif. Intell. Res. (JAIR) 12:338–386.
L. Sebastia, E. Marzal, E. O. 2007. Extracting landmarks in
temporal domains. In International Conference on Artificial
Intelligence (ICAI’07), volume 2, 520–525.
Marzal, E.; Sebastia, L.; and Onaindia, E. 2008. Detection
of unsolvable temporal planning problems through the use of
landmarks. In Ghallab, M.; Spyropoulos, C. D.; Fakotakis,
N.; and Avouris, N. M., eds., ECAI, volume 178 of Frontiers
in Artificial Intelligence and Applications, 919–920. IOS
Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Rintanen, J. 2010. Heuristics for planning with SAT. In Co-
hen, D., ed., CP, volume 6308 of Lecture Notes in Computer
Science, 414–428. Springer.
Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decompo-
sition of planning problems. AI Commun. 19(1):49–81.
Xing, Z.; Chen, Y.; and Zhang, W. 2006. Optimal strips
planning by maximum satisfiability and accumulative learn-
ing. In Long, D.; Smith, S. F.; Borrajo, D.; and McCluskey,
L., eds., ICAPS, 442–446. AAAI.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versa-
tile heuristic partial order planner. J. Artif. Intell. Res. (JAIR)
20:405–430.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

54

A Constraint-based Approach for Planning and Scheduling Repeated Activities

Irene Barba and Carmelo Del Valle
Departamento de Lenguajes y Sistemas Informáticos

Avda Reina Mercedes s/n, 41012 Sevilla (Spain)
{irenebr,carmelo}@us.es

Abstract

The main purpose of this work entails the develop-
ment of a constraint-based proposal, in order to solve
problems which deal with the planning and schedu-
ling of activities which can be executed several times
and are related by high-level constraints. The proposed
constraint-based approach includes new filtering rules
for the definition of the high-level relations between
the repeated activities, and thereby facilitates the spe-
cification of the problem through global constraints at
the same time as it enables the efficiency in the search
for solutions to increase. As an application of the cur-
rent approach, the considered high-level constraints can
be used, in a declarative way, to specify the relations
given between the activities involved in business pro-
cess (BP) environments. In fact, the high-level cons-
traints considered in this work are taken and extended
from an existing declarative language for BP, named
ConDec. The main objective of this application is to
provide business analysts with assistance in the genera-
tion of optimized BP models from declarative specifi-
cations, using AI P&S techniques. This interesting and
innovative topic has yet to be addressed. Moreover, the
proposed constraint-based approach can be used to effi-
ciently solve further planning and scheduling problems
unrelated to business process environments, which in-
clude similar relations between repeated activities.

1 Introduction
Constraint Programming (CP) has been evolved to a mature
field because, among others, of the use of different generic
and interchangeable procedures for inference and search,
which can be used for solving different types of problems
(Rossi, Van Beek, and Walsh 2006). The constraint-based
algorithms can work together with filtering algorithms (pro-
pagators) for the constraints, which are in charge of remo-
ving inconsistent values. CP supplies a suitable framework
for modelling and solving problems involving planning and
scheduling (P&S) aspects (Salido 2010).

The main purpose of the current work entails the deve-
lopment of a constraint-based approach, in order to solve
problems which deal with the P&S of activities which can
be executed several times and which are related by high-
level constraints. The proposed constraint-based approach
includes new filtering rules for the definition of the high-

level relations between the repeated activities, and thereby
facilitates the specification of the problem through global
constraints at the same time as it enables the efficiency in
the search for solutions to increase. It should be emphasized
that the developed propagators deal with a combination of
several aspects, and, in most cases, result in new complex
propagators.

A business process (BP) can be defined as a set of re-
lated structured activities whose execution produces a spe-
cific service or product required by a particular customer.
ConDec (Pesic and van der Aalst 2006) is a declarative lan-
guage which is used to specify dynamic BP models through
a graphical notation which can be mapped to formulas in
Linear Temporal Logic (LTL).

In the current work, the problem definition is specified in a
new language (ConDec-R), based on ConDec, which allows
to specify constraints which restrict the selection and the or-
dering of activities which can be executed several times, to-
gether with the requirements of resources. For the definition
of relationships between the repeated activities, ConDec-R
proposes an open set of high-level templates which must be
satisfied. Once the problem is specified in ConDec-R, is
then translated into a CSP so that a constraint-based solver
can be used to obtain an optimal execution plan for the spe-
cified problem. The resolution of the CSP problems entails
the selection and the ordering of the activities to be execu-
ted (planning), and the resource allocation involving tempo-
ral reasoning (scheduling), both of which consider the opti-
mization of some objective functions.

Currently, there exists an increasing interest in the effec-
tive management of BP (BP Management, BPM). Related
to this, BPM Systems (BPMS) are responsible for goal spe-
cification, design, implementation, enactment, monitoring,
and evaluation of BP (Muehlen and Ting-Yi Ho 2005). In
general, for the execution of activities, the use of shared re-
sources is necessary, which must be managed in an effective
way to optimize some aspects of the BP enactment. As a
practical application of the current approach, ConDec-R can
be used to specify the relations given between the activities
which are involved in BP environments, in a declarative way.
In fact, the high-level constraints considered in this work are
taken and extended from a declarative language for BP.

The proposed new filtering rules, together with the related
high-level global constraints, can be used to efficiently solve

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

55

�������	
�
	�
����������� ���
������

������
�
���
����

������������	
��
�
�������������������
��
���������
�
�������������������
���!�"	
��"��
�
�������������������
#����"��������
�
��������������$��$�
%��&��
����
�
��������������'��'�
�������(���)#����"���
�
�������������������
"*���	�+;+;�;+;�;+;+;+;+;�;��
<&�	!"��+=
(��	���

���
�����

������
�� ����	
��
���	
��

����
��

��������
��������	�����
�������������	
�
	�
��
 �����	!"#

"�����	�
���
���
�
$

%���&�%'
"���&�"'

%���&�%(
"���&�"(

Figure 1: AI P&S techniques for generating optimized plans for the execution of repeated activities.

further P&S problems unrelated to business process envi-
ronments, which include similar relations between repeated
activities.

In Fig. 1, a graphical representation of the current ap-
proach is shown. First, the input problem information is
specified through ConDec-R language, which includes cons-
traints which restrict the selection and the ordering of activi-
ties, and the requirements of resources, for activities which
can be executed several times. This information is translated
into a constraint-based specification, which in turn is used
as input for a solver in order to obtain a feasible optimized
execution plan. As stated, the constraint-based approach in-
cludes propagators for treating the high-level relationships
between the activities.

In short, the main contributions of this work are:
• The development of a constraint-based approach in order

to solve problems which deal with the P&S of activities
which can be executed several times and are related by
high-level constraints. This approach includes new fil-
tering rules for the definition of the high-level relations
between the repeated activities.

• An application of the proposed approach in a BP envi-
ronment in order to automatically generate optimized BP
enactment plans from declarative BP specifications.
This paper is organized as follows: Section 2 explains

the ConDec-R language, Section 3 details the proposed
constraint-based approach, Section 4 presents an applica-
tion of the proposed approach in BP environments, Section
5 shows some experimental results, Section 6 summarizes
the most related work, and, finally, Section 7 presents some
conclusions and future work.

2 ConDec-R Language
ConDec (Pesic and van der Aalst 2006) is a declarative lan-
guage which proposes an open set of constraints based on
Linear Temporal Logic (LTL) for the definition of high-level
relations between activities which can be executed several
times. ConDec was proposed in order to specify dynamic
BP models using a graphical notation.

Since ConDec does not allow direct reasoning about re-
sources, a new language based on ConDec, named ConDec-
R is defined in this work. The main contribution of ConDec-
R with respect to ConDec is the reasoning about resources,
since in ConDec-R the execution of activities requires re-
sources of a specific role.

In short, a ConDec-R problem specification must include:
• As in ConDec, the activities which can be executed.
• As in ConDec, the relations between the activities through

high-level templates.

• As extensions of ConDec, for each activity, the role of the
required resource for its execution.

• As extensions of ConDec, the estimated duration of each
activity.

• As extensions of ConDec, the available resources with the
competences defined by a role.

One of the most important aspects when modelling with
ConDec-R is that a ConDec-R activity represents multiple
executions of a P&S activity. Several executions of the same
ConDec-R activity can be modelled as a sequence of single
P&S activities. In this work, the high-level relations bet-
ween the ConDec-R activities are translated into constraints
between the corresponding P&S activities.

3 Constraint-based Proposal
3.1 From ConDec-R to CSP Model
In the current proposal, repeated activities are modelled as a
sequence of optional scheduling activities for the definition
of the propagators. Each ConDec-R activity can be executed
several times. Each time one of these activities is executed,
it can be seen as a P&S-activity execution, that precedes the
next execution of the same activity. Bearing this in mind,
each ConDec-R activity is modelled as a linear sequence
which is composed of several P&S activities.

In ConDec-R, the number of times each activity is to
be executed can be unknown, and hence each P&S acti-
vity can potentially be included. A type representing the
ConDec-R activities, named RepeatedActivity, is presented
in Fig. 2 (UML diagram). The attributes of RepeatedActiv-
ity are: duration, which represents the estimated duration of
the ConDec-R activity; role, which indicates the role of the
required resource for the activity execution; and nt, which
shows the actual number of times which the ConDec-R acti-
vity is executed. The RepeatedActivity type is composed of
nt SchedulingActivities. Each SchedulingActivity includes
the st and the et attributes, which indicate the start and the
end times of the activity execution, respectively. The fact
that each P&S activity can potentially be included, is mode-
lled through the sel variable of the SchedulingActivity type,
equal to 0 in the case that it is not executed, and equal to 1
otherwise.

Henceforth, nt(A) refers to the CSP variable that repre-
sents the number of times that the ConDec-R activity A
is executed; act(A, i) represents the i-th execution of A;
and st(act(A, i)) and et(act(A, i)) represent the start and the
end times of the i-th execution of A, respectively. Further-
more, the constraints ∀i : 1 ≤ i ≤ nt(A) : sel(A, i) = 1 and
∀i > nt(A) : sel(A, i) = 0 hold for each activity A.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

56

-duration : int
-role : Role
-nt : var<CP>{int} = {0..maxExecutions}

RepeatedActivity

-st : var<CP>{int} = {0..maxMakespan}
-et : var<CP>{int} = {0..maxMakespan}
-sel : var<CP>{int} = {0,1}

SchedulingActivity

1

*
1
*

Figure 2: RepeatedActivity and SchedulingActivity types

It should be clarified that the number of times which each
activity is executed is commonly unknown in advance (it is
a CSP variable of the model which must be instantiated).
Hence, it is necessary to select and to order the suitable ac-
tivities in order to reach the established goal. This fact pro-
vides the considered problem with some characteristics of a
planning problem.

Some representative examples of ConDec-R templates are
graphically represented in Fig. 3, where three precedence re-
lations between two repeated activities, A and B, are shown.
As stated earlier, several executions of the same repeated
activity can be modelled as a sequence of single P&S acti-
vities. In this figure, the P&S activity Ai represents the i-th
execution of the repeated activity A (act(A, i)). In this figure
the arrow represents:
• A precedence relation between two P&S activities Ai

and B j, when it appears between two activities (et(Ai) ≤
st(B j)).

• A precedence relation between a P&S activity Ai and a set
S of P&S activities, when it appears between an activity
and a dotted rectangle which encloses a set of activities
(∃B j ∈ S : et(Ai)≤ st(B j)).

• A precedence relation between a set S of P&S activities
and a P&S activity B j, when it appears between a dotted
rectangle which encloses a set of activities, and an activity
(∃Ai ∈ S : et(Ai)≤ st(B j)).
In a similar way, a special arrow (wider than the other ar-

rows and with a big dot in its origin) which appears between
two P&S activities, A and B, shows that A must be executed
immediately before B (et(A) = st(B)). In a similar way, this
can be defined for a set of activities. More details about Fig.
3 are shown in the definition of the related templates.

It should be clarified that the constraints ∀i : 1 ≤ i <
nt(A) : et(act(A, i)) ≤ st(act(A, i+ 1)) and ∀i : i > nt(A) :
st(act(A, i)) = et(act(A, i)) hold for each repeated activity.

The ConDec-R templates are listed as follows.
• Existence(A,N): A must be executed more than or equal

to N times, nt(A)≥ N.
• Absence(A,N): A must be executed fewer than N times,

nt(A)< N.
• Exactly(A,N): A must be executed exactly N times,

nt(A) = N.
• RespondedExistence(A,B): If A is executed, then B must

also be executed either before or after A, nt(A) > 0 ⇒
nt(B)> 0.

�������	�
��	�����

�'

�(

�� �#

)))

*'

*(

*� *#

)))

�����������������	�
��	�����

�'

�

�� �#

*'

�
!'

)))

�
+� �#

!� *#

*

*� *#

*
!'

)))

)))
)))

))))))

�	�����������	�
��	�����

�'

�

�� �#

*'

�
!'

)))

�
+� �#

!� *#

*

*� *#

*
!'

)))

)))
)))

))))))

Figure 3: Precedence templates when nt(B)> 0.

• CoExistence(A,B): The execution of A forces the execu-
tion of B, and vice versa, nt(A)> 0 ⇐⇒ nt(B)> 0.

• Precedence(A,B): Before the execution of B, A
must have been executed, nt(B) > 0 ⇒ (nt(A) > 0) ∧
(et(act(A,1)) ≤ st(act(B,1))). As can be seen in Fig.
3(a), this relation implies that A1 must precede B1 in the
case that nt(B)> 0.

• Response(A,B): After the execution of A, B must be exe-
cuted, nt(A) > 0 ⇒ (nt(B) > 0) ∧ (st(act(B,nt(B))) ≥
et(act(A,nt(A)))).

• Succession(A,B): Relations Precedence(A,B) and
Response(A,B) hold.

• AlternatePrecedence(A,B): Before the execution of B, A
must have been executed, and between each two execu-
tions of B, A must be executed. It implies that:

a. The number of times that A is executed must be greater
than or equal to the number of times that B is executed:
nt(A)≥ nt(B).

b. Between each two executions of B, A must be executed
at least once. Specifically, between the (i− 1)-th and
the i-th execution of B, the earliest execution of A that
can exist is i, and hence Ai−1 must precede Bi−1 (as can
be seen in Fig. 3(b)). In a similar way, between the (i−
1)-th and the i-th execution of B, the latest execution
of A that can exist is i+ nt(A)− nt(B), and hence Bi
must precede Ai+nt(A)−nt(B)+1. This can also be seen in
Fig. 3(b), where the possible activities to be executed
between the (i− 1)-th and the i-th execution of B are
framed within the dotted rectangle. ∀i : 2 ≤ i ≤ nt(B) :
∃ j : i ≤ j ≤ i+nt(A)−nt(B) :

st(act(A, j))≥ et(act(B, i−1))∧
et(act(A, j))≤ st(act(B, i)).

c. Before B, A must be executed: st(act(B,1)) ≥
et(act(A,1)).

• AlternateResponse(A,B): After the execution of A, B
must be executed, and between each two executions of
A, there must be at least one execution of B. It implies:

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

57

a. The number of times that B is executed must be greater
than or equal to the number of times that A is executed:
nt(B)≥ nt(A).

b. Between each two executions of A, B must be executed
at least once. Specifically, between the i-th and the (i+
1)-th execution of A, the earliest execution of B that can
exist is i, and hence Bi−1 must precede Ai. In a similar
way, between the i-th and the (i+ 1)-th execution of
B, the latest execution of A that can exist is i+nt(B)−
nt(A)−1, and hence Ai must precede Bi+nt(B)−nt(A). ∀i :
1 ≤ i < nt(A) : ∃ j : i ≤ j ≤ i+nt(B)−nt(A)−1 :

st(act(B, j))≥ et(act(A, i))∧
et(act(B, j))≤ st(act(A, i+1)).

c. After A, B must be executed: st(act(B,nt(B))) ≥
et(act(A,nt(A))).

• AlternateSuccession(A,B): Relations AlternatePrece −
dence(A,B) and AlternateResponse(A,B) hold.

• ChainPrecedence(A,B): Immediately before B, A must
be executed. It implies that:
a. The number of times that A is executed must be greater

than or equal to the number of times that B is executed:
nt(A)≥ nt(B).

b. Immediately before each execution of B, A must be
executed. Specifically, before the i-th execution of B,
the earliest execution of A that can exist is i. In a
similar way, before the i-th execution of B, the lat-
est execution of A that can exist is i+ nt(A)− nt(B).
∀i : 1 ≤ i ≤ nt(B) : ∃ j : i ≤ j ≤ i+nt(A)−nt(B) :

et(act(A, j))=st(act(B, i)).
This is shown in Fig. 3(c), where a special arrow (wider
than the other arrows and with a big dot in its origin)
shows that A must be executed immediately before B.

• ChainResponse(A,B): Immediately after A, B must be
executed. It implies:
a. The number of times that B is executed must be greater

than or equal to the number of times that A is executed:
nt(B)≥ nt(A).

b. Immediately after each execution of A, B must be exe-
cuted. Specifically, before the i-th execution of A, the
earliest execution of B that can exist is i. In a simi-
lar way, after the i-th execution of A, the latest exe-
cution of B that can exist is i + nt(B)− nt(A)− 1.
∀i : 1 ≤ i ≤ nt(A) : ∃ j : i ≤ j ≤ i+nt(B)−nt(A)−1 :

st(act(B, j))=et(act(A, i)).
• ChainSuccession(A,B): Relations ChainPreceden −

ce(A,B) and ChainResponse(A,B) hold.
• RespondedAbsence and NotCoExistence(A,B): If B is

executed, then A cannot be executed, and vice versa,
((nt(A)> 0) · (nt(B)> 0)) == 0.

• NegationResponse, NegationPrecedence, Negation −
Succession(A,B): After the execution of A, B cannot be
executed, (nt(A) > 0∧nt(B) > 0)⇒ st(act(B,nt(B))) ≤
et(act(A,1)).

• NegationAlternatePrecedence(A,B): Between two exe-
cutions of B, A cannot be executed, nt(B)≥ 2 ⇒∀i : 1 ≤

Existence(A,N) is added ->

If N > LB(nt(A)) then

LB(nt(A)) <- N

Precedence(A,B) is added OR bounds of nt(B) changed OR bounds of

st(act(B,1)]) changed OR bounds of et(act(A,1)) changed ->

If LB(nt(B)) > 0 then

nt(A) <- nt(A) - {0}

If LB(et(act(A,1))) > LB(st(act(B,1))))then

LB(st(act(B,1)))) <- LB(et(act(A,1)))

If UB(et(act(A,1))) > UB(st(act(B,1))) then

UB(et(act(A,1))) <- UB(st(act(B,1)))

Figure 4: Propagators for some ConDec-R Templates

i ≤ nt(A) : et(act(A, i)) ≤ st(act(B,1))∨ st(act(A, i)) ≥
et(act(B,nt(B))).

• NegationAlternateResponse(A,B): Between two execu-
tions of A, B cannot be executed, nt(A) ≥ 2 ⇒ ∀1 ≤
i ≤ nt(B) : et(act(B, i)) ≤ st(act(A,1))∨ st(act(B, i)) ≥
et(act(A,nt(A))).

• NegationAlternateSuccession(A,B): Rela-
tions NegationAlternatePrecedence(A,B) and
NegationAlternateResponse(A,B) hold.

• NegationChainSuccession(A,B): B cannot be executed
immediately after the execution of A, ∀i : 1 ≤ i ≤ nt(B) :
¬∃ j : 1 ≤ j ≤ nt(A) : et(act(A, j)) = st(act(B, i)).

3.2 Filtering Rules
In a constraint-based environment, the filtering rules (pro-
pagators) are responsible for removing values which do not
belong to any solution. In this work, a propagator for each
ConDec-R template has been developed from the expres-
sions stated in Section 3.1 in order to increase the efficiency
in the search of solutions.

As an example, three representative propagators corres-
ponding to templates of varying levels of difficulties are
shown in Figs. 4 and 5, where the propagator that describes
the pruning of domains appears after the symbol →. UB(v)
and LB(v) represent the upper and lower bounds of the do-
main of v, respectively. The proposed reasoning for the op-
tional activities is similar to the proposal presented in (La-
borie et al. 2009), and hence a scheduling activity can be
modelled as a time-interval variable.

The Existence rule (Fig. 4) is invoked when the template
is added to the constraint model, hence its trigger ”Exis-
tence(A,N) is added”. Moreover, the Precedence (Fig. 4)
and Alternate Precedence rules (Fig. 5) are invoked when
the templates are added or when the domain bounds of some
variables are updated. The fact that the relations ∀i : 1 ≤ i ≤
LB(nt(A)) : sel(A, i) = 1 and ∀i >UB(nt(A)) : sel(A, i) = 0
hold is relevant in the development of the propagators.

Proposition 1: If implemented properly, the time com-
plexity of the rule Existence, which includes all possible re-
cursive calls, is Θ(1).

Proof: The Existence rule is fired only when the cons-
traint is added, and the time complexity of its execution is
constant, hence the complexity of this rule is Θ(1).

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

58

Alternate Precedence (A,B) is added OR

(bounds of nt(A) changed) OR (bounds of nt(B) changed) OR (bounds

of st(act(A,i)) for any i changed) OR (bounds of et(act(A,i)) for

any i changed) OR (bounds of st(act(B,i)) for any i changed) OR

(bounds of et(act(B,i)) for any i changed) ->

if (LB(nt(A)) < LB(nt(B))) {LB(nt(A)) <- LB(nt(B))}

if (UB(nt(B)) > UB(nt(A))) {UB(nt(B)) <- UB(nt(A))}

for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity a = act(A,i);

SchedulingActivity b = act(B,i);

if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi

if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi

}

for (int i = 1; i < LB(nt(B)); i++){

int dif = UB(nt(A)) - LB(nt(B));

SchedulingActivity a = act(A,i+dif+1);

SchedulingActivity b = act(B,i);

// Bi -> Ai+dif+1

if (LB(et(b)) > LB(st(a))) {LB(st(a)) <- LB(et(b))}

if (UB(st(a)) < UB(et(b))) {UB(et(b)) <- UB(st(a))}

}

// force exists A between Bi-1 and Bi

for (int i = 2; i <= UB(nt(B)); i++){

int dif = UB(nt(A)) - max(i,LB(nt(B));

SchedulingActivity b1 = act(B,i-1);

SchedulingActivity b2 = act(B,i);

// Candidate As between Bi-1 and Bi

int j = i;

bool forcedValue = false;

while (j <= (i + dif) && !forcedValue) {

SchedulingActivity aFor = act(A,j);

int k = i;

bool force = true;

while (k <= (i + dif) && force){

if (k != j){

SchedulingActivity a = act(A,k);

//If Bi-1->Ak->Bi possible, not force Bi-1->Aj->Bi

if (UB(st(a))>=LB(et(b1))&&LB(et(a))<=UB(st(b2)))

force = false;

}

k++;

}

if (force){ // force Bi-1 -> Aj -> Bi

forcedValue = true;

// Bi-1 -> Aj

if (LB(et(b1))>LB(st(aFor))){LB(st(aFor)) <- LB(et(b1))}

if (UB(st(aFor))<UB(et(b1)) {UB(et(b1)) <- UB(st(aFor))}

// Aj -> Bi

if (LB(et(aFor))>LB(st(b2))){LB(st(b2) <- LB(et(aFor))}

if (UB(st(b2))<UB(et(aFor))){UB(et(aFor)) <- UB(st(b2))}

} // end if

j++;

}}// end while j, end for i

Figure 5: Propagator for the Alternate Precedence Template

Proposition 2: If implemented properly, the worst-case
time complexity of the rule Precedence, which includes all
possible recursive calls, is O(n), where n is the number of
Repeated (ConDec-R) Activities of the problem.

Proof: The Precedence rule can be fired, at most, n times.
This is due to the fact that only a change in the first execution
of an activity (Act1) can fire this rule. Moreover, the time

complexity of the Precedence rule execution is constant, and
hence the worst-case complexity of this rule is O(n).

Proposition 3: If implemented properly, the worst-case
time complexity of the rule AlternatePrecedence, which in-
cludes all possible recursive calls, is O(n× nt4), where n is
the number of Repeated Activities of the problem, and nt is
the upper bound of the variable nt(Act) domain. This upper
bound obtains the same value for all the ConDec-R activi-
ties.

Proof: The AlternatePrecedence rule can be fired, at
most, n × nt times. This is due to the fact that a change
in any execution of any activity can fire this rule. Moreover,
the time complexity of the AlternatePrecedence rule execu-
tion is O(nt3), and hence the worst-case time complexity of
this rule is O(n×nt4).

It should be emphasized that the developed propagators
deal with a combination of several aspects, and, in most
cases, result in new complex propagators. For example,
the Alternate Precedence propagator (Fig. 5) deals with re-
peated activities which must be executed in an alternating
way (this aspect has not been previously treated by a cons-
traint propagator, to the best of our knowledge), while the
number of times each activity is executed is a constraint va-
riable, resulting in a complex and new propagator. The de-
velopment of these filtering rules allows problems to be eas-
ily specified through these global constraints, and also to be
solved in an efficient way due to the strong constraint pro-
pagation.

There can be several objectives to be pursued in P&S pro-
blems. We have considered minimizing the makespan, but
the CSP model presented can be extended to consider further
objectives.

4 From Declarative Specifications to
Optimized BP Enactment Plans

In recent years, interest has grown in the integration of P&S
techniques with BPMS (R-Moreno et al. 2007; González-
Ferrer, Fernández-Olivares, and Castillo 2009; Hoffmann,
Weber, and Kraft 2010). However, from our point of view,
several connections between these two disciplines remain to
be exploited.

In business process (BP) environments, in most cases, the
model phase is manually carried out by business analysts,
who must deal with several aspects, such as resource alloca-
tion, activity properties and the relations between them, and
even the optimization of several objectives. The manual spe-
cification of BP models can form a very complex problem,
since it can consume a great quantity of time and human re-
sources, cause some failures, or lead to non-optimized mo-
dels. Furthermore, in most cases, BP information is pro-
vided through imperative languages.

An application of the presented constraint-based approach
entails the generation of optimized execution plans for BP
which are specified in a declarative way through ConDec-R
language. The specification of process properties in a de-
clarative way is an important step towards the (automatic)
generation of BP models. ConDec (Pesic and van der Aalst

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

59

��	����
������	�����������
��
 �����	!"#

"�����	�
���
���
�
$

%���&�%'
"���&�"'

���������

*��
����
����$� *��
����

���	����,���� -��.���/
0��
��

	
������
�����

��������
��������	�����
��

*�,��$���

%���&�%(
"���&�"(

*��
����
����$�

�������	
�
	�
��
���

������

������
�
���
����

������������	
��
�
�������������������
��
���������
�
�������������������
���!�"	
��"��
�
�������������������
#����"��������
�
��������������$��$�
%��&��
����
�
��������������'��'�
�������(���)#����"���
�
�������������������
"*���	�+;+;�;+;�;+;+;+;+;�;��
<&�	!"��+=
(��	���

���
�����

������
�� ����	
��
���	
��

����
��

Figure 6: AI P&S techniques for the generation of BP models.

2006) is a declarative language to specify dynamic BP mo-
dels using a graphical notation.

As stated, in this work, the BP specification is provided in
a declarative way through ConDec-R. We consider ConDec-
R as a suitable declarative language for BP, since it al-
lows the specification of business activities together with the
constraints which must be satisfied, including the objective
to be pursued and resource requirements.

Fig. 6 shows the application of the presented approach
in BP environments. First, the business analyst provides the
declarative BP information through a ConDec-R specifica-
tion, which includes constraints which restrict the selection
and the ordering of activities which can be executed seve-
ral times, together with the resource requirements. This in-
formation is translated into the proposed constraint-based
specification, which in turn is used as input for a solver to
obtain a feasible optimized BP execution plan. As stated,
the constraint-based specification includes suitable propaga-
tors for treating the high-level relationships between the ac-
tivities. Moreover, this optimized enactment plan provides
assistance for the generation of an optimized BP model.

In a typical BPM life cycle, P&S techniques can be ap-
plied at different stages in a coordinated way to improve
overall system functionality. Our work is based on auto-
mating the model generation in the BP design and system
configuration phases, by considering estimated values. It
should be clarified that in a coordinated way, in the enact-
ment phase, P&S techniques can, where necessary, be ap-
plied to replan the activities by considering the actual values
of the parameters.

5 Empirical Evaluation
Our proposal is in a preliminary step from a commercial
point of view, and hence a limited evaluation is presented. It
focuses on problems with different kinds of precedence re-
lations between activities that can be executed several times.

5.1 Experimental Design
In the empirical evaluation, due to the fact that the analyzed
relations are introduced in this paper for the first time, there
has not been possible to find a previously developed solver
which deals with these relations. Also, due to the use of a

specific and new language, it has been impossible to find a
set of public benchmarks for ConDec-R problems. As far as
the purpose of the experimental evaluation is to determine
the efficacy of using our own propagators to improve the
efficiency, it has been considered suitable to compare the
results obtained by: first, the proposal with propagators and
the related high-level global constraints; and secondly, with
neither propagators nor global constraints (in this case, the
equivalent local constraints are included).

In order to solve the COPs, COMET (Dynadec 2010) is
used, which is able to swiftly generate high-quality solutions
for highly constrained problems. It provides a Scheduling
module that offers high-level modelling and search abstrac-
tion specific to scheduling. In this work, an adaptation from
the P&S problem under consideration into a scheduling pro-
blem is proposed in order to take advantage of the efficient
COMET mechanisms and high-level modelling.

ConDec-R problems can be modelled as an extension of
scheduling problems, and hence a set of well-known sche-
duling benchmarks (FT06 (6x6), FT10 (10x10), ABZ06
(10x10), LA21 (15x10), LA36 (15x15)) have been extended
for use in the empirical evaluation in the following way:

• In a scheduling problem, the activities are executed only
once. For this evaluation, the cardinality of some activi-
ties (a random percentage, p%) has been set at c > 1, col-
umn Card = c(p%) in Table 1. In order to minimize the
influence of the random component, 50 random instances
are generated for each problem.

• In a scheduling problem, all the relations between activi-
ties are Precedence. For the current empirical evaluation,
the alternate and chain precedence relations are also con-
sidered: in the original problem P, all the precedence rela-
tions between the activities of the same job are changed to
alternate precedence relations (PAlt. in Table 1) and chain
precedence relations (PChain in Table 1).

Setting the cardinality of p% activities to a value v >
1, can result in a solution where there are p′% acti-
vities (p′ > p) with cardinality v. For example, each
activity a with nt(a) = v implies that for all b where
AlternatePrecedence(b,a) or ChainPrecedence(b,a) hold,
then nt(b) ≥ nt(a) must be satisfied (the same logic applies
for all the activities c such that AlternatePrecedence(c,b) or

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

60

Table 1: Results on a set of ConDec-R problems from JSS instances

Card = 2 (5%) Card = 2 (10%) Card = 3 (5%) Card = 3 (10%)

Problem BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT)

FT06 Prec. 0 0 (1) 0 0 (2) 0 0 0 0 (2)
FT06 Alt. 6 (1) 20 (22) 7 (2) 36 (4) 37 0 (3) 50 0
FT06 Chain 7 (1) 23 (19) 6 (2) 37 (4) 37 0 (3) 50 0
FT10 Prec. 0 0 0 0 0 0 0 0
FT10 Alt. 11 36 5 44 50 0 50 0
FT10 Chain 13 35 3 46 50 0 50 0
ABZ06 Prec. 0 0 0 0 0 0 0 0
ABZ06 Alt. 13 30 6 42 50 0 50 0
ABZ06 Chain 10 36 3 44 50 0 50 0
LA21 Prec. 0 0 0 0 0 0 0 0
LA21 Alt. 11 39 2 48 50 0 50 0
LA21 Chain 3 47 2 48 50 0 50 0
LA36 Prec. 0 0 0 0 0 0 0 0
LA36 Alt. 3 47 1 49 50 0 50 0
LA36 Chain 0 50 0 50 50 0 50 0

ChainPrecedence(c,b), etc).
The behaviour of five representative propagators are

tested: Exactly, Existence, Precedence, Alternate and Chain
Precedence. The results obtained with two proposals, which
use the same variables, are compared to study the efficiency:

1. With propagators: the user-defined constraints are used
for the establishment of the high-level relations between
the ConDec-R activities. In this case, the proposed filte-
ring algorithms are responsible for removing inconsistent
values from the domain of the variables.

2. Without propagators: the relations between the activities
are established directly through COMET constraints, as
shown in Section 3.1.

Some performance measures are reported (Table 1):
• BM

P : Number of instances for which the makespan found
by the proposal with propagators is shorter than the
makespan found without propagators.

• BM: Number of instances for which the makespan found
by the proposal without propagators is shorter than the
makespan found with propagators.

• BT
P : Number of instances for which the solutions found

by both proposals obtain the same makespan value, but
the proposal with propagators is faster.

• BT : Number of instances for which the solutions found
by both proposals obtain the same makespan value, but
the proposal without propagators is faster.
For both proposals, a complete search approach has been

applied: first, the variables related to the number of times
that each activity is executed are instantiated. The search
procedure then determines the order of execution of the ac-
tivities within each resource at each step, such that the next
resource to be ranked is selected depending on its slack.
Within each resource, the activities are ranked in a non-
deterministic way.

5.2 Experimental Results
For the experiments, each algorithm is run until it finds the
optimal solution or until a 5-minute CPU time limit has been
reached. The machine for all experiments is an Intel Core2,
2.13 GHz, 1.97 GB memory, running Windows XP.

The scheduling benchmarks with the lowest complexity
are those that only include precedence relations and have
the lowest cardinality for the activities. In Table 1, some
experimental results are shown. It is possible to see that:

• For problems with only precedence relations, the solu-
tions for the two proposals are very similar. In this case,
the problem is simply a Job Shop problem, and COMET
includes efficient mechanisms for solving scheduling pro-
blems.

• For problems with alternate and chain precedence rela-
tions, the proposal without propagators obtains better so-
lutions for problems with lower complexity (or cardinal-
ity). When the percentage of activities with greater car-
dinality increases, the proposal with propagators proves
better than the other proposal in almost all instances.

In short, the proposal without propagators obtains bet-
ter solutions for problems of lower complexity (only prece-
dence relations, low cardinality), while the proposal with
propagators is clearly much better for more complex pro-
blems, and hence can be considered better for general cases.

6 Related Work
In recent years, several filtering algorithms for specialized
scheduling constraints have been developed. Specifically,
(Beck and Fox 2000) and (Barták and Cepek 2010) model
scheduling problems which include alternative and optional
tasks respectively, together with their propagators. Further-
more, the work (Barták and Cepek 2008) proposes propa-
gators for both precedence and dependency constraints in
order to solve log-based reconciliation (P&S) problems in

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

61

databases. In those studies, the precedence constraints sig-
nify the same as in P&S problems, while the dependency
constraints are given between optional activities which can
potentially be included in the final schedule. The work (La-
borie et al. 2009) introduces new types of variables (time-
interval, sequence, cumulative, and state-function variables)
for modelling and reasoning with optional scheduling acti-
vities. In our work, the proposed model and propagation for
the optional activities are very similar to the proposal pre-
sented in (Laborie et al. 2009).

Regarding the works (Beck and Fox 2000), (Barták and
Cepek 2008), (Barták and Cepek 2010) and (Laborie et al.
2009), the main contribution from the developed propaga-
tors is the complex reasoning about several combined inno-
vative aspects, such as the alternating executions of repeated
activities together with the variable number of times which
these activities are executed (i.e. alternate and chain rela-
tions). Furthermore, the areas of application of those studies
are unrelated to those of our proposal.

In BP environments, most of the related works integrate
P&S with BPMS in the enactment phase (e.g. (Barba and
Del Valle 2010)), while very few integrations are carried
out during the modelling phase, as presented here. In (R-
Moreno et al. 2007), planning tools are used in the genera-
tion of BP models, by considering the knowledge introduced
through BP Reengineering languages. This knowledge is
translated into predicate logic terms in order to be treated
by a planner. In (González-Ferrer, Fernández-Olivares, and
Castillo 2009), the BP information is provided through an
execution/interchange language, XPDL. The XPDL file is
analysed to obtain a workflow pattern decomposition, which
is translated to the HTN-PDDL language. This is used as
the input of the planner, and the resulting plans could be in-
terpreted as workflow instances. Moreover, the work (Hoff-
mann, Weber, and Kraft 2010) proposes a planning forma-
lism for modelling BP through an SAP specification (SAM),
which is a variant of PDDL. To the best of our knowledge,
the automatic generation of BP models from declarative
specifications is not treated in any other work.

7 Conclusions and Future Work
This work proposes a constraint-based approach for the ge-
neration of optimal execution plans for activities which can
be executed several times and are related by high-level tem-
plates. The proposed approach includes new propagators
for the definition of the high-level relations between the re-
peated activities, and thereby facilitates the specification of
the problem through global constraints at the same time as
it enables the efficiency in the search for solutions to in-
crease. The developed propagators deal with the combi-
nation of several aspects, and, in most cases, result in new
complex propagators. Some experimental results are anal-
ysed, which confirm the advantages of using the developed
propagators. The main application of this work is to pro-
vide business analysts with assistance in the generation of
optimized BP models from declarative specifications. This
interesting and innovative topic has yet to be addressed. The
proposed propagators can be used to efficiently solve further

P&S problems unrelated to BP environments, which include
similar relations between repeated activities.

As for future work, various constraint-based hybrid search
algorithms will be studied for the problem under considera-
tion. It is also intended to extend this proposal by conside-
ring further objective functions.

8 Acknowledgments
This work has been partially funded by the Consejerı́a de
Innovación, Ciencia y Empresa of Junta de Andalucı́a (P08-
TIC-04095) and by the Spanish Ministerio de Ciencia e In-
novación (TIN2009-13714) and the European Regional De-
velopment Fund (ERDF/FEDER).

References
Barba, I., and Del Valle, C. 2010. Planning and Schedu-
ling of Business Processes in Run-Time: A Repair Planning
Example. In Proceedings of the 19th International Con-
ference on Information Systems Development (ISD 2010).
Springer (in press).
Barták, R., and Cepek, O. 2008. Incremental filtering al-
gorithms for precedence and dependency constraints. Int.
Journal on Artificial Intelligence Tools 17(1):205–221.
Barták, R., and Cepek, O. 2010. Incremental propagation
rules for a precedence graph with optional activities and time
windows. Transactions of the Institute of Measurement and
Control 32(1):73–96.
Beck, J., and Fox, M. 2000. Constraint-directed techniques
for scheduling alternative activities. Int. Journal on Artificial
Intelligence 121:211–250.
Dynadec. 2010. Comet Downloads. http://dynadec.
com/support/downloads/ . [accessed 16-March-2011].
González-Ferrer, A.; Fernández-Olivares, J.; and Castillo,
L. 2009. JABBAH: A Java Application Framework for the
Translation Between Business Process Models and HTN. In
ICKEPS.
Hoffmann, J.; Weber, I.; and Kraft, F. M. 2010. SAP speaks
PDDL. In AAAI’10: 24th AAAI Conference on Artificial
Intelligence, 1096–1101.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2009. Rea-
soning with Conditional Time-Intervals. Part II: An Alge-
braical Model for Resources. In FLAIRS Conference.
Muehlen, M., and Ting-Yi Ho, D. 2005. Risk Management
in the BPM Lifecycle. In BPM Workshops, 454–466.
Pesic, M., and van der Aalst, W. M. P. 2006. A declarative
approach for flexible business processes management. In
BPM Workshops, 169–180. Springer.
R-Moreno, M.; Borrajo, D.; Cesta, A.; and Oddi, A. 2007.
Integrating planning and scheduling in workflow domains.
Expert Syst. Appl. 33(2):389–406.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier.
Salido, M. 2010. Introduction to planning, scheduling and
constraint satisfaction. Journal of Intelligent Manufacturing
21(1):1–4.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

62

A CFLP Approach for Modeling and Solving
a Real Life Employee Timetabling Problem ∗

Ignacio Castiñeiras and Fernando Sáenz-Pérez
Complutense University of Madrid, Spain

ncasti@fdi.ucm.es and fernan@sip.ucm.es

Abstract

In last years the number of applications of timetabling
has grown spectacularly, and different paradigms have
risen to tackle these problems. In this paper we present a
Constraint Functional Logic Programming (CFLP) ap-
proach for modeling and solving a real life optimiza-
tion employee timetabling problem. We describe the
language supported by a particular implementation of
the CFLP paradigm. Then, we present the concrete
model followed to solve the problem, and we enumer-
ate the advantage our framework provides w.r.t. other
approaches. Running results are also reported.

1. Introduction
The Nurse Rostering Problem (NRP) has been extensively
studied for more than forty years (Burke et al. 2004). Due
to its relevance as a real life problem, it represents the most
paradigmatic example of the family of employee timetabling
problems. As it is a complex problem, a wide set of tech-
niques has been applied to tackle it, both on formalization
design and solving techniques terms. Here we mention In-
teger Programming (Burke, Li, and Qu 2010), Evolutionary
Algorithms (Moz and Pato 2007) and Tabu Search (Burke,
Kendall, and Soubeiga 2003) as some approaches. How-
ever, due to the constraint oriented nature of the problem,
the Constraint Satisfaction Problem (CSP) paradigm (Tsang
1993) becomes a quite suitable framework to the formula-
tion and solving of NRPs. Several programming paradigms
have risen to tackle CSPs. First is Constraint Programming
(CP) (Marriot and Stuckey 1998), which provides expres-
sive languages for describing the constraints and powerful
solver mechanism for reasoning with them. While a CP
formulation becomes algebraic (a very abstract program-
ming paradigm) it lacks the benefits of a general constraint
programming language. As CP search space can become
huge, different techniques as decomposition (Meisels and
Kaplansky 2002) and relaxation (Métivier, Boizumault, and
Loudni 2009) has been applied in the solving of NRPs. An-
other programming paradigm is Constraint Logic Program-
ming (CLP) (Jaffar and Maher 1994), which combines Logic

∗This work has been partially supported by the Spanish
projects TIN2008-06622-C03-01, UCM-BSCH-GR58/08-910502,
and S2009TIC-1465

Programming (LP) and CP, providing general purpose lan-
guages also equipped with constraint solving. As constraints
are basically true relations among domain variables, its inte-
gration in the logic field became in a quite natural way.

In this paper we focus on Constraint Functional Logic
Programming (CFLP) as another approach to solve em-
ployee timetabling problems. CFLP adds constraint solv-
ing to the Functional Logic Programming (FLP) frame-
work (Hanus 1994), and attempts to be an adequate frame-
work for the integration of the main properties of Functional
Programming (FP) and CLP. Adequation of CFLP(FD) to
meet timetabling problems was proposed in (Brauner et
al. 2005). The CFLP language presented in (Fernández et
al. 2007) combines functional and relational notation, cur-
ried expressions, higher-order functions, patterns, partial
applications, non-determinism, backtracking, lazy evalua-
tion, logical variables, types, polymorphism, domain vari-
ables and constraint composition as some of its features.
While its declarative semantics is based on a Conditional
Term-Rewriting Logic (CRWL) (González-Moreno et al.
1999), its operational semantics is based on a constrained
demanded narrowing calculus (López-Fraguas, Rodrı́guez-
Artalejo, and Vado-Vı́rseda 2004), making possible to solve
syntactic equality and disequality constraints over the Her-
brand Universe (H domain constraints), as well as FD con-
straints, relying on the use of an external solver. An im-
plementation of the system, named T OY(FD), was also
presented. Another approach to this framework is Curry
(Hanus 1999), and its particular implementation PAKCS
(PAKCS), also supporting FD constraint solving by relying
on an external solver. As it is quite similar to the T OY(FD)
approach, a benchmark comparison between both systems
was done in (Fernández et al. 2007).

This paper presents an application of T OY(FD) to the
modeling and solving of a real life optimization employee
timetabling problem, whose formulation can be seen as a
particular instance of the NRP. The structure of the paper
is the following: while sections 2 and 3 concern both with
language and problem description, Section 4 presents our
approach to the modeling of the problem. Section 5 points
out the advantages a CFLP(FD) approach offers to face up
to this problem, in contrast to using CP(FD) or CLP(FD).
Section 6 presents running results for several instances of
the problem. Finally, Section 7 reports some conclusions.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

63

2. The T OY(FD) Language
We use constructor-based signatures Σ = 〈DC,FS〉, where
DC =

⋃
n∈N

DCn resp. FS =
⋃

n∈N
FSn are respectively

sets of data constructors and defined function symbols with
associated arities. As notational conventions, we will assume
c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS. We also assume
that many countable variables (noted as X , Y , Z, etc.) are
available. Given any set X of variables, we will consider
the set ExpΣ(X) of all terms built from symbols in X ∪
DC∪FS, and also the set TermΣ(X) of all terms built from
symbols in X ∪DC. Terms l, r, e ∈ ExpΣ(X) will be called
expressions, while terms s, t ∈ TermΣ(X) will be called
constructor terms or also data terms. Expressions without
variables will be called ground or closed. Moreover, we will
say that an expression e is in head normal form iff e is a
variable X or has the form c(en) for some data constructor
c ∈ DCn and some n-tuple of expressions en.

A T OY program consists of datatype, type alias and
infix operator definitions, and rules for defining functions.
Its syntax is mostly borrowed from Haskell (Peyton-Jones
2002), with the remarkable exception that variables begin
with upper-case letters whereas constructor symbols use
lower-case, as function symbols do. In particular, functions
are curried and the usual conventions about associativity of
application hold.

Datatype definitions like data nat = zero | suc
nat (which stands as a possible approach to define the
natural numbers), define new (possibly polymorphic) con-
structed types and determine a set of data constructors for
each type.

Types τ, τ ′, . . . can be constructed types, tuples
(τ1, . . . , τn), or functional types of the form τ → τ ′.
As usual, → associates to the right. T OY provides pre-
defined types such as [A] (the type of polymorphic lists,
for which Prolog notation is used), bool (with constants
true and false), int for integer numbers, or char
(with constants ’a’,’b’, . . .).

A T OY program defines a set FS of functions. Each
f ∈ FSn has an associated principal type of the form
τ1 → . . . → τm → τ (where τ does not contain →). Num-
ber m is called the type arity of f and well-typedness implies
that m ≥ n. As usual in functional programming, types are
inferred and, optionally, can be declared in the program.

We distinguish two important syntactic domains: patterns
and expressions. Patterns can be understood as denoting
data values, i.e., values not subject to further evaluation, in
contrast to expressions, which can be possibly reduced by
means of the rules of the program. Patterns t, s, . . . are de-
fined by t ::= X | (t1, . . . , tn) | c t1 . . . tn| f t1 . . . tn, where
c ∈ DCm, n ≤ m, f ∈ FSm, n < m, and ti are also pat-
terns. Notice that partial applications (i.e., application to less
arguments than indicated by the arity) of c and f are allowed
as patterns, which is then called a higher order (HO) pat-
tern, because they have a functional type. Therefore function
symbols, when partially applied, behave as data construc-
tors. HO patterns can be manipulated as any other patterns;
in particular, they can be used for matching or checked for
equality. With this intensional point of view, functions be-
come ‘first-class citizens’ in a stronger sense that in the case

of ‘classical’ FP.
Expressions are of the form e ::= X | c | f | (e1, . . . , en)

| (e1 e2), where c ∈ DC , f ∈ FS , and ei are also expres-
sions. As usual, application associates to the left and paren-
theses can be omitted accordingly. Therefore, e e1 . . . en is
the same as (. . . ((e e1) e2) . . .) en). Of course, expressions
are assumed to be well-typed. First order patterns are a spe-
cial kind of expressions which can be understood as denot-
ing data values, i.e., values not subject to further evaluation,
in contrast to expressions, which can be possibly reduced by
means of the rules of the program.

Each function f ∈ FSn is defined by a set of conditional
rules f t1 . . . tn = e ⇐= l1 == r1, . . . , lk == rk where
(t1 . . . tn) form a tuple of linear (i.e., with no repeated vari-
able) patterns, and e, li, ri are expressions. No other condi-
tions (except well-typedness) are imposed to function defi-
nitions. Rules have a conditional reading: f t1 . . . tn can be
reduced to e if all the conditions l1 == r1, . . . , lk == rk

are satisfied. The condition part is omitted if k = 0.
T OY includes a polymorphic version of the primitive

equality constraint seq :: A → A → bool. The language
provides the equality and disequality constraints == and /=
to abbreviate seq t s →! true and seq t s →! false (resp.)
Both constraints first request their arguments to be computed
to head normal form, obtaining a variable or a total term.
Thus, the symbol == stands for strict equality, which is the
suitable notion (see e.g. (Hanus 1994)) for equality when
non-strict functions are considered. With this notion, a con-
dition e == e’ can be read as: e and e’ can be reduced to
the same pattern. When used in the condition of a rule, ==
is better understood as a constraint (if it is not satisfyable,
the computation fails).

A distinguished feature of T OY is that no confluence
properties are required for the programs, and therefore func-
tions can be non-deterministic, i.e., return several values
for a given (even ground) arguments. For example, the
rules coin = heads and coin = tails constitute
a valid definition for the 0-ary non-deterministic function
coin. Two reductions of coin are allowed, which lead to
the values heads and tails. The system try in the first
place the first rule, but, if backtracking is required by a later
failure or by request of the user, the second rule is tried. An-
other way of introducing non-determinism in the definition
of a function is by adding extra variables in the right side
of the rules, as in z list = [0|L]. Any list of integers
starting by 0 is a possible value of z list. Anyway, note
that in this case only one reduction is possible.

The repertoire of FD constraints contains == and /=,
that are truly polymorphic.Table 1 includes some of the pre-
defined FD functions and operators supported, where re-
lational constraints support reification (Marriot and Stuckey
1998). The propositional constraint implication posts to
the solver a logical implication between the relational con-
straints A and B. belongs supports domain initialization
to a set of values instead of a range as in domain. Finally,
sum List Op B imposes a relational constraint between
B and the sum of the elements of the list, and count A
List Op B imposes a relational constraint between B and
the number of elements in the list to be equal to A.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

64

Table 1: Some of the FD Constraints and Operators
RELATIONAL
(==), (/=), (#>), (#<), (#>=), (#<=) ::

int→ int→ bool
ARITMETICAL
(#+), (#-), (#*), (#/) :: int→ int→ int
sum :: [int]→ (int→ int→ bool) → int→ bool
COMBINATORIAL
all different :: [int]→ bool
count :: int→ [int]→ (int→ int→ bool) →

int→ bool
MEMBERSHIP
domain :: [int]→ int→ int→ bool
belongs :: [int]→ [int]→ bool
PROPOSITIONAL
implication :: int→ (int→ int→ bool) →

int→ int→ (int→ int→ bool)→ int→ bool

3. Problem Description
Once introduced the T OY(FD) system, the rest of the pa-
per describes a real life optimization employee timetabling
problem that can be seen as a particular instance of the
NRP. Modeling and solving of this problem motivates the
T OY(FD) usability. The problem comes from a technical
department of the Spanish public television, where the em-
ployed workers must be scheduled to the requested shifts
for n days. While the problem was formulated before in
(R. González-del-Campo and F. Sáenz-Pérez 2007), here we
present new requirements and problem formulation also em-
bodying optimization.

Each day, several workers work at the company. On a
working day three workers must work, covering shifts of 20,
22 and 24 hours, respectively. On a weekend two workers
must work, covering two shifts of 24 hours. The company
employs thirteen workers. Twelve of them are regular work-
ers, and they are divided into three teams of four workers:
{w1, . . . , w4} belong to t1, {w5, . . . , w8} belong to t2 and
{w9, . . . , w12} belong to t3. The extra worker e belongs to
no team, and he is only selected by demand for coping with
regular workers absences. Optimization arises in the prob-
lem because the company must pay regular workers for each
extra hour they work, and extra worker hours are paid twice.
Optimal schedule minimizes the extra hour payment.

The requirements any valid schedule must hold are the
following: Each of the n days of the timetabling must be
known as either working day or weekend. Each absence of
worker wi on day dj must be provided. Each team must
work each three days, working one day and resting two. Any
shift of a day must be assigned to a unique worker. Each day,
any worker must be assigned to either zero or one of the
available shifts. Assigning no shift can be seen as assigning
a shift of 0 hours. The extra worker can work any day d, but
then he must rest on days d+1 and d+2. Tightt,w is a mea-
sure related to the shifts of kind s (0, 20, 22 or 24 hours) as-
signed to the regular workers of team t. Let us suppose that,
by scheduling the timetabling, workers of t are assigned to
k1, k2, k3 and k4 shifts of kind s. Then, Tightt,w represents

the difference between the maximum and the minimum of
these ks. Shift distribution is constrained by Tight, repre-
senting the maximum value any Tightt,w can take. Sched-
uled timetabling contains Total working hours, to be ac-
complished by regular workers. Assigning Total/12 hours
per worker implies no extra hour payment, minimizing the
optimization function.

4. Problem Implementation
In this section we present our modeling approach for solv-
ing the problem, which can be found at http://gpd.
sip.ucm.es/ncasti/TOY(FD).zip. Due to its dif-
ferences with (R. González-del-Campo and F. Sáenz-Pérez
2007) (problem decomposition, optimization, tightness of
the shifts, etc.) modeling has been started from scratch. The
data of each instance of the problem can be introduced by the
user at command line, as well as to be included in a T OY
file. First, we devote a subsection to describe the identifica-
tion of decision variables. Then, next subsection presents a
four stage process where the nature of the problem is ex-
ploited, decreasing the search space to be explored when
looking for an optimal solution.

4.1. Decision Variables
Decision variables are represented by FD variables in a
13 × n table where the columns represent the concrete days
and the rows the concrete workers. We refer to this table
as timetable. Each variable timetablei,j represents the
shift assigned to worker wi on day dj , and it is initially as-
signed to the domain values {0, 20, 22, 24}.

The problem requirements requesting only one team to
work each day, and each team to work each three days pro-
duces strong dependencies between the timetable vari-
ables. First, there is a dependency between the variables of
day d, as if, for example, ti works on d, the other two teams
are precluded from working this day. Thus, their regular
workers can be assigned to shifts of 0 hours. Second, there
is a dependency between the variables of different days. In
the previous example, ti is also going to work on days d+3,
d+6, etc., binding the variables for the workers of the other
two teams to 0. And, also, ti is not going to work on days
d+1, d+2, d+4, d+5, etc., so their workers can be bound to
0 on those days. These connections reveal an independency
between the different regular working teams. If a variable v1

is susceptible to be bound to 0 by v2 assignment to a shift,
then we can model it with an implication constraint.
However, this approach does not exploit the independency
of the different teams, but treat the whole table as a single
problem, making search space to remain at 413×n. Thus, to
model and solve an instance of the problem we are going to
manage a smaller table, in order to reduce the search space
to be explored by reducing both the number of variables and
the size of their domains.

4.2. Solving Process
Our modeling approach follows a four stage process to
schedule timetable. First stage is Team Assignment, and
it concerns with assigning regular workers teams to days.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

65

It is equivalent to trigger the implication constraints as-
sociated to the variable dependencies explained before. It al-
lows us to detect the workers susceptible of being assigned
to shifts for each day. To explore the whole search space,
each feasible assignment of teams to days must be com-
puted. For each feasible assignment, second, third and forth
stages are performed. Second stage is Timetabling Genera-
tion, and it concerns with the creation of the simpler prob-
lem to be solved. On the one hand, after a team assign-
ment, each day only five workers are susceptible of being
scheduled to cover the shifts: the team regular workers and
e. Thus, this stage creates tt, a 5 × n table which can be
mapped to the sub-table of timetable associated to the
concrete team assignment performed on first stage. On the
other hand, team independence is exploited in tt, obtain-
ing the three sub-problems tt1, tt2 and tt3, which can
be solved independently. Third stage is Timetabling Solving,
and it concerns with scheduling each tti. Finally, fourth
stage is Timetabling Mapping, and it concerns with using
the team assignment and the scheduled tt to construct the
original timetable, which is outcome as a result to the
user.

The main function schedule performs the four stage
process to solve each particular instance of the problem. It
contains six parameters. First four (N, Abs, DClass and
Tight) represent necessary timetabling input data. Last
two (W, SS) specify directives to the FD solver. N repre-
sents the number of days. Abs is a list of pairs (wi, dj)
representing regular workers planned absences. DClass is
a list of N dayType elements representing day classifi-
cation. Tight was already explained in problem descrip-
tion. W is a labelingOrder representing the order of the
variables to be labeled (dayOrder or workerOrder).
SS is a labelingStrategy representing a particular
variable selection strategy for labeling (firstFail or
firstUnbound). Function schedule returns the tu-
ple (Timetabling, ExtraHours) as a result, where
ExtraHours represents the number of extra hours associ-
ated to the optimal schedule. As to explore the whole search
space each team assignment must be computed, collect
is applied to function schedule to get all solutions. We
devote next four sections to describe each stage of the pro-
cess.

Team Assignment In this stage no shift is assigned to a
worker, but regular teams are assigned to days. This allows
us to explore a subset of the timetable search space.
In concrete, as there are three teams working each three
days, there are up to six possible assignments of teams to
days (each of them representing 1/6th of the timetable
search space). Departing from a team assignment, tt is con-
structed, scheduled and mapped to timetable. In order to
find the optimal schedule, all team assignments must be ex-
plored. This behavior is only possible because T OY(FD)
allows reasoning with models, where backtracking and mul-
tiple search strategies (placed at any point of the problem
description) are supported. Let us explain it in detail. Depart-
ing from a team assignment solution, the rest of the stages
imply the use of new variables, constraints and search strate-

gies. Performance of this stage possibly obtain a sub-optimal
schedule (sub-optimal in the sense that it is optimal for that
1/6th timetable search space). Then, next feasible team
assignment must be performed, implying backtracking to
the Team Assignment stage. This also implies the remov-
ing of the variables, constraints and search strategies posted
by second, third and fourth stages. Stage Team Assignment
takes part on reducing the size of the search space of the
timetabling schedule by acting in three different ways:
• By managing tt instead of timetable, up to eight

variables per day are directly saved, which represent the
60% of the total timetable variables.

• By associating tt creation and solving to a team assign-
ment, detection of non-feasible team assignments avoids
exploring 1/6th of the remaining search space. Our main
aim with this stage is to filter only those team assignments
possibly leading to solutions. That is, those that, at least,
provide for each day enough workers to accomplish the
shifts. Thus, we have to take into account both regular
worker absences and the two days resting constraint of e.
On the one hand, let us suppose that Abs = [(w 1,4),
(w 2,4), (w 3,4)] and that day 4 is classified as
workingDay, where 20, 22 and 24 shifts must be as-
signed to workers. Then, it is for sure that t1 can not be
assigned to days 1, 4, etc, as on day 4 there would be only
two available workers (w4 and e) to cover three shifts. On
the other hand, let us suppose that day 4 is classified as
a weekendDay, where two shifts of 24 hours must be
assigned. In this setting, t1 can be assigned to days 1, 4,
etc. assigning the two shifts of day 4 to w4 and e. But,
as t1 requests e for day 4, the latter can not be requested
on days 2, 3, 5, 6, due to its two days resting constraint.
Two of these days are assigned to team t2 and the other
two to team t3. So, for requesting e one day, t1 disallows
teams t2 and t3 to request two days from e. If, due to
Abs planned absences, e needs to be requested on one of
those days, then t1 can not be assigned to days 1, 4, etc.
Last but not least, as for each feasible team assignment
(at least) two of each three days e must be 0, we can not
save but bound (at least) another 5% of the timetable
variables. Thus, tt will only contain as much as the 35%
of the timetable variables.

• As e is susceptible of working any day, it acts as a link
between the three working teams. But, as any feasible
team assignment entails the resting constraint of e in the
whole schedule, we can freely split it into three indepen-
dent sub-problems, and solve independently each one. As
each sub-problem only contains 33% of the variables, we
have replaced the effort of solving a complex problem to
the effort of solving three exponentially simpler problems.
In summary, initial 4k search space is reduced to 40.35k.

But, as we solve the three independent sub-problems inde-
pendently, the search space becomes 3× 40.12k. As we need
to solve the six configurations to find the one minimizing the
extra hour payment, the total search space of our approach
is 6 × (3 × 40.12k) ≡ 18 × 40.12k.

Let us now present our approach for modeling this stage.
First, our main aim is to assign a concrete team to each day

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

66

of the timetabling. Second, we need to ensure that a minimal
number of regular workers are available to cover all shifts
for each day. Third, we need to ensure e resting constraint.
Thus, we need three lists of N new variables: [D1, D2,
D3, ..., Dn], where Di represents the concrete team
assigned to day i, [A1, A2, A3, ..., An], where Ai
represents the number of absences of the regular workers
of the selected team to day i and [E1, E2, E3, ...,
En], where Ei represents if e is requested to work by se-
lected team to day i. At this point we can see that each Ai
and Ei are related to the concrete value Di takes. In par-
ticular, for Ai we are only interested in the number of to-
tal absences of the regular workers of the selected team Di
states. Also, Ei would be bound to 1 only if this team does
not provide enough workers to accomplish shifts of this day.
To build the list of FD variables, the function genVList
is used:

genVList:: [A]
genVList = [X | genVList]

workEach3Days:: [A] -> bool
workEach3Days L = true <==

length L < 4
workEach3Days [L1,L2,L3,L1|R] =

workEach3Days [L2,L3,L1|R]

It generates a polymorphic infinite list, and contains a
unique rule with extra variables on its right side. By applying
take N genVList, lazy evaluation is performed to com-
pute only N new variables. To ensure that each team (D vari-
ables) works each three days, function workEach3Days
is applied. It recursively checks if a list contains more than
three elements, to unify via pattern matching the first and
the fourth ones. Then, D becomes [D1, D2, D3, D1,
D2, ...]. Finally, a domain constraint attributes (D1,
D2, D3) as FD variables with domain value set {1, 2, 3}.
An allDifferent constraint (D1, D2, D3) ensures
each team work each three days.

Now, information contained in Abs is reorganized to
fit it into a new data structure, more suitable for posting
constraints on A and E. Function order abs:: int →
[(int,int)]→ [[int]] converts Abs in OAbs, a list
of lists of integers [[int]] data structure. For each day it
contains a list indicating which regular workers are absent.
To create OAbs, the elements of tuples in Abs are firstly
swapped and then sorted by days. Function sortList or-
ders (with quicksort) its input list:

sortList :: [(int,int)] -> [(int,int)]
sortList [] = []
sortList [(X,Y)|Xs] =

sortList (filter (ord (X,Y)) Xs)
++ [(X,Y)] ++
sortList (filter (not . ord (X,Y)) Xs)

Its second rule uses first element (X,Y), and relies on
both ord and functional composition not . ord to com-
pute lower and greatest elements (resp.):

ord:: (int,int) -> (int,int) -> bool
ord (X,Y) (Z,T) = true <==

(X > Z)\/((X == Z)/\(Y > T)) == true
ord (X,Y) (Z,T) = false <==

(X < Z)\/((X == Z)/\(Y <= T)) == true

In particular, this function is non-deterministic, as its two
rules receive the same argument to compute different results
(depending on the conditions). Once Abs is sorted, it is fil-
tered by days to compute OAbs.

On the one hand, DClass is used to initialize the do-
main of A variables. While workingDay implies a domain
0,..,2, weekendDay implies a domain 0,..,3. With
this, enough workers to accomplish required shifts is en-
sured. On the other hand, E variables are initialized to the do-
main 0,..,1, and the constraint sum [Ei,Ei+1,Ei+2]
<= 1 is posted on each three consecutive elements to ensure
the resting constraint e. To relate D with A and E two new
[[int]] data structures are built, ATD and ETD, comput-
ing absences per team and day and ensuring e per team and
day (resp.) Then, implication constraints relate each
possible value Di takes (1, 2 or 3) with the binding of Ai
to ATD[i,1], ATD[i,2] or ATD[i,3] (resp.) Same sit-
uation happens with Ei and ETD.

Finally, labeling [] (take 3 D) is used to start
searching for feasible team assignments.

Timetabling Generation This stage performs three ac-
tions: create tt, bind to 0 as much as possible of its vari-
ables, and split it into tt1, tt2 and tt3 (in order to reduce
the effort of solving the problem to the effort of solving three
exponentially simpler problems).

Table tt is typed as [[int]]. To create it, take N
(repeat (take 5 genVList)) cannot be used, as
T OY call-time choice would lazily compute the same vari-
ables for each day. This is due to the fact that the argument
of repeat is computed just once. Instead, tt is created by
using the function genTT [] N, which computes a differ-
ent list of variables for each day, by explicitly computing N
times take 5 genVList.
genTT:: [[A]] -> int -> [[A]]
genTT L 0 = L
genTT L N =

genTT [(take 5 genVList)|L] (N-1) <== N > 0

Second, to bind as much variables as possible to 0 we cre-
ate the [[int]] extra data structure ZeroCal. We dis-
tinguish between the regular worker absences and the days
that e is not requested. To identify regular worker absences
OAbs is filtered to deliver only that absences related to the
regular workers of the selected team. To this end, list D is
used. Also, for each day for which e is not requested (Ei
= 0), ZeroCal is increased by 5. Finally, once tt and
ZeroCal are built, both structures are mapped with func-
tion putZeros, which zeroes selected variables.

Third, once tt has been built with the minimum num-
ber of variables, it is splitted into the three different sub-
problems, one per team. As both N and DClass are re-
quested for solving each sub-problem, they must also be
split. Finally, the standard number of hours each regu-
lar worker should ideally accomplish is also requested by
third stage to solve a single sub-problem. It is computed
with the expression (#/12) (foldl workHours 0
DClass) == Hours. On the one hand, T OY(FD) ca-
pability of using both curried functions and constraints is
used. In this case the constraint (#/12) is waiting to be
applied to an int. On the other hand, it is applied to the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

67

total number of hours of tt, which is computed by us-
ing the FP standard function foldl, and is presented as a
higher order application to make the expression more com-
pact. This foldl uses an initial 0 as accumulator. Func-
tion workHours adds 66 or 48 to the accumulator, de-
pending on whether it deals with a workingDay or with a
weekendDay (resp.) It is important to remark that a com-
mon number of standard hours for the twelve regular work-
ers is maintained, instead of creating a specific number for
the regular workers of each team.

Timetabling Solving As tt, N and DClass are split into
three independent sub-problems, they can be solved sepa-
rately. So, to improve performance, it could be possible to
send the three sub-problems to different threads. Going even
one step further, our solving process could be changed, mak-
ing Team Assignment stage to collect first all the feasible
team assignments, and second stage compute all its tt’s and
sub-problem tables. At that point, we would contain as much
as 18 different sub-problems to be solved, and third stage
could send them to different threads.

However, T OY does not support multi-threading up to
now. Thus, we solve tt by solving sequentially tt1, tt2

and tt3. In any case, as tt optimal schedule is the one
which minimizes the extra hour payment, by monotonicity
it could be computed as the sum of the optimal schedules for
tt1, tt2 and tt3.

Solving each tti implies several tasks. First, an ini-
tial domain on its variables must be imposed. That is,
{0, 20, 22, 24} for workingDay and {0, 24} for
weekendDay. Then, we impose an allDifferent con-
straint for workingDay, and a count constraint for set-
ting two variables to 24 for weekendDay. But, if e is re-
quested this can be simplified. e is only requested when team
working does not provide enough regular workers to accom-
plish all shifts. In those cases we can ensure that both e and
remaining regular workers are going to work (a value differ-
ent from 0). Thus, for workingDay and weekendDay the
case on which either e is requested (an unbound variable) or
not (bound to value 0) is distinguished. If e is requested, on
weekendDay regular workers rows are traversed and the
unique variable not bound, say X, is collected. Then, both X
and e can be bound to 24 without the need of posting FD
constraints.

Second, we take into account Tight, to ensure gener-
ated schedules to maintain an homogeneous distribution of
shifts. Let us suppose that we have two different schedules
implying 36 extra hours. However, while in the first one the
36 extra hours are accomplished by a single regular worker,
the second one divides it into 9 hours for the four regular
workers of a working team. From the point of view of op-
timality, both solutions are equal. However, the second one
is fairer with the distribution of the work. We let Tight
to be an input parameter to be introduced by the user in
order to make homogeneous the distribution of the work.
As we said in problem description, we measure Tight by
each working team and each shift. If we make Tight =
0 then all the regular workers of all the teams must be as-
signed to the same number of 0, 20, 22 and 24 shifts. If

we make Tight = 1, then we allow each regular work-
ing team {wi, wi+1, wi+2, wi+3} to assign different shifts
to their workers. For example, let us suppose that the maxi-
mum number of 20 hours shifts assigned to a worker is k1,
and the minimum is k2. Then Tight = 1 constraints that
the difference between k1 and k2 is not greater than 1. It is
important to remark that we have decided to include Tight
as an input parameter, instead of wrapping it within the cost
function. Our objective is to minimize the extra hour pay-
ment, not Tight.

Function ts is used to constrain with Tight a single
working team and a single shift:

tS T [W1L,W2L,W3L,W4L,EL] S = true <==
count S W1L (#=) A,
count S W2L (#=) B,
count S W3L (#=) C,
count S W4L (#=) D,
domain [A#-B, A#-C, A#-D, B#-C,

B#-D, C#-D] (-T) T

In particular, expression tS T (transpose SubTT)
WS is used to, first, transpose the list tti in order to ac-
cess its variables by workers, instead of by days. tS cre-
ates four new FD variables SW1,...,SW4 representing
the amount of shifts assigned to each of the regular workers
of the working team. Second, to impose an homogeneous
distribution we impose the difference of this variables to be
in the domain (-T),...,T. Here we want to remark the
T OY(FD) functional notation capabilities, that allow us to
directly express the subtraction of each pair of variables in
the domain constraint, instead of creating new variables.
Third, we need to generate the cost function EHours ==
X1 # + X2 # + X3 # + X4 # +(2 # * X5). While
X1,...,X4 represent the extra hours of the regular work-
ers, X5 is the number of extra hours of e. Again we need to
use transpose SubTT as we need to access its variables
by workers. In this setting, X5 is computed with a sum con-
straint of e working hours. In the case of regular workers, we
need four more sum constraints. But, in this case the gener-
ated FD variables must be compared with standard number
of working hours. Thus, we use implication constraints.
If a worker has done extra hours, then Xi represents that
number of extra hours. But, if the worker has done less than
standard hours, then Xi = 0.

Finally, a new labeling over tti is applied. The in-
put parameters W and SS are taken into account to follow
a particular search strategy. SS selects the particular vari-
able selection strategy: firstUnbound or firstFail.
W enumerates the tti variables by days or by workers. The
labelingOrder is relevant for both labeling strategies.
As tti variables contain few values in their domain, many
ties will be produced when selecting variables by first fail,
and the variable enumerated first will be the one selected. All
the cases contain the option toMinimize ExtraHours,
ensuring that optimal schedule (minimizing the extra hour
payment) is selected as a solution.

Timetabling Mapping By scheduling the three tti (bind-
ing all their variables) all the variables of tt are indirectly
bound. We recall here that the user is requested to use

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

68

collect to trigger exploration of all feasible team assign-
ments. Users can then either check each sub-optimal solu-
tion or map a minimum function to the collected solutions
to select the optimal one.

5. Paradigm Comparison
Let us discuss about the benefits of modeling this problem
in CFLP(FD). First, we summarize the advantages the logic
component offer us in CLP(FD) and CFLP(FD) in con-
trast to CP(FD). Then, we point out the advantages the
functional component offer us in CFLP(FD) in contrast to
CLP(FD).

CP(FD) is not thought to reason with models. First, the
constraint set is imposed and then several labeling search
strategies over disjoint variable sets can be declared. On the
one hand, both tasks cannot be mixed. On the other hand, the
set of imposed constraints is static and not meant to change.
Both CLP(FD) and CFLP(FD) add to CP(FD) allow this
task to be dynamic. In addition, the logic component eased
the modeling and solving of the employee timetabling prob-
lem. We have pointed out the benefits of splitting this prob-
lem: Problem division, early detection of unfeasible solu-
tions and reduction of FD variables. Our approach consists
of posting a subset of the constraints of the problem and per-
forms a labeling search strategy (obtaining a feasible team
assignment). Then, departing from each obtained partial so-
lution, we dynamically create the sub-problems to be solved.
Finally, we post the rest of the constraint set over these sub-
problems, and we use parameterized labeling strategies to
find the optimal schedule. Under this scenario, our model
can not be directly translated into a classical CP approach
with a requested isolation between constraint and search de-
scriptions. To follow our CFLP(FD) approach described be-
fore, in CP(FD) we would need to create several CP mod-
els, and a general script to coordinate them. If we decide to
keep it in a single model, then we need to create the table of
13 × n FD variables to represent assigned shifts. But, only
by doing that, we reach again the 413×n initial search space
we depart from in our CFLP(FD) implementation (and that
we reduce dramatically with our approach).

CFLP(FD) provides a sugaring syntax for LP predicates
and thus any pure CLP(FD)-program can be straightfor-
wardly translated into a CFLP(FD) program (Fernández et
al. 2007). But, in addition, CFLP(FD) includes a functional
component. This has helped us easing the task of model-
ing the calendar problem, as some of the extra capabilities
CFLP(FD) enjoys have been used: (a) Types. Our system is
strongly typed, and it has eased the modeling development
and maintenance, by finding bugs at compile-time. (b) Poly-
morphic variables. (c) Lazy evaluation. Function arguments
are evaluated to the required extent (the call-by-value used
in LP vs. the call-by-need used in FP) (Peyton-Jones 1987).
By this, we have managed infinite structures. (d) Call-time
choice, allowing shared terms to be computed just once. (e)
Higher order. Its use has simplified modeling. (f) Currying.
Both curried functions and constraints have been used. (g)
Functional notation, by which we have saved some FD vari-
ables. (h) Non-determinism rules have been used in some

functions. (i) Function composition. It has allowed us to use
more compact expressions.

6. Performance
In this section we present results for solving three instances
of the problem. Each instance is assumed to start on Mon-
day, where any week contains five working days followed
by weekend. The three instances solve one, two and three
weeks respectively, where the planned absences are shared
among the instances: Abs ≡ {(w1, 1), (w2, 1), (w5, 1),
(w5, 6), (w6, 1), (w6, 6), (w7, 1), (w7, 6), (w10, 1), (w10, 6),
(w11, 1), (w11, 6), (w12, 1), (w12, 6)}. Thus, there will be
only two feasible team assignments, as on day 1 only t1 can
work. The two feasible team assignments correspond with
permutation of t2 and t3 over days 2 and 3, respectively.
Each assignment will request e on days 1 and 6. Tight≡ 1
is used allow little differences between the regular workers
of each team. The last two parameters specify the search
strategy to be accomplished, as defined in Section 4.

Section 5 pointed out the benefits of using CFLP(FD) for
modeling the problem. Now we are also interested in mea-
suring the performance impact of its underlying lazy narrow-
ing mechanism, in order to test if the framework maintains
a good trade-off between expressivity and efficiency. Lazy
narrowing elapsed time is computed via subtracting original
instance elapsed time to the FD constraint solving elapsed
time. To compute the latter one we isolate the concrete set
of FD constraints being sent to the solver. Once obtained
this set we re-formulate the instance via a new program,
which only contains a function explicitly posting it. Next ta-
ble summarizes the results. First column represents the num-

Weeks T OY(FD) FD Overhead Strat.
1 1,027 859 20% dO
2 3,404 3,100 10% wO
3 199,359 195,609 2% wO

ber of weeks of the instance. As second and third columns
represent the elapsed time of the original and constraint-only
programs respectively (measured in milliseconds), the lazy
narrowing overhead is presented on fourth column by sim-
ply computing their ratio. While for each measurement we
have applied our four possible combinations of variable or-
der and strategy selection explained in Section 4, in this ta-
ble we only present the results of the fastest, to which we
devote last column. Benchmarks have been run in a machine
with an Intel Dual Core 2.4GHz processor and 4GB RAM
memory and Windows XP SP3. T OY(FD) has been de-
veloped with SICStus Prolog, version 3.12.8, and ILOG CP
1.6, with ILOG Concert 12.2 and ILOG Solver 6.8 libraries.
Microsoft Visual Studio 2008 tools were used for compiling
and linking the T OY(FD) interface to ILOG CP.

Obtained results encourages our approach. On the one
hand, we can solve timetables of up to three weeks in a rea-
sonable amount of time. On the other hand, we can see that
the lazy narrowing overload is also negligible. Its overload
ranges from 20% for the smallest instance being measured
(which is solved in less than one second) to a 2-3% for the

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

69

largest instance being measured (which is solved in more
than three minutes). So, as problem scales, the impact of the
lazy narrowing decreases, becoming very few or instead ir-
relevant for difficult CSPs involving long time during search.

7. Conclusions
CP is a suitable paradigm to tackle timetabling problems,
as it provides expressive languages for describing the con-
straints and powerful solver mechanism for reasoning with
them. However, it neither provides general purpose pro-
gramming features nor a modeling reasoning framework, as
CLP and CFLP frameworks do. In this paper we have pre-
sented an employee timetabling problem that puts some ev-
idence of the benefits these two properties provide for the
modeling and solving of this particular problem. On the one
hand, users can benefit from the extra expressivity those
frameworks provide, without loosing constraint solving ca-
pabilities. On the other hand, modeling framework allows
us to dramatically reduce the search space to be explored
for obtaining the optimal schedule, without supposing a big
overload due to its underlying operational mechanism.

While our problem can not be directly translated to CP us-
ing a classical approach (due to the isolation between con-
straints and search strategies), there exist several ways of
exploiting problem independence, relying on a distributed
framework (Meisels and Kaplansky 2002). As future work
we plan to make an in-depth comparison of CP(FD),
CLP(FD) and CFLP(FD) for solving our problem. We plan
to model the problem in CP, both with a distributed approach
and with the classical approach. Also, we plan to model the
problem in CLP. It would put much more evidence between
the trade-off of expressivity and efficient our framework is.
On the one hand, when modeling in CLP(FD) we can not
take advantage of the expressivity of our system. On the
other hand, as our system is built on top of SICStus, we can
directly assess the impact of our lazy narrowing operational
system.

References
[Brauner et al. 2005] Brauner, N.; Echahed, R.; Finke, G.;
Gregor, H.; and Prost, F. 2005. Specializing narrowing for
timetable generation: A case study. In PADL, 22–36.

[Burke et al. 2004] Burke, E. K.; Causmaecker, P. D.;
Berghe, G. V.; and Landeghem, H. V. 2004. The state of
the art of nurse rostering. J. Scheduling 7(6):441–499.

[Burke, Kendall, and Soubeiga 2003] Burke, E. K.; Kendall,
G.; and Soubeiga, E. 2003. A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9:451–470.

[Burke, Li, and Qu 2010] Burke, E. K.; Li, J.; and Qu, R.
2010. A hybrid model of integer programming and variable
neighbourhood search for highly-constrained nurse roster-
ing problems. European Journal of Operational Research
203(2):484–493.

[Fernández et al. 2007] Fernández, A. J.; Hortalá-González,
T.; Sáenz-Pérez, F.; and del Vado-Vı́rseda, R. 2007. Con-
straint Functional Logic Programming over Finite Domains.
TPLP 7(5): 537–582.

[González-Moreno et al. 1999] González-Moreno, J.; Hor-
talá-González, M.; López-Fraguas, F.; and Rodrı́guez-
Artalejo, M. 1999. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming
40:47–87.

[Hanus 1994] Hanus, M. 1994. The integration of functions
into logic programming: a survey. The Journal of Logic Pro-
gramming 19-20:583–628.

[Hanus 1999] Hanus, M. 1999. Curry: a truly inte-
grated functional logic language. http://www-ps.
informatik.uni-kiel.de/currywiki/.

[Jaffar and Maher 1994] Jaffar, J., and Maher, M. 1994. Con-
straint logic programming: a survey. The Journal of Logic
Programming 19-20:503–581.

[López-Fraguas, Rodrı́guez-Artalejo, and Vado-Vı́rseda 2004]
López-Fraguas, F.; Rodrı́guez-Artalejo, M.; and Vado-
Vı́rseda, R. 2004. A lazy narrowing calculus for declarative
constraint programming. In PPDP’04, 43–54. ACM.

[Marriot and Stuckey 1998] Marriot, K., and Stuckey, P. J.
1998. Programming with constraints. Cambridge, Mas-
sachusetts: The MIT Press.

[Meisels and Kaplansky 2002] Meisels, A., and Kaplansky,
E. 2002. Scheduling agents - distributed timetabling prob-
lems(disttp). In PATAT, 166–180.

[Métivier, Boizumault, and Loudni 2009] Métivier, J.-P.;
Boizumault, P.; and Loudni, S. 2009. Solving nurse
rostering problems using soft global constraints. In CP,
73–87.

[Moz and Pato 2007] Moz, M., and Pato, M. V. 2007. A
genetic algorithm approach to a nurse rerostering problem.
Computers & OR 34(3):667–691.

[PAKCS] PAKCS. http://www.informatik.
uni-kiel.de/pakcs.

[Peyton-Jones 1987] Peyton-Jones, S. 1987. The implemen-
tation of functional programming languages. Englewood
Cliffs, N.J.: Prentice Hall.

[Peyton-Jones 2002] Peyton-Jones, S. 2002. Haskell 98 lan-
guage and libraries: the revised report. Technical report.
http://www.haskell.org/onlinereport/.

[R. González-del-Campo and F. Sáenz-Pérez 2007] R.
González-del-Campo and F. Sáenz-Pérez. 2007. Pro-
grammed search in a timetabling problem over finite
domains. ENTCS 177: 253–267.

[Tsang 1993] Tsang, E. 1993. Foundations of constraint sat-
isfaction. London and San Diego: Academic Press.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

70

The Distance-Optimal Inter-League Schedule for Japanese Pro Baseball

Richard Hoshino and Ken-ichi Kawarabayashi
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

Nippon Professional Baseball (NPB) is Japan’s largest
and most well-known professional sports league, with
over 22 million fans each season. Each NPB team plays
24 inter-league games during a five-week period each
spring. In this paper, we solve the problem of de-
termining the best possible NPB inter-league schedule
that minimizes the sum total of distances traveled by
all teams. Despite the NP-completeness of the gen-
eral problem with 2n teams, we show that for the 12-
team NPB, the distance-optimal inter-league schedule
can be determined from two heuristics that drastically
cut down the computation time. Using these heuristics,
we generate the best possible schedule when the home
game slots are uniform (i.e., every team in one league
plays their home games at the same time), and when
they are non-uniform. Compared to the 2010 NPB inter-
league schedule, our optimal schedules reduce the total
travel distance by 15.3% (7849 km) in the uniform case,
and by 16.0% (8184 km) in the non-uniform case.

Introduction
Nippon Professional Baseball (NPB) is Japan’s most pop-
ular professional sports league, with annual revenues top-
ping one billion U.S. dollars. In terms of actual attendance,
the NPB ranked second in the world among all profes-
sional sports leagues, ahead of the National Football League
(NFL), the National Basketball Association (NBA), and the
National Hockey League (Wikipedia 2011).

The NPB is split into the six-team Pacific League and the
six-team Central League. Each team plays 144 games dur-
ing the regular season, with 120 intra-league games (against
teams from their own league) and 24 inter-league games
(against teams from the other league). To complete these
1
2 × 12 × 144 = 864 games, the teams travel long dis-
tances from city to city, primarily by airplane or bullet-train.
During the 2010 regular season, Pacific League teams trav-
eled a total of 153940 kilometres to play intra-league games,
while the more closely-situated Central League teams trav-
eled 79067 kilometres (Hoshino and Kawarabayashi 2011b).

By reformulating intra-league optimization as a shortest
path problem, the authors determined a distance-optimal
schedule that retained all of the NPB constraints that ensured
competitive balance, while reducing total Pacific League

team travel by 25.8% (nearly 40000 kilometres) and Cen-
tral League team travel by 26.8% (over 21000 kilometres).

The motivation for this paper is to extend our NPB anal-
ysis to inter-league play, to determine whether the 2010
schedule requiring 51134 kilometres of total team travel
can be improved, and perhaps even minimized to optimal-
ity. The rationale for our paper is timely, given current
global economic and environmental concerns. Implement-
ing a distance-optimal schedule would help this billion-
dollar sports league be more efficient and effective, saving
money, time, and greenhouse gas emissions.

The paper proceeds as follows. We formalize the NPB
inter-league problem in Section 2, providing the locations of
the twelve teams as well as the inter-league schedule from
the 2010 regular season. We use this to explain the concepts
of uniform and non-uniform tournament scheduling, to moti-
vate the Bipartite Traveling Tournament Problem (BTTP) in
Section 3. Despite the NP-completeness of the general prob-
lem with 2n teams, we describe two heuristics that allow us
to solve BTTP for the 12-team NPB, which we do in Section
4. In Sections 5 and 6, we present uniform and non-uniform
inter-league schedules requiring 43285 and 42950 kilome-
tres of total travel, respectively. We prove these sched-
ules are optimal, achieving a 15.3% and 16.0% reduction
in travel distance as compared to the 2010 NPB schedule.

The 2010 NPB Inter-League Schedule
Each NPB team plays in a home city somewhere within
Japan, whose location is marked in Figure 1.

Figure 1: Location of the 12 teams in the NPB.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

71

Let us explain the labelling. The Pacific League teams
are p1 (Fukuoka Hawks), p2 (Orix Buffaloes), p3 (Saitama
Lions), p4 (Chiba Marines), p5 (Tohoku Eagles), and p6
(Hokkaido Fighters). The Central League teams are c1 (Hi-
roshima Carp), c2 (Hanshin Tigers), c3 (Chunichi Drag-
ons), c4 (Yokohama Baystars), c5 (Yomiuri Giants), and
c6 (Yakult Swallows). For readability, we will refer to the
teams by their labels rather than their full names.

Table 1 provides the 12×12 NPB distance matrix D, rep-
resenting the distances between the home stadiums of each
pair of teams in {p1, . . . , p6, c1, . . . , c6}. All distances are in
kilometres. By symmetry, Dx,y = Dy,x for any two teams
x and y, and all diagonal entries are zero.

c1 c2 c3 c4 c5 c6 p1 p2 p3 p4 p5 p6
c1 0 323 488 808 827 829 258 341 870 857 895 1288
c2 0 195 515 534 536 577 27 577 564 654 1099
c3 0 334 353 355 742 213 396 383 511 984
c4 0 37 35 916 533 63 58 364 886
c5 0 7 926 552 51 37 331 896
c6 0 923 554 48 39 333 893
p1 0 595 958 934 1100 1466
p2 0 595 582 670 1115
p3 0 86 374 928
p4 0 361 904
p5 0 580
p6 0

Table 1: The 12× 12 NPB distance matrix.

In NPB inter-league play, each team in the Pacific League
P = {pi : 1 ≤ i ≤ 6} plays four games against all six
teams in the Central League C = {ci : 1 ≤ i ≤ 6}, with
one two-game set played at the home of the Pacific League
team, and the other two-game set played at the home of
the Central League team. All inter-league games take place
during a five-week stretch between mid-May and mid-June,
with no intra-league games occurring in that period.

Table 2 provides the 2010 NPB inter-league schedule, list-
ing the twelve sets, with one set in each time slot, and two
games in each set. In this table, as with all other schedules
presented in this paper, home games are marked in bold.

1 2 3 4 5 6 7 8 9 10 11 12
c1 p5 p6 p2 p1 p3 p4 p5 p6 p1 p2 p4 p3
c2 p6 p5 p1 p2 p4 p3 p6 p5 p2 p1 p3 p4
c3 p1 p2 p4 p3 p5 p6 p1 p2 p4 p3 p5 p6
c4 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6 p1 p2
c5 p4 p3 p6 p5 p2 p1 p4 p3 p6 p5 p2 p1
c6 p2 p1 p3 p4 p6 p5 p2 p1 p3 p4 p6 p5
p1 c3 c6 c2 c1 c4 c5 c3 c6 c1 c2 c4 c5
p2 c6 c3 c1 c2 c5 c4 c6 c3 c2 c1 c5 c4
p3 c4 c5 c6 c3 c1 c2 c4 c5 c6 c3 c2 c1
p4 c5 c4 c3 c6 c2 c1 c5 c4 c3 c6 c1 c2
p5 c1 c2 c4 c5 c3 c6 c1 c2 c4 c5 c3 c6
p6 c2 c1 c5 c4 c6 c3 c2 c1 c5 c4 c6 c3

Table 2: The 2010 NPB inter-league schedule.

Whenever a team is scheduled for a road trip consisting
of multiple away sets, the team doesn’t return to their home
city but rather proceeds directly to their next away venue.
Furthermore, we assume that every team begins the tourna-
ment at home, and returns home after its last away game. For
example, in Table 2, team c1 would travel a total distance of
Dc1,p2

+ Dp2,p1
+ Dp1,c1 + Dc1,p5

+ Dp5,p6
+ Dp6,c1 +

Dc1,p4 +Dp4,p3 +Dp3,c1 = (Dp1,p2 +Dp3,p4 +Dp5,p6) +∑6
j=1 Dc1,pj = 1261 + 4509 = 5770.
Let Mp = Dp1,p2

+Dp3,p4
+Dp5,p6

and Mc = Dc1,c2 +
Dc3,c6 + Dc4,c5 . From Table 2, the total travel distance
is Mp +

∑6
j=1 Dci,pj

for each ci and Mc +
∑6

j=1 Dpi,cj

for each pi. In this inter-league schedule, the six teams in
each league are grouped into three pairs based on geographic
proximity, so that the teams in each league have three iden-
tical road trips lasting two sets (four games).

For example, each team ci has road trips consisting of the
pairs {p1, p2}, {p3, p4}, and {p5, p6} in some order. From
Table 1, we can show that the Central League teams travel
27205 kilometres, and the Pacific League teams travel 23929
kilometres, for a total of 51134 kilometres.

The sums
∑6

j=1 Dpi,cj and
∑6

j=1 Dci,pj
are fixed for

each i, regardless of how the six teams are paired up. Thus,
if the teams in each league play the same set of three road
trips, the total distance is minimized whenever the sum
Mp + Mc is minimized. Note that both Mp and Mc rep-
resent the total edge weight of a perfect matching in a com-
plete graph on 6 vertices.

Therefore, the optimal value of Mc is the minimum value
of Dcπ(1),cπ(2)

+ Dcπ(3),cπ(4)
+ Dcπ(5),cπ(6)

over all permu-
tations π of {1, 2, 3, 4, 5, 6}. The distance-optimal schedule
occurs by making each team play their three road trips based
on the other league’s minimum-weight perfect matching.

From Figure 1 (or Table 1), the minimum-weight per-
fect matching for the Central League occurs when π =
(1, 2, 3, 4, 5, 6). By replacing the Pacific League road trips
with the optimal matching {c1, c2}, {c3, c4}, and {c5, c6},
we can reduce each team’s travel by (Dc3,c6 + Dc4,c5) −
(Dc3,c4 +Dc5,c6) = 51 kilometres.

This “optimal” grouping was used by the NPB in 2009,
with the twelve teams traveling a total of 51134− 51× 6 =
50828 kilometres. From Figure 1, it is clear that the per-
fect matching used in the other league, namely {p1, p2},
{p3, p4}, and {p5, p6}, has minimum weight.

Hence, if we adopt the framework of Table 2, where
the teams play inter-league games by alternating home and
away sets two at a time, then the optimal schedule requires
50828 kilometres of total team travel. We note that for
any 12 × 12 distance matrix, we can rapidly generate the
distance-optimal schedule by finding the best possible pair-
ing of three road trips for each league and arranging the tour-
nament schedule in the format of Table 2. This argument
easily generalizes to the scenario where there are 2n teams
in each league, since there is an O(n3) algorithm to deter-
mine a minimum-weight perfect matching for any weighted
complete graph on 2n vertices (Lawler 1976).

In Table 2, every time slot has the property that the teams
in each league either all play at home, or all play on the
road. We say that such a schedule is uniform. By relax-
ing this constraint and including non-uniform schedules for
consideration, we expand the search space.

However, the next result shows that if we impose the re-
striction that no team can play more than two consecutive
sets at home or on the road, the distance-optimal schedule
must be uniform, and have the same structure as Table 2.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

72

Proposition 1 Let P and C each consist of 2n teams, for
some n ≥ 1. Consider an inter-league tournament between
P and C, where each pair of teams pi and cj plays two
sets, with one set at each team’s home venue. If every team
can play at most two consecutive sets at home or on the
road, then any distance-optimal inter-league schedule must
be uniform, alternating home and away sets two at a time.

Proof Let P = {pi : 1 ≤ i ≤ 2n} be the Pacific League
teams and C = {ci : 1 ≤ i ≤ 2n} be the Central League
teams. Define ILBt to be the individual lower bound for
team t ∈ P∪C. This value represents the minimum possible
distance that can be traveled by team t in order to complete
its 4n sets, independent of the other teams’ schedules.

Then a trivial lower bound for the total travel distance
is TLB =

∑
t∈P∪C ILBt. If team pi does not play their

2n road sets in pairs, there would be at least two single-
set road trips which can be combined to reduce that team’s
travel distance, by the Triangle Inequality. Letting Mc be
the minimum weight of a perfect matching for the Central
League, we have ILBpi = Mc +

∑2n
j=1 Dpi,cj . Analo-

gously, ILBci = Mp +
∑2n

j=1 Dci,pj
. Therefore,

TLB = 2n(Mp +Mc) + 2

2n∑
i=1

2n∑
j=1

Dpi,cj .

By the same construction as Table 2, we can construct a uni-
form inter-league schedule with total distance TLB, which
equals 50828 in the case of the NPB distance matrix.

To complete the proof, we must show that any schedule
having total distance TLB must be uniform, and have the
structure of alternating home and away sets two at a time.

If a schedule has total distance TLB, by definition, each
team t must travel a total distance of ILBt. Suppose on
the contrary that there exists a non-uniform distance-optimal
schedule. By the Triangle Inequality, each team t must play
their 2n road sets in n pairs, as otherwise that team’s travel
distance would exceed ILBt.

For this schedule, let H(P, s) and R(P, s) be respectively
the number of teams in P playing at home and on the road
in time slot s. Similarly, define H(C, s) and R(C, s). For
all 1 ≤ s ≤ 4n, we have H(P, s) + R(P, s) = H(C, s) +
R(C, s) = 2n, H(P, s) = R(C, s) and R(P, s) = H(C, s).

For each a, b ∈ [H,R], let pab be the number of teams
in P playing their first set at a and their second set at b. For
example, pHR is the number of teams in P playing their first
set at home and their second set on the road. By definition,
pHH+pHR+pRH+pRR = 2n. Similarly define cab so that
cHH +cHR+cRH +cRR = 2n. Note that pRH = cRH = 0
since every team must play their road sets in pairs.

Since H(P, 1) = R(C, 1) and H(P, 2) = R(C, 2), we
have pHH + pHR = cRR and pHH = cHR + cRR. This
implies that pHR + cHR = 0, forcing pHR = cHR = 0.
Thus, pHH = cRR and cHH = pRR.

Each team counted in pHH must play on the road in set 3,
as otherwise some team would play three consecutive home
sets. But since road sets take place in pairs, each of these
teams must also play on the road in set 4. Thus, R(P, 4) ≥
pHH . Similarly, each team counted in cHH must play on the

road in sets 3 and 4, implying that H(C, 4) ≤ cRR. Since
R(P, 4) = H(C, 4) and pHH = cRR, we have H(C, 4) =
cRR. In other words, each team counted in cRR plays at
home in sets 3 and 4, forcing them to play on the road in
sets 5 and 6. The same pattern holds for each team counted
in pRR. Thus, R(P, 6) +R(C, 6) ≥ pRR + cRR.

Each team counted in pHH and cHH plays at home in
set 5, as otherwise some team would play three consecutive
road sets. Furthermore, each of these teams must also play
at home in set 6, as otherwise 2n = R(P, 6) + R(C, 6) ≥
pRR+cRR+1 = pRR+pHH+1 = 2n+1, a contradiction.

Repeating this argument, each team counted in pHH and
cHH must play two home sets followed by two road sets,
and alternating that pattern until the end of the tournament.
Conversely, each team counted in pRR and cRR must play
the inverse alternating schedule of two road sets followed
by two home sets.

Without loss, assume pHH > 0. Suppose cHH > 0.
Then there exist two teams pi and cj that have the exact
same home-road pattern HH-RR-HH-RR-· · · -HH-RR. This
is a contradiction as these two teams would then be unable
to play each other. Thus, cHH = 0, implying that pRR = 0.
We therefore have pHH = 2n and cRR = 2n, proving
that the tournament must be uniform, with the teams in each
league alternating home and away sets two at a time.

Therefore, we have solved the inter-league optimization
problem for any 4n × 4n distance matrix, given the con-
straint that every team can play at most two consecutive sets
at home or on the road. By our analysis, there exists an
O(n3) algorithm to construct an optimal tournament sched-
ule, by pairing each team’s 2n road sets according to the
minimum-weight perfect matching. As shown in Proposi-
tion 1, any distance-optimal schedule must be uniform.

However, if we consider the constraint that every team can
play at most three consecutive sets at home or on the road,
then the problem of generating a distance-optimal inter-
league schedule becomes extremely difficult. In fact, as we
will explain in the next section, this problem becomes NP-
complete, even when restricting our search space to the set
of uniform schedules!

We analyze this extension to three-set home stands and
road trips, since both scenarios frequently occur during NPB
intra-league play, where teams play nine consecutive games
(3 sets of 3 games) either at home or on the road. Since inter-
league sets consist of two games, even if a team played three
consecutive sets at home or on the road, that would only cor-
respond to six games. This simple change from “at most 2”
to “at most 3” motivates the Bipartite Traveling Tournament
Problem (BTTP), which we now present.

The Bipartite Traveling Tournament Problem
The challenge of creating a distance-optimal intra-league
schedule motivated the Traveling Tournament Problem
(TTP), in which every pair of teams plays two sets (i.e., a
double round-robin tournament). The output is an optimal
schedule that minimizes the sum total of distances traveled
by the n teams as they move from city to city, subject to
three constraints that ensure competitive balance:

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

73

(a) at-most-three: No team may have a home stand or road
trip lasting more than three sets.

(b) no-repeat: A team cannot play against the same opponent
in two consecutive sets.

(c) each-venue: Each pair of teams plays twice, with one set
at each team’s home venue.
The TTP involves both integer programming to prevent

excessive travel, as well as constraint programming to create
a schedule of home and road sets that meet all the feasibility
requirements. While each problem is simple to solve on its
own, its combination has proven to be extremely challenging
(Easton, Nemhauser, and Trick 2001), even for small cases
such as n = 6 and n = 8. The TTP has emerged as a popular
area of study (Kendall et al. 2010) within the operations
research community due to its surprising complexity.

We introduce the Bipartite Traveling Tournament Prob-
lem (BTTP), the inter-league analogue of the TTP. Let X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two leagues,
where each pair of teams xi and yj (with 1 ≤ i, j ≤ n)
plays two sets, with one set at each venue. Given a 2n× 2n
distance matrix, the solution to BTTP is a distance-optimal
double round-robin inter-league schedule satisfying the at-
most-three, no-repeat, and each-venue constraints.

Let BTTP* be the restriction of BTTP to the set of uniform
tournament schedules. By definition, the solution to BTTP*
has total travel distance at least that of BTTP.

We proved that both BTTP and BTTP* are NP-complete
(Hoshino and Kawarabayashi 2011a) by obtaining a reduc-
tion from 3-SAT, the well-known NP-complete problem on
boolean satisfiability.

To explain the difficulty of BTTP, we provide a simple
illustration for the case n = 3 by providing two feasible
tournaments in Table 3, with one uniform schedule and one
non-uniform schedule.

1 2 3 4 5 6
x1 y1 y2 y3 y1 y2 y3

x2 y2 y3 y1 y2 y3 y1

x3 y3 y1 y2 y3 y1 y2

y1 x1 x3 x2 x1 x3 x2

y2 x2 x1 x3 x2 x1 x3

y3 x3 x2 x1 x3 x2 x1

1 2 3 4 5 6
x1 y3 y2 y1 y3 y1 y2

x2 y1 y3 y2 y1 y2 y3

x3 y2 y1 y3 y2 y3 y1

y1 x2 x3 x1 x2 x1 x3

y2 x3 x1 x2 x3 x2 x1

y3 x1 x2 x3 x1 x3 x2

Table 3: Two feasible inter-league tournaments for n = 3.

For each team, define a trip to be a pair of consecutive
sets where that team doesn’t play at the same location in
time slots s and s + 1. In Table 3, the top schedule has 24
total trips, while the bottom schedule has 32 total trips.

Now let the teams x1, x3, y1, and y2 be located at (0, 0)
and let x2 and y3 be located at (1, 0). Then the top sched-
ule has total distance 16 and the bottom schedule has total

distance 12. So minimizing trips does not correlate to min-
imizing total travel distance; while the former is a trivial
problem, the latter is extremely difficult, even for the case
n = 3. Of course, a brute-force enumeration of all possible
tournaments is one approach, but this only works for small
cases, and not for the NPB, which has n = 6.

The case n = 6 requires the optimal scheduling of
6 × 12 = 72 matches. The 12-team BTTP is comparable in
difficulty to the 8-team TTP (with 56 total matches) and the
10-team TTP (with 90 total matches), both of which were
solved recently on a benchmark data set using the aid of
powerful computers running calculations over multiple pro-
cessors (Trick 2011). Nonetheless, with the aid of two clever
heuristics that we present in the next section, we can quickly
solve the NP-complete problems BTTP* and BTTP for the
12× 12 NPB distance matrix.

Two Heuristics for BTTP* and BTTP
We now present two theorems that tackle the Bipartite Trav-
eling Tournament Problem. The first theorem is applicable
for any n, and the second theorem is specific for the case
n = 6. These results form the theoretical basis for our
heuristics that solve BTTP* and BTTP for the NPB. Before
presenting our results, we provide several key definitions.

For each t ∈ X∪Y , let St be the set of possible schedules
that can be played by team t satisfying the at-most-three and
each-venue constraints. Let πt ∈ St be a possible schedule
for team t. For each πt, we just list the opponents of the six
road sets, and ignore the home sets, since we can determine
the total distance traveled by team t just from the road sets.
To give an example, below is a feasible schedule πx1 ∈ Sx1

for the case n = 6:

1 2 3 4 5 6 7 8 9 10 11 12
x1 y1 y6 y y y3 y5 y4 y y y y2 y

In the above team schedule πx1
, each y represents a home

set played by x1 against a unique opponent in Y . Note that
πx1

satisfies the at-most-three and each-venue constraints.
Let Φ = (πx1 , πx2 , . . . , πxn , πy1 , πy2 , . . . , πyn), where

πt ∈ St for each t ∈ X ∪ Y . Since road sets of X cor-
respond to home sets of Y and vice-versa, it suffices to list
just the time slots and opponents of the n road sets in each
πt, since we can then uniquely determine the full schedule
of 2n sets for every team t ∈ X ∪ Y , thus producing an
inter-league tournament schedule Φ. We note that Φ is a
feasible solution to BTTP iff each team plays a unique op-
ponent in every time slot, and no team schedule πt violates
the no-repeat constraint.

In the following sections, we will frequently refer to team
schedules πt and tournament schedules Φ. From the context
it will be clear whether the schedule is for an individual team
t ∈ X ∪ Y , or for all 2n teams in X ∪ Y .

As before, define ILBt to be the individual lower bound
of team t, the minimum possible distance that can be trav-
eled by team t in order to complete its 2n sets.

For each πt ∈ St, let d(πt) be the integer for which
d(πt) + ILBt equals the total distance traveled by team t
when playing the schedule πt. By definition, d(πt) ≥ 0.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

74

For each Φ = (πx1 , . . . , πxn , πy1 , . . . , πyn), define

d(Φ) =
∑

t∈X∪Y

d(πt).

Since
∑

ILBt is fixed, the optimal solution to BTTP is the
schedule Φ for which d(Φ) is minimized. This is the moti-
vation for the function d(Φ).

For each subset S∗
t ⊆ St, define the lower bound function

B(S∗
t) = min

πt∈S∗
t

d(πt).

If S∗
t = St, then B(S∗

t) = 0 by the definition of ILBt. For
each subset S∗

t , we define |S∗
t | to be its cardinality.

If n is a multiple of 3, we define for each team the set Rt
3

as the subset of schedules in St for which the n road sets
occur in n

3 blocks of three (i.e., team t takes n
3 three-set road

trips). For example, in the top schedule of Table 3 (which
has n = 3), every team t plays a schedule πt ∈ Rt

3.
Finally, we define Γ to be a global constraint that fixes

some subset of matches, and SΓ
t to be the subset of sched-

ules in St which are consistent with that global constraint.
For example, if Γ is the simple constraint that forces y2
to play against x1 at home in time slot 3, then SΓ

x1
would

only consist of the team schedules where slot 3 is a road set
against y2. If Γ is a much more complex global constraint
(e.g. where the number of fixed matches is large), then each
|SΓ

t | will be significantly less than |St|.
We present the first theorem, a powerful reduction heuris-

tic that drastically cuts down the computation time.
Theorem 1 Let M be a fixed positive integer. For any
global constraint Γ, define for each t ∈ X ∪ Y ,

Zt =

{
πt ∈ SΓ

t : d(πt) ≤ M +B(SΓ
t)−

∑
u∈X∪Y

B(SΓ
u)

}
.

If Φ = (πx1
, . . . , πxn

, πy1
, . . . , πyn

) is a feasible tourna-
ment schedule consistent with Γ so that d(Φ) ≤ M , then for
each t ∈ X ∪ Y , team t’s schedule πt appears in Zt.

Proof Consider all tournament schedules consistent with Γ.
If there is no Φ with d(Φ) ≤ M , then there is nothing to
prove. So assume some schedule Φ satisfies d(Φ) ≤ M .
Letting Q =

∑
u∈X∪Y B(SΓ

u), we have M ≥ d(Φ) =∑
u∈X∪Y d(πu) ≥

∑
u∈X∪Y B(SΓ

u), so that M ≥ Q.
If πt ∈ Zt, then Zt ⊆ SΓ

t implying that d(πt) ≥ B(SΓ
t).

Now suppose there exists some v ∈ X ∪Y with πv /∈ Zv .
Since πv is consistent with Γ, πv ∈ SΓ

v and d(πv) > M +
B(SΓ

v)−Q ≥ B(SΓ
v). This is a contradiction, as

d(Φ) = d(πv) +
∑

u∈X∪Y,u�=v

d(πu)

> (M +B(SΓ
v)−Q) +

∑
u∈X∪Y,u�=v

B(SΓ
u)

= (M +B(SΓ
v)−Q) + (Q−B(SΓ

v))

= M.

Hence, if Φ = (πx1
, . . . , πxn

, πy1
, . . . , πyn

) is a feasible
tournament schedule consistent with Γ so that d(Φ) ≤ M ,
then πt ∈ Zt for all t ∈ X ∪ Y .

Theorem 1 shows how to perform some reduction prior
to propagation, and may be applicable to other problems.
To apply this theorem, we will reduce BTTP to k scenar-
ios where in each scenario the six home sets for four of the
Pacific League teams are pre-determined. Expressing these
scenarios as the global constraints Γ1,Γ2, . . . ,Γk, each Γi

fixes 24 of the 72 total matches.
For every Γi, we determine Zcj for the Central League

teams and by setting a low threshold M , we show that each
|Zcj | is considerably smaller than |SΓ

cj |, thus reducing the
search space to an amount that can be quickly analyzed.

From there, we run a simple six-loop that generates all 6-
tuples (πc1 , πc2 , πc3 , πc4 , πc5 , πc6) that can appear in a fea-
sible schedule Φ with d(Φ) ≤ M . By Theorem 1, each
πcj ∈ Zcj for 1 ≤ j ≤ 6. From this list of possible 6-
tuples, we can quickly find the optimal schedule Φ which
corresponds to the solution to BTTP.

Next, we present a special result that works only for the
case n = 6, when two teams from one league are located
quite far from the other 10 teams, forcing the distance-
optimal schedule Φ to have a particular structure.

Theorem 2 Let M be a fixed positive integer, and define
S∗
t = {πt ∈ St : d(πt) ≤ M}. Suppose there exist two

teams xi, xj ∈ X = {x1, x2, . . . , x6} for which S∗
xi

⊆ Rxi
3 ,

S∗
xj

⊆ R
xj

3 , and for each team yk ∈ Y , every schedule in
S∗
yk

has the property that yk plays their road sets against xi

and xj in two consecutive time slots.
If Φ = (πx1

, . . . , πx6
, πy1

, . . . , πy6
) is a feasible tourna-

ment schedule with d(Φ) ≤ M where each πt ∈ S∗
t , then

the team schedules πxi
and πxj

both have the home-road
pattern HH-RRR-HH-RRR-HH; moreover, each team’s six
home slots must have the following structure for some per-
mutation (a, b, c, d, e, f) of {1, 2, 3, 4, 5, 6}:

1 2 3 4 5 6 7 8 9 10 11 12
xi ya yb y y y yc yd y y y ye yf

xj yb ya y y y yd yc y y y yf ye

Proof We first note that if πxi
and πxj

have the above struc-
ture, they satisfy all the given conditions since πxi

∈ Rxi
3 ,

πxj
∈ R

xj

3 , and every team yk ∈ Y plays road sets against
xi and xj in two consecutive time slots. For example, yd
plays road sets against xj in slot 6 and against xi in slot 7.
We now prove that πxi

and πxj
must have this structure.

For each team xt ∈ X and time slot s ∈ [1, 12], define
O(xt, s) to be the opponent of team xt in set s. We define
O(xt, s) only when xt is playing at home; for the sets when
xt plays on the road, O(xt, s) is undefined.

Since πxi ∈ S∗
xi

and S∗
xi

⊆ Rxi
3 , there are four possible

cases to consider:

(1) xi plays set 1 at home, and sets 2 to 4 on the road.
(2) xi plays sets 1 and 2 at home, and sets 3 to 5 on the road.
(3) xi plays sets 1 to 3 at home, and sets 4 to 6 on the road.
(4) xi plays sets 1 to 3 on the road, and set 4 at home.

We examine the cases one by one. In each, suppose there
exists a feasible schedule Φ satisfying all the given condi-
tions. We finish with case (2).

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

75

In (1), let O(xi, 1) = ya. Then O(xj , 2) = ya, since ya
must play road sets against xi and xj in consecutive time
slots. Since πxj

∈ R
xj

3 and xj plays at home in set 2, xj

must also play at home in set 1. Thus, O(xj , 1) = yb for
some yb, which forces O(xi, 2) = yb. This is a contradiction
as xi plays set 2 on the road.

In (3), let O(xi, 1) = ya, O(xi, 2) = yb, and O(xi, 3) =
yc. Then O(xj , 2) = ya and O(xj , 4) = yc. Either
O(xj , 1) = yb or O(xj , 3) = yb. In either case, we violate
the at-most-three constraint or the condition that πxj

∈ R
xj

3 .
In (4), team xi starts with a three-set road trip. In or-

der to satisfy the at-most-three constraint, πxi must have
the pattern RRR-HHH-RRR-HHH. Then this reduces to
case (3), as we can read the schedule Φ backwards, letting
O(xi, 12) = ya, O(xi, 11) = yb, O(xi, 10) = yc, and ap-
plying the argument in the previous paragraph.

In (2), let O(xi, 1) = ya and O(xi, 2) = yb. Then
O(xj , 2) = ya and O(xj , 1) = yb. If O(xj , 3) = yc for
some yc, then O(xi, 4) = yc, forcing xi to play a single
road set in slot 3. Thus, xj must play on the road in set 3,
and therefore also in sets 4 and 5. Hence, both xi and xj start
with two home sets followed by three road sets. Since this
is the only case remaining, by symmetry xi and xj must end
with two home sets preceded by three road sets. Thus, these
two teams must have the pattern HH-RRR-HH-RRR-HH.

In order for each yk to play their road sets against xi and
xj in two consecutive time slots, we must have O(xi, 6) =
O(xj , 7), O(xi, 7) = O(xj , 6), O(xi, 11) = O(xj , 12), and
O(xi, 12) = O(xj , 11). This completes the proof.

We will use Theorem 2 to solve BTTP, since teams p5
and p6 are located quite far from the other ten teams (see
Figure 1). This heuristic of isolating two teams and finding
its common structure significantly reduces the search space
and enables us to solve BTTP for the 12-team NPB in hours
rather than weeks.

By applying these results, we do not require weeks of
computation time on multiple processors. With these two
heuristics, BTTP* can be solved in two minutes and BTTP
can be solved in less than ten hours, each on a single laptop.
All of the code was written in Maple and compiled using
Maplesoft 13 using a single Toshiba laptop under Windows
with a single 2.10 GHz processor and 2.75 GB RAM. In the
next two sections, we present the optimal uniform and non-
uniform schedules for the NPB and justify their optimality.

Solution to BTTP* for the NPB
We first compute ILBt for each team t ∈ P ∪ C, based on
the distance matrix given in Table 1. We find that for each
team t, a schedule πt ∈ St satisfies d(πt) = ILBt only if
πt ∈ Rt

3, i.e., πt plays its six road sets in two blocks of three.
We determine that

∑
ILBt =

∑
ILBpi

+
∑

ILBci =
16686+26077 = 42763. For any feasible inter-league tour-
nament schedule Φ, the total distance traveled by the teams
is d(Φ) +

∑
ILBt = d(Φ) + 42763.

Table 4 presents a uniform inter-league schedule Φ∗ that
is a feasible solution of BTTP* with d(Φ∗) = (0 + 0 + 1 +
11 + 0 + 0) + (0 + 1 + 153 + 339 + 11 + 6) = 522.

1 2 3 4 5 6 7 8 9 10 11 12
p1 c2 c3 c1 c2 c3 c6 c4 c5 c6 c1 c4 c5
p2 c4 c6 c5 c3 c6 c1 c2 c3 c1 c2 c5 c4
p3 c3 c1 c2 c6 c4 c2 c5 c6 c4 c5 c3 c1
p4 c5 c4 c6 c5 c2 c4 c3 c1 c2 c6 c1 c3
p5 c1 c2 c3 c4 c1 c5 c6 c4 c5 c3 c2 c6
p6 c6 c5 c4 c1 c5 c3 c1 c2 c3 c4 c6 c2
c1 p5 p3 p1 p6 p5 p2 p6 p4 p2 p1 p4 p3
c2 p1 p5 p3 p1 p4 p3 p2 p6 p4 p2 p5 p6
c3 p3 p1 p5 p2 p1 p6 p4 p2 p6 p5 p3 p4
c4 p2 p4 p6 p5 p3 p4 p1 p5 p3 p6 p1 p2
c5 p4 p6 p2 p4 p6 p5 p3 p1 p5 p3 p2 p1
c6 p6 p2 p4 p3 p2 p1 p5 p3 p1 p4 p6 p5

Table 4: Solution to BTTP* with total distance 43285 km.

We claim that Φ∗ is an optimal solution, with total dis-
tance d(Φ∗)+

∑
ILBt = 522+42763 = 43285. To estab-

lish this claim, we show that d(Φ) ≥ 522 for any uniform
schedule Φ = (πp1

, πp2
, . . . , πp6

, πc1 , πc2 , . . . , πc6).
We exploit the uniformity of Φ and split BTTP* into two

separate optimization problems: first, we show that in any
tournament schedule Φ, the six-tuple (πp1

, πp2
, . . . , πp6

)
must satisfy

∑
d(πpi

) ≥ 12. Then we show that for any
Φ, the six-tuple (πc1 , πc2 , . . . , πc6) must satisfy

∑
d(πci) ≥

510. This will prove that d(Φ) ≥ 12 + 510 = 522.
First we explain why an optimal uniform schedule Φ

must have the home-road pattern HHH-RRR-HHH-RRR for
one league, and RRR-HHH-RRR-HHH for the other league.
Note that no league can play its six road sets in a way that a
single road set is sandwiched between two home sets (e.g.
HH-RR-HH-R-HH-RRR), since the time slots can be re-
ordered to reduce the total travel distance by the Triangle
Inequality. Thus, each league’s road sets must take place in
two blocks of three (as in Table 4) or three blocks of two (as
in Table 2).

In Section 2, we showed that if the six road sets occur
in three blocks of two, the minimum total travel distance
is 23929 >

∑
ILBpi

+ 522 for the Pacific League and
26899 >

∑
ILBci + 522 for the Central League, for a to-

tal of 50828 kilometres. Thus, if Φ is distance-optimal, then
neither league can have its six road sets in three blocks of
two, as otherwise d(Φ) > 522. Hence, πt ∈ Rt

3 for each
team t ∈ P ∪ C. Without loss, assume the Central League
teams play at home in set 1.

Let Γ be the global constraint that every Pacific League
team plays its road sets in time slots 1, 2, 3, 7, 8, and 9.
Then for each t, SΓ

t is the set of team schedules πt consis-
tent with Γ. Recall that each πt just lists the time slots and
opponents for the six road sets. Since πt must have a fixed
home-road pattern (either HHH-RRR-HHH-RRR or RRR-
HHH-RRR-HHH), there are only 6! possible options for πt.
Hence, |SΓ

t | = 720 for each t ∈ P ∪ C.
Since each team’s ILBt is attained by some schedule

πt ∈ Rt
3, we have B(SΓ

t) = 0. By Theorem 1, if Φ is
a feasible schedule with

∑
d(πpi) ≤ 12, then πpi ∈ Zpi

where Zpi
= {πpi

∈ SΓ
pi

: d(πpi
) ≤ 12}.

By this reduction heuristic, we determine that
(|Zp1 |, |Zp2 |, . . . , |Zp6 |) = (32, 32, 32, 48, 24, 16); for
example, only 32 of the 720 schedules in SΓ

p1
satisfy

d(πp1
) ≤ 12. This reduces the search space considerably.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

76

From there, we apply a simple six-loop procedure, where
on the kth step, we examine all possible schedules πpk

∈
Zpk

for team pk and compare them to the set of feasible
schedules {πp1

, πp2
, . . . , πpk−1

}, adding πpk
to each fea-

sible set if no two teams play against the same opponent
cj in the same time slot. Since the cardinality of each set
Zpi

is so small, Maplesoft can rapidly perform the six-loop
computation (in just 7.8 seconds), generating 128 possi-
ble 6-tuples (πp1

, πp2
, . . . , πp6

) that can appear in Φ with∑
d(πpi

) = 12. Furthermore, this computation shows that
there is no 6-tuple with

∑
d(πpi) < 12.

Thus, Φ = (πp1
, πp2

, . . . , πpn
, πc1 , πc2 , . . . , πcn) must

satisfy
∑

d(πpi
) ≥ 12. We now show that

∑
d(πci) ≥ 510.

To establish this much-harder bound for the Central
League teams, we can repeat the same process as above
by setting the bound M = 510 to determine that
(|Zc1 |, |Zc2 |, . . . , |Zc6 |) = (160, 224, 272, 144, 152, 152).
But a six-loop computation here would take far too long;
instead, we provide a fast algorithm inspired by Theorem 2.

For each Central League team cj , let Tcj ⊆ SΓ
cj be the

subset of schedules for which cj does not play road sets
against p5 and p6 in two consecutive time slots. We find
that B(Tc1) = 365, i.e., any schedule πc1 ∈ Tc1 satisfies
d(πc1) ≥ 365. Similarly we have B(Tc2) = 314, B(Tc3) =
153, B(Tc4) = 313, B(Tc5) = 324, and B(Tc6) = 319.

If each cj has the pattern HHH-RRR-HHH-RRR, it is
easy to see that (at least) two Central League teams can-
not play road sets against p5 and p6 in two consecutive
time slots. For example, if c1 and c2 are two such teams,
then

∑
d(πci) ≥ d(c1) + d(c2) ≥ B(Tc1) + B(Tc2) =

365 + 314 > 510. Thus, if there exists Φ for which∑
d(πci) ≤ 510, then there can only be two such teams,

and one of them must be c3.
We split the analysis into five cases. For each j ∈

{1, 2, 4, 5, 6}, Φ is generated from selecting πc3 and πcj
from Tc3 and Tcj respectively. For the other four teams in
the Central League, we let Zci = {πci ∈ SΓ

ci : d(πci) ≤
510 − B(Tc3) − B(Tcj) ≤ 44}. We then run our six-loop,
computing all possible 6-tuples (πc1 , πc2 , . . . , πc6) satisfy-
ing the given conditions.

If j = 4, then (|Zc1 |, |Zc2 |, |Tc3 |, |Tc4 |, |Zc5 |, |Zc6 |) =
(16, 48, 16, 32, 64, 64), We find that in this case, there are
512 different 6-tuples with

∑
d(πci) = 510 and none with∑

d(πci) < 510. As for the other values of j, there is no
feasible 6-tuple with

∑
d(πci) ≤ 510. Maplesoft is excep-

tionally fast; all five cases run in a total of 119 seconds.
Therefore, we have shown that in any uniform schedule

Φ = (πp1 , πp2 , . . . , πp6 , πc1 , πc2 , . . . , πc6), we must have∑
d(πpi) ≥ 12 and

∑
d(πci) ≥ 510. Since Table 4 is a uni-

form inter-league schedule with d(Φ) = 12 + 510 = 522,
our proof is complete; our optimal solution to BTTP* re-
duces the total travel distance by 7849 kilometres, or 15.3%,
compared to the 2010 NPB schedule.

Solution to BTTP for the NPB
Table 5 presents an inter-league tournament schedule Φ that
is a solution to BTTP with d(Φ) = (0+4+0+0+1+1)+
(51 + 9 + 31 + 58 + 19 + 13) = 187.

1 2 3 4 5 6 7 8 9 10 11 12
p1 c3 c5 c1 c3 c2 c1 c6 c2 c4 c5 c6 c4
p2 c5 c3 c2 c1 c3 c6 c1 c4 c5 c6 c4 c2
p3 c4 c2 c6 c5 c4 c3 c5 c1 c3 c2 c1 c6
p4 c2 c4 c5 c4 c6 c5 c3 c6 c1 c3 c2 c1
p5 c1 c6 c4 c6 c5 c2 c4 c3 c2 c1 c5 c3
p6 c6 c1 c3 c2 c1 c4 c2 c5 c6 c4 c3 c5
c1 p5 p6 p1 p2 p6 p1 p2 p3 p4 p5 p3 p4

c2 p4 p3 p2 p6 p1 p5 p6 p1 p5 p3 p4 p2
c3 p1 p2 p6 p1 p2 p3 p4 p5 p3 p4 p6 p5
c4 p3 p4 p5 p4 p3 p6 p5 p2 p1 p6 p2 p1
c5 p2 p1 p4 p3 p5 p4 p3 p6 p2 p1 p5 p6
c6 p6 p5 p3 p5 p4 p2 p1 p4 p6 p2 p1 p3

Table 5: Solution to BTTP with total distance 42950 km.

In Table 5, we see that only seven of the twelve teams sat-
isfy πt ∈ Rt

3 , namely c1 and all six of the Pacific League
teams. However, unlike Table 4, every Central League team
in this schedule plays road sets against p5 and p6 in consec-
utive time slots. This explains why each d(cj) in Φ is small.

We claim that Φ is an optimal solution, with total distance
d(Φ) +

∑
ILBt = 187 + 42763 = 42950. To prove this,

we set M = 187. Define S∗
t = {πt ∈ St : d(πt) ≤ M},

from which we determine that S∗
p5

⊆ Rp5

3 and S∗
p6

⊆ Rp6

3 .
In the previous section, we defined Tci ⊆ SΓ

ci to be the
subset of schedules for which ci does not play their road
sets against p5 and p6 in two consecutive time slots. From
this, we showed that B(Tc3) = 153, and that B(Tcj) >
M = 187 for j ∈ {1, 2, 4, 5, 6}. We claim that if Φ satisfies
d(Φ) ≤ 187, then πcj /∈ Tcj for all 1 ≤ j ≤ 6.

It suffices to prove the claim for j = 3. There are 144
schedules in Tc3 , all of which belong to the set Rc3

3 . For
example, one such schedule πc3 is

1 2 3 4 5 6 7 8 9 10 11 12
c3 p p2 p1 p6 p p p p3 p4 p5 p p

Suppose there exists a tournament schedule Φ with
d(Φ) ≤ 187 and πc3 ∈ Tc3 . There are nine possible home-
road patterns for πp5 ∈ Rp5

3 (e.g. HHH-RRR-H-RRR-HH
and H-RRR-HHH-RRR-HH), each of which gives rise to
6! = 720 possible orderings for the six home sets. Thus,
there are 9 × 720 = 6480 ways we can select the time
slots and opponents for the six home sets in πp5

. Similarly,
there are 6480 ways to do this for πp6

. A simple Maplesoft
procedure shows that only 140 of the 64802 possible pairs
(πp5

, πp6
) are consistent with at least one πc3 ∈ Tc3 .

For each of these 140 cases, define the global constraints
Γ1,Γ2, . . . ,Γ140, obtained from fixing the twelve home sets
in {πp5

, πp6
}. For each Γk, define for each j ∈ {1, 2, 4, 5, 6}

the set Zcj = {πcj ∈ SΓk
cj : d(πcj) ≤ M − B(Tc3) =

34}. Then we run our six-loop to compute all possible
6-tuples (πc1 , πc2 , . . . , πc6) satisfying the given conditions
with πc3 ∈ Tc3 and πcj ∈ Zcj for j �= 3. Within twenty min-
utes, Maplesoft solves all 140 cases and returns no feasible
6-tuples that can appear in a schedule Φ with d(Φ) ≤ 187.

Therefore, in Φ, each cj must play road sets against p5 and
p6 in consecutive time slots. Thus, teams p5 and p6 satisfy
the conditions of Theorem 2. Hence, the home-road pattern
of πp5

and πp6
in Φ must be HH-RRR-HH-RRR-HH.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

75

Without loss, assume that p5 plays a home set against c1
within the first six time slots; otherwise we can read the
schedule backwards by symmetry. Thus, there are 6!

2 = 360
ways to assign opponents to the six home sets in πp5

. By
Theorem 2, each of these 360 arrangements uniquely deter-
mines the six home sets in πp6

.
A short calculation shows that in order for d(Φ) ≤ M =

187, teams p1 and p3 must also play their six road sets in two
blocks of three. In other words, πp1

∈ Rp1

3 and πp3
∈ Rp3

3 .
As mentioned earlier, there are 9×6! possible ways to select
the six home sets for each of πp1 and πp3 .

Thus, there are 360× (9 · 6!)× (9 · 6!) ways we can select
the 24 home sets played by the teams in {p1, p3, p5, p6}. We
eliminate all scenarios in which some pi and pj play against
some ck in the same time slot. For the possibilities that re-
main, we create a global constraint to apply Theorem 1.

Let {Γ1,Γ2, . . . ,Γk} be the complete set of global con-
straints derived from the above process, where each Γi fixes
24 of the 72 matches, corresponding to the home sets of
{p1, p3, p5, p6}. The reduction heuristic of Theorem 1 al-
lows us to quickly verify the existence of feasible tourna-
ment schedules Φ consistent with Γi for which d(Φ) ≤ M .

To explain this procedure, let us illustrate with the inter-
league schedule in Table 5. Let Γ be the constraint that fixes
the 24 home sets of teams p1, p3, p5, and p6 in Table 5. Then
SΓ
c5 , defined as the subset of schedules in Sc5 consistent with

Γ, consists only of team schedules πc5 for which c5 plays
road sets against p1 in slot 2, p3 in slot 7, p5 in slot 11, and
p6 in slot 12.

We find that there are only 11 schedules πc5 ∈ SΓ
c5 with

d(πc5) ≤ M that are consistent with Γ. Furthermore, each
d(πc5) ∈ {19, 41, 46, 48}, implying that B(SΓ

c5) = 19.
Similarly, we can calculate the other values of B(SΓ

cj).

We find that
∑6

j=1 B(SΓ
pj
) = 0 and

∑6
j=1 B(SΓ

cj) =
51 + 9 + 31 + 58 + 19 + 13 = 181, implying that Zc5 =
{πc5 ∈ SΓ

c5 : d(πc5) ≤ 187 + 19− 181 = 25}. Hence, Zc5
reduces to just the two schedules with d(πc5) = 19, includ-
ing the team schedule πc5 in Table 5.

By Theorem 1, any schedule Φ consistent with Γ satis-
fying d(Φ) ≤ M must have the property that πt ∈ Zt for
each team t. Since each |Zcj | is small, the calculation is ex-
tremely fast. Of course, if any |Zcj | = 0, then no schedule
Φ can exist.

This algorithm, based on Theorems 1 and 2, runs in 34716
seconds in Maplesoft (just under 10 hours). Maplesoft gen-
erates zero inter-league schedules with d(Φ) < 187 and
14 inter-league schedules with d(Φ) = 187, including the
schedule given in Table 5. Since we made the assump-
tion that p5 plays a home set against c1 within the first six
time slots, there are actually twice as many distance-optimal
schedules by reading each schedule Φ backwards.

In each of the 28 distance-optimal schedules Φ, we find
that (d(πp1), d(πp2), . . . , d(πp6)) = (0, 4, 0, 0, 1, 1) and
(d(πc1), d(πc2), . . . , d(πc6)) = (51, 9, 31, 58, 19, 13).

Therefore, we have proven that Table 5 is an optimal inter-
league schedule for the NPB, reducing the total travel dis-
tance by 8184 kilometres, or 16.0%, compared to the 2010
NPB schedule.

Conclusion
In this paper, we introduced the Bipartite Traveling Tour-
nament Problem and applied it to the Nippon Professional
Baseball (NPB) league, illustrating the richness and com-
plexity of bipartite tournament scheduling. There may be
other sports leagues for which BTTP is applicable. We can
also expand our analysis to model tripartite and multipar-
tite tournament scheduling, where a league is divided into
three or more conferences. A specific example of this is the
newly-created Super 15 Rugby League, consisting of five
teams from South Africa, Australia, and New Zealand. In
addition to intra-country games, each team plays four games
(two home and two away) against teams from each of the
other two countries. It would be interesting to see whether
we can determine the distance-optimal tripartite tournament
schedule for this rugby league using our two heuristics.

While the solution to the uniform BTTP* was relatively
simple, our solution to the non-uniform BTTP required 10
hours of computations. Furthermore, we were only able to
solve BTTP by applying Theorem 2, whose requirements
would not hold for a randomly-selected 12 × 12 distance
matrix. As a result, we require a more sophisticated tech-
nique that improves upon our two heuristics, perhaps using
methods in constraint programming and integer program-
ming, such as a hybrid CP/IP. We wonder if there exists a
general algorithm that would solve BTTP given any distance
matrix, for “small” values of n such as n = 6, n = 7, and
n = 8. We leave this as a challenge for the interested reader.

Acknowledgements
This research has been partially supported by the Japan Soci-
ety for the Promotion of Science (Grant-in-Aid for Scientific
Research), the C & C Foundation, the Kayamori Foundation,
and the Inoue Research Award for Young Scientists.

References
Easton, K.; Nemhauser, G.; and Trick, M. 2001. The travel-
ing tournament problem: description and benchmarks. Pro-
ceedings of the 7th International Conference on Principles
and Practice of Constraint Programming 580–584.
Hoshino, R., and Kawarabayashi, K. 2011a. The inter-
league extension of the traveling tournament problem and
its application to sports scheduling. Proceedings of the 25th
AAAI Conference on Artificial Intelligence (to appear).
Hoshino, R., and Kawarabayashi, K. 2011b. The multi-
round balanced traveling tournament problem. Proceedings
of the 21st International Conference on Automated Planning
and Scheduling (to appear).
Kendall, G.; Knust, S.; Ribeiro, C.; and Urrutia, S. 2010.
Scheduling in sports: An annotated bibliography. Comput-
ers and Operations Research 37:1–19.
Lawler, E. 1976. Combinatorial Optimization: Networks
and Matroids. New York: Holt, Rinehart, and Winston.
Trick, M. 2011. Challenge traveling tournament problems.
[Online; accessed 22-April-2011].
Wikipedia. 2011. List of sports attendance figures. [Online;
accessed 22-April-2011].

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

76

