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Abstract

Existing activity recognition approaches in the smart
home domain suffer from poor human activity models.
Combining expertise from cognitive ergonomics and
ubiquitous computing, we discuss the hard technical
challenges to address when leveraging a realistic model
of human activity. We present the architecture of a pro-
totype smart home system that we are developing and
show the gap that exists between our current capabil-
ities in terms of contextual-knowledge extraction and
the complexity of the targeted activity recognition. To
fill this gap, we propose and discuss the integration of
PHATT, an existing algorithm for plan recognition, into
our system in order to mine additional information from
the dynamics of context.

1 Introduction and Motivation
A smart home is a residence equipped with information-
and-communication-technology devices conceived to col-
laborate in order to anticipate and respond to the needs of the
occupants, working to promote their comfort, convenience,
security and entertainment while preserving their natural in-
teraction with the environment (Aldrich 2003).

When talking about natural interaction, one of the most
precious resources to preserve is user attention: during their
activities, users should be supported invisibly, reducing in-
terruptions and explicit interactions with the system as much
as possible. In order to achieve these goals, smart home sys-
tems must be able to take into account the context, that is
the implicit situational information that influences human
behavior (Roy et al. 2010), recognizing people activities to
provide adapted functionalities. For example, under some
conditions, knowing that an inhabitant is executing some
long-lasting static activity in a room can suggest that the
system should turn on the room’s heating and turn off the
other rooms’ lights.
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Existing solutions for human activity recognition often
rely on data coming from wearable sensors or video cameras
(Chen and Nugent 2009), technologies that are difficult to
deploy and get accepted in real-world households. Further-
more, these solutions address the problem of activity pattern
discovery directly on raw sensor data or video streams, ex-
ploiting data mining techniques to extract recurring patterns
in the raw data and to predict or classify future observations,
as explained in (Kim, Helal, and Cook 2010). The resulting
systems fail to provide adapted services to people in real-
world scenarios, as the “gap” between the captured context
and the complexity of human behavior is too large. We be-
lieve that the main reasons are the poverty (or absence) of the
underlying models of human behavior and activities, which
don’t handle some fundamental aspects of the reality, and/or
the lack of computing models taking advantage of these as-
pects.

To address these issues, we started an interdisciplinary
project that brings together researchers from the fields of
ubiquitous computing and cognitive ergonomics. Our aim
is to develop a smart home system that is able to prevent en-
ergy waste and preserve inhabitants’ comfort, leveraging on
realistic human activity models. Our hypothesis is that hu-
man activity models have to be taken into account as chal-
lenging implication for informatics, although they shall not
be directly integrated into computing models.

In this paper, our contribution is threefold. In Section 2,
we present some of the challenging dimensions of human
activity, which are not handled by most existing approaches,
emerging when considering activity as a situated process,
relying on actualization of concerns, and integrated in a net-
work of interactions. In Section 3, we present a functional
architecture that is designed to extract high-level situations
from low-level raw sensor data. We show the need for an
additional activity recognition mechanism and a system ar-
chitecture that leverages the ubiquitous computing princi-
ples and that is at the core of the prototype system that we
are developing. In Section 4, we propose to adapt PHATT, an
existing algorithm for plan recognition (Goldman, Geib, and



Miller 1999; Geib and Goldman 2009), to be integrated into
our architecture, in order to start addressing the challenge
of providing adapted functionalities, which are well suited
to the complexity of domestic activity. Section 5 illustrates
the issues that remain unsolved and that may benefit from
exchanging with the GAPRec and ICAPS research commu-
nities, while Section 6 concludes the paper.

2 Human Models of Domestic Activity
Recent naturalistic studies (Baillie and Benyon 2008; Crab-
tree and Rodden 2004; Guibourdenche et al. 2011; Poizat,
Fréjus, and Haradji 2009; Salembier et al. 2009) provided
some fundamental knowledge for a deeper empirical under-
standing of human domestic activity. Those studies aimed at
orienting the design of ambient systems on the basis of real
activity models and definitions of activity contexts, from the
inhabitants’ points of view. These formal descriptions of real
activities and people’s contexts are prerequisite for build-
ing appropriate applications (Greenberg 2001). These mod-
els also raise different issues challenging technical models
for activity recognition.

Many existing technical models for activity recognition
consider human activities as sequences of targeted actions
that are always executed in the same order and which are
never concurrently executed or interleaved with actions cor-
responding to other activities (Gu et al. 2009). Instead, we
conducted our work in reference to the course of action em-
pirical research program (Theureau 2003). This theoretical
framework, as well as naturalistic studies, demonstrates that
(domestic) activity is opportunistic. Inhabitants frequently
interrupt a particular task for a while in order to accomplish
another one. Individual activity at home is constituted of
multiple lines of different concerns which structure a kind
of fuzzy involvement in the activity. For example, a mother
can be ironing while following a TV-show and looking after
children playing at the first floor. Inhabitants manage several
activities at the same time with several underlying concerns,
which take part in their individual context. Activity is never
built according to a pre-established and hierarchical plan but
is constantly reoriented according to inter-individual inter-
actions and interactions with the physical environment. This
raises design issues relative to the gap between this complex
human context and the context of the system based upon an
environmental capture.

In addition, the same behavior (e.g. closing shutters) can
have several meanings (e.g. reducing the brightness in a
room, ensuring some privacy, increasing the sense of safety,
reducing the temperature inside the house). This slight gap
is due to the asymmetrical relation between environment
as raw material, and situation as experienced environment
through the individual’s activity. Thus, the model has to in-
tegrate several layers of inference from a low level (e.g., a
shutter is being closed) to a high level (e.g., Julie wants to
have more cosiness), the latter the more problematic. Some
situations can cause the system to an inability to determine
the appropriate action to take; thus, designing a context-
aware system implies designing the interaction with the user
in order to manage uncertainty (explicit interaction, valida-
tion, etc).

Another design limitation rises from the impossibility for
a smart home system to act according to deterministic rules
only (either manually provided or automatically extracted
through machine learning techniques). In our precedent ex-
ample, a rule such as “closing shutters when night falls”
can’t be adapted to the several meanings underlying the clos-
ing of shutters. However, some solutions are based upon
such design principles (Gu et al. 2004; Campo et al. 2006;
Bonhomme et al. 2008b; 2008a), but they encounter diffi-
culties to be adapted to inhabitants’ practices. Even though
some recurrent activities (e.g., cooking, taking children to
bed, watching night shows on TV) can be observed at day
or week scales, they nevertheless seem to be always accom-
plished differently, at different times or in a different order.
Routines illustrate the recurrence of concerns, not the exe-
cution of schemes of action, as some works assume (Chan et
al. 2008).

Furthermore, individual and collective scales of activ-
ity are intertwined, mutually (Crabtree and Rodden 2004;
Poizat, Fréjus, and Haradji 2009) and conflictually (Baillie
and Benyon 2008) giving shape to one another. For example
the cleaning can be initiated by an individual and finished by
another, the latter doing a different way than what the former
had previously thought. Therefore, the system design can’t
rely on a human activity considered only as individual, a
lonely man doing one thing at a time.

Moreover, the activity can’t be strictly associated with
a specific space (Guibourdenche et al. 2011): families are
distributed across multiple scales of physical spaces (floors,
rooms, systems of tools, voices, noises). During a local ac-
tivity (for example, a mother doing the ironing and watch-
ing TV in the living room), concerns may refer to different
places or people (as supervising children in the example: the
mother is also concerned with her daughter alone upstairs).
Those characteristics imply that the system can’t consider
only a local point of view on the activity and must integrate
local and global points of views.

Now our aim is to specify an architecture capable of inte-
grating these various constraints.

3 Architecture
In this Section, we present the architecture of a prototype
system that we are developing. The aim of our system is
to capture physical information from the environment, ex-
tract higher-level concepts and combine them to infer hu-
man situations and activities, with the ultimate goal of semi-
automatically managing household appliances and provide
additional functionalities that allow saving energy while pre-
serving comfort. We first present the system architecture,
which relies on the principles of the ubiquitous comput-
ing paradigm (Weiser 1993) and draws its inspiration from
the four-layer model described in (Coutaz et al. 2005), and
then highlight the need for an additional activity recognition
mechanism.

3.1 Layered architecture
To achieve the goals of our scenario, we decided to adopt
the human-computer interaction paradigm called ubiquitous



Figure 1: The four-layer model for context-aware applications
proposed by (Coutaz et al. 2005).

computing. The aim of this paradigm is to seamlessly and
invisibly integrate in the physical environment a multitude
of digital devices that provide services to the users without
asking for their attention (Weiser 1993). To this end, ubiq-
uitous computing applications are typically context-aware,
where the word context is used to address any static or dy-
namic condition that concerns the digital, physical and user-
related environments in which a context-aware application is
executed. In (Coutaz et al. 2005), a four-layer model is sug-
gested to build context-aware applications, as showed in Fig.
1. The first layer, sensing, corresponds to the raw data sensed
from the environment. The second layer, called perception,
can be interpreted as an abstraction of the raw data. Situation
and context identification, the third layer, concerns the con-
text itself and the situations occurring in the home. The top
layer, called exploitation, provides contextual information to
applications. Our work is partly based on this model.

Considering the aforementioned model, the first layer of
our system should be simply composed of sensors, but some
constraints have to be fitted. In order to reduce the global
system cost and to protect the inhabitants’ privacy, the num-
ber of sensors dispatched in the environment has to be re-
duced as much as possible. However, a huge number of
different sensors are required to sense context pieces and
redundancy can significantly increase the reliability of the
sources. With this idea in mind, the sensors will be grouped
in nodes, as showed in Fig. 2. These nodes are able to pre-
process the data with simple computation such as minimum,
maximum and average. They also enable the sensors to com-
municate, using, for instance, 6LowPAN (IPv6 over LoW
Power wireless Area Networks), which is specifically de-
signed for embedded systems (Shelby and Bormann 2009).
Another benefit of using nodes is the optimization of energy
consumption due to radio communications. This is not neg-
ligible as most of the nodes will be running on batteries.

In the second layer of Coutaz’ model, the raw data are
processed to obtain more abstract data about context and oc-
curring situations. The aggregation of raw data is realized
thanks to a data fusion algorithm. The data fusion algorithm
that we adopted is called the belief functions theory or theory
of evidence. More specifically, the transferable belief model
from (Smets and Kruse 1996) is used to aggregate data from
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Figure 2: The system architecture – The sensor nodes send ag-
gregated data to the plug computers, which are in charge of per-
forming sensor data fusion, to produce the context attributes, and
context spaces reasoning, to infer the ongoing situation spaces. An
additional processing step is needed to perform activity recogni-
tion.

homogeneous as well as heterogeneous sources. The aim in
this layer is to extract from raw sensing pieces of higher-
level contextual information. Some existing solutions also
adopt a similar approach. For instance, in (Ricquebourg et
al. 2007), a pressure sensor on a chair, an omnidirectional
webcam and a tracking sensor are used to determine the pos-
ture of a person. Another example is given in (Chahuara,
Vacher, and Portet 2010) with the localization of inhabitants
using microphones, presence sensors and contact sensors on
house furnishing doors.

The bridge between the second and the third layer is real-
ized integrating the results of sensor data fusion into a con-
text model called Context Spaces. This model uses geomet-
rical metaphors to describe context and situations, relying
on the following concepts (Padovitz, Zaslavsky, and Loke
2006): the context attributes, the application space, the situ-
ation spaces and the context state. The context attributes are
information types that are relevant and obtainable by the sys-
tem; in our case, the context attribute values are provided by
the perception layer, together with a degree of confidence on
them, needed to cope with the intrinsic uncertainty of sens-
ing systems in real world scenarios. The application space is
a multi-dimensional space made up of a domain of values for
each context attribute. The situation spaces are subspaces
of the application space defined over regions of acceptable
values of selected context attributes; situation spaces model
real-life situations, e.g., “the whole family is in the kitchen”
or “a person is ironing”. A context state is the collection of
current context attribute values at a given moment (Padovitz,
Zaslavsky, and Loke 2006).

In the situation and context identification layer, the con-



text state provided by the perception layer is analyzed to in-
fer the ongoing situation spaces (representing real-life sit-
uations) and also produce a measure of confidence in their
occurrence. As the same context state can correspond to sev-
eral different situation spaces (and vice versa), reasoning
techniques are needed to discern the actual ongoing real-life
situations in spite of uncertainty (Padovitz, Zaslavsky, and
Loke 2006; Padovitz 2006).

Unfortunately, the computations required by the second
and the third layers to obtain abstract data and to analyze
context and situations are too heavy for our nodes to be pro-
cessed on. To remedy to this problem, more powerful nodes
acting like sinks are used. These nodes are small “plug and
play” computers called plug computers (ref. Fig. 2). Their
role is to gather data from sensor nodes and to perform data
fusion, required to produce the context attributes, and con-
text space reasoning, used to identify ongoing situations.

As explained in (Coutaz et al. 2005), the exploitation layer
acts as an adapter, allowing applications to address to the in-
frastructure their requests for context services at a high level
of abstraction. In our architecture, this layer will provide
information about context to augmented appliances, which
will adapt their behavior in a semi-automatic way.

3.2 Need for an additional layer
In our smart home distributed system, applications will di-
rectly execute on physical objects and household appliances,
adapting their behavior to save energy and preserve inhabi-
tant comfort. To this end, they will exploit context services,
provided by the underlying infrastructure, to gain knowl-
edge about the context and to provide the inhabitants with
relevant information in a suitable way, following the ubiq-
uitous computing principles (Weiser 1993). In our current
implementation, the highest-level contextual information is
produced by the situation and context identification layer ex-
ploiting the context spaces theory: the result is a set of oc-
curring situations. As we explained in Sect. 2, the same sit-
uation can correspond to several different human activities
and the same activity can require different forms of assis-
tance depending on the particular situation. Thus, the artifact
of situation space currently provided by our context spaces
reasoning may not be sufficient to provide the targeted kind
of assistance to inhabitants. To fill the gap between the situ-
ation spaces and the higher-level contextual information that
we target, we need an additional mechanism that extracts a
higher level of contextual knowledge from the underlying
layer. Since the context spaces reasoning mechanisms only
exploit the static contextual information provided by the per-
ception layer, we need to mine additional information from
the dynamics of the context. The main idea is that the con-
text spaces theory provides very powerful modeling and rea-
soning mechanisms, but it can hardly handle the dynamism
of context. Some techniques for context verification are de-
veloped in the theory, which help solve some ambiguities
leveraging on historical context, namely, exploiting the sit-
uation natural flow (Padovitz et al. 2007). Furthermore, an
extension to the context spaces theory has been proposed to
perform context prediction (Boytsov, Zaslavsky, and Synnes
2009). Even though these techniques suggest the promising

idea that context can be iteratively refined to solve ambigu-
ities, they rely on the assumption that the real-world con-
text obeys the same laws of a point following a trajectory
inside a space. This assumption is too restrictive when will-
ing to model the context dealing with the complex behav-
ior of the inhabitants of a house, which often presents quite
unpredictable evolutions. A different mechanism has to be
adopted, which is able to capture relevant information from
the context dynamics and to provide likely explanations for
the observed situation sequences. The next Section presents
an existing plan recognition algorithm and a way to adapt
it to be integrated into our system in order to achieve these
goals.

4 Activity Recognition using PHATT
In this section, we present PHATT, an algorithm introduced
by Goldman, Geib and Miller in (Goldman, Geib, and Miller
1999) to perform plan recognition, and its application to our
architecture. In order to do this, we first present the hierar-
chical task network planning problem, which is “inverted”
by PHATT to perform plan recognition. Then, we show how
PHATT can be adapted to be integrated into our system, in
order to capture relevant information from the context dy-
namics.

4.1 Hierarchical Task Network Planning (HTN)
A Hierarchical Task Network (HTN) planning problem con-
sists in automatically generating a plan starting from a set of
tasks to execute and some constraints (La Placa, Pigot, and
Kabanza 2009; Ghallab, Nau, and Traverso 2004). The prob-
lem relies on the specification of a plan library made of two
components: the tasks to execute, which can be primitive if
they don’t ask for any further planning or open, otherwise,
and the methods, which are prescriptions of how decompos-
ing a task in (partially-) ordered sub-tasks. Note that a same
task can be decomposed using different methods, thus result-
ing in different sub-task sequences. HTN planning proceeds
by decomposing non-primitive tasks recursively into smaller
and smaller subtasks, until primitive tasks are reached that
can be performed directly.

4.2 PHATT
(Goldman, Geib, and Miller 1999; Geib and Goldman 2001;
2009) present PHATT, an algorithm for plan recognition
based on a model of plan execution. The principle behind
the algorithm is to perform plan recognition relying on three
phases: defining the plan library, modeling the plan execu-
tion and recognizing the current execution, starting from the
observations. The plan library is modeled like in the HTN
planning problem presented above. The plan execution is
modeled as a stochastic, generative model that selects ac-
tions to perform from a set of enabled primitive tasks called
pending set, which is dynamically defined depending on the
previous actions performed by the agent, the agent’s goals
and the plan library (Geib and Goldman 2009). Assuming
this model of plan execution, PHATT takes as input a se-
quence of observations, which correspond to agent’s actions,
and generates the set of all possible explanations for the



observed sequence of primitive tasks, in terms of executed
plans and, thus, goals. It then uses Bayesian inference to
calculate the probabilities of the generated explanations and
goals.

4.3 Integration of PHATT with the Existing
Architecture

In Sect. 3, we saw that the situation and context identifica-
tion layer of our architecture, implemented exploiting the
context spaces theory, lacks effective modeling and recogni-
tion of the temporal dimension of the activities. In this Sec-
tion, we described an algorithm for plan recognition called
PHATT; we propose now to adopt that algorithm to provide
a way to model complex activities that develop over time.
To this end, we show the advantages and a way of adapting
PHATT to be integrated into our existing architecture, in or-
der to start addressing the challenge of modeling and recog-
nizing complex activities. We also provide an example that
better explains the proposed modifications to the algorithm
and the overall approach.

Critical aspects of PHATT and adaptation As showed
in Sect. 3, the highest level of abstraction that our exist-
ing architecture provides is given by the situation spaces,
whose abstraction is realized by the context spaces reason-
ing mechanism, which provides the set of ongoing high-level
situations together with a value of confidence in their ac-
tual occurrence. As we said, we propose to integrate PHATT
into our system in order to recognize complex activities that
develop over time. Existing activity recognition approaches
using hidden Markov models or conditional random fields
consider the primitive tasks as elementary actions that can
be performed by a person, e.g., use a spoon or a knife
(Kim, Helal, and Cook 2010). Even in some of the pro-
posed applications of PHATT, the primitive tasks model ele-
mentary actions that can be either directly observed or in-
ferred by their effects (Goldman, Geib, and Miller 1999;
Geib and Goldman 2001; 2009). In our case, the exist-
ing architecture already includes three layers that abstract
high-level situation spaces from the elementary “observa-
tions” provided by sensors. For this reason, we propose
to replace the primitive tasks of the plan library used by
PHATT, which represent the actions that can be observed,
with the situation spaces of the context spaces model. In
this way, the observations are not elementary actions like
those proposed in the original PHATT description (Gold-
man, Geib, and Miller 1999; Geib and Goldman 2001;
2009), but high-level situations occurring in the smart home.
That is, situation spaces become the partially-ordered steps
in which methods and root-level taks are decomposed.

Advantages of PHATT We now show the aspects of
the complex activity that can be modeled and handled by
PHATT and its underlying model of plan execution. In Sect.
2, we presented the domestic activity as opportunistic and
constituted of multiple lines of different concerns. This im-
plies that a same person can be preoccupied by multiple con-
cerns at the same time. We also said that activity is never
built according to a pre-established and hierarchical plan but

is constantly reoriented according to inter-individual interac-
tions and interactions with the physical environment. These
aspects may look as being in contrast with the kind of plan
library adopted by PHATT, which assumes that the activ-
ity can be modeled and fully specified as a hierarchy of al-
ternative partially ordered sequential actions. Instead, even
though PHATT relies on this kind of plan library, it adopts
a separate model for plan execution, as showed in the previ-
ous Section. This model considers the possibility that several
root-level tasks are executed in an interleaved fashion and it
is thus able to produce explanations that contain multiple
high-level goals.

In Sect. 2, we also said that the same behavior of a per-
son can have several motivations, thus making it important
to integrate several layers of inference from a low to a high
contextual level. PHATT provides an additional contextual
inference mechanism to our existing architecture, allowing
to logically abducting the possible goals of inhabitants start-
ing from their dynamic behavior. Starting from this knowl-
edge about a person’s goal, it may be easier to make deci-
sions about the kind of assistance to provide in a particular
situation, since the knowledge about the ongoing situations
is in some ways enriched with their “motivation”.

Example scenario We presented the advantages of
PHATT and a way of integrating it into our existing architec-
ture. We now show an example scenario, illustrating how to
model it and recognize the ongoing activities using the pre-
viously presented tools. Notice that the scenario we chose
is simple enough to allow an effective modeling and recog-
nition of the involved activities using PHATT, while still
being enough difficult to handle to represent an improve-
ment to our existing architecture’s capabilities (not exploit-
ing PHATT). This scenario does not pretend to cover all the
challenging aspects of the activity, which we presented in
Sect. 2. Further work will investigate the aspects that we do
not consider in this scenario. In Sect. 5, we provide some
prospects about possible further adaptations of PHATT in
order to model and recognize more complex activities.

Suppose John is involved in the concern of doing the
housework. For this, he puts his house in order and does the
washing. The washing machine is in a separate room that
can be reached walking through a corridor, which also leads
to other different rooms. John collects the washing from the
whole house, reaches the laundry room with his arms loaded,
and then turns the light on in the room. He loads the wash-
ing machine, turns it on, and then walks away to continue
the housework, turning the light off. After some time, he de-
cides to come back and check whether the washing cycle is
over, discovering that it is not. This time, he leaves the light
on, since he knows that he’ll soon come back to unload the
machine, as few minutes of washing are left. When he goes
back to the kitchen, he notices that it is time to cook the
lunch, so he opens the fridge to check what food is in it and
then turns on his laptop to look for a recipe. In the mean-
while, the washing machine cycle is over and the light in
the laundry room is still on. He finally decides to go back to
the room and unload the machine. Then, he leaves the room,
carrying the clean washing, and turns the light off, having
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Figure 3: A cross-layer model of the concern washing: the root-level task, (a), is decomposed in primitive tasks (situation spaces), (b), which
in turn are obtained reasoning on context attributes, (c).

troubles doing that with his arms loaded.
We now show how our current architecture can recognize

the situations going on in the house and how PHATT can
provide the missing activity recognition functionality. We
model the root-level task Washing as the ordered sequence
of situation spaces depicted in Figure 3.

When John enters the laundry room, the perception layer
notifies the upper layer that the context attribute presence for
the washing room has switched to value true. The context
spaces reasoning notifies PHATT that the situation space
person-in-laundry-room is occurring. Thus, PHATT detects
that the Washing root-level task may be executed by the
person. When John turns on the washing machine, the con-
text spaces reasoning infers that the situation space person-
starts-washing is occurring, which is interpreted by PHATT
as the second step in the Washing task execution. Now
John leaves the laundry room to go to the kitchen and start
cooking. PHATT will observe other situation spaces oc-
curring, e.g. person-using-oven and person-using-hotplates,
primitive tasks of a root-level task Cooking. As we said,
the model of activity execution that underlies PHATT al-
lows multiple root-level tasks to be part of the same ex-
planation. Thus, PHATT will generate an explanation for
the observed situation spaces that contains both the goals
Washing and Cooking. Until the situation space person-
unloads-machine is observed, PHATT will consider the goal
Washing as still active.

In our architecture, the output of PHATT can be reflected
in the exploitation layer, offering contextual information that
includes both the occurring situation spaces and the active
goals. The augmented appliances can then exploit this in-
formation to influence their decisions. For example, if the
person is walking in the corridor towards the room and the
Washing goal is active, the probability that the person
wants to enter the laundry room is higher than the probabil-
ity that the person is going somewhere else. Also, the proba-
bility that the person enters the room to use the washing ma-

chine is higher than any other activity. The augmented light
in the laundry room is notified with this contextual informa-
tion and prepares to switch itself on as soon as the person
actually enters the room. This is useful because other situa-
tions and activities may not require turning on the light. For
instance, a person may just want to enter the laundry room,
grab something and then exit without turning on the light.
Knowing that the Washing goal is active, instead, helps
deciding that the person may need enough light to operate
the washing machine. In this way, the decisions taken by the
augmented appliances to manage their behavior are helped
by a double level of information: the situation spaces, ob-
tained by statically analyzing the sensing data coming from
the physical environment, and the root-level goals, produced
by PHATT by analyzing the dynamics of situation spaces,
generating all the possible explanations and evaluating their
probabilities.

5 Open Issues
To conclude this paper, we present some aspects that we will
investigate in future work.

In Sect. 4, we provided an example of domestic activity
scenario. As we highlighted, that scenario is not representa-
tive of the complex model of activity that we presented in
this paper.

For instance, the case of multiple people acting and inter-
acting is not taken into account by the proposed scenario. In
particular, the person that enters the laundry room may not
be the one that is in charge of the laundry. Or, alternatively,
the person may want to enter the laundry room for a different
reason than doing the laundry. As we explained, taking into
account these eventualities is important since it is impossible
to model and reproduce what happens in inhabitants’ minds.
For this reason, future work will have to address the issue of
non-interruptive takeover of the system. For instance, if the
light automatically turns on in the laundry room, the person
should be provided with a proximate interface to turn it off



if preferred.
Another aspect of activity that we plan to consider shortly

is the recurrence of concerns. Even though the time or order
of actualization of concerns cannot be predicted, we can in-
deed take into consideration the recurrent nature of some of
them. For this purpose, the concepts of prior goal probabil-
ity and of influence of the state of the world introduced in
(Goldman, Geib, and Miller 1999) look very promising.

The recognition of complex ambiguous behaviors of in-
habitants could be improved following the principles de-
scribed in (Coutaz et al. 2005), combining PHATT with the
context spaces and with the perception layer using a holistic
approach. In other words, we may use PHATT to provide
feedback to the underlying context spaces reasoning and
sensor data fusion layers. The feedback could be positive
or negative, depending on the output of PHATT: if the top-
ranked explanation has a high probability with respect to the
others and as an absolute value, we may return to the lower
layers a positive feedback. This feedback allows confirming
the results of the context reasoning process and strengthen-
ing the belief in the sensor data fusion results, for instance
exploiting the conditioning function described in (Smets and
Kruse 1996).

Concerning the implementation aspects of PHATT, we
need to carefully consider some important aspects, described
in the rest of this Section.

(Geib and Goldman 2009) presents the assumption that
each goal of an agent is known since the beginning of the
execution. In Sect. 3, we said that human activity is char-
acterized by inter-individual interactions and interactions
with the physical environment, which result in an “on-the-
fly” modification of the concerns the person is involved in.
The assumption made by PHATT’s implementation is thus
clearly in contrast with our model of activity. Practically, the
consequence of this assumption is that all the explanations
and the probabilities have to be recalculated when a new
goal is discovered. Future work will investigate the conse-
quences of removing this assumption.

PHATT is implemented with the underlying assumption
that all the actions performed by the agent are either di-
rectly observable or, in the case of adversarial plan recog-
nition (Geib and Goldman 2001), inferable from their ef-
fects (changes in the state of the world or observation of
“disabled” actions (Geib and Goldman 2001)). No concept
of degree of uncertainty in the observations is considered,
so there is no way to take into consideration the confidence
value provided as output of the context spaces reasoning pro-
cess. Further work will study ways to incorporate the confi-
dence measure into PHATT or effective ways to choose con-
fidence thresholds able to discern the occurrence of situation
spaces.

We also need to investigate how the same situation space
can be part of different root-level tasks. In (Goldman, Geib,
and Miller 1999), the modeling allows the same primi-
tive task to belong to multiple root-level tasks (the authors
call overloaded these primitive tasks (Goldman, Geib, and
Miller 1999)). In the implementation described in (Geib and
Goldman 2009), this aspect is left as an open research ques-
tion. In our system, different human concerns can reflect in

the detection of the same situation spaces, and the same con-
cern can be actualized in different situation spaces, leading
to the need to model overloaded primitive tasks.

6 Conclusions
In this paper, we showed that the limitations of existing ac-
tivity recognition approaches in the smart home domain are
often due to the poverty of the adopted human-activity mod-
els. Combining expertise from the cognitive ergonomics and
the ubiquitous computing fields, we discussed the hard tech-
nical challenges to address when leveraging on a realistic
model of human activity. We presented the architecture of
a smart home prototype that we are developing and showed
the gap that exists between our current capabilities in terms
of contextual-knowledge extraction and the complexity of
the targeted activity recognition. To fill this gap, we pro-
posed and discussed the integration of an existing algorithm
for plan recognition into our system, in order to mine addi-
tional information from the dynamics of context.

Much work is still needed to perform activity recognition
when accepting the difficult challenges raised by our com-
plex naturalistic human activity model. Our ultimate aim is
to extract a rich basis of contextual information to be used to
provide the inhabitants of a smart home with adapted func-
tionalities, targeted to obtain energy saving while preserving
inhabitants’ comfort.
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Poizat, G.; Fréjus, M.; and Haradji, Y. 2009. Analysis
of activity in domestic settings for the design ubiquitous
technologies. In European Conference on Cognitive Er-
gonomics: Designing beyond the Product — Understanding
Activity and User Experience in Ubiquitous Environments,
ECCE ’09, 14:1–14:2. VTT, Finland, Finland: VTT Techni-
cal Research Centre of Finland.
Ricquebourg, V.; Delafosse, M.; Delahoche, L.; Marhic, B.;
Jolly-Desodt, A.; and Menga, D. 2007. Fault Detection by
Combining Redundant Sensors: a Conflict Approach Within
the TBM Framework. In COGIS 2007, COGnitive systems
with Interactive Sensors. Stanford University.
Roy, P. C.; Bouchard, B.; Bouzouane, A.; and Giroux, S.
2010. Web Intelligence and Intelligent Agents. InTech. chap-
ter Combining Pervasive Computing with Activity Recogni-
tion and Learning, 447–462. ISBN: 978-953-7619-85-5.
Salembier, P.; Dugdale, J.; Frejus, M.; and Haradji, Y. 2009.
A descriptive model of contextual activities for the design
of domestic situations. In European Conference on Cogni-
tive Ergonomics: Designing beyond the Product — Under-
standing Activity and User Experience in Ubiquitous Envi-
ronments, ECCE ’09, 13:1–13:7. VTT, Finland, Finland:
VTT Technical Research Centre of Finland.
Shelby, Z., and Bormann, C. 2009. 6LoWPAN: The Wireless
Embedded Internet. John Wiley & Sons, Ltd.
Smets, P., and Kruse, R. 1996. The transferable belief model
for belief representation. In Uncertainty Management in In-
formation Systems. Boston: Kluwer Academic Publishers.
343–368.
Theureau, J. 2003. Handbook of cognitive task design.
New Jersey: Lawrence Erlbaum Associates. chapter Course-
of-action analysis and course-of-action-centered design, 55–
81.
Weiser, M. 1993. Some computer science issues in ubiqui-
tous computing. Commun. ACM 36:75–84.


