Accurately Determining Intermediate and Terminal Plan States Using Bayesian Goal Recognition

David Pattison and Derek Long

University of Strathclyde, Glasgow G1 1XH, UK david.pattison@cis.strath.ac.uk GAPRec Workshop ICAPS 2011, Freiburg

12th June, 2011

Overview

- Recognition without Libraries
- 2 Results
- 3 Conclusions and Future Possibilities

The de facto (and defined) standard

- Traditional GR/PR makes use of libraries
 - Collection of known goals/plans
 - Hand coded or generated
 - Plans through state space
 - Specialised to one subject
 - Represented as HTNs
- Recognition
 - Probabilistic/Bayesian
 - Weights hand coded or automated
 - Observe actions and map to X plans from library which match with varying probabilities

The de facto (and defined) standard

- Traditional GR/PR makes use of libraries
 - Collection of known goals/plans
 - Hand coded or generated
 - Plans through state space
 - Specialised to one subject
 - Represented as HTNs
- Recognition
 - Probabilistic/Bayesian
 - Weights hand coded or automated
 - Observe actions and map to X plans from library which match with varying probabilities
- But what if there is nothing to map to?

Recognition without Libraries

- Goal Recognition as Planning
 - "Planning" in the sense of not doing any planning
- Planning and Recognition mirror one-another
 - Goal Recognition also uses Propositions, Actions, States and Goals
 - So why not try to link the two?
 - Recognition systems have no common language, but Planning has PDDL
 - By working with PDDL, any problem can be constructed quickly
 - Use recent Planning advances in solving the GR problem
 - heuristic convergence
- No plan/goal library
 - Try to automatically detect lost information

Problem Formulation

- No libraries
- Any domain
- No pre-compilation
- Any (valid) fact conjunctions can be goal
- Use Planning representation for goal space
 - Cannot hope to enumerate the true goal space
 - Goal Space $\mathcal{H}=$ domain's reachable facts
 - Assume independence between facts
 - No explicit conjunctions (yet)
 - Standard mutex detection
- Also analogous to Particle Filtering and Fault Diagnosis

Assumptions and Relaxations

- Plan is totally-ordered
 - Can be taken from anywhere- created or parsed in from known results
 - We use IPC3/IPC5 results
- Fully observable
 - No hidden actions
- No assumption about "intelligence" of plan
- No knowledge of plan steps remaining
- Anything can be a goal, and a goal can be made up of anything
 - Conjunctions are common in Planning, but uncommon in Recognition

Step 1 – Putting the Vitamins back in

Step 1 – Putting the Vitamins back in

- Cue strange orange juice analogy...
- PDDL domain inputs are flat and dull
- But once instantiated, structure is rich, albeit hard to find

Step 1 – Putting the Vitamins back in

- Cue strange orange juice analogy...
- PDDL domain inputs are flat and dull
- But once instantiated, structure is rich, albeit hard to find
- Domain Transition Graphs, Causal Graphs, Static Facts, Relaxed Plans, Heuristic Estimates, Sampling

Domain Analysis

- Predicate Partitioning
 - Grounding process produces all goals
 - So try and categorise them to find those which are very likely and those which are less likely
- Causal Graph Leaf-Nodes
 - Exist only to be altered, so adjust probabilities of facts containing them appropriately
- Produce initial probability distribution over ${\cal H}$
- But of course a manual distribution is still possible

Step 2 – Plan Observation

- Action is fed into recogniser
- Get heuristic estimate to all $f \in \mathcal{H}$
 - ullet Further actions needed to achieve f
 - · If decreasing, fact is possibly goal
 - If increasing, fact is probably not goal
- Use heuristic results to increase/decrease probability if f being a goal w.r.t. mutually-exclusive facts
- Over time, some facts will become highly likely to be goals
 - ... or at least be in final state
- Heuristic estimates used to update goal probabilities using Bayes'

Heuristic Bayesian Updates

- After each observation, a subset of the search-space will be closer
- ullet The amount of work performed by an action w.r.t G is

Give a bonus to facts which remain true

Example of W(G) with and without bonus

- Goal: Passenger 1 and Passenger 2 at City 1
- W(G) associated with Passenger 2

Table: Without bonus

	at p2 c1	at p2 c2	at p2 c3	in plane p2
1	0.33	0.33	0	0.33
2	0.33	0.33	0	0.33
3	0.5	0.5	0	0
4	1	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0.33	0.33	0.33
8	0	0	0	0

Table: With bonus

	at p2 c1	at p2 c2	at p2 c3	in plane p2
1	0.25	0.25	0.25	0.25
2	0.33	0.33	0_	0.33
3	0.33	0.33	0	0.33
4	1	0	//0	0
5	1	0	//0	0
6	1	0	0	0
7	0.25	0.25	0.25	0.25
8	1	0	0	500

Is O relevant if G is goal

• Feed into conditional probability

$$P(O|G) = \lambda * W(G|O) * S(G) + (1 - \lambda) * \frac{1}{1 + |mutex(g)|}$$
 (2)

ullet Stability S(G) indicates how often a fact flicks from true to false

$$S_t(G) = \begin{cases} 1 & \text{if } G \text{ unachieved in } P, \\ \frac{|Obs| - G_t^{true}}{\sum G_i^{true}} & \text{otherwise} \end{cases}$$
 (3)

Example of $P(G \mid A)$ with and without bonus

- Goal: Passenger 1 and Passenger 2 at City 1
- P(G | A) associated with Passenger 2

Table: Without bonus

	at p2 c1	at p2 c2	at p2 c3	in plane p2
init	0.25	0.25	0.25	0.25
1	0.25	0.25	0.25	0.25
2	0.32	0.32	0.05	0.32
3	0.33	0.33	0.01	0.33
4	0.89	0.05	0.00	0.05
5	0.89	0.05	0.00	0.05
6	0.89	0.05	0.00	0.05
7	0.63	0.18	0.00	0.18
8	0.63	0.18	0.00	0.18

Table: With bonus

	at p2 c1	at p2 c2	at p2 c3	in plane p2
init	0.25	0.25	0.25	0.25
1	0.25	0.25	0.25	0.25
2	0.32	0.32	0.05	0.32
3	0.33	0.33	0.01	0.33
4	0.89	0.05	0.00	0.05
5	0.99	0.00	0.00	0.00
6	1.00	0.00	0.00	0.00
7	1.00	0.00	0.00	0.00
8	1.00	0.00	0.00	0.00

- Now have a new probability distribution over ${\cal H}$
- Pull out highest probability facts to form terminal goal hypothesis

Step 3 – Hypotheses

- ullet Now have a new probability distribution over ${\cal H}$
- Pull out highest probability facts to form terminal goal hypothesis

	Domain	P = 0%	P = 25%	P = 50%	P = 75%	P = 100%
	Driverlog	0.22/0.3	0.33/0.45	0.46/0.6	0.55/0.69	0.66/0.84
Ī	Rovers	0.28/1	0.28/1	0.28/1	0.28/1	0.32/1
	Zenotravel	0.28/0.46	0.23/0.39	0.25/0.43	0.36/0.63	0.4/0.68
	Average	0.26/0.59	0.28/0.61	0.33/0.68	0.4/0.77	0.46/0.84

A Step Further

- But we would also like to have hypotheses for non-goal intermediate states
- So estimate the number of steps remaining based on what the final goal is expected to be
- ullet Can then generate a hypothesis for n further observations

Estimating Intermediate Goals

- Estimate whether G will be true in n steps
- Clearly linked to whether action which achieves it will be observed

$$P^{n}(A) = \begin{cases} 0 & \text{if } h(A_{pre}) > n, \\ \max P(f) & \forall f \in A_{add} & \text{otherwise} \end{cases}$$
 (4)

$$P^n(G) = \max P^n(A) \quad \forall A \in achievers(G)$$
 (5)

Intermediate Results- Driverlog

Intermediate Results- Rovers

Intermediate Results- Zenotravel

University of Strathclyde

Conclusions

 Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries

Conclusions

- Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries
- How well are Plan Libraries replaced?

Conclusions

- Presented a new formulation of Goal Recognition as a Planning task, which does not rely on libraries
- How well are Plan Libraries replaced?
 - Structure- largely done
 - 2 Prediction- Good results for both intermediate and terminal results
 - 3 Abstraction- None really. Could be learned from domains, or probable conjunctions generated at runtime
 - Termination- Intermediate state estimates are pretty good, but the estimation itself is too short
 - Probably heavily linked to heuristic choice
- Backwards compatibility not broken at any point
 - Known goal conjunctions can still be added
 - Known plans still applicable
 - Probability weightings still applicable

The move into PR seems natural

- The move into PR seems natural
- Bringing Planning and PR closer together

- The move into PR seems natural
- Bringing Planning and PR closer together
- Convergence

- The move into PR seems natural
- Bringing Planning and PR closer together
- Convergence
 - Instead of storing plans in a library, generate them at runtime
 - Use of landmarks, inference, deduction in next action-prediction
 - "Heuristic learning" from previous plan observations
 - Macro-Actions ⇒ high-level concepts?
 - Domain-learning/extension
 - Conjunction learning- genetic techniques

Thank you for your attention

Questions/comments?

Coffee Break

• Resume at 11.00

