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Foreword

Plan Recognition and its many variants represent an ever-increasingly important field of
research. With the advent of intelligent agents who can reason for themselves, it becomes
even more important to be able to reason about other agents.

In previous years the link between ICAPS and PR has been declining to the point
where, in 2010, no recognition literature was presented. GAPRec represents the first time
the recognition community have had an explicit presence at ICAPS and further offers a
new avenue for upcoming recognition research. We are hopeful that this has invigorated
those who attended and perhaps the wider planning community to submit their work to
ICAPS in future years and potentially re-examine the unexplored links between planning
and recognition.

One of the key aims of the workshop was to have an open and frank discussion on the
possibility of a plan recognition competition. A summary of the outcome of this debate
is included in these proceedings, with the consensus being that such a competition should
undoubtedly happen in the near future. A competition would present an opportunity to
overcome one of the major criticisms of recognition-related work – the lack of standardised
evaluation schema and metrics. This in itself is often a barrier to acceptance at ICAPS
and other conferences.

The workshop attracted a diverse set of submissions, which when combined represent
an excellent snapshot of PR today and the current state-of-the-art. The organising com-
mittee wish to thank all those who submitted and presented their work, and also to those
who attended the workshop for making it a success.

David Pattison, Derek Long and Christopher Geib.
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1 Introduction
Recently, there has been renewed interest and discussion within the Plan Recognition
community as to the creation of a set of standard benchmarks against which researchers
can evaluate their work. Further to this, the possibility of a PR competition has been
proposed as a means of uniting the community and providing other methods of com-
mon evaluation.

This report summarises the opinions and viewpoints raised on these subjects in an
open panel session held at the GAPRec workshop at ICAPS 2011. While the discussion
held was about a PR competition as a whole, this report endeavours to extract the major
topics, many of which would need to be resolved prior to a PR competition being held.

2 Competition Domains
The first hurdle to overcome in the creation of a PR competition is the problem set
which recognisers would be evaluated against. Perhaps this is itself a worthy end-goal,
as PR has historically had no access to a set of public, standardised problems on which
to evaluate systems. This leads to each researcher developing their own, custom test
suite for evaluation. The result of this is that it can be difficult to gain acceptance of
PR work at major conferences, where a rigorous comparison with previous work is
expected. With most work relying on the presence of plan libraries, many in the work-
shop were concerned at the scale of the problem in generating several of these for test
problems. Many existing libraries model various aspects of the PR problem according
to the author’s specific research focus, such that it may be difficult to encourage par-
ticipation from the majority of the community if the libraries used are too bespoke. To
begin with, it may be best to produce a set of simple plan libraries which contain only
HTN-style plans and simple probabilities.
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Further to this, there was some discussion on whether a competition should be
immediately separated into library-based and non-library based tracks. For the latter,
it was suggested that existing IPC results could be used as a readily-available source
of domains and plans, although there was a debate as to how plans which have been
generated by a heuristic can be recognised in an unbiased manner. Tools currently exist
for converting HTNs into flat, PDDL-esque domains, which may offer the ability for
both tracks to run on the same domains (or even be evaluated against each other).

The complexity and difficulty of the problem set was also debated. Some felt that
there should be a “simple” problem domain, and in contrast, a particularly “hard” do-
main, with any unsolved domains returning for successor competitions. However, quite
how difficult the “hard” domain would be was undecided, although it was felt the com-
plexity should come from the domain structure rather than from additional PR compo-
nents such as multiple agents, adversarial agents, partial observability etc.

Of particular interest to a PR competition is the availability of domains prior to
the competition on which to train recognisers. The general feeling was that if this
were to be the case, there must be at least one “blind” domain which entrants are
not aware of before the competition. The Learning track of the IPC was used as an
example wherein test domains are supplied to entrants before the competition, but that
these merely represent a “representation” of the true, hidden problem. Quite how this
scenario would work in the context of training a Bayesian Network for execution on a
different domain is unclear.

3 Standard Input
While the generation of plan libraries and test problems is itself a difficult problem to
overcome, the agreement upon a standardisation of these and other aspects of the PR
process must also be resolved.

There was much debate as to how a standard problem definition language in the vein
of PDDL would be constructed, and if indeed this is even required. Some felt that the
standardisation of plan libraries, plan structure and problem input was an inevitability
which the PR community had avoided for too long, while others felt that establishing
this principle would ultimately lead to the exclusion of many in the community who do
not have the resources to adapt their work to a new input standard.

It was also suggested that problem input could itself be a worthy competition format
as natural language parsing has historically been the target of PR research. In this case,
the parsing of a paragraph containing the problem would be all that entrants were given,
with the goal being to extract the problem input or plan. However, many felt that while
this would make for an interesting competition track, it could detract from the main
competition focus.

4 Evaluation
Agreement on a metric for a competition poses several challenges, not least of which
is that the term Plan Recognition encompasses Plan Recognition, Goal Recognition,
Activity Recognition, and all other variants. Given that each of these is often subtly
different to the rest means that a common metric is probably impossible. Therefore, it
was proposed that, in keeping with the spirit of simplicity, there could be 3 hypotheses
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on each competition track.

1. Next Action – Prediction of the next action the agent will execute.

2. Goal – What the final goal will be.

3. Plan – What plan is being executed.

These 3 outputs are common to most recognisers, although the “Plan” output is
perhaps limited to those doing fully-blown PR. With regard to scoring these outputs
such that a ranking can be achieved, there was no consensus in the room. Precision
and Recall has become a common metric in PR work and would satisfy the “Goal”
output, but may not suit the “Plan” output. The “Next Action” output can simply be
a binary score. A further metric of interest to the community is the processing time
required to output a hypothesis, which can be used in all 3 of the above criteria.

5 Participation
As it stands today, one of the biggest challenges to the PR community is finding a single
outlet for their research. Given that there is no home conference, work can be diver-
gent across several conferences and disciplines, with only 2 or 3 workshops available
dedicated to PR. While a competition would hopefully unite researchers, many in the
workshop also saw it as an opportunity to attract entrants from other “non-traditional”
PR disciplines.

Given the simple scoring metrics outlined above, entrants from fields such as robotics,
natural-language processing and fault diagnosis could participate using their own re-
search. However, many were quick to point out that many applications of PR are linked
to military or private funding, and that these researchers may be excluded if their code
had to be made public. It was unclear whether the source code for entrants should be
made available to competition organisers.

Finally, a straw-poll was taken regarding how many of the GAPRec participants
would be interested in participating in any future PR competition. Five people ex-
pressed an interest, which is comparable with the number of teams present in the first
IPC in 1998, of which the most recent 2011 competition had 27 entrants.

6 Location
Opinions on where a PR competition should be held were divergent. Some believed
that ICAPS would not be a suitable home as there has traditionally been only a small
PR presence, while others felt that running alongside the IPC could help increase par-
ticipation and foster interest in the competition. Other locations such as IJCAI or AAAI
were suggested, as well as having the competition move about from year-to-year in the
same manner as the PAIR workshop (which was also suggested as a suitable home).

7 Conclusions
The goal of the workshop was to determine whether any interest in a PR competition
existed within the community, and to discuss what benefits and obstacles lay in the way
of it becoming a reality. In this regard it was a success, with lively debate and opinions
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given on all sides. Of course, not all matters were fully agreed upon, and these “grey-
areas” would need to be the first things resolved in the creation of any competition.
Even with a competition put to the side, the consensus on needing a common test-suite
for PR evaluation was overwhelming – so much so that this may be the best course of
action in the near future.
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Abstract

We present a method for incremental intention recogni-
tion by means of incrementally constructing a Bayesian
Network (BN) model as more actions are observed.
It is achieved based on a knowledge base of easily
maintained and constructed fragments of BNs, connect-
ing intentions to actions. The simple structure of the
fragments enables to easily and efficiently acquire the
knowledge base, either from domain experts or auto-
matically from a plan corpus. We show experimental
results improvement for the Linux Plan Corpus. In ad-
dition, we create a new, so-called IPD Plan Corpus, for
strategies in the iterated Prisoner’s Dilemma and show
the experimental results for it.

1. Introduction
We propose a method for intention recognition in a dynamic,
real-world environment. An important aspect of intentions is
their pointing to the future, i.e. if we intend something now,
we mean to execute a course of actions to achieve something
in the future (Bratman 1987). Most actions may be executed
only at a far distance in time. During that period, the world is
changing, and the initial intention may be changed to a more
appropriate one or even abandoned (Bratman 1992). An in-
tention recognition method should take into account these
changes, and may need to reevaluate the intention recogni-
tion model depending on some time limit; in addition, as a
new action is observed, the model should be reconfigurable
to incorporate new observed actions.

Generally, intention recognition (also called goal recog-
nition) is defined as the process of becoming aware of the
intention of another agent and, more technically, as the prob-
lem of inferring an agent’s intention through its actions and
their effects on the environment (Heinze 2003). Plan recog-
nition is closely related to intention recognition, extending it
to also recognize the plan the observed agent is following in
order to achieve his intention (Sadri 2010).

Intention recognition is performed in domains in which
it is preferable to have a fast detection of just the user goal
or intention than a more precise but time consuming detec-
tion of the complete user plan, e.g. in the interface agents
domain (Horvitz et al. 1998). Generally, the input of both

∗HTA is supported by FCT Portugal (reference
SFRH/BD/62373/2009).

intention and plan recognition systems are a set of conceiv-
able intentions and a set of plans achieving each intention
(plan library or plan corpus). Intention recognition is dis-
tinct from planning, as goals are not known a priori, and
presumed goals are subject to defeasibility. There are also
generative approaches based on planning algorithms, which
do not require plan library/corpus (e.g., see (Ramı́rez and
Geffner 2010)).

In this work, we use Bayesian Networks (BN) as the in-
tention recognition model. The flexibility of BNs for repre-
senting probabilistic dependencies and the efficiency of in-
ference methods for BN have made them an extremely pow-
erful and natural tool for problem solving under uncertainty
(Pearl 1988; Pearl 2000).

This paper presents a knowledge representation method to
support incremental BN construction for performing inten-
tion recognition during runtime, from an initially given do-
main knowledge base. As more actions are observed, a new
BN is constructed reinforcing some intentions while ruling
out others. This incremental method allows domain experts
to specify knowledge in terms of small and simple BN frag-
ments, which can be easily maintained and changed. Alter-
natively, these fragments can be easily learned from data.

It is inspired by the fact that knowledge experts often
consider a related set of variables together, and organize
domain knowledge in larger chunks. An ability to rep-
resent conceptually meaningful groupings of variables and
their interrelationships facilitates both knowledge elicitation
and knowledge base maintenance (Natarajan et al. 2008;
Laskey 2008). To this end, there have been several methods
proposed for Bayesian network construction from small and
easily maintained network fragments (Pearl 1988; Natarajan
et al. 2008; Laskey 2008). Basically, a combination of BNs
is a graph that includes all nodes and links of the networks,
where nodes with the same name are combined into a com-
mon node. The main issue for a combination method is how
the influence of different parents of the common node can be
combined in the new network, given the partial influence of
each parent in the corresponding fragment. The most exten-
sively used and popular combination method is Noisy-Or,
firstly proposed by (Pearl 1988) for Bayesian networks of
Boolean variables, and generalized by (Srinivas 1993) for
the general case of arbitrary domains. A set of conditions
is needed to be satisfied for the Noisy-OR method to work
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properly. We will discuss in more detail in the third section
where the method is applied in our work (Def.5).

In the next section we recall some background about BN.
Then a general method for incremental BN model construc-
tion during runtime is presented. We next address a spe-
cial well-known case and present experimental results for it,
comparing with other systems.

2. Bayesian Networks
Definition 1 A Bayes Network is a pair consisting of a di-
rected acyclic graph (DAG) whose nodes represent variables
and missing edges encode conditional independencies be-
tween the variables, and an associated probability distri-
bution satisfying the Markov assumption of conditional in-
dependence, saying that variables are independent of non-
descendants given their parents in the graph (Pearl 2000).

In a BN, associated with each node of its DAG is a spec-
ification of the distribution of its variable, say A, condi-
tioned on its parents in the graph (denoted by pa(A))—i.e.,
P (A|pa(A)) is specified. If pa(A) = ∅ (A is called root
node), its unconditional probability distribution, P (A), is
specified. These distributions are called Conditional Proba-
bility Distribution (CPD) of the BN.

The joint distribution of all node values can be de-
termined as the product of conditional probabilities of
the value of each node on its parents P (X1, ..., XN ) =∏N

i=1 P (Xi|pa(Xi)), where V = {Xi|1 ≤ i ≤ N} is the
set of nodes of the DAG.

Suppose there is a set of evidence nodes (i.e. their values
are observed) in the DAG, say O = {O1, ..., Om} ⊂ V . We
can determine the conditional probability distribution of a
variable X given the observed value of evidence nodes by
using the conditional probability formula

P (X|O) =
P (X,O)

P (O)
=
P (X,O1, ..., Om)

P (O1, ..., Om)
(1)

where the numerator and denominator are computed by
summing up the joint probabilities over all absent variables
with respect to V .

3. Incremental Bayesian Network
Construction for Intention Recognition

In (Pereira and Han 2009; Pereira and Han 2010), a general
BN model for intention recognition is presented and justified
based on Heinze’s intentional model (Heinze 2003). Basi-
cally, the BN consists of three layers: cause/reason nodes in
the first layer, connecting to intention nodes in the second
one, in turn connecting to action nodes in the third. The in-
terested readers are referred to those papers for more details.
Han and Pereira (2010a) then presented a method for incre-
mentally constructing such BN model for performing incre-
mental intention recognition, including all the three layers.

A BN model for intention recognition consists of two lay-
ers: the layer of intentions and the layer of actions.

Definition 2 (Intention Recognition BN – IRBN)
A BN for intention recognition (IRBN) W is a triple
〈{Is,As}, pa, PW 〉 where

• Is and As are the sets of intention nodes and action nodes,
respectively. They stand for binary random variables.

• pa is a mapping which maps a node to the set of its par-
ent nodes such that: ∅ 6= pa(A) ⊆ Is ∀A ∈ As, and
pa(I) = ∅ ∀I ∈ Is. This means there is no isolated
action node and intentions are represented by top nodes.

• CPD tables of the action nodes and prior probabilities of
the intention nodes are given by the probability distribu-
tion PW , i.e. PW (X|pa(X)) defines the probability of
X conditional on pa(X) in W, for all X ∈ VW where
VW = Is ∪As.
The intention recognition method will be performed by

incrementally constructing an IRBN as more actions are ob-
served. The construction is based on a prior knowledge base
of Unit BN Fragments consisting of a single intention con-
necting to a single action. We refer to them as the Unit Frag-
ment (of BN) for intention recognition.

Definition 3 (Unit Fragment) A Unit Fragment of BN for
intention recognition consists of an intention I connecting
to (i.e. causally affecting) an action A, and is denoted by
UF (I ,A). Both nodes stand for binary random variables.

Definition 4 (Knowledge Base) A domain knowledge base
KB consists of a set unit fragments.

An intention I has the same fixed prior probability distri-
bution in all the unit fragments it belongs to, denoted by
PKB(I). The prior probability distribution of the top (inten-
tion) nodes also can be made situation-dependent by adding
a pre-intentional layer of cause/reason nodes as in (Han and
Pereira 2010a)—which would enable it to deal with and ex-
plain some important issues in intention/plan recognition
such as intention change/abandonment (Geib and Goldman
2003). However, since the dataset we use later for evalua-
tion has no such information available, we omit that layer to
simplify the presentation.

The simple structure of unit fragments enables domain ex-
perts to easily construct and maintain the knowledge base.
The BN fragments also can be learned from appropriate
datasets, as we shall see later with the Linux plan corpus.

Before presenting the intention recognition algorithm,
let us define some operators for handling CPD tables and
IRBNs.

3.1 Operators for Constructing IRBN
As a new actionA is observed, we need to incorporate it into
the current IRBN. Firstly, the appropriate unit fragments for
A are selected from the domain knowledge base. Han and
Pereira (2010a) proposed some methods for selecting the ap-
propriate fragments in a situation-sensitive manner. They
are based on the intuition that whether an intention may give
rise to an action depends on the situation in which the ac-
tion is observed. That enables to reduce the size of the BN
model, which otherwise could be very large.

We are not going to elaborate further on these methods
here, and assume that the operator select(A,SIT) provides the
(context-dependent) set of unit fragments for action A given
the situation at hand SIT. If SIT is empty, select(A,SIT) is
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Figure 1: Noisy-OR Combination Method

the set of all unit fragments for actionA from the knowledge
base.

Secondly, after having obtained the appropriate frag-
ments, we combine them using the Noisy-OR method (Pearl
1988; Srinivas 1993; Cozman 2004) and obtain an IRBN
with a single action (Figure 1). It is called an Unit IRBN
for action A in situation SIT, and denoted by irBN(A,SIT).

Definition 5 (Unit IRBN via Noisy-OR) The Unit IRBN
for action A in a given situation SIT, irBN (A,SIT ), is ob-
tained via Noisy-OR method as follows.

Let select(A,SIT ) = {UF (I1 ,A), ....,UF (IN ,A)} and
for 1 ≤ i ≤ N , P (A = T |Ii = T ) = pi (defined in frag-
ment UF (Ii ,A)). Then, irBN(A, SIT) is the result of com-
bining UF (I1 ,A), ....,UF (IN ,A) using Noisy-OR method,
i.e. p(A = T |I1, ..., IN ) = 1−∏i:Ii=T (1− pi). Note that
the prior probability distribution of Ii, 1 ≤ i ≤ N , in the
new combined BN is the same as in its original fragment.

The rationale and appropriateness of the application of the
Noisy-OR method here for combining unit fragments is
based on the intuition that each intention Ii, 1 ≤ i ≤ N ,
can be interpreted as a “cause” of action A; and action A oc-
curs when one or more of the intentions are active. Detailed
arguments for this can be found in (Cozman 2004).

Definition 6 (Project of CPD Table) Let T be a CPD table
defining P (X|V ), the probability of a random variable X
conditional on a set of random binary variables V, and V ′ (
V . The project of T on V ′, denoted by proj(T, V′), is the
part of T corresponding to all variables in V \ V ′ being
false.

Now we need to combine the obtained unit IRBN,
irBN(A, SIT), with the current IRBN. For that, in the sequel
we define how to combine two IRBNs. Intuitively, we sim-
ply add up all the new nodes and links of the new IRBN to
the current IRBN, keeping the CPD tables from the original
IRBNs.
Definition 7 (Combination of IRBNs) Let W1 =
〈{Is1, As1}, pa1, P1〉 and W2 = 〈{Is2, As2}, pa2, P2〉
be two IRBNs. The combination of these two IRBNs is an
IRBN, denoted by comb(W1, W2) = 〈{Is,As}, pa, PW 〉,
defined as follows

• As = As1 ∪As2; Is = Is1 ∪ Is2;
• pa(I) = ∅ ∀I ∈ Is; pa(A) = pa1(A) ∪ pa2(A);
• PW (I) = PKB(I) ∀I ∈ Is; and for each A ∈
As, PW (A|pa(A)) = PW1

(A|pa(A)) if A ∈ As1 and
PW (A|pa(A)) = PW2

(A|pa(A)) if A ∈ As2.

Note that here it is allowed the possibility that the observed
agent follows multiple intentions simultaneously. In (Han
and Pereira 2010a) the authors dealt with the case of a sin-
gle intention being pursued, where in the combined IRBN
only the intersection (instead of union) of two intention sets,
Is1 ∩ Is1, is retained; which enables to reduce the size of
the IRBN model.

When some intentions are found irrelevant—e.g. because
they are much unlikely1—those intentions should be remove
from the IRBN. This is enacted by considering them as com-
pletely false and employing a project operator.

Definition 8 (Remove Intentions from IRBN) Let W =
〈{Is,As}, pa, PW 〉 be an IRBN and R ⊂ Is a strict
subset of Is. The result of removing the set of inten-
tions R from W is an IRBN, denoted by remove(W, R) =
〈{IsR, AsR}, paR, PR〉, and defined as follows

• AsR = {A ∈ As | paR(A) 6= ∅}; IsR = Is \R;
• paR(I) = ∅ ∀I ∈ IsR; paR(A) = pa(A) \R;
• PW (I) = PKB(I) ∀I ∈ Is; and for each A ∈ AsR,
PR(A|paR(A)) is defined by the CPD table proj (T , IsR)
where T is the CPD table for A in W, i.e. defined by
PW (A|pa(A)).

Based on these operators, we now can describe an algorithm
for incremental intention recognition in a real-time manner.

Incremental Intention Recognition Algorithm. Repeat
the following step until some given time limit is reached;
the most likely intention in previous cycle is the final result.

• Let A be a new observed action and SIT the current situa-
tion. Combine the current IRBN W with irBN(A,SIT)
we obtain W′ = comb(W, irBN(A, SIT)). If A is the ini-
tially observed action, let W′ = irBN(A, SIT).

• Compute the probability of each intention in W ′, condi-
tional on the set of current observed actions in W ′. Re-
move the intentions which are much less likely than the
others (following Definition 8).

Note that if an observed action is not in the knowledge
base, the action is considered irrelevant to the sought for
intention, and discarded. Furthermore, at any cycle, if the
likelihood of all the intentions are very small (say, smaller
than a given threshold), one could say that the sought for in-
tention is abandoned. This is because the causes and actions
do not support or force the intending agent to keep pursuing
his initial intention anymore.

4. Relations Amongst Intention Nodes
When considering the case in which the observed agent may
pursue multiple intentions simultaneously, it is undoubtedly
indispensable to take into account and express the relations
amongst the intentions in the model.

Pursuing one intention may exclude the other intention to
be pursued. It may be so because of resource limitation, e.g.

1One intention is much less likely than the other if the fraction
of its likelihood and that of the most likely intention is less than
some small threshold. It is up to the KB designer to provide it.
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allowance time is not enough for accomplishing both inten-
tions at the same time. It also may be because of the nature
or restriction of the observed agent’s task: the agent is re-
stricted to pursuing a single intention (e.g. in constructing
Linux plan corpus, a user is given one task at a time to com-
plete. We shall discuss this case in more detail in the next
sections).

We introduce a so-called exclusive relation e—a binary
relation on the set of intention nodes—representing that if
one intention is pursued, then the other intention cannot be
pursued. It is usually, although perhaps not always, the case
that intentions exclusiveness is symmetric. It holds for the
resource limitation case: one intention excludes the other in-
tention because there is not enough resource for accomplish-
ing both, which in turn implies that the latter intention also
excludes the former one. It also clearly holds for the case
where the agent is restricted to pursuing a single intention.
In this paper, we assume that the exclusive relation on inten-
tions e is symmetric; it can be renamed mutually exclusive
relation.

Intentions I1 and I2 are mutually exclusive iff they cannot
be pursued simultaneously, i.e. P (I1 = T, I2 = T ) = 0.
Thus, for any action A, if I1, I2 ∈ pa(A) then the CPD
table for A is undefined. Hence, the BN needs to be re-
structured. The mutually exclusive intentions must be com-
bined into a single node since they cannot co-exist as par-
ents of a node. Each intention represents a possible value of
the new combined node. Namely, let I1, ..., It be such that
e(Ii, Ij), ∀i, j : 1 ≤ i < j ≤ t. The new combined node,
I , stands for a random variable whose possible outcomes are
either Ii, 1 ≤ i ≤ t, or Ĩ—the outcome corresponding to the
state that none of Ii = T . Note that if the intentions I1, ..., It
are exhaustive, Ĩ can be omitted. Next, I is linked to all the
action nodes that has a link from one of Ii, 1 ≤ i ≤ t.

It remains to re-define CPD tables in the new BN. They
are kept the same for actionAwhere I 6∈ pa(A). ForA such
that I ∈ pa(A), the new CPD table at I = Ii corresponds
to the CPD table in the original BN at Ii = T and Ij =
F ∀j 6= i, 1 ≤ j ≤ t, i.e. P (A|I = Ii, ...) = P (A|I0 =
F, ..., Ii−1 = F, Ii = T, Ii+1 = F, ..., It = F, ....). Note
that the left hand side is defined in the new BN, and the right
hand side is defined in the original BN. Similarly, the new
CPD table at I = Ĩ corresponds to Ii = F ∀1 ≤ i ≤ t.
In addition, prior probability P (I = Ii) = P (Ii = T ) and
P (I = Ĩ) =

∏t
i=1 P (Ii = F ) (and then being normalized).

In the next section we will look at a special case where
the observed agent pursues a single intention. Thus, all in-
tentions are mutually exclusive, and they can be combined
into a single node. We then evaluate the method using the
Linux Plan Corpus. After that, in Section 6., we present a
new plan corpus, called IPD, and also present experimental
results for it.

5. Single Intention Being Pursued
5.1 The Model
Suppose the observed agent pursues a single intention. In
this case, all intentions are mutually exclusive, and they can
be combined into a single node. The IRBN then consists of

a single intention node, linking to all action nodes.
Let I1, ..., In be the intentions in the original IRBN. As

usual, they are assumed to be exhaustive, i.e. the observed
agent is assigned an intention from them. The combined
node I thus has n possible outcomes Ii, 1 ≤ i ≤ n. Let
A1, ..., Am be the current observed actions. Applying Equa-
tion 1, we easily obtain the probability of each intention
conditional on the current observed actions as follows, for
1 ≤ j ≤ n,

P (I = Ij |A1, ..., Am) =
P (Ij)

∏m
i=1 P (Ai|Ij)∑n

j=1 P (Ij)
∏m

i=1 P (Ai|Ij)

This implies our intention recognizer has a linear complexity
O(|Is|), where Is is the set of intentions being modeled.

5.2 Experimental Evaluation
The Linux Plan Corpus Plan corpus is the term used
to describe a set of plan sessions and consists of a list of
goals/intentions and the actions a user executed to achieve
them (Armentano and Amandi 2009). Although there are
many corpora available for testing machine learning algo-
rithms in other domains, just a few are available for train-
ing and testing plan/intention recognizers; furthermore, each
of the plan/intention recognizers using plan corpora usu-
ally has its own datasets—which leads to a difficult com-
parison amongst each other. For that important reason,
we chose Linux plan corpus (Blaylock and Allen 2004)—
one of the rare regularly used plan corpora—which was
kindly made publicly available by Nate Blaylock—in order
to test our system. It also enables a better comparison with
other systems using this corpus (Blaylock and Allen 2005;
Blaylock and Allen 2004; Armentano and Amandi 2009).

The Linux plan corpus is modeled after Lesh’s Unix plan
corpus (Lesh 1998). It was gathered from 56 human users
(graduate and undergraduate students, faculty, and staff)
from the University of Rochester Department of Computer
Science. The users have different levels of expertise in the
use of Linux, and they were allowed to perform as many
times as they wished, in order to contribute more plan ses-
sions. The sessions, consisting in sequences of commands
performed by the users to achieve a given goal/intention,
were automatically recorded. At the end of each session,
the users were asked to indicate whether they succeeded in
achieving their goal/intention. In total, there are 547 ses-
sions, 457 of which were indicated as successfully complet-
ing the goal, 19 goal schemas and 43 action schemas. More
details can be found in (Blaylock and Allen 2004) or (Linux-
Plan-Corpus ).

Learning Unit Fragments from Data For unit fragment
UF (I ,A), the conditional probability of A given I is de-
fined by the frequency of A in a plan session for achieving
the goal/intention I divided by the frequency of any action
for achieving I: P (A = T |I = T ) = freq(AI )

freq(I ) . For better
understanding, in the plan corpus each action is marked with
the intention which the action is aiming at. Then, freq(AI )
is the frequency of A being marked by I , and freq(I ) is the
frequency of seeing the mark I .
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Figure 2: Precision and convergence for τ ∈ [0, 1] and for different values of N (N = 1, 2, 3, 4) on Linux Plan corpus.

Note that prior probabilities of all the intentions in the
corpus are given initially, and used for generating tasks for
users (Linux-Plan-Corpus ; Blaylock and Allen 2004).

Making Predictions Similar to (Blaylock and Allen
2004), instead of letting the recognizer make a prediction
after each observed action, we set a confidence threshold τ
(0 ≤ τ ≤ 1) , which allows the recognizer to decide whether
or not it is confident enough to make a prediction; the rec-
ognizer only makes a prediction if the likelihood of the most
likely intention in the model is greater than τ . Otherwise, it
predicts “don’t know”. In addition, instead of only predict-
ing the most likely intention, the recognizer provides a set
of N most likely ones (N-best prediction).

Evaluation Metrics For evaluating our system and com-
paring with the previous ones (Blaylock and Allen 2004;
Armentano and Amandi 2009), we use three different met-
rics. Precision and recall report the number of correct
predictions divided by total predictions and total predic-
tion opportunities, respectively. More formally (also see
(Armentano and Amandi 2009)), let Seq = a1, ..., an be
a sequence of actions (plan session) achieving intention
I . Considering N-best prediction case, let correct(A) =
1 if I is one of N most likely intentions, and 0 other-
wise. Then, precision and recall for Seq are defined as:
precision(Seq) = (

∑n
i=1 correct(ai))/z; recall(Seq) =

(
∑n

i=1 correct(ai))/Z, where z and Z are the number of
predictions made (when the recognizer is confident enough)
and the total number of prediction opportunities (i.e. when
τ = 0), respectively.

On the other hand, convergence is a metric that indi-
cates how much time the recognizer took to converge on
what the current user goal/intention was. Let t be such that
correcti = 0 for 0 ≤ i ≤ t − 1 and 1 for t ≤ i ≤ n (i.e.
t is the first time point which from there on the system al-
ways correctly predicts), convergence for Seq is defined as:
convergence(Seq) = (z − t+ 1)/z.

Finally, the overall precision, recall and convergence are
obtained by taking averages over all testing sessions.

Experiments and Results Because of the small size of the
Linux corpus, similar to previous works, we ran experiments
using the one-out cross validation method (Armentano and
Amandi 2009). Just one at a time, one plan session in the
whole corpus is left out. The rest of the corpus is used for
training the model, which is then evaluated against the left

Table 1: Intention Recognition Results on the Linux Plan Corpus

N-best 1-best 2-best 3-best 4-best
τ 0.95 0.5 0.45 0.42

Precision 0.786 0.847 0.870 0.883
Recall 0.308 0.469 0.518 0.612

Converg. 0.722 0.799 0.822 0.824

out plan session. We study the effect of confidence level τ
w.r.t. precision and convergence (for recall, it clearly is a
decreasing function of τ ) (Figure 2). The greater N, the bet-
ter precision and convergence. The difference in precision
and convergence between two different values of N is large
when τ is small, and gets smaller for greater τ . Most in-
terestingly, we observe that precision and convergence are
not increasingly monotonic on τ . There are critical values
of τ at which the measures have maximal value, and those
values are smaller for greater N. This observation suggests
that in plan/intention recognition task, the more precise (i.e.
the smaller N) the decision is needed to make, the greater
confidence level the recognizer should gain to make a good
(enough) decision. On the other hand, the recognizer should
not be too cautious, leading to refuse to make a prediction
when it would have been able to make a correct one. In
short, this experimentation suggests an important need to
study (experimentally) the confidence threshold τ carefully
for particular application domains, and for particular values
of N . Using the same τ for all values of N could decrease
the recognizer’s performance.

Table 1 shows some of the results for different values ofN
(and the corresponding value of τ ). Similar to the previous
works on the same Linux corpus (Blaylock and Allen 2004;
Armentano and Amandi 2009), we keep the best results of
each case w.r.t. τ for the comparison. For example, we ob-
tained a precision of 78.6% for 1-best that is increased to
87.0% for 3-best prediction and 88.3% for 4-best one. Con-
vergence is increased from 72.2% for 1-best to 82.2% for
3-best and 82.4% 4-best prediction.

The best performance on the Linux corpus (namely, in
terms of precision and convergence) so far was reported in
(Armentano and Amandi 2009), where the authors use vari-
able Markov model with exponential moving average. Here
we got an increment of 14% better precision and 13.3%
better convergence for 1-best prediction, 8.2% better preci-
sion and 9.3% better convergence for 2-best prediction, and
7.5% better precision and 7.7% better convergence for 3-
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best prediction. We also obtained better recalls comparing
with (Blaylock and Allen 2004) in all cases.

Note that in (Armentano and Amandi 2009), the au-
thors use a more fine-grained preprocessing method for their
work, but we suspect it would have increased their perfor-
mance. To fairly compare with both works, we use the orig-
inal corpus.

6. IPD Plan Corpus
We present a new plan corpus in the context of Iterated Pris-
oner’s Dilemma (IPD)2 and show the experimental results
for it. The intentions/goals to be recognized are the (known)
strategies in IPD (see below) and plan sessions are the se-
quences of moves these strategies play with other players.

6.1 Iterated Prisoner’s Dilemma
Prisoner’s Dilemma is a symmetric two-player non-zero
game defined by the payoff matrix (for row player)

(C D

C R S
D T P

)

Each player have two options in each round, cooperates
(C) or defects (D). A player who chooses to cooperate
with someone who defects receives the sucker’s payoff S,
whereas the defecting player gains the temptation to defect,
T . Mutual cooperation (resp., defection) yields the reward
R (resp., punishment P) for both players. In PD, it satisfies
that T > R > P > S. Thus, in a single round, it is al-
ways best to defect, but cooperation may be rewarded if the
game is iterated. In IPD, it is also required that mutual co-
operation is preferred over an equal probability of unilateral
cooperation and defection (2R > T + S); otherwise alter-
nating between cooperation and defection would lead to a
higher payoff than mutual cooperation.

IPD is usually known as a story of tit-for-tat (TFT), which
won both Axelrod’s tournaments (Axelrod 1984). TFT starts
by cooperating, and does whatever the opponent did in the
previous round. It will cooperate if the opponent cooper-
ated, and will defect if the opponent defected. But if there
are erroneous moves (i.e. an intended move is wrongly per-
formed with a given execution error), the performance of
TFT declines: it cannot correct errors or mistakes. Tit-for-
tat is then replaced by generous tit-for-tat (GTFT), a strategy
that cooperates if the opponent cooperated in the previous
round, but sometimes cooperates even if the opponent de-
fected (with a fixed “forgiveness” probability p > 0) (Sig-
mund 2010). GTFT can correct mistakes.

Subsequently, TFT and GTFT were replaced by win-stay-
lose-shift (WSLS) as the winning strategy chosen by evo-
lution (Sigmund 2010). WSLS repeats the previous move
whenever it did well, but changes otherwise.

Some other less famous strategies (which we are going to
use later) are GRIM – a grim version of TFT, prescribing
to defect except after a round of mutual cooperation, and
Firm-But-Fair (FBF) – known as a tolerant brother of TFT,

2It also applies for other famous social dilemmas such as Snow
Drift and Stag Hunt (Sigmund 2010).

prescribing to defect only if getting a sucker’s payoff S in
previous round. Details of all strategies considered here can
be found in (Sigmund 2010) (Chapter 3).

Next, we describe how training and testing plan corpora
are created employing these strategies. Abusing notations,
R, S, T and P are also referred to as game states (in a single
round or interaction). We too use E (standing for empty) to
refer to the game state having had no interaction.

6.2 IPD Plan Corpus Description
We made an assumption that all strategies to be recognized
have the memory size bounded-up by M (M ≥ 0)—i.e.
their decision at the current round is independent of the past
rounds that are at a time distance greater thanM . The strate-
gies described above have memory M = 1.

An action in the corpus is of the form s1...sMξ, where
si ∈ {E,R, T, S, P}, 1 ≤ i ≤ M , are the states of the M
last interactions, and ξ ∈ {C,D} is the current move. We
denote by ΣM the set of all possible types of action. E.g,
Σ1 = {EC,RC, TC, SC, PC,ED,RD, TD, SD,PD}.
This encoding method enables to save the game states with-
out having to save the co-player’s moves, thus simplifying
the corpus representation, described below.

Suppose we have a set of strategies to be recognized. The
plan corpus for this set consists of a set of plan sessions gen-
erated for each strategy in the set. A plan session of a strat-
egy is a sequence of actions played by that strategy (more
precisely, a player using that strategy) against an arbitrary
player. As an example, let us consider TFT and the fol-
lowing sequence of its interactions with some other player
(denoted by X), in the presence of noise

round : 0 1 2 3 4 5

TFT : − C C D D D

X : − C D D C D

TFT-states : E R S P T P

The corresponding plan session for TFT is
[EC,RC, SD,PD, TD]. At 0-th round, there is no
interaction, thus the state is E. TFT starts by cooperating
(1-st round), hence the first action of the plan session is EC.
Since player X also cooperates in the 1-st round, the game
state at this round is R. TFT reciprocates in the 2-nd round
by cooperating, hence the second action of the plan session
is RC. Similarly for the third and the fourth actions. Now,
at the 5-th round, TFT should cooperate since X cooperated
in 4-th round, but because of noise, it makes an error to
defect. Therefore, the 5-th action is TD.

6.3 Plan Corpora Generation
Let us start by generating a plan corpus of seven strategies
within the IPD framework: AllC (always cooperate), AllD
(always defect), TFT, GTFT (probability of forgiveness a
defect is p = 0.5), WSLS, GRIM and FBF.

We collect plan sessions of each strategy by playing a ran-
dom choice (C or D) in each round with it. To be more thor-
ough, we can also play all the possible combinations for each
given number of rounds to be played. For example, if it is
10, there will be 1024 (210) combinations—C or D in each
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Figure 3: Plot of our method’s precision and convergence for τ ∈ [0, 1] and for different values of N (N = 1, 2, 3) in IPD Plan Corpus.

round. When noise is present, each combination is played
repeatedly several times.

The training corpus is generated by playing with each
strategy all the possible combinations 10 times, and for each
number of rounds from 5 to 10. The testing dataset is gener-
ated by playing a random choice with each strategy in each
round, and also for each number of rounds from 5 to 10.
We continue until obtaining the same number of sessions as
in the training dataset (corpus). Both datasets are generated
in presence of noise (namely, an intended move is wrongly
performed with probability 0.05).

6.4 Results
The intention recognition model is acquired using the train-
ing corpus. Figure 3 shows the precision and convergence
of the model with respect to the testing dataset. Given that
the training as well as the testing datasets are generated in
presence of noise, the achieved intention recognition perfor-
mance is quite good. Namely, for big enough τ , both pre-
cision and convergence scores are greater than 0.9, even for
the 1-best case.

7. Related Work
Bayesian networks have been one of the most successful
models applied for intention/plan recognition problem (most
importantly, see, (Charniak and Goldman 1993; Geib and
Goldman 2009)). Depending on the structure of plan li-
braries, they employed some knowledge-based model con-
struction to build BNs from the library, and then infer the
posterior probability of explanations (for the set of observed
actions). These works address a number of issues in inten-
tion/plan recognition, e.g. the observed agent follows mul-
tiple intentions or interleaved plans simultaneously; fails to
observe actions; addresses partially ordered plans. However,
they made several assumptions for the sake of computational
efficiency. First, the prior probabilities of intentions are as-
sumed to be fixed. This assumption is not reasonable be-
cause those prior probabilities should depend on the situa-
tion at hand, and be captured by the causes/reasons of inten-
tions (see (Pereira and Han 2010) for several examples). In
(Pynadath and Wellman 1995), a similar context-dependent
approach was used, although the model is not incremental.
Second, intentions are assumed to be independent of each
other. This is not generally the case since the intentions may
support or exclude one another. Those works hence do not
appropriately address multiple intention recognition.

This latter assumption must always, explicitly or implic-
itly, be made by the approaches based on (Hidden) Markov

Models, e.g. (Armentano and Amandi 2009; Bui 2003),
or statistical corpus-based machine learning (Blaylock and
Allen 2004; Blaylock and Allen 2005). Generally, in those
approaches, a separate model is built for each intention; thus
no relations amongst the intentions are expressed or can be
expressed. These works were restricted to the single inten-
tion case.

8. Conclusion and Future Work
We have presented a method for incremental intention
recognition. The method is performed by dynamically con-
structing a BN model for intention recognition from a prior
domain knowledge base consisting of easily maintained
fragments of BN. A fragment consists of a single intention
connecting to a single action. This simple network struc-
ture allows easy maintenance by domain experts as well as
automatically building from available plan corpora.

The main contribution of this paper is our efficient, yet
very simple, method for incremental intention recognition.
In general, its performance is better than all existent ones
that make use of the Linux corpus. Given that our method
also has the same linear complexity as other (best) existent
ones, and that our model learning process is much simpler,
we believe to have achieved significant improvements. In
addition, the good performance of the method with respect
to the Linux corpus shows its applicability to the important
interface-agents domain (Horvitz et al. 1998).

The other contribution, though perhaps only minor, is our
method for multiple intention recognition. We have pro-
posed how to represent relationships amongst intentions in
the intention recognition model. This aspect is indispens-
able in multiple intention recognition, but always omitted in
previous works. Our next step is to evaluate the method ex-
perimentally. Note that although elsewhere reported a capa-
bility of dealing with the case where multiple intentions are
being followed (e.g. (Geib and Goldman 2009)), to the best
of our knowledge that capability has never been evaluated
experimentally, partly due to unavailability of appropriate
plan corpora or benchmarks. Thus, for the evaluation, we
must gather an appropriate plan corpus allowing for the pos-
sibility that users pursue multiple intentions simultaneously.

In addition, for the intention recognition community,
given the rich set of strategies in the literature (Hofbauer
and Sigmund 1998; Sigmund 2010), we have provided here
an important, easily extendable benchmark for evaluating
intention recognition methods. Given that IPD and other
social dilemmas are regularly found in everyday life, and
the strategies studied within the framework of those dilem-
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mas actually reflect human behaviors, we believe that game
theory (and more generally, evolutionary game theory (Hof-
bauer and Sigmund 1998)) is a highly promising framework
for creating benchmarks for intention recognition. Meth-
ods applicable for this benchmark can be used for a wide
range of application domains, as diverse as in economics,
psychology and biology (Sigmund 2010). For example,
our intention recognition model has been successfully used
to study the role of intention recognition in the evolution
of cooperation, one of the most important issues actively
studied in those fields (Han, Pereira, and Santos 2011;
Han, Pereira, and Santos ).

We also aim at a real deployment for some application
domains such as Elder Care (Pereira and Han 2010) and
Ambient Intelligence (Han and Pereira 2010b). The simple
structure of our BN fragments would enable an easy data
collection process.
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Abstract

Plan recognition is the problem of inferring the goals and
plans of an agent from partial observations of her behavior.
Recently, it has been shown that the problem can be formu-
lated and solved using planners, reducing plan recognition to
plan generation. In this work, we extend this model-based
approach to plan recognition to the POMDP setting, where
actions are stochastic and states are partially observable. The
task is to infer a probability distribution over the possible
goals of an agent whose behavior results from a POMDP
model. The POMDP model is shared between agent and ob-
server except for the true goal of the agent that is hidden to
the observer. The observations are action sequences O that
may contain gaps as some or even most of the actions done
by the agent may not be observed. We show that the posterior
goal distribution P (G|O) can be computed from the value
function VG(b) over beliefs b generated by the POMDP plan-
ner for each possible goal G. Some extensions of the basic
framework are discussed, and a number of experiments are
reported.

Introduction
Plan recognition is the problem of inferring the goals and
plans of an agent from partial observations of her behav-
ior (Cohen, Perrault, and Allen 1981; Pentney et al. 2006;
Yang 2009). The problem arises in a number of applica-
tions, and has been addressed using a variety of methods,
including specialized procedures (Kautz and Allen 1986;
Avrahami-Zilberbrand and Kaminka 2005), parsing algo-
rithms (Pynadath and Wellman 2002; Geib and Goldman
2009) and Bayesian networks inference procedures (Bui
2003). In almost all cases, the space of possible plans or
activities to be recognized is assumed to be given by a suit-
able library of policies or plans.

Recently, two formulations have approached the plan
recognition problem from a different perspective that re-
places the need for a set of possible agent policies or plans,
by an agent action model and a set of possible goals. The
model expresses how the agent can go about achieving
these goals and is used to interpret the observations. The

∗Paper appearing also at Proc. IJCAI–11.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

result is a posterior probability distribution over the pos-
sible goals. In these approaches, the possible agent be-
haviors are encoded implicitly in the set of goals and ac-
tion models, rather than explicitly as a library of plans.
The advantage of these approaches to plan recognition is
that they can leverage on model-based behavior genera-
tors; namely, planners. In (Ramirez and Geffner 2009;
2010), the model is classical planning model, namely, the
initial state is fully known to agent and observer, and the ac-
tions have deterministic effects, while in (Baker, Saxe, and
Tenenbaum 2009), the model is a Markov Decision Process
(MDP), so that the states are fully observable, and actions
have stochastic effects.

In this work, we extend the model-based approach to
plan recognition over POMDP settings, where actions are
stochastic and states are partially observable. The task is to
infer a probability distribution over the possible goals of an
agent whose behavior results from a POMDP (Partially Ob-
servable MDP) model. The model is shared between agent
and observer except for the true goal of the agent that is hid-
den to the observer. The observations are action sequences
that may contain gaps as some or even most of the actions
done by the agent are not observed. We show that the poste-
rior goal distribution can be computed from the value func-
tion over beliefs generated by a POMDP planner for each
possible goal G. More precisely, executions are sampled
from this value function, assuming that the agent tends to
select the actions that look best, and the likelihood of the
observations O given the goal G is approximated from these
samples. In analogy to the other cases, the goal recogni-
tion problem over POMDPs is solved using an off-the-shelf
POMDP planner. While POMDP planners do not scale up
as well as MDP planners, and certainly much worse than
classical planners, we show that still a rich variety of recog-
nition problems involving incomplete information can be ef-
fectively modeled and solved in this manner. The expressive
power and computational feasibility of the approach will be
illustrated through a number of experiments over several do-
mains.

The paper is organized as follows. We start with an exam-
ple (Section 2), and then review previous approaches (Sec-
tion 3), and POMDPs (Section 4). We then consider a pre-
liminary formulation of POMDP goal recognition that as-
sumes that all agent actions and observations are visible to
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the observer (Section 5), and a more general form that as-
sumes neither (Section 6). We then test the latter over sev-
eral problems (Section 7) and summarize the contributions
(Section 8).

Motivation
As an illustration of how a goal recognition problem can be
naturally cast in the POMDP setting, consider an agent that
is looking for an item A or B each of which can be in one
of three drawers 1, 2, or 3, with probabilities P (A@i) and
P (B@i) equal to:

P (A@1) = 0.6 , P (A@2) = 0.4 , P (A@3) = 0

P (B@1) = 0.1 , P (B@2) = 0.6 , P (B@3) = 0.3

The actions available to the agent are to open and close the
drawers, to look for an item inside an open drawer, and to
grab an item from a drawer if it’s known to be there. Let us
assume that the agent is a male, and hence that the proba-
bility that he doesn’t observe the object in the drawer when
the object is actually there is non-zero, say 0.2, but that the
probability that he observes an object when it’s not there is
0 indeed.

Let us assume that the possible goals G1, G2, and G3 of
the agent are to have item A, item B, or both, with priors
0.4, 0.4, and 0.2. We want to find out the goal posterior
probabilities when the behavior of the agent is partially ob-
served. In our setting, the observer gets to see some of the
actions done by the agent, but not necessarily all of them.
The observer must then fill up the gaps. Let us assume that
it is observed that the agent opens drawer 1, then drawer 2,
and then drawer 1 again; i.e.,

O = {open(1), open(2), open(1)}.
The most likely explanation of this observation trace is that
the agent is looking for item A; else it wouldn’t have started
by looking in drawer 1 where the probability of finding B is
0.1. Then, it’s likely that the agent didn’t observe A in that
drawer, that it closed it, and then looked for A in drawer 2.
Then, probably the agent didn’t find A in drawer 2, and thus
looked again in drawer 1.

Indeed, the algorithm that we will describe, concludes that
the posterior probabilities for the three possible goals are
P (G1|O) = 0.6, P (G2|O) = 0.1, and P (G3|O) = 0.3,
with G1 as the most likely goal.

Previous Approaches
As mentioned in the introduction, the problem of plan, goal,
or activity recognition has been addressed in many ways, in
most cases assuming that there is a library of possible plans
or policies that represents the possible agent behaviors. The
problem has been formulated in a variety of ways, as a de-
ductive problem over a suitable logical theory (Kautz and
Allen 1986), a matching problem over a suitable AND/OR
graph (Avrahami-Zilberbrand and Kaminka 2005), a pars-
ing problem over a grammar (Pynadath and Wellman 2002;
Geib and Goldman 2009), and an inference task over a dy-
namic Bayesian network (Bui 2003).

Some recent approaches, however, attempt to map the
plan recognition problem into plan generation to leverage
on the performance of state-of-the-art planners. Ramirez
and Geffner (2010) consider the problem of plan recogni-
tion over classical planning models where the goal of the
agent is hidden to the observer. They show that the posterior
distribution P (G|O) over the possible agent goals G given
a sequence of observations O, can be defined from the costs
c(G,O) of the plans that achieve G while complying with
the observations O, and the costs c(G,O) of the plans that
achieve G while not complying with O. Indeed, they define
the likelihood P (O|G) as a monotonic (sigmoid) function
of the difference in costs c(G,O) − c(G,O). Thus, when
the best plans for G all comply with O, this difference will
be positive, and the larger the difference, the larger the like-
lihood P (O|G). In order to compute the posterior probabil-
ities P (G|O) for a set G of possible goals G, the likelihoods
P (O|G) are then derived in 2|G| planner calls, and they are
then plugged into Bayes rule along with the priors P (G) to
yield the posterior probabilities P (G|O).

The other recent model-based approach to plan recogni-
tion is in the MDP setting where actions are assumed to have
stochastic effects and states are fully observable (Baker,
Saxe, and Tenenbaum 2009). Baker et. al. show that from
the value function VG(s) that captures the expected cost
from state s to the goal G, for every state s and goal G,
it is possible to define the probability that the agent will take
a given action a in s if her goal is G. From this probability
P (a|s,G) and simple manipulations involving basic prob-
ability laws, they derive the likelihood P (O|s,G) that the
agent performs a sequence of actions O given that she starts
in s and pursues the goal G. As before, from the likelihoods
and the goal priors P (G), they derive the posterior prob-
abilities P (G|O) using Bayes rule. Once again, the main
computational work is done by the planner, in this case an
MDP planner, that must furnish the value function VG(s) for
all goals G and states s. Notice that in both the classical and
MDP formulations, probabilities are inferred from costs; in
the first case, the costs c(G,O) and c(G,O), in the second,
the expected costs VG(s). The formulation that we develop
below takes elements from both formulations while extend-
ing them to the POMDP setting where actions are stochastic
and states are just partially observable.

Background: Goal MDPs and POMDPs
Shortest-path MDPs provide a generalization of the state
models traditionally used in heuristic search and planning
in AI, accommodating stochastic actions and full state ob-
servability (Bertsekas 1995). They are given by

• a non-empty state space S,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S, and
• costs c(a, s) for a ∈ A and s ∈ S.

The goal states t are assumed to be absorbing and cost-free;
meaning Pa(t|t) = 1 and c(a, t) = 0 for all a ∈ A. Goal
MDPs are shortest-path MDPs with a known initial state s0
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and positive action costs c(a, s) for all a and non-terminal
states s. Shortest-path and Goal MDPs appear to be less ex-
pressive than discounted reward MDPs, where there is no
goal, rewards can be positive, negative, or zero, and a pa-
rameter γ, 0 < γ < 1, is used to discount future rewards.
Yet, the opposite is true: discounted reward MDPs can be
transformed into equivalent Goal MDPs, but the opposite
transformation is not possible (Bertsekas 1995). The same
holds for discounted reward POMDPs and Goal POMDPs
(Bonet and Geffner 2009).

The solution to MDPs are functions π mapping states into
actions. The expression V π(s) denotes the expected cost
that results from following the policy π from the state s to
a goal state, and it can be computed by solving a system of
|S| linear equations. The optimal policies are well-defined
if the goal is reachable from every state, and corresponds to
the policies π∗ that minimize V π(s) over all states s. The
optimal cost function V ∗(s) = V π(s) for π = π∗, turns out
to be the unique solution to the Bellman equation:

V (s) = min
a∈A

{
c(a, s) +

∑

s′∈S
Pa(s

′|s)V (s′)

}
(1)

for all s ∈ S \ SG, and V (s) = 0 for s ∈ SG. The Bellman
equation can be solved by the Value Iteration (VI) method,
where a value function V , initialized arbitrarily over non-
goal states, is updated iteratively until convergence using the
right-hand side of (1). The optimal policy π∗ is the policy
πV that is greedy in the value function V

πV (s) = argmin
a∈A

{
c(a, s) +

∑

s′∈S
Pa(s

′|s)V (s′)

}
. (2)

when V = V ∗. Recent variants of value iteration aim to
exploit the use of lower bound (admissible) cost or heuristic
functions to make the updates more focused and to achieve
convergence on the states that are relevant only. One of
the first such methods is Real-Time Dynamic Programming
(RTDP), that in each trial simulates the greedy policy πV ,
updating the value function V over the states that are vis-
ited (Barto, Bradtke, and Singh 1995). With a good initial
lower bound V , RTDP and other recent heuristic search al-
gorithms for MDPs, can deliver an optimal policy without
even considering many of the states in the problem.

POMDPs (Partially Observable MDPs) generalize MDPs
by modeling agents that have incomplete state information
(Kaelbling, Littman, and Cassandra 1999) in the form of a
prior belief b0 that expresses a probability distribution over
S, and a sensor model made up of a set of observation tokens
Obs and probabilities Qa(o|s) of observing o ∈ Obs upon
entering state s after doing a. Formally, a Goal POMDP is
a tuple given by:
• a non-empty state space S,
• an initial belief state b0,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s′|s) for a ∈ A, s, s′ ∈ S,
• positive costs c(a, s) for non-target states s ∈ S,
• a set of observations Obs, and

• probabilities Qa(o|s) for a ∈ A, o ∈ Obs, s ∈ S.
It is also assumed that goal states t are cost-free, absorbing,
and fully observable; i.e., c(a, t) = 0, Pa(t|t) = 1, and
t ∈ Obs, so that Qa(t|s) is 1 if s = t and 0 otherwise. The
target beliefs or goals are the beliefs b such that b(s) = 0 for
s ∈ S \ SG.

The most common way to solve POMDPs is by formu-
lating them as completely observable MDPs over the belief
states of the agent. Indeed, while the effects of actions on
states cannot be predicted, the effects of actions on belief
states can. More precisely, the belief ba that results from
doing action a in the belief b, and the belief boa that results
from observing o after doing a in b, are:

ba(s) =
∑

s′∈S
Pa(s|s′)b(s′) , (3)

ba(o) =
∑

s∈S
Qa(o|s)ba(s) , (4)

boa(s) = Qa(o|s)ba(s)/ba(o) if ba(o) 6= 0. (5)

As a result, the partially observable problem of going from
an initial state to a goal state is transformed into the com-
pletely observable problem of going from one initial belief
state into a target belief state. The Bellman equation for the
resulting belief MDP is

V (b) = min
a∈A

{
c(a, b) +

∑

o∈Obs
ba(o)V (boa)

}
(6)

for non-target beliefs b and V ∗(bt) = 0 otherwise, where
c(a, b) is the expected cost

∑
s∈S c(a, s)b(s).

Many of the methods used for solving POMDPs are MDP
methods extended to deal with the infinite and dense set of
possible belief states. In our experiments, we use RTDP-Bel
(Bonet and Geffner 2000; 2009), which is a straightforward
adaptation of RTDP to Goal POMDPs where states are re-
placed by belief states updated according to (6).

Goal Recognition: Complete Observations
Our first formulation of goal recognition over POMDPs is
a direct generalization of the MDP account (Baker, Saxe,
and Tenenbaum 2009). This account makes two assump-
tions. First, that the observation sequence O = a1, . . . , an
is complete, meaning that O contains all the actions done by
the agent up until an, and hence, that there are no gaps in
the sequence. Second, that the states of the MDP are fully
observable not only to the agent, but also to the observer.
The assumptions are pretty restrictive but serve to reduce
the goal recognition problem to a simple probabilistic infer-
ence problem. In the POMDP setting, the second assump-
tion translates into the (partial) observations gathered by the
agent being visible also to the observer. Thus, in this setting,
the observer gets two types of information: the complete se-
quence of actions O done by the agent, and the correspond-
ing sequence of POMDP observation tokens o ∈ Obs that
the agent received. In the next section, we relax these two
assumptions.

The POMDP is assumed to be known by both the agent
and the observer, except for the actual goal G of the agent.
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Instead, the set G of possible goals is given along with the
priors P (G). The posterior goal probabilities P (G|O) can
be obtained from Bayes rule:

P (G|O) = αP (O|G)P (G) (7)

where α is a normalizing constant that doesn’t depend on
G. The problem of inferring the posteriors P (G|O) gets
thus mapped into the problem of defining and computing the
likelihoods P (O|G). The key assumption is that if the agent
is pursing goal G, the probability P (a|b,G) that she will
choose action a in the belief state b is given by the Boltz-
mann policy:

P (a|b,G) = α′exp{β QG(a, b)} (8)

where α′ is a normalizing constant and β captures a ‘soft ra-
tionality’ assumption (Baker, Saxe, and Tenenbaum 2009):
for large β, the agent acts greedily on QG (optimally if QG
is optimal); for low β, the agent selects actions almost ran-
domly.

The term QG(a, b) expresses the expected cost to reach
the goal G from b starting with the action a; i.e.,

QG(a, b) = c(a, b) +
∑

o∈O
ba(o)VG(b

o
a) (9)

where VG is the value function for the POMDP assuming
that the goal states are those in which G is true, c(a, b) is
the expected cost of action a in b, and ba(o) and boa as de-
fined above, stand for the probability that agent observes
o after doing action a in b, and the probability distribu-
tion that results from doing a in b and actually observing
o. The likelihood P (Oi|b,G) of the observation sequence
Oi = ai, . . . , an given the belief b and the goal G, can be
computed recursively as:

P (Oi|b,G) =
{
P (an|b,G) if i = n, else
P (ai|b,G)

∑
o P (Oi+1|boa, G) ba(o) .

(10)
The likelihood P (O|b,G) is then P (Oi|b,G) for i = 0,
which can be computed from the recursion and plugged into
Bayes rule (7) to obtain the desired posterior goal proba-
bilities P (G|O). The POMDP planner enters into this for-
mulation by providing the expected costs VG(b) to reach G
from b, that are used via the factors QG(a, b) for defining
the probability that the agent will do the action a when in
the belief state b (Eq. 8).

Goal Recognition: Incomplete Observations
In the account above, the information available to the ob-
server contains both the sequence of actions O done by the
agent, and the observations o ∈ Obs that the agent receives
from the environment. Moreover, the sequence of actions
is assumed to be complete, so that all the agent actions are
observed. In the account below, the sequence of actions O
obtained by the observer may be incomplete and the obser-
vations received by the agent are not available.

As before, we assume a shared POMDP between agent
and observer, except for agent goal G that belongs to the
set G of possible goals but is hidden to the observer. Since

the observation sequence O = a1, . . . , an is not necessarily
complete, we cannot assume that action ai+1 in O is the
action that the agent did right after ai. Yet, the posterior
goal probabilities P (G|O) can be derived using Bayes rule
(7) from the priors P (G) and the likelihoods P (O|G) that
can now be defined as

P (O|G) =
∑

τ

P (O|τ)P (τ |G) (11)

where τ ranges over the possible executions of the agent
given that she is pursuing goal G. Executions τ contain the
complete sequence of agent actions.

We will say that an execution τ complies with the obser-
vation sequence O if the sequence O is embedded in the
sequence τ . Defining then the probabilities P (O|τ) to 1 or
0 according to whether the execution τ complies with O or
not, the sum in (11) can be approximated by sampling as

P (O|G) ≈ m0/m (12)

where m is the total number of executions sampled for each
goal G, and mO is the number of such executions that com-
ply with O.

For this approximation to work, executions τ for the goal
G need to be sampled with probability P (τ |G). This can
be accomplished by making the agent select the action a
in a belief b with a probability P (a|b,G) that results from
the Boltzmann policy (8). As before, it is assumed that the
POMDP planner, furnishes the value function VG(b) that en-
codes the expected cost from b to the goal.

Once the action a is sampled with probability P (a|b,G),
the resulting observation o, that is no longer assumed to
be available to the observer, is sampled with probability
ba(o). The resulting full traces b0, a0, o0, b1, a1, o1, . . . un-
til the goal is reached are such that bi+1 = boa for b = bi,
a = ai, and o = oi, where ai is sampled with probability
P (ai|bi, G), and oi is sampled with probability ba(oi) for
b = bi and a = ai.

The likelihoods P (O|G) approximated through (11) are
then plugged into Bayes rule (7) from which the posterior
goal probabilities P (G|O) are obtained.

The key computational burden in this account results from
the calculation of the value function VG over beliefs, that
must be provided as before by the POMDP planner, and the
simulated executions that need to be done for estimating the
likelihoods P (O|G) following (12).

Experiments
To evaluate the effectiveness of the goal recognizer de-
scribed in Section 6, we used the POMDP solver GPT (Bonet
and Geffner 2001) built around the RTDP-BEL algorithm.
GPT supports a very expressive language to define POMDPs
which have allowed us to test our approach over three chal-
lenging domains detailed next. We needed to make two
modifications on the original GPT sources. We changed the
code to have it built with the latest versions of the GNU C++
compiler and libraries, and added a method to simulate the
policies computed by GPT. The software for the goal recog-
nition part was implemented on PYTHON, making calls to
GPT when necessary.
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Name |S| |A| |Obs| |b0| |G| T
OFFICE 2,304 23 15 4 3 3.4

DRAWERS 3,072 16 16 6 3 4.5
KITCHEN 69,120 29 32 16 5 10.1

Table 1: Domains used in the evaluation. |S| denotes num-
ber of states, |A| number of actions, |Obs| number of ob-
servations, |b0| cardinality of initial belief, |G| number of
possible goals and T average time (in seconds) to compute
VG(b0) for each of the goals G.

Table 1 shows the number of states, actions, observations,
goals, and possible initial states for each of the three do-
mains we used to evaluate the proposed goal recognition
scheme with incomplete observations. These are non–trivial
POMDPs that feature uncertainty in the initial state, stochas-
tic actions and stochastic sensors. We will describe the do-
mains next.

The DRAWERS domain is the task described early in the
paper. The agent goals are to be holding either an object
named A, an object named B or both. The two objects are
distributed in the drawers according to the probability distri-
bution described in Section 2. The agent can open drawers,
look for a particular object inside an open drawer and pick
an object. All actions have unitary cost. There is a small
chance – 30 out of every 100 times – that she does not find
the object she is looking for, even if the object actually is
in the inspected drawer. Singleton goals are considered to
have equal prior probability (0.4). For the joint goal we set
its prior probability to the product of the singleton goals. As
an illustration, if the agent is observed to “look into drawer
#3” then it is more likely the goal “hold B”, since A can’t
be initially placed in drawer #3.

In the OFFICE domain, adapted from (Bui 2003), the agent
being observed is a researcher who arrives early to her lab,
which consists of two rooms: one is her office, where she
has her workstation and a cabinet to store her coffee cup and
blank paper. The other is the club, where the lab coffee ma-
chine and printer are placed. The two rooms are connected
by a corridor. The researcher is initially on the corridor. The
printer can start either out of paper, clogged, both or none.
The agent goals are either to print an article, have a cup of
coffee or both. To print an article, the researcher needs to get
to her workstation, send the file to the printer queue and get
to the printer to retrieve it. There is a small chance – 20 out
of every 100 times – that the printer will get clogged while
trying to print the article. If the printer is out of paper, the file
is kept on the printer queue. In this case, the agent will need
to fetch blank paper from the cabinet in her office. When the
printer is clogged, the agent will have to execute several ac-
tions to service it. To have coffee, the agent needs to get the
cup from the cabinet in her office and then walk to the cof-
fee machine. As in the DRAWERS domain, all actions have
a cost of 1, singleton goals have equal prior probability, and
the joint goal prior probability is the product. For example, if
the agent is observed to execute the actions “walk to work-
station, walk from corridor into club” then the most likely
goal will be “print article”, since the agent doesn’t need to

get to the workstation if she’s pursuing the goal “have cof-
fee”.

In the KITCHEN domain the agent is trying to cook one
out of five possible dishes. There are ingredients i1, i2, i3,
i4 which are placed at random on two cupboards. Each dish
requires up to three different ingredients which are required
to be mixed in a bowl. The agent can inspect the cupboards
the find the ingredients it needs, having to move first in front
of the cupboard of interest. Additionally the agent needs to
get hold of three different objects – a tray, a pan and a pot –
which are all located in a third cupboard. Whenever a recipe
involves boiling or frying an ingredient, or a mix of them, the
agent needs to place the required objects on the stove. The
agent can navigate freely between the locations of the bowl,
the stove or the cupboards and can carry as many ingredients
as she sees fit. All goals have the same prior probability and
action costs are uniform. Thus if the agent is observed to
“take pan, take i2” then the most likely goals will be those
dishes which require to fry a mix of ingredients that includes
i2.

The synthetic dataset was built as follows. For each do-
main and goal, we first computed the value function VG for
each possible goal G using GPT. Then, we sampled 100 ex-
ecutions of the greedy policy based on VG for each possible
goal G ∈ G. From these 100 sampled executions, 10 ob-
servation sequencesO were obtained by sampling randomly
30%, 50% or 70% of the actions over an also randomly se-
lected execution.

In the table and figures, we don’t report the posterior goal
distributions P (G|O), but just the resulting binary classi-
fier that maps the observation sequences O into sets of most
likely goals G. These are the goals G that maximize the
posterior probability P (G|O). We denote this binary goal
recognizer as GR(m,β), where m and β stand for the two
parameters of the algorithm: the number of samples for each
goal used in the approximation of P (O|G), and the β coef-
ficient that expresses the level of noise in the action selec-
tion. The set of most likely goals are those G′ that verify
P (G′) = maxG∈G P (G|O)P (G) 1.

The classification instances are the pairs 〈O,G〉 over all
the observation sequences O and goals G. An instance is
positive (P) if O was generated with G, and negative (N)
otherwise. A true positive (TP) is a positive instance classi-
fied as positive, while a false negative, is a negative instance
classified as positive. True negatives (TN) and false neg-
atives (FN) are defined in a similar manner. The numbers
of instances in these different classes provide the standard
measures for evaluating the quality of a classifier. In partic-
ular, TPR, FPR, ACC, and PPV measure the True Positive
Rate, False Positive Rate, Accuracy, and Precision of a clas-
sifier, defined as TP/P , FP/N , TP + TN/P + N , and
TP/TP + FP respectively.

Figure 1 shows the aggregate results of the goal recog-
nizer GR(m,β) over all domains, in the form of a ROC
graph (Fawcett 2006) that plots TPR vs. FPR. As it can be
seen, the performance of the goal classifier approaches the

1We consider two real numbers x, x′ to be equal whenever |x−
x′| < ε, where ε is set to 10−7
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Figure 1: ROC graph showing the resulting goal classifier
GR(m,β) for different m and β values (number of samples and
noise level in action selection). Squares, triangles and circles de-
note different m values: 100, 1000 and 10000. Black, gray, and
light gray denote different β values: 1, 10, 40. Results for the ran-
dom guessing strategy are represented by the dotted line.

Domain Obs % L T ACC PPV TPR
30 4.9 24.6 0.99 0.97 1.00

office 50 7.6 24.7 1.00 1.00 1.00
70 10.8 24.8 1.00 1.00 1.00
30 3.8 95.2 0.86 0.73 0.73

kitchen 50 5.8 95.1 0.93 0.85 0.85
70 8.3 95.2 0.98 0.95 0.95
30 2.9 38.8 0.84 0.77 0.77

drawers 50 3.9 38.8 0.87 0.80 0.80
70 6.0 38.8 0.96 0.93 0.93

Table 2: Performance of GR(m = 10, 000, β = 40) . For
each domain and observation level we report the average
length of observation sequences O (L), the average time in
seconds to process one observation sequence (T) and the av-
erage accuracy (ACC), precision (PPV) and True Positive
rate (TPR).

optimal vertex (1, 0) as the number of samples m becomes
large (see caption for details). Performance is very good
– high TPR, low FPR – for m ≥ 1000 and high β values.
However we can also see that even with a substantial amount
of samples and the Boltzmann policy being almost greedy –
β = 40 – we cannot lower FPR nor raise TPR.

Table 2 offers a detailed picture of the performance of
the goal recognizer for values m = 10, 000 and β = 40.
In all domains we see how the accuracy of goal recogni-
tion increases as more information is conveyed by the in-
put observation sequence. It is remarkable that GR(m =
10, 000, β = 40) achieves almost perfect recognition on the
OFFICE domain, having some trouble with the shortest and
sparsest observation sequences.

Runtime is determined by the number of possible goals
|G|, the number of samples taken m and the value for β.
Processing one observation sequence involves simulating –
the time required to compute VG(b) is reported on Table 1 –
the Boltzmann policy m times |G|, hence the similarity be-
tween the run-times for OFFICE and DRAWERS, which have

the same number of possible goals. Runtime also increases
as m increases and as β decreases. While the reasons for
the former are quite obvious – the more simulations to check
whether they are compatible with O the more computation
– the former can seem a bit surprising. Runtime grows as
β decreases since action selection becomes noisier, so the
execution trace gets longer.

While the goal recognizing accuracy is very good, it
can’t be perfect since there may be observation sequences
O which result ambiguous. For example, in the OFFICE do-
main, the goal recognizer assigns equal P (O|G) to all goals,
when confronted with the sequence “walk from corridor to
lab, walk from lab to corridor, walk from corridor to club”.
While the joint goal is discarded because of its lower P (G),
there is no other information available that supports rejec-
tion of either of the singleton goals “read article” and “have
coffee”.

Extensions
The model above for goal recognition over POMDPs is sim-
ple but expressive, yet there are a number of natural exten-
sions, some of which we describe next.
• Agent POMDP model partially known by observer: in the
above formulation, the agent POMDP model is known by
the observer except for the hidden goal. Incomplete infor-
mation about the initial belief state b0 of the agent, however,
can be accommodated as well. The simplest approach is to
define a set B0 of possible initial belief states b0 each with a
probability P (b0). The formulation can then be generalized
to deal with both hidden goals G and hidden initial belief
states b0, and the posterior probabilities over the collection
of such pairs can be computed in a similar manner.
• Failure to observe and actions that must be observed: as
argued in (Geib and Goldman 2009), information about ac-
tions a that if done, must always be observed, is valuable,
as the absence of such actions from O, imply that their were
not done. This information can be used in a direct manner in
the formulation above by just adjusting the notion of when
a sample execution τ complies with O. In the presence of
must-see actions, executions τ comply with O when τ em-
beds O, and every must-see action appears as many times in
τ as in O.
• Observing what the agent observes: we have assumed that
the observer gets a partial trace of the actions done by the
agent and nothing else. Yet, if the observer gets to see some
of the observation tokens o ∈ Obs gathered by the agent,
she can use this information as well. In particular, the num-
ber mO in (12) would then be set to the number of sampled
executions for G that comply with both O and Obs.
• Noise in the agent-observer channel: if the observer gets
to see the actions done by the agent through a noisy channel
where actions can be mixed up, the problem of determin-
ing where a sample execution τ complies with the observa-
tions O is no longer a boolean problem where P (O|τ) is
either 0 or 1, but a probabilistic inference problem that can
be solved in linear-time with Hidden Markov Model (HMM)
algorithms, that would yield a probability P (O|τ) in the in-
terval [0, 1]. For this, the model must be extended with prob-
abilities PO(o|a) of observing token o from the execution of
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action a, and hidden chain variables ti = j expressing that
the observation token oi in O = o1, . . . , on has been gener-
ated by action aj in the sample execution τ = a1, . . . , am.

Discussion
We have formulated and tested a new formulation of goal
recognition for settings where the observed agent can be
modeled as acting using a POMDP whose goal is hidden
to the observer. The posterior goal probabilities G for the
hidden goals G ∈ G are computed from Bayes rule using
the priors P (G) and likelihoods P (O|G) that are approxi-
mated in two steps: using first a POMDP planner to produce
the expected costs VG from beliefs to goals, and using these
costs to sample the possible executions for each goal G. A
number of direct extensions have also been discussed, like
the integration of uncertainty about the initial belief of the
agent, noise in the agent-observer channel, and observations
obtained by both the agent and observer. A number of exper-
iments have been reported and the results appear promising.
The software and the domains will be made available.
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Abstract

Existing activity recognition approaches in the smart
home domain suffer from poor human activity models.
Combining expertise from cognitive ergonomics and
ubiquitous computing, we discuss the hard technical
challenges to address when leveraging a realistic model
of human activity. We present the architecture of a pro-
totype smart home system that we are developing and
show the gap that exists between our current capabil-
ities in terms of contextual-knowledge extraction and
the complexity of the targeted activity recognition. To
fill this gap, we propose and discuss the integration of
PHATT, an existing algorithm for plan recognition, into
our system in order to mine additional information from
the dynamics of context.

1 Introduction and Motivation
A smart home is a residence equipped with information-
and-communication-technology devices conceived to col-
laborate in order to anticipate and respond to the needs of the
occupants, working to promote their comfort, convenience,
security and entertainment while preserving their natural in-
teraction with the environment (Aldrich 2003).

When talking about natural interaction, one of the most
precious resources to preserve is user attention: during their
activities, users should be supported invisibly, reducing in-
terruptions and explicit interactions with the system as much
as possible. In order to achieve these goals, smart home sys-
tems must be able to take into account the context, that is
the implicit situational information that influences human
behavior (Roy et al. 2010), recognizing people activities to
provide adapted functionalities. For example, under some
conditions, knowing that an inhabitant is executing some
long-lasting static activity in a room can suggest that the
system should turn on the room’s heating and turn off the
other rooms’ lights.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing solutions for human activity recognition often
rely on data coming from wearable sensors or video cameras
(Chen and Nugent 2009), technologies that are difficult to
deploy and get accepted in real-world households. Further-
more, these solutions address the problem of activity pattern
discovery directly on raw sensor data or video streams, ex-
ploiting data mining techniques to extract recurring patterns
in the raw data and to predict or classify future observations,
as explained in (Kim, Helal, and Cook 2010). The resulting
systems fail to provide adapted services to people in real-
world scenarios, as the “gap” between the captured context
and the complexity of human behavior is too large. We be-
lieve that the main reasons are the poverty (or absence) of the
underlying models of human behavior and activities, which
don’t handle some fundamental aspects of the reality, and/or
the lack of computing models taking advantage of these as-
pects.

To address these issues, we started an interdisciplinary
project that brings together researchers from the fields of
ubiquitous computing and cognitive ergonomics. Our aim
is to develop a smart home system that is able to prevent en-
ergy waste and preserve inhabitants’ comfort, leveraging on
realistic human activity models. Our hypothesis is that hu-
man activity models have to be taken into account as chal-
lenging implication for informatics, although they shall not
be directly integrated into computing models.

In this paper, our contribution is threefold. In Section 2,
we present some of the challenging dimensions of human
activity, which are not handled by most existing approaches,
emerging when considering activity as a situated process,
relying on actualization of concerns, and integrated in a net-
work of interactions. In Section 3, we present a functional
architecture that is designed to extract high-level situations
from low-level raw sensor data. We show the need for an
additional activity recognition mechanism and a system ar-
chitecture that leverages the ubiquitous computing princi-
ples and that is at the core of the prototype system that we
are developing. In Section 4, we propose to adapt PHATT, an
existing algorithm for plan recognition (Goldman, Geib, and

GAPRec 2011 – Proceedings of the 1st ICAPS workshop on Goal, Activity and Plan Recognition

16



Miller 1999; Geib and Goldman 2009), to be integrated into
our architecture, in order to start addressing the challenge
of providing adapted functionalities, which are well suited
to the complexity of domestic activity. Section 5 illustrates
the issues that remain unsolved and that may benefit from
exchanging with the GAPRec and ICAPS research commu-
nities, while Section 6 concludes the paper.

2 Human Models of Domestic Activity
Recent naturalistic studies (Baillie and Benyon 2008; Crab-
tree and Rodden 2004; Guibourdenche et al. 2011; Poizat,
Fréjus, and Haradji 2009; Salembier et al. 2009) provided
some fundamental knowledge for a deeper empirical under-
standing of human domestic activity. Those studies aimed at
orienting the design of ambient systems on the basis of real
activity models and definitions of activity contexts, from the
inhabitants’ points of view. These formal descriptions of real
activities and people’s contexts are prerequisite for build-
ing appropriate applications (Greenberg 2001). These mod-
els also raise different issues challenging technical models
for activity recognition.

Many existing technical models for activity recognition
consider human activities as sequences of targeted actions
that are always executed in the same order and which are
never concurrently executed or interleaved with actions cor-
responding to other activities (Gu et al. 2009). Instead, we
conducted our work in reference to the course of action em-
pirical research program (Theureau 2003). This theoretical
framework, as well as naturalistic studies, demonstrates that
(domestic) activity is opportunistic. Inhabitants frequently
interrupt a particular task for a while in order to accomplish
another one. Individual activity at home is constituted of
multiple lines of different concerns which structure a kind
of fuzzy involvement in the activity. For example, a mother
can be ironing while following a TV-show and looking after
children playing at the first floor. Inhabitants manage several
activities at the same time with several underlying concerns,
which take part in their individual context. Activity is never
built according to a pre-established and hierarchical plan but
is constantly reoriented according to inter-individual inter-
actions and interactions with the physical environment. This
raises design issues relative to the gap between this complex
human context and the context of the system based upon an
environmental capture.

In addition, the same behavior (e.g. closing shutters) can
have several meanings (e.g. reducing the brightness in a
room, ensuring some privacy, increasing the sense of safety,
reducing the temperature inside the house). This slight gap
is due to the asymmetrical relation between environment
as raw material, and situation as experienced environment
through the individual’s activity. Thus, the model has to in-
tegrate several layers of inference from a low level (e.g., a
shutter is being closed) to a high level (e.g., Julie wants to
have more cosiness), the latter the more problematic. Some
situations can cause the system to an inability to determine
the appropriate action to take; thus, designing a context-
aware system implies designing the interaction with the user
in order to manage uncertainty (explicit interaction, valida-
tion, etc).

Another design limitation rises from the impossibility for
a smart home system to act according to deterministic rules
only (either manually provided or automatically extracted
through machine learning techniques). In our precedent ex-
ample, a rule such as “closing shutters when night falls”
can’t be adapted to the several meanings underlying the clos-
ing of shutters. However, some solutions are based upon
such design principles (Gu et al. 2004; Campo et al. 2006;
Bonhomme et al. 2008b; 2008a), but they encounter diffi-
culties to be adapted to inhabitants’ practices. Even though
some recurrent activities (e.g., cooking, taking children to
bed, watching night shows on TV) can be observed at day
or week scales, they nevertheless seem to be always accom-
plished differently, at different times or in a different order.
Routines illustrate the recurrence of concerns, not the exe-
cution of schemes of action, as some works assume (Chan et
al. 2008).

Furthermore, individual and collective scales of activ-
ity are intertwined, mutually (Crabtree and Rodden 2004;
Poizat, Fréjus, and Haradji 2009) and conflictually (Baillie
and Benyon 2008) giving shape to one another. For example
the cleaning can be initiated by an individual and finished by
another, the latter doing a different way than what the former
had previously thought. Therefore, the system design can’t
rely on a human activity considered only as individual, a
lonely man doing one thing at a time.

Moreover, the activity can’t be strictly associated with
a specific space (Guibourdenche et al. 2011): families are
distributed across multiple scales of physical spaces (floors,
rooms, systems of tools, voices, noises). During a local ac-
tivity (for example, a mother doing the ironing and watch-
ing TV in the living room), concerns may refer to different
places or people (as supervising children in the example: the
mother is also concerned with her daughter alone upstairs).
Those characteristics imply that the system can’t consider
only a local point of view on the activity and must integrate
local and global points of views.

Now our aim is to specify an architecture capable of inte-
grating these various constraints.

3 Architecture
In this Section, we present the architecture of a prototype
system that we are developing. The aim of our system is
to capture physical information from the environment, ex-
tract higher-level concepts and combine them to infer hu-
man situations and activities, with the ultimate goal of semi-
automatically managing household appliances and provide
additional functionalities that allow saving energy while pre-
serving comfort. We first present the system architecture,
which relies on the principles of the ubiquitous comput-
ing paradigm (Weiser 1993) and draws its inspiration from
the four-layer model described in (Coutaz et al. 2005), and
then highlight the need for an additional activity recognition
mechanism.

3.1 Layered architecture
To achieve the goals of our scenario, we decided to adopt
the human-computer interaction paradigm called ubiquitous
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Figure 1: The four-layer model for context-aware applications
proposed by (Coutaz et al. 2005).

computing. The aim of this paradigm is to seamlessly and
invisibly integrate in the physical environment a multitude
of digital devices that provide services to the users without
asking for their attention (Weiser 1993). To this end, ubiq-
uitous computing applications are typically context-aware,
where the word context is used to address any static or dy-
namic condition that concerns the digital, physical and user-
related environments in which a context-aware application is
executed. In (Coutaz et al. 2005), a four-layer model is sug-
gested to build context-aware applications, as showed in Fig.
1. The first layer, sensing, corresponds to the raw data sensed
from the environment. The second layer, called perception,
can be interpreted as an abstraction of the raw data. Situation
and context identification, the third layer, concerns the con-
text itself and the situations occurring in the home. The top
layer, called exploitation, provides contextual information to
applications. Our work is partly based on this model.

Considering the aforementioned model, the first layer of
our system should be simply composed of sensors, but some
constraints have to be fitted. In order to reduce the global
system cost and to protect the inhabitants’ privacy, the num-
ber of sensors dispatched in the environment has to be re-
duced as much as possible. However, a huge number of
different sensors are required to sense context pieces and
redundancy can significantly increase the reliability of the
sources. With this idea in mind, the sensors will be grouped
in nodes, as showed in Fig. 2. These nodes are able to pre-
process the data with simple computation such as minimum,
maximum and average. They also enable the sensors to com-
municate, using, for instance, 6LowPAN (IPv6 over LoW
Power wireless Area Networks), which is specifically de-
signed for embedded systems (Shelby and Bormann 2009).
Another benefit of using nodes is the optimization of energy
consumption due to radio communications. This is not neg-
ligible as most of the nodes will be running on batteries.

In the second layer of Coutaz’ model, the raw data are
processed to obtain more abstract data about context and oc-
curring situations. The aggregation of raw data is realized
thanks to a data fusion algorithm. The data fusion algorithm
that we adopted is called the belief functions theory or theory
of evidence. More specifically, the transferable belief model
from (Smets and Kruse 1996) is used to aggregate data from
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Figure 2: The system architecture – The sensor nodes send ag-
gregated data to the plug computers, which are in charge of per-
forming sensor data fusion, to produce the context attributes, and
context spaces reasoning, to infer the ongoing situation spaces. An
additional processing step is needed to perform activity recogni-
tion.

homogeneous as well as heterogeneous sources. The aim in
this layer is to extract from raw sensing pieces of higher-
level contextual information. Some existing solutions also
adopt a similar approach. For instance, in (Ricquebourg et
al. 2007), a pressure sensor on a chair, an omnidirectional
webcam and a tracking sensor are used to determine the pos-
ture of a person. Another example is given in (Chahuara,
Vacher, and Portet 2010) with the localization of inhabitants
using microphones, presence sensors and contact sensors on
house furnishing doors.

The bridge between the second and the third layer is real-
ized integrating the results of sensor data fusion into a con-
text model called Context Spaces. This model uses geomet-
rical metaphors to describe context and situations, relying
on the following concepts (Padovitz, Zaslavsky, and Loke
2006): the context attributes, the application space, the situ-
ation spaces and the context state. The context attributes are
information types that are relevant and obtainable by the sys-
tem; in our case, the context attribute values are provided by
the perception layer, together with a degree of confidence on
them, needed to cope with the intrinsic uncertainty of sens-
ing systems in real world scenarios. The application space is
a multi-dimensional space made up of a domain of values for
each context attribute. The situation spaces are subspaces
of the application space defined over regions of acceptable
values of selected context attributes; situation spaces model
real-life situations, e.g., “the whole family is in the kitchen”
or “a person is ironing”. A context state is the collection of
current context attribute values at a given moment (Padovitz,
Zaslavsky, and Loke 2006).

In the situation and context identification layer, the con-
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text state provided by the perception layer is analyzed to in-
fer the ongoing situation spaces (representing real-life sit-
uations) and also produce a measure of confidence in their
occurrence. As the same context state can correspond to sev-
eral different situation spaces (and vice versa), reasoning
techniques are needed to discern the actual ongoing real-life
situations in spite of uncertainty (Padovitz, Zaslavsky, and
Loke 2006; Padovitz 2006).

Unfortunately, the computations required by the second
and the third layers to obtain abstract data and to analyze
context and situations are too heavy for our nodes to be pro-
cessed on. To remedy to this problem, more powerful nodes
acting like sinks are used. These nodes are small “plug and
play” computers called plug computers (ref. Fig. 2). Their
role is to gather data from sensor nodes and to perform data
fusion, required to produce the context attributes, and con-
text space reasoning, used to identify ongoing situations.

As explained in (Coutaz et al. 2005), the exploitation layer
acts as an adapter, allowing applications to address to the in-
frastructure their requests for context services at a high level
of abstraction. In our architecture, this layer will provide
information about context to augmented appliances, which
will adapt their behavior in a semi-automatic way.

3.2 Need for an additional layer
In our smart home distributed system, applications will di-
rectly execute on physical objects and household appliances,
adapting their behavior to save energy and preserve inhabi-
tant comfort. To this end, they will exploit context services,
provided by the underlying infrastructure, to gain knowl-
edge about the context and to provide the inhabitants with
relevant information in a suitable way, following the ubiq-
uitous computing principles (Weiser 1993). In our current
implementation, the highest-level contextual information is
produced by the situation and context identification layer ex-
ploiting the context spaces theory: the result is a set of oc-
curring situations. As we explained in Sect. 2, the same sit-
uation can correspond to several different human activities
and the same activity can require different forms of assis-
tance depending on the particular situation. Thus, the artifact
of situation space currently provided by our context spaces
reasoning may not be sufficient to provide the targeted kind
of assistance to inhabitants. To fill the gap between the situ-
ation spaces and the higher-level contextual information that
we target, we need an additional mechanism that extracts a
higher level of contextual knowledge from the underlying
layer. Since the context spaces reasoning mechanisms only
exploit the static contextual information provided by the per-
ception layer, we need to mine additional information from
the dynamics of the context. The main idea is that the con-
text spaces theory provides very powerful modeling and rea-
soning mechanisms, but it can hardly handle the dynamism
of context. Some techniques for context verification are de-
veloped in the theory, which help solve some ambiguities
leveraging on historical context, namely, exploiting the sit-
uation natural flow (Padovitz et al. 2007). Furthermore, an
extension to the context spaces theory has been proposed to
perform context prediction (Boytsov, Zaslavsky, and Synnes
2009). Even though these techniques suggest the promising

idea that context can be iteratively refined to solve ambigu-
ities, they rely on the assumption that the real-world con-
text obeys the same laws of a point following a trajectory
inside a space. This assumption is too restrictive when will-
ing to model the context dealing with the complex behav-
ior of the inhabitants of a house, which often presents quite
unpredictable evolutions. A different mechanism has to be
adopted, which is able to capture relevant information from
the context dynamics and to provide likely explanations for
the observed situation sequences. The next Section presents
an existing plan recognition algorithm and a way to adapt
it to be integrated into our system in order to achieve these
goals.

4 Activity Recognition using PHATT
In this section, we present PHATT, an algorithm introduced
by Goldman, Geib and Miller in (Goldman, Geib, and Miller
1999) to perform plan recognition, and its application to our
architecture. In order to do this, we first present the hierar-
chical task network planning problem, which is “inverted”
by PHATT to perform plan recognition. Then, we show how
PHATT can be adapted to be integrated into our system, in
order to capture relevant information from the context dy-
namics.

4.1 Hierarchical Task Network Planning (HTN)
A Hierarchical Task Network (HTN) planning problem con-
sists in automatically generating a plan starting from a set of
tasks to execute and some constraints (La Placa, Pigot, and
Kabanza 2009; Ghallab, Nau, and Traverso 2004). The prob-
lem relies on the specification of a plan library made of two
components: the tasks to execute, which can be primitive if
they don’t ask for any further planning or open, otherwise,
and the methods, which are prescriptions of how decompos-
ing a task in (partially-) ordered sub-tasks. Note that a same
task can be decomposed using different methods, thus result-
ing in different sub-task sequences. HTN planning proceeds
by decomposing non-primitive tasks recursively into smaller
and smaller subtasks, until primitive tasks are reached that
can be performed directly.

4.2 PHATT
(Goldman, Geib, and Miller 1999; Geib and Goldman 2001;
2009) present PHATT, an algorithm for plan recognition
based on a model of plan execution. The principle behind
the algorithm is to perform plan recognition relying on three
phases: defining the plan library, modeling the plan execu-
tion and recognizing the current execution, starting from the
observations. The plan library is modeled like in the HTN
planning problem presented above. The plan execution is
modeled as a stochastic, generative model that selects ac-
tions to perform from a set of enabled primitive tasks called
pending set, which is dynamically defined depending on the
previous actions performed by the agent, the agent’s goals
and the plan library (Geib and Goldman 2009). Assuming
this model of plan execution, PHATT takes as input a se-
quence of observations, which correspond to agent’s actions,
and generates the set of all possible explanations for the
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observed sequence of primitive tasks, in terms of executed
plans and, thus, goals. It then uses Bayesian inference to
calculate the probabilities of the generated explanations and
goals.

4.3 Integration of PHATT with the Existing
Architecture

In Sect. 3, we saw that the situation and context identifica-
tion layer of our architecture, implemented exploiting the
context spaces theory, lacks effective modeling and recogni-
tion of the temporal dimension of the activities. In this Sec-
tion, we described an algorithm for plan recognition called
PHATT; we propose now to adopt that algorithm to provide
a way to model complex activities that develop over time.
To this end, we show the advantages and a way of adapting
PHATT to be integrated into our existing architecture, in or-
der to start addressing the challenge of modeling and recog-
nizing complex activities. We also provide an example that
better explains the proposed modifications to the algorithm
and the overall approach.

Critical aspects of PHATT and adaptation As showed
in Sect. 3, the highest level of abstraction that our exist-
ing architecture provides is given by the situation spaces,
whose abstraction is realized by the context spaces reason-
ing mechanism, which provides the set of ongoing high-level
situations together with a value of confidence in their ac-
tual occurrence. As we said, we propose to integrate PHATT
into our system in order to recognize complex activities that
develop over time. Existing activity recognition approaches
using hidden Markov models or conditional random fields
consider the primitive tasks as elementary actions that can
be performed by a person, e.g., use a spoon or a knife
(Kim, Helal, and Cook 2010). Even in some of the pro-
posed applications of PHATT, the primitive tasks model ele-
mentary actions that can be either directly observed or in-
ferred by their effects (Goldman, Geib, and Miller 1999;
Geib and Goldman 2001; 2009). In our case, the exist-
ing architecture already includes three layers that abstract
high-level situation spaces from the elementary “observa-
tions” provided by sensors. For this reason, we propose
to replace the primitive tasks of the plan library used by
PHATT, which represent the actions that can be observed,
with the situation spaces of the context spaces model. In
this way, the observations are not elementary actions like
those proposed in the original PHATT description (Gold-
man, Geib, and Miller 1999; Geib and Goldman 2001;
2009), but high-level situations occurring in the smart home.
That is, situation spaces become the partially-ordered steps
in which methods and root-level taks are decomposed.

Advantages of PHATT We now show the aspects of
the complex activity that can be modeled and handled by
PHATT and its underlying model of plan execution. In Sect.
2, we presented the domestic activity as opportunistic and
constituted of multiple lines of different concerns. This im-
plies that a same person can be preoccupied by multiple con-
cerns at the same time. We also said that activity is never
built according to a pre-established and hierarchical plan but

is constantly reoriented according to inter-individual interac-
tions and interactions with the physical environment. These
aspects may look as being in contrast with the kind of plan
library adopted by PHATT, which assumes that the activ-
ity can be modeled and fully specified as a hierarchy of al-
ternative partially ordered sequential actions. Instead, even
though PHATT relies on this kind of plan library, it adopts
a separate model for plan execution, as showed in the previ-
ous Section. This model considers the possibility that several
root-level tasks are executed in an interleaved fashion and it
is thus able to produce explanations that contain multiple
high-level goals.

In Sect. 2, we also said that the same behavior of a per-
son can have several motivations, thus making it important
to integrate several layers of inference from a low to a high
contextual level. PHATT provides an additional contextual
inference mechanism to our existing architecture, allowing
to logically abducting the possible goals of inhabitants start-
ing from their dynamic behavior. Starting from this knowl-
edge about a person’s goal, it may be easier to make deci-
sions about the kind of assistance to provide in a particular
situation, since the knowledge about the ongoing situations
is in some ways enriched with their “motivation”.

Example scenario We presented the advantages of
PHATT and a way of integrating it into our existing architec-
ture. We now show an example scenario, illustrating how to
model it and recognize the ongoing activities using the pre-
viously presented tools. Notice that the scenario we chose
is simple enough to allow an effective modeling and recog-
nition of the involved activities using PHATT, while still
being enough difficult to handle to represent an improve-
ment to our existing architecture’s capabilities (not exploit-
ing PHATT). This scenario does not pretend to cover all the
challenging aspects of the activity, which we presented in
Sect. 2. Further work will investigate the aspects that we do
not consider in this scenario. In Sect. 5, we provide some
prospects about possible further adaptations of PHATT in
order to model and recognize more complex activities.

Suppose John is involved in the concern of doing the
housework. For this, he puts his house in order and does the
washing. The washing machine is in a separate room that
can be reached walking through a corridor, which also leads
to other different rooms. John collects the washing from the
whole house, reaches the laundry room with his arms loaded,
and then turns the light on in the room. He loads the wash-
ing machine, turns it on, and then walks away to continue
the housework, turning the light off. After some time, he de-
cides to come back and check whether the washing cycle is
over, discovering that it is not. This time, he leaves the light
on, since he knows that he’ll soon come back to unload the
machine, as few minutes of washing are left. When he goes
back to the kitchen, he notices that it is time to cook the
lunch, so he opens the fridge to check what food is in it and
then turns on his laptop to look for a recipe. In the mean-
while, the washing machine cycle is over and the light in
the laundry room is still on. He finally decides to go back to
the room and unload the machine. Then, he leaves the room,
carrying the clean washing, and turns the light off, having
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(c)

(b)

(a) Washing

person_in_
laundry_room

presence

person_starts_
washing

presence washing_
machine_on

person_unloads_
machine

presence washing_cycle_
finished

Figure 3: A cross-layer model of the concern washing: the root-level task, (a), is decomposed in primitive tasks (situation spaces), (b), which
in turn are obtained reasoning on context attributes, (c).

troubles doing that with his arms loaded.
We now show how our current architecture can recognize

the situations going on in the house and how PHATT can
provide the missing activity recognition functionality. We
model the root-level task Washing as the ordered sequence
of situation spaces depicted in Figure 3.

When John enters the laundry room, the perception layer
notifies the upper layer that the context attribute presence for
the washing room has switched to value true. The context
spaces reasoning notifies PHATT that the situation space
person-in-laundry-room is occurring. Thus, PHATT detects
that the Washing root-level task may be executed by the
person. When John turns on the washing machine, the con-
text spaces reasoning infers that the situation space person-
starts-washing is occurring, which is interpreted by PHATT
as the second step in the Washing task execution. Now
John leaves the laundry room to go to the kitchen and start
cooking. PHATT will observe other situation spaces oc-
curring, e.g. person-using-oven and person-using-hotplates,
primitive tasks of a root-level task Cooking. As we said,
the model of activity execution that underlies PHATT al-
lows multiple root-level tasks to be part of the same ex-
planation. Thus, PHATT will generate an explanation for
the observed situation spaces that contains both the goals
Washing and Cooking. Until the situation space person-
unloads-machine is observed, PHATT will consider the goal
Washing as still active.

In our architecture, the output of PHATT can be reflected
in the exploitation layer, offering contextual information that
includes both the occurring situation spaces and the active
goals. The augmented appliances can then exploit this in-
formation to influence their decisions. For example, if the
person is walking in the corridor towards the room and the
Washing goal is active, the probability that the person
wants to enter the laundry room is higher than the probabil-
ity that the person is going somewhere else. Also, the proba-
bility that the person enters the room to use the washing ma-

chine is higher than any other activity. The augmented light
in the laundry room is notified with this contextual informa-
tion and prepares to switch itself on as soon as the person
actually enters the room. This is useful because other situa-
tions and activities may not require turning on the light. For
instance, a person may just want to enter the laundry room,
grab something and then exit without turning on the light.
Knowing that the Washing goal is active, instead, helps
deciding that the person may need enough light to operate
the washing machine. In this way, the decisions taken by the
augmented appliances to manage their behavior are helped
by a double level of information: the situation spaces, ob-
tained by statically analyzing the sensing data coming from
the physical environment, and the root-level goals, produced
by PHATT by analyzing the dynamics of situation spaces,
generating all the possible explanations and evaluating their
probabilities.

5 Open Issues
To conclude this paper, we present some aspects that we will
investigate in future work.

In Sect. 4, we provided an example of domestic activity
scenario. As we highlighted, that scenario is not representa-
tive of the complex model of activity that we presented in
this paper.

For instance, the case of multiple people acting and inter-
acting is not taken into account by the proposed scenario. In
particular, the person that enters the laundry room may not
be the one that is in charge of the laundry. Or, alternatively,
the person may want to enter the laundry room for a different
reason than doing the laundry. As we explained, taking into
account these eventualities is important since it is impossible
to model and reproduce what happens in inhabitants’ minds.
For this reason, future work will have to address the issue of
non-interruptive takeover of the system. For instance, if the
light automatically turns on in the laundry room, the person
should be provided with a proximate interface to turn it off
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if preferred.
Another aspect of activity that we plan to consider shortly

is the recurrence of concerns. Even though the time or order
of actualization of concerns cannot be predicted, we can in-
deed take into consideration the recurrent nature of some of
them. For this purpose, the concepts of prior goal probabil-
ity and of influence of the state of the world introduced in
(Goldman, Geib, and Miller 1999) look very promising.

The recognition of complex ambiguous behaviors of in-
habitants could be improved following the principles de-
scribed in (Coutaz et al. 2005), combining PHATT with the
context spaces and with the perception layer using a holistic
approach. In other words, we may use PHATT to provide
feedback to the underlying context spaces reasoning and
sensor data fusion layers. The feedback could be positive
or negative, depending on the output of PHATT: if the top-
ranked explanation has a high probability with respect to the
others and as an absolute value, we may return to the lower
layers a positive feedback. This feedback allows confirming
the results of the context reasoning process and strengthen-
ing the belief in the sensor data fusion results, for instance
exploiting the conditioning function described in (Smets and
Kruse 1996).

Concerning the implementation aspects of PHATT, we
need to carefully consider some important aspects, described
in the rest of this Section.

(Geib and Goldman 2009) presents the assumption that
each goal of an agent is known since the beginning of the
execution. In Sect. 3, we said that human activity is char-
acterized by inter-individual interactions and interactions
with the physical environment, which result in an “on-the-
fly” modification of the concerns the person is involved in.
The assumption made by PHATT’s implementation is thus
clearly in contrast with our model of activity. Practically, the
consequence of this assumption is that all the explanations
and the probabilities have to be recalculated when a new
goal is discovered. Future work will investigate the conse-
quences of removing this assumption.

PHATT is implemented with the underlying assumption
that all the actions performed by the agent are either di-
rectly observable or, in the case of adversarial plan recog-
nition (Geib and Goldman 2001), inferable from their ef-
fects (changes in the state of the world or observation of
“disabled” actions (Geib and Goldman 2001)). No concept
of degree of uncertainty in the observations is considered,
so there is no way to take into consideration the confidence
value provided as output of the context spaces reasoning pro-
cess. Further work will study ways to incorporate the confi-
dence measure into PHATT or effective ways to choose con-
fidence thresholds able to discern the occurrence of situation
spaces.

We also need to investigate how the same situation space
can be part of different root-level tasks. In (Goldman, Geib,
and Miller 1999), the modeling allows the same primi-
tive task to belong to multiple root-level tasks (the authors
call overloaded these primitive tasks (Goldman, Geib, and
Miller 1999)). In the implementation described in (Geib and
Goldman 2009), this aspect is left as an open research ques-
tion. In our system, different human concerns can reflect in

the detection of the same situation spaces, and the same con-
cern can be actualized in different situation spaces, leading
to the need to model overloaded primitive tasks.

6 Conclusions
In this paper, we showed that the limitations of existing ac-
tivity recognition approaches in the smart home domain are
often due to the poverty of the adopted human-activity mod-
els. Combining expertise from the cognitive ergonomics and
the ubiquitous computing fields, we discussed the hard tech-
nical challenges to address when leveraging on a realistic
model of human activity. We presented the architecture of
a smart home prototype that we are developing and showed
the gap that exists between our current capabilities in terms
of contextual-knowledge extraction and the complexity of
the targeted activity recognition. To fill this gap, we pro-
posed and discussed the integration of an existing algorithm
for plan recognition into our system, in order to mine addi-
tional information from the dynamics of context.

Much work is still needed to perform activity recognition
when accepting the difficult challenges raised by our com-
plex naturalistic human activity model. Our ultimate aim is
to extract a rich basis of contextual information to be used to
provide the inhabitants of a smart home with adapted func-
tionalities, targeted to obtain energy saving while preserving
inhabitants’ comfort.
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Abstract

We extend our recent formalization of multi-agent plan recog-
nition (MAPR), to accommodate compact multi-agent plan
libraries and incomplete plans, and propose polynomial time
algorithms for several cases of static teams: when team-size
is bounded by 2, or when the social structure graph is a star,
a tree of bounded depth, or a path. However, we show that
when the teams are dynamic and even when the social struc-
ture graph is as simple as a path, MAPR is NP-complete. Fi-
nally, we show rigorously for the first time, that when activ-
ity interleaving is allowed, even the single agent version of
MAPR is NP-complete.

Introduction
Multi-agent plan recognition (MAPR) refers to the problem
of explaining the observed behavior of multiple agents by
identifying the (dynamic) team-structures and the team plans
(based on a given plan library) being executed, as well as
predicting their future behavior. Recently, we introduceda
formal model for MAPR and used it to investigate the com-
plexity of its simplest setting (Banerjee, Kraemer, and Lyle
2010). However, this model has several limitations which
we address in this paper, and investigate the complexities of
various settings in a richer model.

Our focus is on the symbolic MAPR problem, as shown

A c t i v i t yR e c o g n i t i o n( B ) S e n s o r r e a d i n g s( x 1 , x 2 , … , x T )
P l a nR e c o g n i t i o n( A ) L a b e l e d a c t i v i t i e s /T r a c e s( y 1 , y 2 , … , y T )

( D y n a m i c )G o a l s / P l a n s P l a nL i b r a r yP s y c h o l o g i c a l /O r g a n i z a t i o n a lM o d e l sD o m a i n i n d e p e n d e n tf o c u s o f t h i s p a p e r
below, in order to de-
velop MAPR theory in
a domain-independent
way. As such, we
abstract away the
complex problem of
sensor interpretation
(activity recognition),
to wean MAPR out of
domain-dependency,
and assume that a
symbolic trace and a
plan library are avail-
able in a common
language. We begin
with an illustration of

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this abstracted MAPR problem in a multi-agent blocks
words domain, shown in Figure 1. In part (a), two teams of
robotic arms assemble the goal words “TAR” and “AXE”
from separate stacks, starting from the (not necessarily)
same initial configuration. Part (b) shows the trace of 6
steps of activities of the 4 robotic arms, as seen by the
(remote) recognizer. The recognizer works with incomplete
information, i.e., the association between the arms and the
stack identifiers (that would have enabled it to identify
teams directly) are unavailable. Therefore, while arms 1
and 2 jointly assemble “TAR”, and arms 3 and 4 jointly
assemble “AXE”, arms 2 and 3 appear to assemble “TAX”
as well, creating ambiguity for the recognizer. The key
insight is that it is impossible topartition the trace into
non-overlapping, complete or incomplete team-plans if
the goal hypothesis “TAX” is accepted. Note, teammates
are not required to start plan execution at the same time,
and may not complete a plan by the observation horizon,
making probabilistic prediction a useful objective. Part (c)
shows a (non-unique) plan from the library, for start state
in (a) and goal “TAR”, in the form of a plan graph. This is
a graph based on the partially ordered set of steps needed
to achieve a goal from a start state, with added constraints:
role constraints (which steps need to be performed by
the same agent) andconcurrency constraints(which steps
need to be executed simultaneously; not needed in this
illustration). Note, the duration and the team size needed to
execute a plan are unspecified though constrained, e.g., 1 to
4 agents can execute this plan in 5 to unlimited time steps
(due to noops).

Typically for plan recognition with single agents, a plan
library is given in a compact hierarchical form, such as an
HTN (Erol, Hendler, and Nau 1994). Formulating such
a library for a multi-agent system is more complex (Suk-
thankar and Sycara 2008). In this paper, we develop algo-
rithms and complexity results for two less expressive (than
HTNs) plan libraries, viz., context free grammars (CFGs)
and plan graphs (Figure 1(c)), each of which incorporates
some desirable features of HTN, e.g., recursiveness and hi-
erarchies in CFGs, and partial ordering in plan graphs. Both
advance our previous formalization in (Banerjee, Kraemer,
and Lyle 2010) which accommodated none of these desir-
able features.

In this paper, we refine our previous model (Banerjee,
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Figure 1: Multi-Agent Blocks Words.

Kraemer, and Lyle 2010) to make 2 important generaliza-
tions: allow compact, non-trivial plan libraries that corre-
spond to infinite languages as opposed to the finite language
in (Banerjee, Kraemer, and Lyle 2010), and relax the as-
sumption in (Banerjee, Kraemer, and Lyle 2010) that all ob-
served plans are completed by the observation horizon. We
propose a multi-agent context free grammar to compactly
describe multi-agent plans, and adapt Vilain’s Earley-based
algorithm (Vilain 1990) to parse multi-agent activity strings
with this grammar to yield the highest valued parse. We use
this algorithm to polynomially solve several special cases
of MAPR when the teams are static: where team-size is
bounded by 2, or where the social structure graph is a star, a
tree of bounded depth, or a path. However, when the teams
are dynamic, we show that even when the social structure
graph is as simple as a path, and the library contains plan
graphs, MAPR is NP-complete. Finally, we show rigorously
for the first time, that when activity interleaving is allowed,
even a single agent MAPR is NP-complete.

Preliminaries

LetA be a set ofn agents,{a1, a2, . . . , an}, andΣ be a fixed
size alphabet of grounded, primitive actions (e.g., “(unstack
A T)”) that these agents can be observed to execute. We are
given a trace,T , of observed activities of these agents over
T steps of time, in the form of aT × n matrix, T = [tij ],
wheretij ∈ Σ is the action executed by agentaj at timei,
j = 1, . . . , n andi = 1, . . . , T . Note that we actually do not
require the observed agents to act in a synchronized manner,
as Figure 1(b) may suggest. Rather, sensor interpretations
are reported with the timestamps of the corresponding ob-
servations, which are then placed into the trace rows on a
discretized time scale. The resolution of this discretization
is such that no two symbolic activities of any agent fall into
the same trace cell, i.e., the resolution of the trace rows is
adapted to the fastest agent, with “(noop)”s filling the re-
sulting empty cells of the slower agents.

We are also given a finite library of team plansL, in some
form. In this paper, our choice of a representation for the
plan library is guided by a need to strike a middle ground
between polynomial solvability of some cases, against the

NP-completeness of others. Our strategy is to select a more
expressive language (in particular, context free grammars)
for the easier cases, but a more limited language (in partic-
ular, the finite language from (Banerjee, Kraemer, and Lyle
2010)) for the harder cases. The rationale for such a strategy
is that the results are expected to remain unchanged (or be-
come easier and harder respectively) when more restrictive
representations (such as special cases of context free gram-
mars) are considered for the easier cases, or more general
representations (such as the infinite language corresponding
to the plan graph representation introduced above) for the
harder cases. We first introduce the various forms of the li-
brary forMAPR.

The Plan Library
We defineL in three different forms. The first iscontext
free grammarto be used to parse strings of activity vectors
of agents. Following the conventions of (Kautz and Allen
1986; Vilain 1990), we assume that all plans are either END
plans or not. An END plan is one that is meaningful in and of
itself, while a non-END plan can only occur as a component
of some other plan. We define a set of END goals, such that
each END plan derives some END goal. As in (Vilain 1990),
the start production rule is

S → END | END S

The production for all END goals is given by

END → P j
1 | P j′

2 | . . . (1)

whereP j
i is the ith END goal, that can be achieved by a

team containingj agents. The production ofP j
i , which rep-

resents an END plan, takes the following form

P j
i → . . . Qj

1 . . . Q
j
2 . . .

where the right hand side of the rule contains non-END non-
terminalsQj

i that only describe (sub)goals ofj-agent teams.
All terminals on the right hand side above are alsoj length
vectors of symbols fromΣ. Moreover, the productions ofQj

i
are also limited toj length terminals andj length non-END
non-terminalsQj

k. Additionally, we require that no END
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goal,P j
i , ever appears on the right hand side of any rule ex-

cept rule 1. In other words, an END goalP j
i cannot be a

part of itself or another END goalP j
k . This is a technical

requirement, and is not truly an assumption, See (Banerjee,
Lyle, and Kraemer 2011) for the justifications of these as-
sumptions.

Allowing the capability of recursion enables us to com-
pactly represent a plan such asbounding overwatch, which
could be represented by the following rules

Qj → XjY j | XjY jQj

Xj → (firek, withdrawj−k) | (firek, withdrawj−k)Xj

Y j → (withdrawk, firej−k) | (withdrawk, firej−k)Y j

If Qj must be an END goal, we simply add a dummy END
goalP j and a dummy END planP j → Qj , to satisfy the
technical requirement.

The second form ofL is afinite collection of plan graphs,
used in the illustration in Figure 1(c). Plan graphs grounded
in start-goal states can be viewed as being produced by
decomposition(Ghallab, Nau, and Traverso 2004) from
a (more abstract and traditional) Hierarchical Task Net-
work (Erol, Hendler, and Nau 1994) plan library into a par-
tially ordered set of primitive actions (which we call the plan
graph), after a team of agents have chosen a goal. Notice, we
do not assume that all agents must start their team activities
at the same time (as the illustration in Figure 1 (b) might sug-
gest) since agents can include arbitrary numbers of “noop”s
before and between operators.

A third form for L is a finite collection of finite matri-
ces of symbols fromΣ. This library, that we used before
in (Banerjee, Kraemer, and Lyle 2010), is hardly practical,
but its purpose is to establishbaselinehardness results such
that more practical libraries are likely to make those cases
even harder. It is straightforward to see that the third lan-
guage above is the least expressive and is a special case of
the other two, since it corresponds to highly constrained plan
graphs, and can also be expressed by a regular grammar – a
special case of CFG. Therefore, the first two forms ofL can
be seen as engendering a set of matrices, but this set can be
infinite. Thus hardness results based on the third language
should also carry forward to the other two languages. For
polynomial solvability, however, the results would be more
interesting with the CFG library.

Definitions
As mentioned before, we assume the library to be in differ-
ent form for different cases, but for the sake of uniformity let
L π−→ p denote the fact that anx× y matrix of symbols from
Σ, sayp, is engendered by some planπ in the libraryL. We
do not requirex to be related toT , or y to n. Formally,

Definition 1. ( π−→) Given anx×y matrixp, pij ∈ Σ, we say
L π−→ p iff

• L can derivep using a top level production ruleπ, when
L is a context free grammar,

• p satisfies all the ordering, role and concurrency con-
straints ofπ ∈ L, whenL is a finite set of plan graphs
(Figure 1(c))

• p = π, whenL is a finite collection of matrices of symbols
fromΣ.

Thex×y matrixp above can be thought of as the trace of
activities of one team ofy agents, forx steps. In the rest of
the paper, we shall represent the number of rows of a matrix
p asr(p) and the number of its columns asc(p). The above
definition connects ap to the plans in the libraryL. The
following definition connects it to the traceT , in which case
it is necessary thaty ≤ n, but the correspondence between
the columns ofp and the setA (of agents) is unspecified.

Definition 2. (Occurrence) An occurrence of a matrixp
(of symbols fromΣ, and with≤ n columns and a finite
number of rows) in the traceT is given by a tupleop =
(k1, k2, . . . , kc(p), tp) such that

• 1 ≤ tp ≤ T

• akj
∈ A andki 6= kj , 1 ≤ i, j ≤ c(p)

• pij = T (tp + i− 1, kj), i = 1, . . . , τ, j = 1, . . . , c(p)

whereτ = min{r(p), T − tp +1}. In other words, ifτ con-
tiguous rows, (viz.,tp, tp + 1, . . . , tp + τ − 1), and c(p)
columns (sayk1, . . . , kc(p), a c(p)-selection in any order
from n agent indices) can be found inT such that the re-
sulting submatrix exactly matches theτ × c(p) (sub)matrix
of p, thenp occurs inT . If τ = r(p), then the occurrence
is complete, but ifr(p) > T − tp + 1 then the occurrence is
partial.

A partial occurrence can be interpreted as yielding apre-
dictionof what observations can be expected beyond the ob-
servation horizon,T . Since it is not guranteed that all ob-
served plans will have completed by the observation horizon
T , allowing partial occurrences is an important generaliza-
tion of (Banerjee, Kraemer, and Lyle 2010). Furthermore,
such predictions are useful since they can help validate (or
revise) the current explanations when more observations be-
come available.

Note that a givenp can have multiple occurrences in
T . Two occurrences ofp in T , (k1, k2, . . . , kc(p), tp)

and (k
′
1, k

′
2, . . . , k

′
c(p), t

′
p), are distinct iff tp 6= t

′
p or

{k1, k2, . . . , kc(p)} 6= {k′
1, k

′
2, . . . , k

′
c(p)}. We represent the

set of all distinct occurrences ofp in T asOp,T .
In order to formalize the partitioning ofT using various

occurrences, we first formalize the notion ofconflictof two
occurrences in the following definition.

Definition 3. (Conflict) Two occurrences of matrices
p, q (same or distinct, partial or complete),op =

(k1, k2, . . . , kc(p), tp), oq = (k
′
1, k

′
2, . . . , k

′
c(q), tq) are said

to be in conflict iff both of the following hold:

• {k1, k2, . . . , kc(p)}
⋂{k′

1, k
′
2, . . . , k

′
c(q)} 6= ∅

• tp ≤ tq + r(q)− 1 andtq ≤ tp + r(p)− 1

Finally, a partition of the traceT for a given libraryL is
defined as follows:

Definition 4. (Partition) A partition ofT for a given library
L, represented asΠT |L, is a set of triples,(p, op, π), such
that all of the following hold:
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• op ∈ Op,T , ∀(p, op, π) ∈ ΠT |L,

• For each(p, op, π) ∈ ΠT |L, L π−→ p,

• There is no pair of triples,(p, op, πp), (q, oq, πq) in ΠT |L,
such thatop, oq are in conflict,

• For each(i, j) such that1 ≤ i ≤ T, 1 ≤ j ≤ n, there
exists(p, (k1, . . . , kp, tp), πp) ∈ ΠT |L such thattp ≤ i ≤
tp + r(p)− 1 andj ∈ {k1, . . . , kp}.

We call the set of possible partitions (whose finiteness de-
pends on the nature ofL) of T , P. We associate a utility
functionf : P 7→ ℜ to the partitions, so that each partition
of T can be evaluated for its preferability as an explanation
for the activities observed, as well as possible predictions
of some activities beyondT (when occurrences are partial).
We can now define theMAPR problem as follows:

Definition 5. (MAPR) The multi-agent plan recognition
problem, represented asMAPR(TT×n,L, f, k) is defined as
follows:

Instance: A fixed set of symbols,Σ; activity matrix T (of
sizeT ×n) such thattij ∈ Σ, a plan libraryL, a function
f : P 7→ ℜ andk ∈ Z.

Decision Question: Is there a partition, ΠT =
{(p, op, π), . . .} of T such thatf(ΠT |L) ≥ k?

Optimization Question: Which partition ofT , if any, say
ΠT |L = {(p, op, π), . . .} maximizesf(ΠT |L)? We repre-
sent the optimization problem asMAPR(TT×n,L, f ).

The objective of interest is non-unique (Banerjee, Lyle,
and Kraemer 2011), but we only consider the optimization
problem here.

The Utility Function
The number of possible partitions may not be a polynomial
in n, T , or even finite; consequently the size of the func-
tion f may not be compact. Without assuming some kind of
structure inf , it may be hard to ensure its polynomial com-
putability, without which polynomial timeMAPR appears
hopeless. As in (Banerjee, Kraemer, and Lyle 2010), we as-
sumef is additive for polynomial time results, and of the
form

f({(p1, op1
, π1), . . . , (pz, opz

, πz)}) =
∑

i

v(pi, opi
, πi),

v being some value function that maps the triples
(pi, opi

, πi) to values. See (Banerjee, Lyle, and Kraemer
2011) for more details.

Social Structures
One of the major goals of this paper is to present polyno-
mial solvability results for some interesting special cases of
MAPR, where special structures are exploited. In the past,
social structures, i.e., some known organizational struc-
ture among the observed agents have been used for solving
MAPR but such studies have been constrained by very spe-
cific application domains (Kaminka, Pynadath, and Tambe
2002; Tambe 1996).

We consider social structures given by graphs, where
agents are the vertices. We say that agents that consti-
tute a path in this graph can form a team, but not other-
wise. This prevents agents from “jumping hierarchy” and
also captures the notion of a team leader in a hierarchical
setting. In fact, we consider the hierarchical social struc-
ture given by a tree of a bounded depth. This is a practi-
cal consideration, since in reality the number of levels in
a hierarchy are often bounded, but the number of mem-
bers can be variable. We also consider more restricted so-
cial structures such as a star (tree hierarchy of depth 1) and
path (special tree of variable depth, representing a “chain
of command”) graphs. For instance, for the following
path graph on 3 agents,{A,B,C}, the possible teams are
{{A}, {B}, {C}, {A,B}, {B,C}, {A,B,C}}, but {A,C}
is not a valid team.

����
A ����

B ����
C

A social structure graph preventsarbitrary teams, and
thus imposes structure onMAPR to allow us to solve some
special cases easily. In particular for path graphs, since the
number of possible teams is rendered polynomial,MAPR
can be solved in polynomial time if the teams are static.
However, even with a polynomial number of possible teams,
if the teams can change dynamically, we show later that
MAPR is NP-complete. In the context of social structures
defined above, our previous hardness result (Banerjee, Krae-
mer, and Lyle 2010) can be interpreted as being based on a
social structure graph that iscompletethus allowing arbi-
trary (i.e., an exponential number of) teams.

Non-interleaved Plan Execution
The problem formulation in the Definitions section does not
accommodate interleaved plan execution by the observed
agents. In other words, an agent must complete a plan be-
fore moving on to a different plan. All of our results in this
section fall in the non-interleaved category, but later in the
paper we present the first rigorous hardness result forMAPR
in the face of interleaved plan execution. We consider both
static and dynamic teams.

Static Teams

In many situations, the team structure among the agents
may remain static through the observation horizonT . This
is clearly the case, for instance, in several application do-
mains where multi-agent activity recognition has been ex-
plored, such as multi-robotic soccer (Vail and Veloso 2008)
and multi-agent capture-the-flag games (Sadilek and Kautz
2010). Interestingly, MAPR is NP-complete even if the
teams are static but can be of size 3 or more, as our proofs
in (Banerjee, Kraemer, and Lyle 2010) demonstrate. How-
ever, it is unknown if additional structure in the form of a
bound on the team size or a known social structure can be
exploited to solve MAPR more easily. In this section we
show that if the team size is bounded by 2, or if the social
structure is a star, path, or a bounded-depth tree, thenMAPR
is in P.
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Algorithm 1 ROLECOMBINE(r, q)

1: Input: Two vectors of sets of integersr andq, both of length
s

2: zi ← ri ∩ qi for i← 1, 2, . . . , s
3: for i← 1, . . . , s do
4: wi ← {j | 1 ≤ j ≤ s, zi = zj}
5: if |wi| 6= |zi| then
6: Return ∅
7: end if
8: end for
9: Return z

All of the polynomial time results in this section are
based on the CFG plan library introduced earlier, for which
we present algorithm PARSE, derived from Vilain’s Earley-
based parser (Vilain 1990). The input to this algorithm are:
anL × s matrix x of symbols fromΣ representing the ac-
tivities of s agents forL steps; a context-free grammarL
with a set of top-level non-terminals of team-sizes only
P = {P s

1 , P
s
2 , . . . , P

s
w} representing END-goals; and an oc-

currenceox.
The output of PARSE is the highest valued partition ofx

and the corresponding value ((∅, ∗) if the parse fails). In
Algorithm 2, α represents an arbitrary terminal (vector of
lengths), β an arbitrary terminal or non-terminal, and upper-
case unitalicized letters represent arbitrary non-terminals.
oxi represents the occurrenceox with the start time replaced
by i. xi,j represents thejth element of the vectorxi of
lengths, andxk

i represents the submatrix ofx from rows
i thruk (and alls columns).

Our parser is adapted for multi-agent CFG (i.e., vector ter-
minals instead of scalar) presented in the Plan Library sec-
tion, and to accommodate a value function and partial occur-
rences. Steps 1–34 are same as Earley’s parser with predict-
scan-complete loop, except steps 19–22 which help maintain
a chain of END rules that had the best parse value, complet-
ing at observationk. This allows us to return thehighest
valuedparse in contrast to Earley. Besides, in order to en-
sure consistency of agent roles from one terminal to the next
in a parse of thesameEND goal, we maintain the role hy-
pothesis (which agent column in a terminal matches which
column of matrixx) as an additional part ofstates (basic
Earley parser only maintains the dotted rule and the start in-
dex), and use the function ROLECOMBINE (Algorithm 1) to
verify if two role hypothesesr andq are consistent, and if
so, return a combined hypothesis (∅ otherwise).

Step 35 is a repeat of the “Complete” block (lines 18–
32), but only onstates[L] and is an addition to the Ear-
ley parser, to accommodate the values of partial occurrences
into the dynamic programming. For every incomplete END-
plan that started at or beforeL, we fakecompletion (i.e., we
do not advance the• as in line 29) and see if a complete parse
upto j followed by a partial occurrence tillL can give us a
better partition ofxL

1 . In other words, we solve the problem
V (L) = max1≤j<L[V (j)+bestpartial(xL

j+1)] by dynamic
programming. If the maximum number of dotted rules af-
forded by the grammar isG, then since there areL steps of
observation,s agents, and ROLECOMBINE isO(s3), step 35

Algorithm 2 PARSE(x,L, ox)
1: Initialize: bestpartition [0 . . . L] ←

ˆ

∅ ∅ . . . ∅
˜

;
bestval [0 . . . L] ←

ˆ

0 0 . . . 0
˜

;
states [0 . . . L] ←

ˆ

∅ ∅ . . . ∅
˜

; roles [0 . . . s] ←
ˆ

{1, 2, . . . , s} . . . {1, 2, . . . , s}
˜

2: Add (S→ •END S, 0, roles) and (S→ •END, 0, roles) to
states[0]

3: for k ← 0 to L do
4: repeat
5: ———————Predict———————–
6: for all (Q→ . . . • Y . . . , i, r) ∈ states[k] do
7: add (Y → •β . . . , k, roles) to states[k] for all pro-

ductions inL with Y on the lefthand side.
8: end for
9: ———————–Scan————————

10: for all (Q→ . . . • α . . . , i, r) ∈ states[k] do
11: r′m ← {j|1 ≤ j ≤ s, xk+1,m = αj} for m ←

1, 2, . . . , s
12: z ←ROLECOMBINE(r, r′)
13: if z 6= ∅ then
14: add(Q→ . . . α • . . . , i, z) to states[k + 1]
15: end if
16: end for
17: ———————Complete———————
18: for all (Q→ . . . β•, i, r) ∈ states[k] do
19: if Q ∈ P and(bestpartitionk = ∅ or bestvalk <

bestvali + v(xk
i , oxi, Q→ . . . β)) then

20: bestpartitionk ← concat(bestpartitioni, (Q →
. . . β, i+ 1, k))

21: bestvalk ← bestvali + v(xk
i , oxi,Q→ . . . β•)

22: end if
23: for all (R→ . . . •Q . . . , j, r′) ∈ states[i] do
24: z ←ROLECOMBINE(r, r′)
25: if Q ∈ P then
26: z ← roles
27: end if
28: if z 6= ∅ then
29: add(R→ . . .Q • . . . , j, z) to states[k]
30: end if
31: end for
32: end for
33: until no states can be added tostates[k]
34: end for
35: Repeat the “Complete” block above withk set toL, but only

on incomplete rules (line 18) and do not advance• (line 29).
36: Return (bestpartitionL, bestvalL)
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is O(s3GL). Therefore, the complexity of the entire algo-
rithm is still the same as Earley’s with the additional factor
of s3 to account for vector terminals, leading to a complex-
ity of O(s3G2L3). Since ROLECOMBINE is rather simple
and PARSE is a simple extension of (Vilain 1990), we omit
proofs of their correctness. Based on PARSE, we give the
following results (proofs can be found in (Banerjee, Lyle,
and Kraemer 2011)):

Theorem 1. WhenL is a context free grammar and team-
sizes are bounded by 2, thenMAPR(TT×n,L, f ) can be
solved in timeO(n2.5G2T 3) for additivef .

We now consider how a known social structure can be
exploited to solveMAPR in polynomial time, even when
the (static) teams can have more than two agents. We first
present the result when the social structure graph is astar,
which forms the base case for induction on multi-level trees
of bounded depth. Finally, we consider a path social struc-
ture.

Lemma 2. WhenL is a context free grammar and the social
structure graph is a star, thenMAPR(TT×n,L, f ) can be
solved in timeO(n2G2T 3) for additivef .

Theorem 3. WhenL is a context free grammar and the
social structure graph is a tree of bounded depthd, then
MAPR(TT×n,L, f ) can be solved in timeO(nd+1G2T 3)
for additivef .

Another case of static teams with a known social struc-
ture can be made from a path, which is a special tree, but of
variable depth.

Lemma 4. WhenL is a context free grammar and the social
structure graph is a path, thenMAPR(TT×n,L, f ) can be
solved in timeO(n5G2T 3) for additivef .

Dynamic Teams
Despite the positive results of the previous section, there
are many scenarios where the team structures among the
observed agents can indeed change dynamically within the
observation horizon. Tracking dynamic teams has received
some attention in the past, initially as a part of broader en-
vironmental dynamism (Tambe 1996), but with greater fo-
cus more recently (Sukthankar and Sycara 2006; Avrahami-
Zilberbrand and Kaminka 2007). However, the hardness of
this problem has been unknown so far. In this section we
show thatMAPR is NP-complete when teams can be dy-
namic, even when the social structure of the observed agents
is as simple as a path. This indicates, that for more com-
plex and realistic social structures such as hierarchical/tree
structures, the problem will remain NP-hard since a path is
a special case of a tree. Note that the team sizes are variable
here.

Theorem 5. When L is a finite collection of matri-
ces, and the social structure graph is a path, then
MAPR(TT×n,L, f, k) is NP-complete for the class of poly-
nomially computablef .

Proof: Since the social structure is a path graph, the
agents/columns of the trace matrix can be (re)arranged such
that the column-ordering matches the vertex ordering in the

given path. Then every occurrence isrectangular, i.e., con-
tiguous on both the time and the agent dimensions, since
teams are only allowed on subpaths of the given social struc-
ture. Thus the problem of partitioning the trace reduces to
that of rectangular partitioning of the trace matrix.

We reduce an arbitrary instance of theRTILE prob-
lem (Khanna, Muthukrishnan, and Paterson 1998) to a spe-
cial instance ofMAPR. See (Banerjee, Lyle, and Kraemer
2011) for the relevant details ofRTILE. For the instance
(B, p, u) of RTILE, we create aMAPR instance as follows.
We create ann× n matrix of the same symbol for the trace
T , whereB is of sizen×n. To create the plan library,L, we
form submatrices of the same symbol, of sizei × j, for all
i = 1 . . . n, j = 1 . . . n. Thus any contiguous submatrix of
T matches some element ofL, and hence is in fact an occur-
rence. More importantly, such a contiguous submatrix ofT ,
or an occurrenceo, corresponds to a rectangular tile of the
matrixB, and hence can be associated with the correspond-
ing tile value, call itvo. We assign value to each occurrence
o asv(o) = vo/K, whereK =

∑
i,j B[i, j]. Finally, for the

utility function f we choose the polynomially computable
function

f(o1, o2, . . . , oz) = (1− |p− z|).(1/(1 + max
i

v(oi)− u/K))

and setk = 1. This instance ofMAPR has a solution with
value≥ k iff RTILE(B, p, u) has a solution. The proof of
inclusion in NP is similar to (Banerjee, Kraemer, and Lyle
2010).

Although the above proof shows that there is some poly-
nomialf for which this class ofMAPR is hard, the chosen
f has such a specific form that it could leave one wondering
whether an additivef could still admit a polynomial time
solution. We leave this avenue for future work.

… .… .… .:: :: :: :: :: ::
S t a r t

F i n i s h
i

j

Figure 2: The plan graph corresponding to thei × j matrix
plan. The two-headed dashed arrows represent concurrency
constraints, the solid arrows represent ordering constraints,
and the two-headed thick arrows represent role constraints.

The proof of Theorem 5 can be readily extended to cover
plan libraries that are finite collections of plan graphs (as
presented in illustration in Figure 1(c)). Such a plan library
itself can engender an infinite collection of plan matrices,
indicating that this problem is no easier than that addressed
in Theorem 5. The proof proceeds the same way as Theo-
rem 5, except that instead of the plan submatrix (using the
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same symbol,a, say) of sizei× j, we create the plan graph
shown in Figure 2.

Corollary 1. When L is a finite collection of plan
graphs, and the social structure graph is a path, then
MAPR(TT×n,L, f, k) is NP-complete for the class of poly-
nomially computablef .

Essentially, the representation of the plan library as a fi-
nite set of matrices becomes a special case of the plan graph
representation, and possibly other (more useful) representa-
tions as well. In fact, Theorem 5 establishes a baseline such
that this problem in conjunction with any practically inter-
esting plan library (such as an HTN or a context free gram-
mar) should be at least as hard as any NP-complete problem.

Interleaved Plan Execution
Interleaved execution of plans have been accommodated
in activity recognition in the past (Chai and Yang 2005;
Hu and Yang 2008), where an agent can interrupt a plan
to serve another and resume it later. In a multi-agent sys-
tem, this means that an agent can also be a part of another
team in the interim, or leave a team and join another while
the former team plan is still in progress. Although heuris-
tic approaches have been proposed to address interleaving,
there has been no formal investigation into the hardness of
interleaved plan recognition even with a single agent. Be-
low, we prove the hardness of this problem for the first time,
by showing a reduction fromX3C (exact cover by 3-sets), a
known NP-complete problem (Garey and Johnson 1979).

Theorem 6. WhenL is a finite collection of strings∈ Σ∗

(i.e., the finite matrix library for a single agent) or plan
graphs (as with Theorem 5 and Corollary 1), and the agent
is allowed to execute plans in an interleaved manner, then
MAPR(TT×1,L, f, k) is NP-complete wheref is polynomi-
ally computable (and even additive).

Proof: First we note that a certificate can be given
as

〈
(τ11 , τ

1
2 , . . . , π1), (τ

2
1 , τ

2
2 , . . . , π2) . . .

〉
, whereπ1, π2. . . .

are the plans that the agent has executed, andτ ji is the time
(in [1, T ]) when it executed theith step of the planπj . The
certificate is clearly of linear size, and can be verified in
polynomial time as in (Banerjee, Kraemer, and Lyle 2010).

Next, we polynomially reduce a general instance ofX3C
(with X andC ⊆ 2X , s.t. |X| = 3q, and ci ∈ C ⇒
|ci| = 3) to a special instance ofMAPR(TT×1,L, f, k) with
interleaving as follows. We assume|Σ| ≥ 3, and chooseτ
such thatτ < |X| but (|Σ| − 1)τ ≥ |X|. Then for each
elementxi ∈ X we create a string,s(xi) of length τ by
sampling with replacement fromΣ \ {α}, such thats(xi) 6=
s(xj) if xi 6= xj . The selected symbolα is never used in
this process, and is reserved for later. We order the elements
of X andc ∈ C in lexicographic order on thes(xi)s. Then
for each orderedci ∈ C given by ci = {x1

i , x
2
i , x

3
i }, we

create a stringπi = s(x1
i ) · α · s(x2

i ) · α · s(x3
i ) · α of length

3(τ + 1), where· is the string concatenation operator. We
call the set of|C| πis the plan libraryL. We choose the
strings(x1) · α · s(x2) · α · . . . s(x|X|) · α based on ordered
X as the traceT of lengthT = |X|(τ + 1). Figure 3 shows
an illustrative example of this reduction.

We claim that this setting ofMAPR has a solution with
q plans iff X3C has a cover of sizeq. To solveMAPR, we
clearly need to cutT at various positions so that (possibly
discontiguous) segments can be joined to reflectπ ∈ L. We
call a cut beneath anyα a legal cut, while a cut beneath any
symbol in the trace string that comes from the setΣ \ {α}
is called anillegal cut. It is easy to see that if all cuts in
a MAPR solution are legal, then a solution to theX3C in-
stance can be trivially constructed. Furthermore, if a solu-
tion to X3C exists, it can trivially produce a solution to this
setting ofMAPR, using legal cuts only. On the other hand, if
a solution toMAPR could incorporate illegal cuts, then this
one-to-one correspondence between the solutions ofMAPR
and those ofX3C would break down, but Lemma 7 shows
that no cut in aMAPR solution can ever be illegal.

Lemma 7. A solution to the above instance ofMAPR must
only incorporate legal cuts.

Proof (by contradiction): Suppose there is one or more il-
legal cut in the solution. Consider the bottom-most illegal
cut – say thekth cut from the top– and the segment ending
at this cut. Call this theopensegment. Since the open seg-
ment does not end inα, it must be appended by one or more
segments that lie between the(k + 1)th and the subsequent
cuts, to produce a complete plan. However,all subsequent
cuts (if any) arelegalby assumption. That is, all intervening
segments in these legal cuts are of lengths that are multiples
of τ + 1. Observe that no number of such segments can
complete the open segment, because the number of symbols
between the lastα (or the beginning) of the open segment
and the nextα in the completed (i.e., appended) plan must
necessarily exceedτ . This violates every plan in the library
by construction, and therefore we do not have a solution– a
contradiction.

Contrasting this result with the polynomial solvability of
MAPR without interleaving and with a single agent (Baner-
jee, Kraemer, and Lyle 2010) reveals the impact of in-
terleaved plan execution on the plan recognition problem.
SinceMAPR with multiple agents and interleaving cannot
be any easier, this also offers evidence of the hardness of the
latter.

Conclusions
We have presented two important extensions to our recent
formalization of MAPR, to accommodate compact multi-
agent plan libraries and incomplete plans. We have studied
several special cases ofMAPR with static teams, bounded
team sizes, and known social structures, and shown how
these can be solved in polynomial time. Unfortunately, with
dynamic teams and social structure even as simple as a path,
MAPR turns out to be NP-complete. Moreover, when ac-
tivity interleaving is allowed, even the single agent problem
turns out to be NP-complete, implying the hardness of multi-
agent interleaved plan recognition. From the point of adver-
sariality, a single agent can render the recognizer’s problem
from P to NP-complete by interleaving activities, but with
multiple (and a variable number of) agents, the problem is
NP complete with or without activity interleaving. In other
words, interleaving is an effective adversarial tool for a sin-
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Figure 3: Illustration of the reduction from an instance ofX3C to MAPR with interleaving for a single agent. Part (a) shows
the setup and the plan library consisting ofπ1–π4. Part (b) shows the trace and the solution.

gle (observed) agent against a recognizer, but it is not as
effective for multiple (observed) agents.

Acknowledgments
We are thankful to the anonymous reviewers, and also to Gal
Kaminka and Gita Sukthankar, for valuable suggestions and
comments. This work was supported in part by a start-up
grant from the University of Southern Mississippi.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2007. To-
wards dynamic tracking of multi-agent teams: An initial re-
port. InProceedings of the AAAI Workshop on Plan, Activity
and Intent Recognition (PAIR-07).

Banerjee, B.; Kraemer, L.; and Lyle, J. 2010. Multi-agent
plan recognition: Formalization and algorithms. InProceed-
ings of AAAI-10, 1059–1064.

Banerjee, B.; Lyle, J.; and Kraemer, L. 2011. New al-
gorithms and hardness results for multi-agent plan recog-
nition. Technical report. Available athttp://www.cs.
usm.edu/∼banerjee/tr/longer.pdf.

Chai, X., and Yang, Q. 2005. Multiple-goal recognition
from low-level signals. InProceedings of the AAAI, 3–8.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94),
1123–1128. AAAI Press.

Garey, M. R., and Johnson, D. S. 1979.Computers and
Intractability: A Guide to the Theory of NP-Completeness.
San Francisco, CA: W.H. Freeman and Co.

Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.

Hu, D. H., and Yang, Q. 2008. Cigar: Concurrent and
interleaving goal and activity recognition. InProceedings
of the Twenty-Third AAAI Conference on Artificial Intelli-
gence, 1363–1368.
Kaminka, G.; Pynadath, D.; and Tambe, M. 2002. Moni-
toring teams by overhearing: A multi-agent plan recognition
approach.Journal of Artificial Intelligence Research17.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proc. AAAI.
Khanna, S.; Muthukrishnan, S.; and Paterson, M. 1998. On
approximating rectangle tiling and packing. InProceedings
of the ninth annual ACM-SIAM symposium on Discrete al-
gorithms, SODA ’98, 384–393. Philadelphia, PA, USA: So-
ciety for Industrial and Applied Mathematics.
Sadilek, A., and Kautz, H. 2010. Recognizing multi-agent
activities from gps data. InProceedings of AAAI-10, 1134–
1139.
Sukthankar, G., and Sycara, K. 2006. Simultaneous team
assignment and behavior recognition from spatio-temporal
agent traces. InProceedings of AAAI conference.
Sukthankar, G., and Sycara, K. 2008. Hypothesis pruning
and ranking for large plan recognition problems. InProc. of
AAAI.
Tambe, M. 1996. Tracking dynamic team activity. InProc.
of AAAI.
Vail, D. L., and Veloso, M. M. 2008. Feature selection for
activity recognition in multi-robot domains. InAAAI’08:
Proceedings of the 23rd national conference on Artificial in-
telligence, 1415–1420. AAAI Press.
Vilain, M. 1990. Getting serious about parsing plans: a
grammatical analysis of plan recognition. InProc. of AAAI-
90.

GAPRec 2011 – Proceedings of the 1st ICAPS workshop on Goal, Activity and Plan Recognition

31



Accurately Determining Intermediate and Terminal Plan States Using Bayesian
Goal Recognition

David Pattison and Derek Long
Department of Computer and Information Science
University of Strathclyde, Glasgow G1 1XH, UK
{david.pattison, derek.long}@cis.strath.ac.uk

Abstract

Goal Recognition concerns the problem of determining an
agent’s final goal, deduced from the plan they are currently
executing (and subsequently being observed). The set of pos-
sible goals or plans to be considered are commonly stored in
a library, which is then used to propose possible candidate
goals for the agent’s behaviour.
Previously, we presented AUTOGRAPH – a system which re-
moved the need for a goal or plan library, thus making any
problem solvable without the need to construct such a struc-
ture. In this paper, we discuss IGRAPH, which improves upon
its predecessor by utilising Bayesian inference to determine
both terminal and intermediate goals/states which the agent
being observed is likely to pass through.

1 Introduction
Goal Recognition (GR) can be considered a sub-problem
of Plan Recognition (PR) where only the terminal goal is
required and the plan used to achieve this is somewhat ir-
relevant. Traditionally, both of these fields have made use
of libraries (Kautz and Allen 1986; Goldman, Geib, and
Miller 1999) which contain known, valid plans or goals
and the plans used to achieve them, commonly represented
as Hierarchical Task Networks (HTNs) (Nau, Ghallab, and
Traverso 2004). Construction of these libraries by domain-
expert is a time-consuming task, while automatic generation
suffers the risk of being incomplete or containing irrelevant
and invalid entries.

In our previous work with AUTOGRAPH (Pattison and
Long 2010), we removed the need for a plan or goal library
by representing the problem as a Planning task in which ob-
servations reflected movement through the state space of the
associated domain. After each observation O a hypothe-
sis was produced which represented a belief in the agent’s
final goal. Perhaps expectedly, the accuracy of these hy-
potheses was often directly correlated to the number of plan
steps observed so far. That is to say, more accurate hypothe-
ses were produced towards the end of the plan, while earlier
hypotheses often lacked many of the final goals as no pre-
vious observation had indicated they were a part of the true
goal. Furthermore, AUTOGRAPH assumed a near-optimal (or

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

even optimal) plan was being observed – something which
is rarely true in real-life.

This paper presents IGRAPH (Intermediate Goal Recogni-
tion with A Planning Heuristic), a recognition engine which
tackles the problem of accurately determining an agent’s in-
termediate goal states – that is, states which the agent is ex-
pected to pass through before the end of their plan. To do
this we adopt a Bayesian approach to reasoning over which
goals are most likely at future timestep t, and furthermore
provide a relaxed estimate of remaining plan length.

2 Motivation for Intermediate Goal
Recognition

Tackling Goal Recognition without any form of library is a
far harder task than if one were available. With such a library
present the number of possible goals or plans being pursued
is trivial in comparison to having to consider the entire state-
space and all possible plans. However, for most real-world
problems the benefits of a library-based recognition system
are eclipsed by the scarcity of useful candidate plans and
goals.

To motivate the need for non-library based recognition,
let us consider a typical city shown in Figure 1a which is
made up of many buildings, streets and services, with peo-
ple in the city able to move between and interact with these.
Given that we are to observe the movements of just a single
person around this city, the number of possible plans which
a library would have to contain for even a fixed starting loca-
tion is intractable. However, if we consider each achievable
fact to be a single, independent goal, then enumeration of all
destinations or tasks becomes possible.

Now let us assume we begin observing an agent who starts
at location A, then proceeds to walk to locations E and G
before stopping at F (as shown in Figure 1b). If we assume
the agent only has a single goal which is to move to another
location, then as the plan progresses we can eliminate des-
tinations which become harder to reach after each observa-
tion. For example, after the agent has moved from A to E, it
can be deduced that they are probably not trying to reach B,
D or H , as the route they have already chosen would mean
a longer plan than had they moved directly towards one of
these after starting at A.

Once the agent has reachedE, we can reason that they are
heading toC,G or F . Now suppose we wish to interact with
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the agent before they achieve any of these goals. If we can
deduce that they must pass through at tollbooth at X first,
then we can plan to stop, hinder or help them in achieving
their final destination goal.

However, the assumption in the above example that there
will only ever be a single goal is both restricting and un-
realistic. It is far more likely that the agent would have
several goals. For instance, they may stop at location E
to buy some goods, visit a relative at location G, then con-
tinue to location B. Their plan may be only 1 step long, or
it may run to hundreds of actions. The ability to dynami-
cally generate valid goal-conjunctions from otherwise unre-
lated goals is central to IGRAPH. This is in contrast to most
previous work which assumes plans achieve a known, fixed
conjunction or a single-goal (Mott, Lee, and Lester 2006;
Lesh and Etzioni 1996).

Expanding this example to that of a real-world formu-
lation, GR is often associated with monitoring and track-
ing (Huntemann et al. 2008; Geib and Goldman 2001) or
in military and video game simulations (Schadd, Bakkes,
and Spronck 2007; Kabanza et al. 2010; Albrecht, Zuker-
man, and Nicholson 1998; Cheng and Thawonmas 2004).
While determining the agent’s final goal is the crux of GR,
in all of these cases it would be beneficial to know the in-
termediate states or goals which the agent being observed
is most likely to pass through on their way to achieving their
final goals. Having this knowledge could be used to prevent
the agent from achieving specific undesirable goals, or as an
aid to plan deduction by using these intermediate states in a
similar manner to landmarks (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008). Con-
versely, in a co-operative domain with two or more agents
in which communication has been lost but execution is con-
tinuing, the ability to pre-empt another agent’s intermediate
goals could allow for co-operative tasks to be executed with
minimal interruption and aid plan repair.

Many applications of GR relate strongly to adversarial
recognition, wherein agents actively try to block their plans
or goals from being recognised by the observer (Geib and
Goldman 2001). Yet the majority of this work is related to
simply the detection of adversarial behaviour, not the pre-
vention of the outcome. It is also true that much of this has
been directed towards plan recognition as opposed to goal
recognition. Conceptually, this means that the problem of
detecting intermediate goals is a moot point, as any plan hy-
pothesis will allow intermediate states to be computed with-
out probabilistic reasoning being required. This is the case
in Blaylock and Allen’s work (2006), in which they exper-
iment with the use of HTNs containing a high-level goal at
the root, which decomposes into ordered subgoals (which
may also decompose themselves). Intermediate and high
level goals are inferred by noting that a subgoal at layer n
has been achieved after an observation, and producing a goal
chain – a path from the subgoal to the root.

Recently, the field of interactive entertainment has pro-
duced several works on recognition, based on Bayesian in-
ference (Charniak and Goldman 1993) where the intention
is to determine the goals of an agent (commonly the player),
such that a personal story can be crafted around their expe-

(a)

X

(b)

(c)

Figure 1: A small city map and several example plans dis-
played on a heavily-simplified version.

rience. In (Albrecht, Zukerman, and Nicholson 1998), Dy-
namic Belief Networks were used to generate predictions
of a player’s next action and current quest in the context
of a text-based virtual-reality game, which were trained us-
ing recordings of observed plans and actions. Mott et al
(2006) offer another Bayesian approach to GR in the detec-
tion of goals in an interactive narrative environment. Their
results show that goals can be incrementally converged upon
as more evidence is provided, but that only single-goals are
considered. More recently, (Kabanza et al. 2010) have pre-
sented HICOR, a PR system for detecting an opponent’s in-
tentions in a real-time strategy game. While HICOR can
present multiple, concurrent plans as a single hypothesis,
testing has been performed using only mutually-exclusive
single goals (although detecting multiple goals is possible).

Ramı́rez and Geffner (2010) also present a Planning-
based model of GR similar to IGRAPH, which computes
goal probability based on heuristic estimates after each ob-
servation. Probability likelihoods are based on cost dif-
ferences, which represent the cost of achieving P (G|O)
versus P (G|¬O). While their work allows for multiple
plans achieving multiple goals, it is evaluated using do-
mains which comprise of only a few hundred actions and
goals, while IGRAPH can handle thousands or even tens-of-
thousands of goals.

3 Problem Definition
We begin by defining our representation of the problem. As
in the original AUTOGRAPH we use a propositional Plan-
ning model similar to a STRIPS encoding (Fikes and Nilsson
1971), which we derive from a PDDL domain and problem
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definition (McDermott et al. 1998; Fox and Long 2003).

Definition 1. Goal Recognition Problem Base
A goal recognition problem base is a triple 〈F,A, I〉, where
F is a set of primitive (propositional) facts, A is a set of
actions and I ⊆ F is the initial state for the problem.
Each action a ∈ A is a triple 〈apre, aadd, adel〉, where
apre, aadd, adel ⊆ F are the preconditions, add effects and
delete effects of a, respectively.

We also require a Goal Recognition Problem representing
the plan being observed. Unlike AUTOGRAPH we do not as-
sume that the plan being observed is optimal, near-optimal,
or even rational. However, we do retain the assumptions that
the plan is fully-observable and totally-ordered, but that we
do not know its length. As we will discuss shortly, this final
assumption is key to the operation of IGRAPH.

Definition 2. Goal Recognition Problem
A goal recognition problem is a triple, 〈G,HI , P 〉, where G
is a goal recognition problem base, HI is an initial prob-
ability distribution over the hypothesis space H and P =
〈o1, ..., on〉 is the sequence of plan actions observed one-by-
one during the problem.

Enumeration of H is intractable for all but the most triv-
ial of problems, as it is a superset of the state-space. Thus,
we define a relaxed hypothesis space, H, which contains
each individual reachable fact, f , and note sets of known
mutually-exclusive facts1 in order to keep the probability
distribution over f ∪mutex (f ) normalised. However, while
we only enumerate individual goals, we still allow for mul-
tiple facts to be considered as the goal of plan P , i.e. goal
G1 can be achieved, then goals G2 and G3 achieved in later
observations. The mechanics of this last point are discussed
in Section 4.

Before recognition begins, we may assign a uniform prob-
ability distribution over all mutually-exclusive facts, which
become the prior probabilities for Bayesian inference. Al-
ternatively, we may assign a weighted probability distribu-
tion using the same domain analysis techniques used in AU-
TOGRAPH (Pattison and Long 2010). Once all goals have an
initial probability we compute their heuristic estimate h(G)
– an approximate measure of the number of actions required
to achieve G.

As the agent executes actions, they move through the
state-space and subsequently will move closer to achieving
certain facts/goals and further away from others. This move-
ment can be used as an indication of which subset of H is
being pursued. We update the heuristic estimate for all goals
G ∈ H after each observation. These new estimates are then
used to compute the posterior probability P (G|O).

4 Heuristic Estimates as Bayesian
Likelihoods

In AUTOGRAPH we also made use of heuristic estimation
to determine the probability of a fact f being the true goal.

1 IGRAPH does not assume that all mutually-exclusive facts for
a given domain are known, although not knowing this may affect
the accuracy of the final probability distribution.

However, due to the assumption of having an optimal/near-
optimal plan, if h(f) increased after an observation its prob-
ability of being a goal was reduced to zero regardless of its
previous value. This behaviour is also in line with use of an
optimal heuristic, something which does not exist, thus hy-
pothesis quality could be affected by inaccurate estimates.

For IGRAPH we have adopted an interpolated Bayesian
approach to probability updates which has been inspired by
work in Information Retrieval (IR) (Zhai and Lafferty 2004).
We use observation O to update the probability of each goal
P (G|O) by computing the likelihood function P (O|G) us-
ing h(G). This determines the probability of O being rel-
evant if G is assumed to be the true goal. By using inter-
polated smoothing to compute P (G|O) we remove the abil-
ity for (O|G) and thus P (G) to equal zero. This shift to
evidence-based probability updates means that goals can no
longer be completely eliminated from the set of hypothesis
goal candidates. Furthermore, it allows the agent to revisit
sections of the search-space after having achieved a goal in
another section.

We now define the amount of work expended on a goal G
after an observation has been processed. Given observation
O and a set of mutually-exclusive goals Ḡ, the proportion of
work which has been expended in moving towards achieving
G is shown in Equation 1, where λ is a smoothing factor
λ ∈ [0 : 1] and Ḡnearer is a set of mutually-exclusive goals
(including G) whose heuristic estimate has lowered after At

has been observed, or whose estimate has been zero for at
least the past two observations.

W (G|O) =





1

|Ḡnearer| if ht(G) < ht−1(G),

1

|Ḡnearer| if ht(G) = ht−1(G) = 0,

0 otherwise

(1)

In Section 2 we discussed the requirement of being able
to have any valid conjunction of goals G ∈ H in a hypoth-
esis. We implement this by introducing a relaxation in the
assignment of W (G|O). By providing goals which have re-
mained true over timesteps t and t− 1 with a bonus of 1, we
encourage goals which have been achieved to remain valid
goal candidates. Consider the simple ZENOTRAVEL problem
shown in Figure 2, in which the plan being observed will
pick up passenger 1 from city 2, drop them off at city 1, fly
to pick up passenger 1 in city 3, then return to city 1. After
observing action 7:[fly city2 city1], the goal (at
city1 passengerA)will have been true for 3 timesteps
and no mutually-exclusive facts will have become heuristi-
cally closer. However, once action 7 has been observed, the
heuristic estimate to (in plane passenger1) starts
to reduce again. Without the bonus being applied to facts
which have remained true in the intermediate timesteps, the
probability of these goals reduces (as P (O|G) is low), while
the probability of others can increase.

This example also highlights another assumption made by
IGRAPH – namely that once achieved, an agent will strive to
keep the goal true if possible. We refer to this as the stability
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Figure 2: A small ZENOTRAVEL problem which highlights
the need for a bonus being applied to goals which have re-
mained true over n > 0 consecutive timesteps.

of the goal (see Equation 2). The stability of a goal S(G)
indicates how often it has been achieved, then unachieved
in a later observation, with the first achievement being de-
noted as Gtrue

t and
∑
Gtrue

i the total number of timesteps
G has been true since first achievement. In the above exam-
ple, (at city1 plane1) is unachieved and re-achieved
several times, giving it a low stability relative to other goals
such as (at city1 passengerA).

We note that the use of bonus scores is not without its
risks. Consider a variable with 2 mutually-exclusive transi-
tions {F1, F2}, and that F1 is true initially. If F1 can tran-
sition to F2 at any time during the observation of the first k
plan steps (i.e. h(F2) = 1), then the probability of F2 will
never increase, while P (O|F1) will receive a bonus after ev-
ery observation. If after k observations, the final plan action
is observed which transitions F1 to F2, the probability in-
crement for F2 will be so small as to make no difference to
hypothesis generation – more evidence would be needed to
rule out F1 as the true goal.

While this behaviour is perceivable for some problems,
in general the above example would be unlikely. It is also
arguable that if F1 holds true for a long time before transi-
tioning on the last known observation Ok, that it is probable
F1 was the goal for the plan observed untilOk, and that now
a different plan with different goals is being pursued – or at
the very least F1 was an intermediate goal.

We incorporate the stability of a goal into the Bayesian
likelihood function when computing the new posterior prob-
ability for each goal.

St(G) =





1 if G unachieved in P ,

|Obs| −Gtrue
t∑

Gtrue
i

otherwise
(2)

P (O|G) = λ ∗W (G|O) ∗ S(G) + (1− λ) ∗ 1

|Ḡ| (3)

P (G|O) =
P (G)P (O|G)∑
P (Gi)P (O|Gi)

∀Gi ∈ Ḡ (4)

Given a goal G and the set of goals which are mutually-
exclusive mutex(G), the interpolated likelihood function
shown in Equation 3 defines the probability of O being rel-
evant to the achievement of G with respect to all other goals
Gi ∈ Ḡ, where Ḡ = G ∪mutex(G). The smoothing fac-
tor λ prevents any goal from receiving a value of zero for
P (O|G), with low values causing the probability distribu-
tion over H to be more evenly spread amongst mutually-
exclusive facts.

As as special case, if a goal has no mutexes Equation 3
will not suffice as P (O|G) for any stable goal which has
moved closer will be 1. For this we use laplace smoothing,
another IR scoring technique shown in Equation 5, where
µ ∈ Z+ and |Ohelpful| is number of observations which
have lowered the original estimate h(G), or maintained it at
zero over n ≥ 2 steps.

W (G|O) =
|Ohelpful|+ µ

|O|+ µ
iff |mutex(g)| = 0 (5)

We now describe how this Bayesian approach to GR is
used to generate both intermediate and terminal hypotheses.

5 Hypotheses as Intermediate States
Once the probability of every goal has been updated af-
ter each observation, we can attempt to estimate the num-
ber of remaining steps within the plan ε ∈ Z+. This is
computed by generating an immediate goal hypothesis HI ,
which is simply the set of mutually-exclusive facts that have
the highest probabilities within H, then heuristically esti-
mating the number of steps required to achieve the hypothe-
sis, ε = h(Hi).

After ε has been computed, a bounded hypothesis can be
generated for the next n steps, which is equivalent to the set
of facts that are expected to be true at time t + n (or which
of the facts in the current state are the goal if n = 0). If
the hypothesis contains a value from every set of mutually-
exclusive facts, it is a bounded intermediate state, while if
n = ε it is a terminal hypothesis.

Definition 3. Bounded Goal Hypothesis
A bounded goal hypothesis Hn

t is a set of non-mutually-
exclusive facts {G1, G2...Gk}, where Hn

t ∈ H produced at
time t on the the rationale that H will be true at time t+ n,
and that 0 ≤ n ≤ ε.

Facts which are a member of the relaxed-goal-space H
are selected for a bounded hypothesis based on the proba-
bility of an action A which achieves them being observed in
the next n steps (see Equations 6 and 7). As an actions pre-
conditionsApre must all be satisfied before it can be applied
and thus its effects added, the probability of these being an
intermediate goal must also be considered.

Pn(A) =

{
0 if h(Apre) > n,
maxP (f) ∀f ∈ Aadd otherwise

(6)

Pn(G) = maxPn(A) ∀A ∈ achievers(G) (7)
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6 Evaluation
IGRAPH has been tested on the propositional versions of
the DRIVERLOG, ZENOTRAVEL and ROVERS domains taken
from the 3rd International Planning Competition along with
their best-known-plan solutions (Long and Fox 2003). The
FF heuristic (Hoffmann and Nebel 2001) has been used for
evaluation, although any heuristic would suffice. A smooth-
ing constant of λ = 0.8 was used for Bayesian updates,
while µ = 1 was used in the computation of W (G|O) if
|mutex(G)| = 0.

Tests were conducted in Ubuntu 9.10 on a quad core
2.8GHz Intel i5 with 4GB of RAM using the latest Java Vir-
tual Machine (1.6.0 20), and were given as much time as
necessary to complete each stage of the recognition process.

6.1 Intermediate Bounded Hypotheses
As in AUTOGRAPH, intermediate hypotheses produced by
IGRAPH have been evaluated using precision and recall
(P/R). However, while previously the P/R of a hypothesis
was compared with the agent’s true final goal, here they are
compared against the state encountered at time t+ n.

The results of all intermediate hypotheses over each do-
main tested are shown in Figure 3. P/R results have been
rounded to the nearest two decimal places in order to group
together results for easier reading. The radius of a circle
indicates the number of results in each grouping.

In the case of DRIVERLOG, clustering results are largely
grouped above P/R = 0.5/0.5 indicating that the majority
of intermediate hypotheses are reasonably accurate for their
target bound. Results for ROVERS are primarily distributed
across R = 0.45, while ZENOTRAVEL also displays strong
clustering around P/R = 0.5/0.5.

Figure 4 displays intermediate clustering results in rela-
tion to their bound n. For example, column 1 relates to the
accuracy of all hypotheses with n = 1 (hypotheses which
are expected to be true after 1 further observation). These re-
sults reveal two details: that the majority of results are above
50% accurate, but also that there is a large number of P/R
scores equal to (0.5/0.5) and that the estimation of remain-
ing plan steps is often only a few steps from the current state
(with ε = 7 being the highest observed). With regard to the
former, the exact reason for the clustering around (0.5/0.5)
is currently unknown as these results are spread across all
three test domains. The latter observation can be explained
by a combination of the accuracy of the heuristic used for
estimation and the assumption that we have no knowledge
of when the plan will terminate.

6.2 Short Lookahead Estimation
The nature of the FF heuristic means that estimates to goals
which are far from the current state will often be much lower
than their true distance, while goals that are closer will have
a more accurate estimate. In fact, it is not uncommon for
the estimate to distant goals to remain the same (or even in-
crease) over multiple observations, despite the fact they are
actually becoming closer. This apparent lack-of-progress to-
wards a goalG alone is enough to eliminate it as a candidate
for hypotheses, as its probability will likely be low. This

Figure 3: Density of P/R rounded to 2 d.p. over problems
1-15 and over all intermediate hypotheses for DRIVERLOG,
ROVERS and ZENOTRAVEL. Circle radius is a reflection of
the number of results at a specific P/R value.

is further compounded by the chance of multiple mutually-
exclusive facts becoming closer after each observation.

Poor heuristic estimates for distant goals can also explain
low values for ε, as only a consistent decrease in h(G) will
ensure they are considered as part of the immediate hypoth-
esis from which ε is deduced.

6.3 Terminal Hypotheses
As stated previously, while intermediate goal hypotheses are
undoubtedly useful, the ultimate task in GR is to determine
the agent’s final goal. Thus, we produce a single terminal
hypothesis after each observation which is equivalent to the
immediate hypothesis produced to detect ε. The P/R results
of these hypotheses when computed at various stages of plan
observation is displayed in Table 1.

The results show a high average value for recall over all
problems, while precision is often lower. However, as pre-
viously stated, while bounded hypotheses are tested against
full states, terminal hypotheses are tested against the true
goal only. As both hypothesis types are generated from the
same algorithm, the precision for terminal hypotheses will
often be much lower than the bounded equivalent.

In both DRIVERLOG and ZENOTRAVEL, P/R results show
a faster convergence upon the correct goal than previously
displayed in AUTOGRAPH. ROVERS results display both the
lowest average precision yet perfect recall. The nature of
typical goals in a ROVERS problem is what causes these
static results. Most often the goal is to achieve communi-
cation of a rock sample or photograph, but that this can be
performed in several ways. In the case of an image, once
obtained it can be transmitted at a low or high resolution, or
in colour, but that crucially any combination of these is pos-
sible. Thus as an agent progresses through a plan wherein
they move to a sample and photograph it, the probability
of communicating the image in all forms increases at the
same rate, as each type of communicated goal is non-
mutex. This means that hypotheses will include all types
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Figure 4: Density and averages for P/R of all hypotheses for
all tests over all domains, when compared against the state
encountered after n further observations.

of communicated goal, despite there often only being a
single one required.

Finally, we note that average recall results for IGRAPH
are considerably higher than those of AUTOGRAPH, with an
average of 59% recall without any observations even being
required. However, while recall has increased over all do-
mains, precision has lowered for |P | = 25− 100%. This is
caused by terminal hypotheses being produced in the same
manner as bounded hypotheses, wherein the hypothesis is
closer to a full state specification rather than a subset of
goals. In AUTOGRAPH, many more restricting assumptions
were made about the set of goals considered as candidates,
which ultimately allowed for more concise hypotheses.

Domain
∣∣P

∣∣ = 0%
∣∣P

∣∣ = 25%
∣∣P

∣∣ = 50%
∣∣P

∣∣ = 75%
∣∣P

∣∣ = 100%
Driverlog 0.22/0.3 0.33/0.45 0.46/0.6 0.55/0.69 0.66/0.84
Rovers 0.28/1 0.28/1 0.28/1 0.28/1 0.32/1
Zenotravel 0.28/0.46 0.23/0.39 0.25/0.43 0.36/0.63 0.4/0.68

IGRAPH Avg. 0.26/0.59 0.28/0.61 0.33/0.68 0.4/0.77 0.46/0.84
AUTOGRAPH Avg. 0.02/0.02 0.45/0.12 0.64/0.27 0.76/0.48 0.88/0.73

Table 1: A compilation of averaged P/R scores for all ter-
minal hypotheses over all domains tested at 0%, 25%, 50%,
75% and 100% plan completion.

7 Discussion
We have presented IGRAPH, an extension of AUTOGRAPH
which attempts to move the state-of-the-art forward in goal
recognition by tackling the problem of recognising mul-
tiple unrelated goals and estimation of intermediate plan
goals/states. This is done without the need of a plan or goal
library, making it applicable in a wide range of situations
with only minimal prior effort.

By generating both accurate intermediate and terminal hy-
potheses, we have laid the groundwork for expanding into
non-library-based plan recognition. As each bounded hy-
pothesis is essentially a stepping-stone towards the final goal
state, the ability to determine action selection becomes a
much simpler task. Indeed, initial experiments have shown
that IGRAPH can produce highly accurate next-action predic-
tion. By chaining these predictions together we may be able
to derive a predicted plan without resorting to fully-blown
planning.
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Abstract 

Human operators in human-machine systems can be sup-
ported by assistant systems in order to avoid and resolve 
critical workload peaks. The decisions of such an assistant 
system should at best be based on the current and anticipat-
ed situation (e.g. mission progress) as well as on the current 
and anticipated cognitive state of the operator, which in-
cludes his/her beliefs, goals, plan, intended action, interac-
tion with the environment, and subjective workload. The 
more of this can be assessed, the easier and the earlier hu-
man errors can be recognized and corrected by assistant sys-
tem initiative. Multiple approaches to enable an assistant 
system to correctly decide whether, when, and in which way 
to take initiative are currently under research at the Univer-
sität der Bundeswehr München, e.g. mixed-initiative mis-
sion planning, which includes assuming the human opera-
tor’s plan and estimation of operator workload by means of 
human operator behavior models. We here present our posi-
tion in favor of an overarching framework for modeling a 
human operator, which is based on our Cognitive Process 
model. 

Introduction  

The Universität der Bundeswehr München (UBM) is con-

ducting research in the field of aeronautical human-

machine systems. During the development of complex 

human-machine systems (such as an aircraft), often models 

of human operators are used in order to optimize system 

behavior. In contrast to this it is not common in such sys-

tems that the machine reasons upon the human’s cognitive 

state during runtime.  

 In our current main application we regard a helicopter 

cockpit crew consisting of two persons (cf. figure 1). One 

of them is the helicopter commander, who is at the same 

time the operator of a smaller number of Uninhabited Aer-

                                                 
Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

ial Vehicles (UAVs). The other person is the helicopter 

pilot. In this context the UBM is developing prototypes of 

artificial cognitive systems that aid the cockpit crew in 

coping with high work demands caused by multi-vehicle 

guidance and mission management (Strenzke et al. 2011). 

To be more precise, both crew members shall be supported 

by an assistant system for each workstation. In future, the 

decisions of such an assistant system shall be based on the 

current and anticipated situation (e.g. mission progress) as 

well as on the current and anticipated cognitive state of the 

operator, which includes his/her beliefs, goals, plan, in-

tended action, interaction with the environment, and sub-

jective workload. The more of this can be assessed, the 

easier and the earlier human errors can be detected and 

corrected by assistant system initiative. Multiple approach-

es to enable an assistant systems to correctly decide about 

taking initiative (whether, when, and in which way) are 

currently under research at the UBM. Starting with our 

Cooperative Automation paradigm for assistant systems, 

we then give an overview of this research work. Finally, an 

overarching framework for modeling a human operator is 

proposed, which is based our Cognitive Process model. 

 Figure 1: Helicopter Crew in Manned-Unmanned Teaming 
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Cooperative Automation Approach 

The Cooperative Automation approach (Onken and Schulte 

2010) is an answer to the vicious circle of automation en-

gineering, which is observable in the evolutionary devel-

opment of supervisory control systems (Sheridan 1992). In 

brief, this vicious circle describes the increase of automa-

tion to counteract human errors, and thereby in turn pro-

vokes human error through automation complexity and 

opacity. The Cooperative Automation approach is intended 

to build automation functions that do not accept orders 

from the human operator in a supervisory control fashion, 

but instead they work upon the same objectives as the 

human does in a human-machine-team relationship. Ac-

cording to (Onken and Schulte 2010) a cognitive assistant 

system shall be designed as such a cooperatively function-

ing automation. It is furthermore defined by the following 

basic requirements. The assistant system shall guide the 

attention of the human operator to the most urgent task. In 

case the human operator cannot accomplish or should not 

work upon this task (due to overtaxing, risk or cost), the 

assistant system shall take initiative to transfer the situation 

into one which can be handled by the operator (by generat-

ing proposals or executing actions on own initiative). 

Thereby, an assistant system shall provide improvement of 

the operator’s situation awareness, reduction of subjective 

workload, as well as error avoidance and correction. 

Current Assistant System Research 

This chapter describes some aspects of the two assistant 

systems for the helicopter crew. 

Knowledge-Based Assistant System 

The UAV operator assistant system is realized as a 

knowledge-based system that supports the UAV operator 

upon detection or anticipation of suboptimal behavior. It 

mainly holds knowledge about the modes of interaction 

with the human operator. See figure 2 and (Donath, 

Rauschert and Schulte 2010) for further information.  

 In assistance cases, system has three options to aid the 

operator. It can provide a warning, suggest an action pro-

posal, or initiate an action (e.g. reconfiguration of some 

system). To communicate with the operator, the assistant 

system instantiates a dialog or makes an announcement via 

speech synthesis and the displaying of a message box in 

the task-based UAV guidance GUI. Whenever appropriate, 

this message box includes a few buttons that allow the 

operator to invoke further aid by the assistance system or 

to either accept or reject its proposals. See (Strenzke and 

Schulte 2011) for more detail. 

 To decide whether, when, and in which way assistance 

should be provided to the UAV operator 

• the assistant system has to be able to anticipate, which 

tasks the operator has to execute and when he/she is 

supposed to do this (i.e. plan is incomplete and has to be 

evolved soon due to time constraints), and 

• the assistant system has to be able to notice insufficient 

quality in the past planning process of the operator (i.e. 

his/her plan is of too low quality). 

Figure 2: Goal structure of a cognitive assistant system 

 In principle, the assistant system needs to solve the fol-

lowing questions through target-performance comparison: 

 What is the operator planning? 

 Is his/her plan good enough? 

 Does he/she pursue the plan or make errors? 

 Is he/she overtaxed w.r.t. to mental resources? 

 What is he/she currently doing? 

 Clearly, these questions are difficult to answer by a 

technical system. In the following sections we present our 

research approaches to these problems. 

Mixed-Initiative Mission Planning 

The UAV operator generates and modifies multi-UAV 

mission plans incrementally. The above-mentioned assis-

tant system is able to evaluate, complete, and generate such 

plans with the aid of the Mixed-initiative Mission Planner 

(MMP). The MMP is performing plan recognition by plan-

ning. In this process it takes into account constraints con-

cerning human goals (which are known by the machine 

because they are shared in the Cooperative Automation 

approach), fragments of the human plan, and the current 

actions of the UAVs. As shown in figure 3, the MMP gen-

erates two types of plans: Reference plans and assumed 

human plans.  

 The assumed human plan can be regarded as the assis-

tant system’s assumption about the best possible plan the 

human has in mind after he/she revealed a partial plan
1
  by 

entering UAV tasks into the UAV guidance system (system 

                                                 
1 The human can either be aware of the plan being incomplete or he/she is 
not, but the machine concludes that the plan is only partial due to missing 
mission-relevant tasks. 
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plan, cf. figure 3). The assumed human plan is generated 

by completing this partial plan by adding the tasks the 

machine supposed that the human should add to the system 

plan (at some later point in time). This can be seen as plan 

recognition by planning. The assumed human plan can be 

used by the assistant system as a list of tasks to be worked 

upon by the UAV operator at (or before) the specific times 

that have been scheduled by the MMP. This can be either 

the execution of an already planned task (already included 

in the system plan) or the planning of a task that is missing 

in the system plan. 

 The reference plan is generated by the MMP without 

regarding any human input, simply by solving the UAV 

mission problem through automated planning. The as-

sumed human plan can be evaluated by comparing its costs 

to those of the reference plan. In addition to that, the refer-

ence plan can be offered by the assistant system to the 

human in case there is the need of complete mission re-

planning. I.e. in case of a difference between the reference 

and the assumed human plan, the reference plan stands for 

what the machine supposes the human should do instead of 

what he/she has planned. 

Figure 3: Mixed-initiative planning concept for the MMP 

 The assistant system has the choice to urge the human 

operator to make the system plan converge to either the 

assumed human plan or to the reference plan. The decision 

of the assistant system can be based either on certain use 

cases (e.g. major change in the tactical situation or recep-

tion of follow-up mission order) or on a cost comparison 

(target-performance comparison) between the reference 

and the assumed human plan.  Further information about 

this and on the MMP in general can be found in (Strenzke 

and Schulte 2011). 

 The current implementation of the MMP is based on 

PDDL 2.2 (Edelkamp and Hoffmann 2004) world model-

ing. We intend to improve the MMP by taking advantage 

of the expressiveness of PDDL 3.0 (Gerevini and Long 

2006) and by plan validation with VAL (Howey, Long, 

and Fox 2004). 

Operator Workload Estimation 

In a similar context we experimentally analyzed the corre-

lation between the subjective workload and the behavior of 

a UAV operator guiding multiple UAVs from a helicopter 

cockpit, i.e. using them as remote sensor platforms for the 

reconnaissance of the helicopter route. Especially the 

changes of his/her behavior can be used as an indicator for 

high workload situations due to the application of so called 

self-adaptive strategies (SAS). A human operator will 

apply suchlike strategies in order to keep the subjective 

workload within bearable limits and to retard possible 

performance decrements (Canham 2001; Schulte and Don-

ath 2011). Since such a change in human behavior occurs 

prior to grave performance decrements, recognizable 

changes in human operator behavior can be used as trigger 

for assisting functions. Therefore, an assistant system 

needs different human operator behavior models, repre-

senting behavior within normal workload situations and 

also models for the behavior modified as a consequence of 

SAS (cf. figure 4). By the use of such models an assistant 

system can be enabled to anticipate workload-induced 

human error and take initiative prior to the occurrence of 

the error.  

Figure 4: Subjective workload recognition by behavior models 

 We analyzed gaze tracking and manual interaction 

(touchscreen button pressing) data to decide if the behavior 

corresponds with a normal workload situation or a high 

workload situation. In the experiment human operator 

behavior was captured during a certain, recurring task 

situation. The operator had to identify objects (ground 

vehicles) along the route observed by the reconnaissance 

UAVs. The object identification task consists of essentially 

three subtasks, the recognition and marking of a hotspot in 

the photos made by the UAVs, the object classification 

process via the video stream generated by the UAVs, and 

the entering the classification result into the mission man-

agement system. Thereby the following SAS were ob-

served (Schulte and Donath 2011): 
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 Proactive task reduction (e.g. using fewer UAVs for 

task accomplishment than available) 

 Less exect task performance (e.g. watching video 

stream from a suboptimal UAV/camera position in 

relation to the object to be identified) 

 Omission of subtasks (e.g. classifying the object 

without entering the result into the system 

thereafter) 

 Complete neglect of the object identification tasks 

within a complete mission phase 

 Purposeful delay of task accomplishment (i.e. 

interruption / task switching and then continuing)  

 Each of the mentioned SAS indicates excessive work-

load and can therefore be used to enable an assistant sys-

tem to decide to take initiative.  

 Our approach is to use Hidden Markov Models repre-

senting person-specific, task-specific human operator be-

havior within normal workload conditions in the first step. 

In future, further HMMs will be added to represent human 

operator behavior within high workload situations, i.e. the 

behavioral change of operator behavior caused by the use 

of SAS (cf. figure 4). See (Donath, Rauschert, and Schulte 

2010) for further details. So far, the analysis process is 

only done offline. Hence, our assistant systems are current-

ly not able to invoke functions based on workload estima-

tion by behavior recognition.  

Optimization of Information Channel Selection 

In the cockpit setup described above, the pilot flying needs 

to take over additional responsibilities and tasks from the 

helicopter commander in order to enable the latter to ac-

complish the UAV guidance task. Therefore, the pilot 

flying is also in need of an assistant system, which aids 

him/her in navigation, aircraft system configuration, and 

timeliness in the mission plan. This assistant system has to 

decide whether, when, and through which information 

channel to inform the pilot about his/her most urgent task 

and anticipated or detected errors. 

 As stated before, there is no online workload estimation 

by behavior patterns in place. Therefore, (Maiwald and 

Schulte 2011) take the approach to predict the workload on 

the basis of task models for different task situations and 

current mental resource demands. By means of a resource 

model the assistant system is enabled to predict the opera-

tor’s workload for a certain task situation (see figure 5). 

Cases of an impending overtaxing can thereby be identified 

beforehand and prevented by resource-oriented planning of 

the machine-initiated interactions. E.g. if the pilot is per-

forming a radio transmission his audio processing re-

sources are occupied and therefore the information should 

be passed on via a message display. But in this case the 

assistant system also needs to check if the pilot is currently 

watching the designated display. In addition to that, it 

would be useful to check if the pilot has noticed or read the 

corresponding message. 

Improving Gaze Tracking Data by Task Context 

For the above-mentioned reasons our assistant systems 

need access to gaze tracking data. In a realistic aircraft 

cockpit (cf. figure 1) it is very difficult to achieve gaze data 

quality that is accurate enough to determine in which peri-

od of time which object was looked at. This is especially 

true in the case of online data processing, which is needed 

for assistant system decision-making. Therefore, the data 

quality has to be enhanced by feedback loops as shown in 

the lower part of figure 6. Its upper part is dedicated to 

pilot task detection by gaze tracking, which includes the 

recognition of fixations out of the eye movement data as 

well as the mapping of fixations to objects in the simulator 

cockpit (e.g. an aircraft symbol in the moving map dis-

play). This data can also be used to make assumptions 

about the pilot’s current situation awareness (e.g. he/she 

has read a certain message or not) (Maiwald, Benzler, and 

Schulte 2010). 

 Figure 6: Using and enhancing gaze data by task context 

 The data quality improvement and error correction shall 

be accomplished by applying strategies known from hu-

man visual perception, which are the stimulus-based bot-

tom-up strategy (Yantis and Jonides 1984) and the 

knowledge-based top-down strategy (Land and Lee 1994).  

 We intend to use Kalman Filtering for fixation correc-

tion towards areas in the display that hold relevant infor-

mation for the pilot. The detection of the currently pro-

cessed task by recognizing gaze routines is a candidate for 

Hidden Markov Modeling. More details about this can be 

found in (Strenzke et al. 2011).  
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Figure 5: Mental resource-oriented information channel selection for assistant system initiative (Maiwald and Schulte 2011) 

A More Complete Human Operator Model  

When modeling the behavior of a rational agent, a world 

model has to be built. An assistant system is such a rational 

agent, but it has the specialty that it also needs a model of 

the human operator to be assisted. He/she can be seen as a 

rational agent as well, because we need the model rather to 

generate reference behavior (to which the actual measured 

behavior can be compared), than to predict the actual hu-

man behavior. The reason for this is that an assistant sys-

tem has its focus on recognizing erroneous and suboptimal 

behavior as well as high workload situations. Therefore it 

needs to generate a reference behavior dynamically for 

current situation, to which the actual behavior can then be 

compared. In contrast to this, the prediction of actual hu-

man operator behavior (e.g. human has high workload, will 

make certain error in near future) is not so important and 

also much more difficult to cover with a human operator 

model. 

 In the previous section it has been shown that there are 

numerous interdependencies between the operator’s goals, 

plans, actions, behavior, errors and workload. But the cur-

rent approaches to assess these constructs rely only on 

simple operator models, which focus only on a specific 

part of his/her cognitive state and process. A more com-

plete human operator model would allow more thorough 

reasoning upon the human’s cognitive state and cognitive 

process. E.g. if there are assumptions about his/her goal(s), 

it is of course easier to assume what he/he is planning. 

Also, in case there are assumptions about his/her plan, the 

recognition of the current action is facilitated. 

 In the following we depict our model of the Cognitive 

Process (Onken and Schulte 2010) and then add relevant 

psychological constructs to it in order to enable more so-

phisticated assistant system decisions upon a model of the 

human operator’s cognitive process. 

The Cognitive Process 

Figure 7 shows the Cognitive Process that is already used 

by the UBM to build knowledge-based assistant system 

behavior as well as cognitive agents (Artificial Cognitive 

Units, ACUs) for Uninhabited Aerial Vehicle guidance. It 

has not been used to model the cognitive process of a hu-

man operator so far. Due to its dedication to beliefs, goals, 

plans, and actions (instructions), the Cognitive Process 

model seems well-suited to unite the above-mentioned 

approaches to operator modeling and incorporate their 

interdependencies. A detailed description of the Cognitive 

Process can be found in (Onken and Schulte 2010). 

Figure 7: The Cognitive Process (Onken and Schulte 2010) 

Adding Behavior, Workload and Error 

As we have shown in the overview of our current research 

topics, a model of a human operator needs to include con-

structs of behavior (which is more than the intended ac-

tion), mental workload, as well as errors.  

 The error taxonomy of (Reason 1990) allows the attribu-

tion of error origin and temporality. Mistakes are made 

during planning phase, lapses are missed actions (e.g. 

memory problems), and slips refer to errors in the task 

execution. In Figure 8 we adopt the three psychological 

constructs into an excerpt of the Cognitive Process model. 

The mentioned three error types are mapped to the steps in 

the Cognitive Process as follows. Mistakes happen during 

planning (ep), lapses during action selection (ea), and slips 

during action execution, i.e. behavior (eb). Furthermore, 

errors can take place during information processing (ei) and 

goal inference (eg). Figure 8 shows the enhanced model 

differentiated by the human operator’s conscious internal 

world and the external world in which his actual behavior 

(e.g. eye movement, manual interactions) occurs and can 

be measured. Workload may induce errors (deviations) in 

the different steps of the cognitive process. Of course, 

workload is not the only source of human error, but for a 

start we focus on it in this application-driven model. 
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Figure 8: A more complete model of the human operator 

Future Work 

In future research we will explore implementation ap-

proaches for the human operator model presented here. 

Our novel cognitive system architecture (Cognitive System 

Architecture with a Central Ontology and Specific Algo-

rithms, COSA²) is based on the Cognitive Process (see 

figure 7) and able of deliberative planning  (Brüggenwirth, 

Pecher, and Schulte 2011).  Integrating a model of the 

human operator into COSA² could either be achieved by 

updating the system’s beliefs about the cognitive state of 

the human operator or by adversarial or cooperative plan-

ning. The latter means that the machine and the human 

player have the proposition to solve a problem fully coop-

eratively and are also able to anticipate each other’s behav-

ior. In this case the actions of the human and of the ma-

chine can be calculated by means of a uniform planning 

process. Planning can be seen as top-down determination 

of plans out of beliefs and goals. The current task or action 

can be recognized by probabilistic methods as mentioned 

above (facilitated by assumptions about the human’s plan) 

and then be induced as a constraint into the planning prob-

lem. The exploitation of feedback loops as in the men-

tioned example remains future research work as well. 

Acknowledgments 

The authors acknowledge the scientific contributions of 

Diana Donath (UBM), Andreas Benzler and Felix Maiwald 

(“Military Rotorcraft Associate – Teaming” UBM project 

staff), as well as Andreas Rauschert (“Manned-Unmanned 

Teaming” UBM project staff). 

References 

Brüggenwirth, S.; Pecher, W.; and Schulte, A. 2011. Design 

Considerations for COSA². In IEEE Symposium Series on Com-

putational Intelligence (SSCI). Paris, France. 

Canham, L. S. 2001. Operability Testing of Command, Control & 

Communications in Computers and Intelligence (C4I) Systems. In 

Handbook of Human Factors Testing and Evaluation. Mallory. 

Donath, D.; Rauschert, A.; and Schulte, A. 2010. Cognitive assis-

tant system concept for multi-UAV guidance using human opera-

tor behaviour models. In HUMOUS’10, Toulouse, France. 

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The Language 

for the Classical Part of the 4th International Planning Competi-

tion. In Technical Report 195, Albert-Ludwigs-Universität Frei-

burg, Institut für Informatik, Germany. 

Gerevini, A., and Long, D. 2006. Preferences and Soft Con-

straints in PDDL3. In Proceedings of ICAPS-06. 

Howey, R., Long, D., and Fox, M. 2004. VAL: Automatic Plan 

Validation, Continuous Effects and Mixed Initiative Planning 

using PDDL. IEEE Conf. on Tools with Artificial Intelligence. 

Land, M. F., and Lee, D.. 1994. Where we look when we steer. In 

Nature, Vol. 369. 

Maiwald, F.; Benzler, A.; and Schulte, A. 2010. Berücksichtigung 

mentaler Operateurzustände bei der Weiterentwicklung wissens-

basierter Assistenzsysteme. In Innovative Interaktionstechnolo-

gien für Mensch-Maschine-Schnittstellen, DGLR Fachausschuss-

sitzung Anthropotechnik. Berlin, Germany. 

Maiwald, F., and Schulte, A. 2011. Mental resource demands 

prediction as a key element for future assistant systems in military 

helicopters. In 8th Conference on Engineering Psychology & 

Cognitive Ergonomics, in conjunction with HCI International. 

Onken, R., and Schulte, A. 2010. System-ergonomic Design of 

Cognitive Automation: Dual-Mode Cognitive Design of Vehicle 

Guidance and Control Work.  Heidelberg, Germany: Springer. 

Reason, J. 1990. Human Error. NewYork, USA: Cambridge 

University Press. 

Schulte, A., and Donath, D. 2011. Measuring Self-adaptive UAV 

Operators’ Load-Shedding Strategies under High Workload. In 

8th Conference on Engineering Psychology & Cognitive Ergo-

nomics, in conjunction with HCI International. Orlando, FL. 

Sheridan, T. B. 1992. Telerobotics, Automation and Human 

Supervisory Control. Cambridge, USA: MIT Press. 

Strenzke, R., and Schulte, A. 2011. The MMP: A Mixed-

Initiative Mission Planning System for the Multi-Aircraft Do-

main. In Scheduling and Planning Applications woRKshop 

(SPARK) at ICAPS 2011. Freiburg, Germany.  

Strenzke, R.; Uhrmann, J.; Benzler, A.; Maiwald, F.; Rauschert, 

A.; and Schulte, A. 2011. Managing Cockpit Crew Excess Task 

Load in Military Manned-Unmanned Teaming Missions by Dual-

Mode Cognitive Automation Approaches. In AIAA Guidance, 

Navigation, and Control (GNC). Portland, Oregon. 

Yantis, S., and Jonides, J. 1984. Abrupt visual onsets and selec-

tive attention: Evidence from visual search. In Journal of Experi-

mental Psychology: Human Perception and Performance, Vol. 

10. 

GAPRec 2011 – Proceedings of the 1st ICAPS workshop on Goal, Activity and Plan Recognition

43


	Corpus-Based Incremental Intention Recognition via Bayesian Network Model Construction Han The Anh and Luís Moniz Pereirato.44em.
	Goal Recognition over POMDPs: Inferring the Intention of a POMDP Agent Miquel Ramírez and Hector Geffnerto.44em.
	Towards a System Architecture for Recognizing Domestic Activity by Leveraging a Naturalistic Human Activity Model Michele Dominici, Myriam Fréjus, Julien Guibourdenche, Bastien Pietropaoli and Frédéric Weisto.44em.
	New Algorithms and Hardness Results for Multi-Agent Plan Recognition Bikramjit Banerjee, Jeremy Lyle and Landon Kraemerto.44em.
	Accurately Determining Intermediate and Terminal Plan States Using Bayesian Goal Recognition David Pattison and Derek Longto.44em.
	Modeling the Human Operatorâ•Žs Cognitive Process to Enable Assistant System Decisions Ruben Strenzke and Axel Schulteto.44em.

