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Abstract

Recently, several researchers have found that cost-based sat-
isficing search with A∗ often runs into problems. Although
some “work arounds” have been proposed to ameliorate the
problem, there has not been any concerted effort to pinpoint
its origin. In this paper, we argue that the origins can be traced
back to the wide variance in action costs that is easily ob-
served in planning domains. We show that such cost variance
misleads A∗ search, and that this is a systemic weakness of
the very concept: “cost-based evaluation functions + system-
atic search + combinatorial graphs”. We argue that purely
size-based evaluation functions are a reasonable default, as
these are trivially immune to cost-induced difficulties. We
further show that cost-sensitive versions of size-based eval-
uation function — where the heuristic estimates the size of
cheap paths provides attractive quality vs. speed tradeoffs.

1 Introduction
Much of the scale-up, as well as the research focus, in the au-
tomated planning community in the recent years has been on
satisficing planning. Unfortunately, there hasn’t been a con-
comitant increase in our understanding of satisficing search.
Too often, the “theory” of satisficing search defaults to do-
ing (W)A∗ with inadmissible heuristics. While removing
the requirement of admissible heuristics certainly relaxes the
guarantee of optimality, there is no implied guarantee of ef-
ficiency. A combinatorial search can be seen to consist of
two parts: a “discovery” part where the (optimal) solution
is found and a “proof” part where the optimality of the so-
lution is verified. While an optimizing search depends cru-
cially on both these phases, a satisficing search is instead
affected more directly by the discovery phase. Now, stan-
dard A∗ search conflates the discovery and proof phases to-
gether and terminates only when it picks the optimal path
for expansion. By default, satisficing planners use the same
search regime, but relax the admissibility requirement on the
heuristics.1 This may not cause too much of a problem in do-
mains with uniform action costs, but when actions can have
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1In the extreme case, by using an infinite heuristic weight:
“greedy best-first search”.

non-uniform costs, the the optimal and second optimal so-
lution can be arbitrarily far apart in depth. Consequently,
(W)A∗ search with cost-based evaluation functions can be
an arbitrarily bad strategy for satisficing search, as it waits
until the solution is both discovered and proved to be (within
some bound of) optimal.

To be more specific, consider a planning problem for
which the cost-optimal and second-best solution to a prob-
lem exist on 10 and 1000 unspecified actions. The optimal
solution may be the larger one. How long should it take
just to find the 10 action plan? How long should it take to
prove (or disprove) its optimality? In general (presuming
PSPACE/EXPSPACE 6= P):
1. Discovery should require time exponential in, at most, 10.
2. Proof should require time exponential in, at least, 1000.
That is, in principle, the only way to (domain-independently)
prove that the 10 action plan is better or worse than the 1000
action one is to in fact go and discover the 1000 action plan.
Thus, A∗ search with cost-based evaluation function will
take time proportional to b1000 for either discovery or proof.
Simple breadth-first search discovers a solution in time pro-
portional to b10 (and proof in O(b1000)).

Using both abstract and benchmark problems, we will
demonstrate that this is a systematic weakness of any search
that uses cost-based evaluation function. In particular, we
shall see that if ε is the smallest cost action (after all costs
are normalized so the maximal cost action costs 1 unit), then
the time taken to discover a depth d optimal solution will be
b

d
ε . If all actions have same cost, then ε ≈ 1 where as if

the actions have significant cost variance, then ε � 1. We
shall see that for a variety of reasons, most real-world plan-
ning domains do exhibit high cost variance, thus presenting
an “ε-cost trap” that forces any cost-based satisficing search
to dig its own ( 1

ε deep) grave.
Consequently, we argue that satisficing search should re-

sist the temptation to directly use cost-based evaluation func-
tions (i.e., f functions that return answers in cost units)
even if they are interested in the quality (cost measure) of
the resulting plan. We will consider two size-based branch-
and-bound alternatives: the straightforward one which com-
pletely ignores costs and sticks to a purely size-based evalua-
tion function, and a more subtle one that uses a cost-sensitive
size-based evaluation function (specifically, the heuristic es-
timates the size of the cheapest cost path; see Section 2).
We show that both of these outperform cost-based evaluation



functions in the presence of ε-cost traps, with the second one
providing better quality plans (for the same run time limits)
than the first in our empirical studies.

While some of the problems with cost-based satisficing
search have also been observed, in passing, by other re-
searchers (e.g., (Benton et al. 2010; Richter and Westphal
2010), and some work-arounds have been suggested, our
main contribution is to bring to the fore its fundamental na-
ture. The rest of the paper is organized as follows. In the
next section, we present some preliminary notation to for-
mally specify cost-based, size-based as well as cost-sensitive
size-based search alternatives. Next, we present two abstract
and fundamental search spaces, which demonstrate that cost-
based evaluation functions are ‘always’ needlessly prone to
such traps (Section 3). Section 4 strengthens the intuitions
behind this analysis by viewing best-first search as flooding
topological surfaces set up by evaluation functions. We will
argue that of all possible topological surfaces (i.e., evalua-
tion functions) to choose for search, cost-based is the worst.
In Section 5, we put all this analysis to empirical valida-
tion by experimenting with LAMA (Richter and Westphal
2010) and SapaReplan. The experiments do show that size-
based alternatives can out-perform cost-based search. Mod-
ern planners such as LAMA use a plethora of improvements
beyond vanilla A∗ search, and in the appendix we provide a
deeper analysis on which extensions of LAMA seem to help
it mask (but not fully overcome) the pernicious effects of
cost-based evaluation functions.

2 Setup and Notation
We gear the problem set up to be in line with the preva-
lent view of state-space search in modern, state-of-the-art
satisficing planners. First, we assume the current popu-
lar approach of reducing planning to graph search. That
is, planners typically model the state-space in a causal di-
rection, so the problem becomes one of extracting paths,
meaning whole plans do not need to be stored in each
search node. More important is that the structure of the
graph is given implicitly by a procedure Γ, the child gen-
erator, with Γ(v) returning the local subgraph leaving v;
i.e., Γ(v) computes the subgraph (N+[v], E({v}, V −v)) =
({u | (v, u) ∈ E} + v, {(v, u) | (v, u) ∈ E}) along with all
associated labels, weights, and so forth. That is, our anal-
ysis depends on the assumption that an implicit representa-
tion of the graph is the only computationally feasible rep-
resentation, a common requirement for analyzing the A∗

family of algorithms (Hart, Nilsson, and Raphael 1968;
Dechter and Pearl 1985).

The search problem is to find a path from an initial state,
i, to some goal state in G. Let costs be represented as edge
weights, say c(e) is the cost of the edge e. Let g∗c (v) be
the (optimal) cost-to-reach v (from i), and h∗c(v) be the
(optimal) cost-to-go from v (to the goal). Then f∗c (v) :=
g∗c (v)+h∗c(v), the cost-through v, is the cost of the cheapest
i-G path passing through v. For discussing smallest solu-
tions, let f∗s (v) denote the smallest i-G path through v. It is
also interesting to consider the size of the cheapest i-G path
passing through v, say f̂∗s (v).

We define a search node n as equivalent to a path repre-
sented as a linked list (of edges). In particular, we distin-
guish this from the state of n (its last vertex), n .v . We say

n .a (for action) is the last edge of the path and n.p (for par-
ent) is the subpath excluding n .a . Let n′ = na denote ex-
tending n by the edge a (so a = (n.v , n′.v)). The function
gc(n) (g-cost) is just the recursive formulation of path cost:
gc(n) := gc(n .p) + c(n .a) (gc(n) := 0 if n is the trivial
path). So g∗c (v) ≤ gc(n) for all i-v paths n, with equality for
at least one of them. Similarly let gs(n) := gs(n.p)+1 (ini-
tialized at 0), so that gs(n) is an upper bound on the shortest
path reaching the same state (n .v ).

A goal state is a target vertex where a plan may stop and be
a valid solution. We fix a computed predicate G(v) (a black-
box), the goal, encoding the set of goal states. Let hc(v), the
heuristic, be a procedure to estimate h∗c(v). (Sometimes hc

is considered a function of the search node, i.e., the whole
path, rather than just the last vertex.) The heuristic hc is
called admissible if it is a guaranteed lower bound. (An in-
admissible heuristic lacks the guarantee, but might anyways
be coincidentally admissible.) Let hs(v) estimate the re-
maining depth to the nearest goal, and let ĥs(v) estimate the
remaining depth to the cheapest reachable goal. Anything
goes with such heuristics — an inadmissible estimate of the
size of an inadmissible estimate of the cheapest continuation
is an acceptable (and practical) interpretation of ĥs(v).

We focus on two different definitions of f (the evaluation
function). Since we study cost-based planning, we consider
fc(n) := gc(n)+hc(n .v); this is the (standard, cost-based)
evaluation function of A∗: cheapest-completion-first. We
compare this to fs(n) := gs(n) + hs(n .v), the canonical
size-based (or search distance) evaluation function, equiva-
lent to fc under uniform weights. Any combination of gc

and hc is cost-based; any combination of gs and hs is size-
based (e.g., breadth-first search is size-based). The evalua-
tion function f̂s(n) := gs(n) + ĥs(n .v) is also size-based,
but nonetheless cost-sensitive and so preferable.

BEST-FIRST-SEARCH(i,G, Γ, hc)

1 initialize search
2 while open not empty
3 n = open .remove()
4 if BOUND-TEST(n, hc) then continue
5 if GOAL-TEST(n,G) then continue
6 if DUPLICATE-TEST(n) then continue
7 s = n .v
8 star = Γ(s) // Expand s
9 for each edge a = (s, s′) from s to a child s′ in star

10 n′ = na

11 f = EVALUATE(n′)

12 open .add(n′, f)
13 return best-known-plan // Optimality is proven.

Pseudo-code for best-first branch-and-bound search of
implicit graphs is shown above. It continues searching af-
ter a solution is encountered and uses the current best solu-
tion value to prune the search space (line 4). The search is
performed on a graph implicitly represented by Γ, with the
assumption being that the explicit graph is so large that it is
better to invoke expensive heuristics (inside of EVALUATE)
during the search than it is to just compute the graph up front.
The question considered by this paper is how to implement
EVALUATE.

With respect to normalizing costs, we can let ε :=
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Figure 1: A trap for cost-based search. The heuristic per-
ceives all movement on the cycle to be irrelevant to achiev-
ing high quality plans. The state with label -2 is one inter-
esting way to leave the cycle, there may be (many) others.
C denotes the cost of one such continuation from -2, and d
its depth. Edge weights nominally denote changes in fc: as
given, locally, these are the same as changes in gc. But in-
creasing fs by 1 at -1 (and descendants) would, for example,
model instead the special edge as having cost 1

2 and being
perceived as worst-possible in an undirected graph.

mina c(a)
maxa c(a) , that is, ε is the least cost edge after normalizing
costs by the maximum cost (to bring costs into the range
[0, 1]). We use the symbol ε for this ratio as we anticipate
actions with high cost variance in real world planning prob-
lems. For example: boarding versus flying (ZenoTravel),
mode-switching versus machine operation (Job-Shop), and
(unskilled) labor versus (precious) material cost.

3 ε-cost Trap: Two Canonical Cases
In this section we argue that the mere presence of ε-cost
misleads cost-based search, and that this is no trifling detail
or accidental phenomenon, but a systemic weakness of the
very concept of “cost-based evaluation functions + system-
atic search + combinatorial graphs”. We base this analysis
in two abstract search spaces, in order to demonstrate the
fundamental nature of such traps. The first abstract space
we consider is the simplest, non-trivial, non-uniform cost,
intractably large, search space: the search space of an enor-
mous cycle with one expensive edge. The second abstract
space we consider is a more natural model of search (in plan-
ning): a uniform branching tree. Traps in these spaces are
just exponentially sized and connected sets of ε-cost edges:

not the common result of, say, a typical random model of
search. We briefly consider why planning benchmarks natu-
rally give rise to such structure.

For a thorough analysis of models of search see (Pearl
1984); for a planning specific context see (Helmert and
Röger 2008).

3.1 Cycle Trap
In this section we consider the simplest abstract example
of the ε-cost ‘trap’. The notion is that applying increas-
ingly powerful heuristics, domain analysis, learning tech-
niques, . . . , to one’s search problem transforms it into a sim-
pler ‘effective graph’ — the graph for which Dijkstra’s algo-
rithm (Dijkstra 1959) produces isomorphic behavior. For ex-
ample, let c′ be a new edge-cost function obtained by setting
edge costs to the difference in f values of the edge’s end-
points: Dijkstra’s algorithm on c′ is A∗ on f .2 Similarly take
Γ′ to be the result of applying one’s favorite incompleteness-
inducing pruning rules to Γ (the child generator), say, helpful
actions (Hoffmann and Nebel 2001); then Dijkstra’s algo-
rithm on Γ′ is A∗ with helpful action pruning.

Presumably the effective search graph remains very com-
plex despite all the clever inference (or there is nothing to
discuss); but certainly complex graphs contain simple graphs
as subgraphs. So if there is a problem with search behavior
in an exceedingly simple graph then we can suppose that
no amount of domain analysis, learning, heuristics, and so
forth, will incidentally address the problem: such inference
must specifically address the issue of non-uniform weights.
Suppose not: none of the bells and whistles consider non-
uniform costs to be a serious issue, permitting wildly vary-
ing edge ‘costs’ even in the effective search graph: ε ≈ ε′ =
mine c′(e)
maxe c′(e) . We demonstrate that that by itself is enough to
produce very troubling search behavior: ε-cost is a funda-
mental challenge to be overcome in planning.

There are several candidates for simple non-trivial state-
spaces (e.g., cliques), but clearly the cycle is fundamental
(what kind of ‘state-space’ is acyclic?). So, the state-space
we consider is the cycle, with associated exceedingly sim-
ple metric consisting of all uniform weights but for a single
expensive edge. Its search space is certainly the simplest
non-trivial search space: the rooted tree on two leaves. So
the single unforced decision to be made is in which direc-
tion to traverse the cycle: clockwise or counter-clockwise.
See Figure 1. Formally:
ε-cost Trap: Consider the problem of making some vari-
able, say x, encoded in k bits represent 2k − 2 ≡ −2
(mod 2k), starting from 0, using only the operations of in-
crement and decrement. There are 2 minimal solutions: in-
crementing 2k − 2 times, or decrementing twice. Set the
cost of incrementing and decrementing to 1, except for tran-
sitioning between x ≡ 0 and x ≡ −1 costs, say, 2k−1 (in
either direction). Then the 2 minimal solutions cost 2k − 2
and 2k−1 + 1, or, normalized, 2(1 − ε) and 1 + ε. Cost-
based search loses: While both approaches prove optimality
in exponential time (O(2k)), size-based search discovered
that optimal plan in constant time.

2Systematic inconsistency of a heuristic translates to analyz-
ing the behavior of Dijkstra’s algorithm with many negative ‘cost’
edges, a typical reason to assume consistency in analysis.
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Figure 2: A trap for cost-based search. Two rather distinct kinds of physical objects exist in the domain, with primitive
operators at rather distinct orders of magnitude; supposing uniformity and normalizing, then one type involves ε-cost and the
other involves cost 1. So there is a low-cost subspace, a high-cost subspace, and the full space, each a uniform branching
tree. As trees are acyclic, it is probably best to think of these as search, rather than state, spaces. As depicted, planning for an
individual object is trivial as there is no choice besides going forward. Other than that no significant amount of inference is
being assumed, and in particular the effects of a heuristic are not depicted. For cost-based search to avoid death, the heuristic
would need to forecast every necessary cost 1 edge, so as to reduce its weight closer to 0. (Note that the aim of a heuristic is
to drive all the weights to 0 along optimal/good paths, and to infinity for not-good/terrible/dead-end choices.) If any cut of the
space across such edges (separating good solutions) is not foreseen, then backtracking into all of the low-cost subspaces so far
encountered commences, to multiples of depth ε−1 — one such multiple for every unforeseen cost 1 cut. Observe that in the
object-specific subspaces (the paths), a single edge ends up being multiplied into such a cut of the global space.



Performance Comparison: All Goals. Of course the goal
x ≡ −2 is chosen to best illustrate the trap. So consider the
discovery problem for other goals. With the goal in the in-
terval 2k · [0, 1

2 ] cost-based search is twice as fast. With the
goal in the interval 2k · [ 12 , 2

3 ] the performance gap narrows
to break-even. For the last interval, 2k · [ 23 , 1〉, the size-based
approach takes the lead — by an enormous margin. There is
one additional region of interest. Taking the goal in the inter-
val 2k ·[ 23 , 3

4 ] there is a trade-off: size-based search finds a so-
lution before cost-based search, but cost-based search finds
the optimal solution first. Concerning time till optimality is
proven, the cost-based approach is monotonically faster (of
course). Specifically, the cost-based approach is faster by a
factor of 2 for goals in the region 2k · [0, 1

2 ], not faster for
goals in the region 2k · [ 34 , 1〉, and by a factor of ( 1

2 + 2α)−1

(bounded by 1 and 2) for goals of the form x ≡ 2k( 1
2 + α),

with 0 < α < 1
4 .

Performance Comparison: Feasible Goals. Considering
all goals is inappropriate in the satisficing context; to illus-
trate, consider large k, say, k = 1000. Fractions of exponen-
tials are still exponentials — even the most patient reader
will have forcibly terminated either search long before re-
ceiving any useful output. Except if the goal is of the form
x ≡ 0 ± f(k) for some sub-exponential f(k). Both ap-
proaches discover (and prove) the optimal solution in the
positive case in time O(f(k)) (with size-based performing
twice as much work). In the negative case, only the size-
based approach manages to discover a solution (the optimal
one, in time O(f(k))) before being killed. Moreover, while
it will fail to produce a proof of such before death, we, based
on superior understanding of the domain, can, and have,
shown it to be posthumously correct. (2k − f(k) > 2k · 3

4
for any sub-exponential f(k) with large enough k.)
How Good is Almost Perfect Search Control? Keep in
mind that the representation of the space as a simple k bit
counter is not available. In particular what ‘increment’ ac-
tually stands for is an inference-motivated choice of a single
operator out of a large number of executable and promising
operators at each state — in the language of Markov Deci-
sion Processes, we are allowing inference to be so close to
perfect that the optimal policy is known at all but 1 state.
Only one decision remains . . . but no methods cleverer than
search remain. Still the graph is intractably large. Cost-
based search only explores in one direction: left, say. In
the satisficing context such behavior is entirely inappropri-
ate. What is appropriate? Of course explore left first, for
considerable time even. But certainly not for 3 years before
even trying just a few expansions to the right, for that matter,
even mere thousands of expansions to the left before one or
two to the right are tried is perhaps too greedy.

3.2 Branching Trap
In the counter problem the trap is not even combinatorial;
the search problem consists of a single decision at the root,
and the trap is just an exponentially deep path. Then it
is abundantly clear that appending Towers of Hanoi to a
planning benchmark, setting its actions at ε-cost, will kill
cost-based search — even given the perfect heuristic for the
puzzle! Besides Hanoi, though, exponentially deep paths

are not typical of planning benchmarks. So in this section
we demonstrate that exponentially large subtrees on ε-cost
edges are also traps.

Consider x > 1 high cost actions and y > 1 low cost
actions in a uniform branching tree model of search space.
The model is appropriate up to the point where duplicate
state checking becomes significant. (See Figure 2.) Suppose
the solution of interest costs C, in normalized units, so the
solution lies at depth C or greater. Then cost-based search
faces a grave situation: O((x + y

1
ε )C) possibilities will be

explored before considering all potential solutions of cost C.
A size-based search only ever considers at most O((x +

y)d) = O(bd) possibilities before consideration of all po-
tential solutions of size d. Of course the more interesting
question is how long it takes to find solutions of fixed cost
rather than fixed depth. Note that C

ε ≥ d ≥ C. Assuming
the high cost actions are relevant, that is, some number of
them are needed by solutions, then we have that solutions
are not actually hidden as deep as C

ε . Suppose, for exam-
ple, that solutions tend to be a mix of high and low cost
actions in equal proportion. Then the depth of those solu-
tions with cost C is d = 2 C

1+ε (i.e., d
2 · 1 + d

2 · ε = C).
At such depths the size-based approach is the clear winner:
O((x + y)

2C
1+ε ) � O((x + y

1
ε )C) (normally).

Consider, say, x = y = b
2 , then:

size effort/cost effort ≈

b
2C
1+ε /

(
x + y

1
ε

)C

< b
2C
1+ε /y

C
ε ,

< 2
C
ε /b

C
ε

1−ε
1+ε ,

<
2

b
1−ε
1+ε

C
ε

,

and, provided ε < 1−logb 2
1+logb 2 (for b = 4, ε < 1

3 ), the last is
always less than 1 and, for that matter, goes, quickly, to 0 as
C increases and/or b increases and/or ε decreases.

Generalizing, the size-based approach is faster at finding
solutions of any given cost, as long as (1) high-cost actions
constitute at least some constant fraction of the solutions
considered (high-cost actions are relevant), (2) the ratio be-
tween high-cost and low-cost is sufficiently large, (3) the ef-
fective search graph (post inference) is reasonably well mod-
eled by an infinite uniform branching tree (i.e., huge enough
to render duplicate checking negligible, or at least not es-
pecially favorable to cost-based search), and most impor-
tantly, (4) the cost function in the effective search graph still
demonstrates a sufficiently large ratio between high-cost and
low-cost edges (no inference has attempted to compensate).

4 Search Effort as Flooding Topological
Surfaces of Evaluation Functions

We view evaluation functions (f ) as topological surfaces
over search nodes, so that generated nodes are visited in,
roughly, order of f -altitude. With non-monotone evaluation
functions, the set of nodes visited before a given node is all
those contained within some basin of the appropriate depth
— picture water flowing from the initial state: if there are
dams then such a flood could temporarily visit high altitude



nodes before low altitude nodes. (With very inconsistent
heuristics — large heuristic weights — the metaphor loses
explanatory power, as there is nowhere to go but downhill.)

All reasonable choices of search topology will eventually
lead to identifying and proving the optimal solution (e.g.,
assume finiteness, or divergence of f along infinite paths).
Some will produce a whole slew of suboptimal solutions
along the way, eventually reaching a point where one begins
to wonder if the most recently reported solution is optimal.
Others report nothing until finishing. The former are inter-
ruptible (Zilberstein 1998), which is one way to more for-
mally define satisficing.3 Admissible cost-based topology is
the least interruptible choice: the only reported solution is
also the last path considered. Define the cost-optimal foot-
print as the set of plans considered. Gaining interruptibility
is a matter of raising the altitude of large portions of the cost-
optimal footprint in exchange for lowering the altitude of a
smaller set of non-footprint search nodes — allowing sub-
optimal solutions to be considered. Note that interruptibility
comes at the expense of total work.

So, somewhat confirming the intuition that interruptibility
is a reasonable notion of satisficing: the cost-optimal ap-
proach is the worst-possible approach (short of deliberately
wasting computation) to satisficing. Said another way, prov-
ing optimality is about increasing the lower bound on true
value, while solution discovery is about decreasing the up-
per bound on true value. It seems appropriate to assume that
the fastest way to decrease the upper bound is more or less
the opposite of the fastest way to increase the lower bound
— with the notable exception of the very last computation
one will ever do for the problem: making the two bounds
meet (proving optimality).

For size-based topology, with respect to any cost-based
variant, the ‘large’ set is the set of longer yet cheaper plans,
while the ‘small’ set is the shorter yet costlier plans. In gen-
eral one expects there to be many more longer plans than
shorter plans in combinatorial problems, so that the increase
in total work is small, relative to the work that had to be done
eventually (exhaust the many long, cheap, plans). The addi-
tional work is considering exactly plans that are costlier than
necessary (potentially suboptimal solutions). So the idea of
the trade-off is good, but even the best version of a purely
size-based topology will not be the best trade-off possible —
intuitively the search shouldn’t be completely blind to costs:
just defensive about possible ε-traps.

Actually, there is a common misconception here about
search nodes and states due to considering uniformly
branching trees as a model of state-space: putting states and
search nodes in correspondence. Duplicate detection and re-
expansion are, in practice, important issues. In particular
not finding the cheapest path first comes with a price, re-
expansion, so the satisficing intent comes hand in hand with
re-expansion of states. So, for example, besides the obvious
kind of re-expansion that IDA∗ (Korf 1985) performs be-
tween iterations, it is also true that it considers paths which
A∗ never would (even subsequent to arming IDA∗ with a
transposition table) — it is not really true that one can re-

3Another way that Zilberstein suggests is to specify a contract;
the 2008 planning competition has such a format (Helmert, Do, and
Refanidis 2008).
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Figure 3: Rendezvous problems. Diagonal edges cost 7,000,
exterior edges cost 10,000. Board/Debark cost 1.

order consideration of paths however one pleases. In partic-
ular at least some kind of breadth-first bias is appropriate, so
as to avoid finding woefully suboptimal plans to states early
on, triggering giant cascades of re-expansion later on.

For thorough consideration of blending size and cost con-
siderations in the design of evaluation functions see (Thayer
and Ruml 2010). Earlier work in evaluation function de-
sign beyond just simplistic heuristic weighting is in (Pohl
1973). Dechter and Pearl give a highly technical account
of the properties of generalized best-first search strategies,
focusing on issues of computational optimality, but, mostly
from the perspective of search constrained to proving opti-
mality in the path metric (Dechter and Pearl 1985).

5 ε-cost Trap in Practice
In this section we demonstrate existence of the problematic
planner behavior in a realistic setting: running LAMA on
problems in the travel domain (simplified ZenoTravel, zoom
and fuel removed), as well as two other IPC domains. Anal-
ysis of LAMA is complicated by many factors, so we also
test the behavior of SapaReplan on simpler instances (but in
all of ZenoTravel). The first set of problems concern a ren-
dezvous at the center city in the location graph depicted in
Figure 3; the optimal plan arranges a rendezvous at the cen-
ter city. The second set of problems is to swap the positions
of passengers located at the endpoints of a chain of cities.

For thorough empirical analysis of cost issues in standard
benchmarks see (Richter and Westphal 2010).

5.1 LAMA
In this section we demonstrate the performance problem
wrought by ε-cost in a state-of-the-art (2008) planner —
LAMA (Richter and Westphal 2010), the leader of the cost-
sensitive (satisficing) track of IPC’08 (Helmert, Do, and Re-
fanidis 2008). With a completely trivial recompilation (set a
flag) one can make it ignore the given cost function, effec-
tively searching by fs. With slightly more work one can do
better and have it use f̂s as its evaluation function, i.e., have
the heuristic estimate d̂ and the search be size-based, but still
compute costs correctly for branch-and-bound. Call this lat-
ter modification LAMA-size. Ultimately, the observation is
that LAMA-size outperforms LAMA — an astonishing feat
for such a trivial change in implementation.



Domain LAMA LAMA-size
Rendezvous 70.8% 83.0%

Elevators 79.2% 93.6%
Woodworking 76.6% 64.1%

Table 1: IPC metric on LAMA variants.

LAMA4 defies analysis in a number of ways: landmarks,
preferred operators, dynamic evaluation functions, multiple
open lists, and delayed evaluation, all of which effect po-
tential search plateaus in complex ways. Nonetheless, it is
essentially a cost-based approach.
Results.5 With more than about 8 total passengers, LAMA
is unable to complete any search stage except the first (the
greedy search). For the same problems, LAMA-size finds
the same first plan (the heuristic values differ, but not the
structure), but is then subsequently able to complete further
stages of search. In so doing it sees marked improvement in
cost; on the larger problems this is due only to finding bet-
ter variants on the greedy plan. Other domains are included
for broader perspective, woodworking in particular was cho-
sen as a likely counter-example, as all the actions concern
just one type of physical object and the costs are not wildly
different. For the same reasons we would expect LAMA to
out-perform LAMA-size in some cost-enhanced version of
Blocksworld.

5.2 SapaReplan
We also consider the behavior of SapaReplan on the sim-
pler set of problems.6 This planner is much less sophisti-
cated in terms of its search than LAMA, in the sense of being
much closer to a straight up implementation of weighted A*
search. The problem is just to swap the locations of passen-
gers located on either side of a chain of cities. A plane starts
on each side, but there is no actual advantage to using more
than one (for optimizing either of size or cost): the second
plane exists to confuse the planner. Observe that smallest
and cheapest plans are the same. So in some sense the con-
cepts have become only superficially different; but this is
just what makes the problem interesting, as despite this sim-
ilarity, still the behavior of search is strongly affected by the
nature of the evaluation function. We test the performance
of f̂s and fc, as well as a hybrid evaluation function similar
to f̂s + fc (with costs normalized). We also test hybridizing
via tie-breaking conditions, which ought to have little effect
given the rest of the search framework.
Results.7 The size-based evaluation functions find better
cost plans faster (within the deadline) than cost-based evalu-
ation functions. The hybrid evaluation function also does

4Options: ‘fFlLi’.
5New best plans for Elevators were found (largely by LAMA-

size). The baseline planner’s score is 71.8% against the better ref-
erence plans.

6Except that these problems are run on all of ZenoTravel.
7The results differ markedly between the 2 and 3 city sets of

problems because the sub-optimal relaxed plan extraction in the
2-cities problems coincidentally produces an essentially perfect
heuristic in many of them. One should infer that the solutions found
in the 2-cities problems are sharply bimodal in quality and that the
meaning of the average is then significantly different than in the
3-cities problems.

2 Cities 3 Cities
Mode Score Rank Score Rank
Hybrid 88.8% 1 43.1% 2

Size 83.4% 2 43.7% 1
Size, tie-break on cost 82.1% 3 43.1% 2
Cost, tie-break on size 77.8% 4 33.3% 3

Cost 77.8% 4 33.3% 3

Table 2: IPC metric on SapaReplan variants in ZenoTravel.

relatively well, but not as well as could be hoped. Tie-
breaking has little effect, sometimes negative.

We note that Richter and Westphal (2010) also report
that replacing cost-based evaluation function with a pure
size-based one improves performance over LAMA in mul-
tiple other domains. Our version of LAMA-size uses a cost-
sensitive size-based search (ĥs), and our results, in the do-
mains we investigated, seem to show bigger improvements
over the size-based variation on LAMA obtained by com-
pletely ignoring costs (hs, i.e., setting the compilation flag).
Also observe that one need not accept a tradeoff: calculat-
ing log10 ε−1 ≤ 2 (3? 1.5?) and choosing between LAMA
and LAMA-size appropriately would be an easy way to im-
prove performance simultaneously in ZenoTravel (4 orders
of magnitude) and Woodworking (< 2 orders of magnitude).

Finally, while LAMA-size outperforms LAMA, our theory
of ε-cost traps suggests that cost-based search should fail
even more spectacularly. In the appendix, we take a much
closer look at the travel domain and present a detailed study
of which extensions of LAMA help it temporarily mask the
pernicious effects of cost-based search. Our conclusion is
that both LAMA and SapaReplan manage to find solutions
to problems in the travel domain despite the use of a cost-
based evaluation function by using various tricks to induce a
limited amount of depth-first behavior in an A∗-framework.
This has the potential effect of delaying exploration of the
ε-cost plateaus slightly, past the discovery of a solution, but
still each planner is ultimately trapped by such plateaus be-
fore being able to find really good solutions. In other words,
such tricks are mostly serving to mask the problems of cost-
based search (and ε-cost), as they merely delay failure by
just enough that one can imagine that the planner is now ef-
fective (because it returns a solution where before it returned
none). Using a size-based evaluation function more directly
addresses the existence of cost plateaus, and not surpris-
ingly leads to improvement over the equivalent cost-based
approach — even with LAMA.

6 Conclusion
The practice of combinatorial search in automated planning
is (often) satisficing. There is a great call for deeper theories
of satisficing search (e.g., a formal definition agreeing with
practice is a start), and one perhaps significant obstacle in
the way of such research is the pervasive notion that perfect
problem solvers are the ones giving only perfect solutions.
Actually implementing cost-based, systematic, combinato-
rial, search reinforces this notion, and therein lies its great-
est harm. (Simply defining search as if “strictly positive edge
weights” is good enough in practice is also harmful.)

In support of the position we demonstrated the technical
difficulties arising from such use of a cost-based evaluation



function, largely by arguing that the size-based alternative is
a notably more effective default strategy. We argued that us-
ing cost as the basis for plan evaluation is a purely exploita-
tive/greedy perspective, leading to least interruptible behav-
ior. Being least interruptible, it follows that implementing
cost-based search will typically be immediately harmful to
that particular application. Exceptions will abound, for ex-
ample if costs are not wildly varying. The lasting harm,
though, in taking cost-based evaluation functions as the de-
fault approach, failing to document any sort of justification
for the risk so taken, is in reinforcing the wrong definition of
satisficing in the first place. In conclusion, as a rule: Cost-
based search is harmful.
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A Deeper Analysis of the Results in Travel
Domain

In this section we analyze the reported behavior of LAMA
and SapaReplan in greater depth. We begin with a general
analysis of the domain itself and the behavior of (simplistic)
systematic state-space search upon it, concluding that cost-
based methods suffer an enormous disadvantage. The empir-
ical results are not nearly so dramatic as the dire predictions
of the theory, or at least do not appear so. We consider to
what extent the various additional techniques of the planners
(violating the assumptions of the theory) in fact mitigate the
pitfalls of ε-cost, and to what extent these only serve to mask
the difficulty.

A.1 Analysis of Travel Domain
We argue that search under fc pays a steep price in time and
memory relative to search under f̂s. The crux of the matter is
that the domain is reversible, so relaxation-based heuristics
cannot penalize fruitless or even counter-productive passen-
ger movements by more than the edge-weight of that move-
ment. Then plateaus in g are plateaus in f , and the plateaus
in gc are enormous.

First note that the domain has a convenient structure: The
global state space is the product of the state space of shuf-
fling planes around between cities/airports via the fly ac-
tion (expensive), and the state space of shuffling people
around between (stationary) planes and cities/airports via
the board/debark actions (cheap). For example, in the ren-
dezvous problems, there are 54 = 625 possible assignments
of planes to cities, and (5 + 4)2k possible assignments of
passengers to locations (planes + cities), so that the global
state space has exactly 54 · 92k reachable states (with k the
number of passengers at one of the origins).8

Boarding and debarking passengers is extremely cheap,
say on the order of cents, while flying planes between cities

8Fuel and zoom are distracting aspects of ZenoTravel-STRIPS,
so we remove them. Clever domain analysis could do the same.



is quite a bit more expensive, say on the order of hundreds of
dollars (from the perspective of passengers). So 1

ε ≈ 10000
for this domain — a constant, but much too large to ignore.

To analyze state-space approaches in greater depth let
us make all of the following additional assumptions: The
heuristic is relaxation-based, imperfect, and in particular
heuristic error is due to the omission of actions from re-
laxed solutions relative to real solutions. Heuristic error is
not biased in favor of less error in estimation of needed fly
actions — in this problem planes are mobiles and containers
whereas people are only mobiles. Finally, there are signifi-
cantly but not overwhelmingly more passengers than planes.

Then consider a child node, in plane-space, that is in fact
the correct continuation of its parent, but the heuristic fails
to realize it. So its f is higher by the cost or size of one
plane movement: 1 under normalized costs. Moreover as-
sume that moving passengers is not heuristically good (in
this particular subspace). (Indeed, moving passengers is usu-
ally a bad idea.) Then moving a passenger increases fc by
at most 2ε (and at least ε), once for gc and once for hc.
As 1

2ε ≈ 5000 we have that search under fc explores the
passenger-shuffling space of the parent to, at least, depth
5000. Should the total heuristic error in fact exceed one fly
action, then each such omission will induce backtracking to
a further 5000 levels: for any search node n reached by a fly
action set ec(n) = fc(x)−fc(n) with x some solution of in-
terest (set es similarly). Then if search node n ever appears
on the open list it will have its passenger-shuffling subspace
explored, under fc, to at least depth ec · 5000 before x is
found (and at most depth ec · 1

ε ). Under f̂s, we have instead
exploration up to at least depth es · 12 and at most depth es · 11 .

As 5000 objects is already far above the capabilities of
any current domain-independent planners, we can say that
at most plane-shuffling states considered, cost-based search
exhausts the entire associated passenger-shuffling space dur-
ing backtracking. That is, it stops exploring the space due to
exhausting finite possibilities, rather than by adding up suf-
ficiently many instances of 2ε increases in f — the result is
the same as if the cost of passenger movement was 0. Worse,
such exhaustion commences immediately upon backtracking
for the first time (with admissible heuristics). Unless very
inadmissible (large heuristic weights), then even with inad-
missible heuristics, still systematic search should easily get
trapped on cost plateaus — before finding a solution.

In contrast, size-based search will be exhausting only
those passenger assignments differing in at most es values;
in the worst case this is equivalent to the cost-based method,
but for good heuristics is a notable improvement. (In ad-
dition the size-based search will be exploring the plane-
shuffling space deeper, but that space is [assumed to be]
much smaller than any single passenger-shuffling space.)
Then it is likely the case that cost-based search dies before
reporting a solution while size-based search manages to find
one or more.

A.2 Analyzing LAMA’s Performance
While LAMA-size out-performs LAMA, it is hardly as dra-
matic a difference as predicted above. Here we analyze the
results in greater depth, in an attempt to understand how
LAMA avoids being immediately trapped by the passenger-

shuffling spaces. Our best, but not intuitive, explanation is
its pessimistic delayed evaluation leads to a temporary sort
of depth-first bias, allowing it to skip exhaustion of many of
the passenger-shuffling spaces until after finding a solution.
So, (quite) roughly, LAMA is able to find one solution, but
not two.
Landmarks. The passenger-shuffling subspaces are search
plateaus, so, the most immediate hypothesis is that LAMA’s
use of landmarks helps it realize the futility of large portions
of such plateaus (i.e., by pruning them). However, LAMA
uses landmarks only as a heuristic, and in particular uses
them to order an additional (also cost-based) open list (tak-
ing every other expansion from that list), and the end result is
actually greater breadth of exploration, not greater pruning.
Multiple Open Lists. Then an alternative hypothesis is that
LAMA avoids immediate death by virtue of this additional
exploration, i.e., one open list may be stuck on an enormous
search plateau, but if the other still has guidance then po-
tentially LAMA can find solutions due to the secondary list.
In fact, the lists interact in a complex way so that conceiv-
ably the multiple-list approach even allows LAMA to ‘tun-
nel’ out of search plateaus (in either list, so long as the
search plateaus do not coincide). Indeed the secondary list
improves performance, but turning it off still did not cripple
LAMA in our tests (unreported), let alone outright kill it.
Small Instances. It is illuminating to consider the behavior
of LAMA and LAMA-size with only 4 passengers total; here
the problem is small enough that optimality can be proved.
LAMA-size terminates in about 12 minutes. LAMA termi-
nates in about 14.5 minutes. Of course the vast majority of
time is spent in the last iteration (with heuristic weight 1
and all actions considered) — and both are unrolling the ex-
act same portion of state space (which is partially verifiable
by noting that it reports the same number of unique states in
both modes). There is only one way that such a result is at all
possible: the cost-based search is re-expanding many more
states. That is difficult to believe; if anything it is the size-
based approach that should be finding a greater number of
suboptimal paths before hitting upon the cheapest. The ex-
planation is two-fold. First of all pessimistic delayed evalua-
tion leads to a curious sort of depth-first behavior. Secondly,
cost-based search pays far more dearly for failing to find the
cheapest path first.
Delayed Evaluation. LAMA’s delayed evaluation is not
equivalent to just pushing the original search evaluation
function down one level. This is because it is the heuristic
which is delayed, not the full evaluation function. LAMA’s
evaluation function is the sum of the parent’s heuristic on
cost-to-go and the child’s cost-to-reach: fL(n) = g(n) +
h(n.p.v). One can view this technique, then, as a transfor-
mation of the original heuristic. Crucially, the technique in-
creases the inconsistency of the heuristic. Consider an opti-
mal path and the perfect heuristic. Under delayed evaluation
of the perfect heuristic, each sub-path has an fL-value in ex-
cess of f∗ by exactly the cost of the last edge. So a high
cost edge followed by a low cost edge demonstrates the non-
monotonicity of fL induced by the inconsistency wrought by
delayed evaluation. The problem with non-monotonic eval-
uation functions is not the decreases per se, but the increases
that precede them. In this case, a low cost edge followed by
a high cost edge along an optimal path induces backtracking



despite the perfection of the heuristic prior to being delayed.
Depth-first Bias. Consider some parent n and two children
x and y (x.p = n, y.p = n) with x reached by some cheap
action and y reached by some expensive action. Observe that
siblings are always expanded in order of their cost-to-reach
(as they share the same heuristic value), so x is expanded
before y. Now, delaying evaluation of the heuristic was pes-
simistic: h(x.v) was taken to be h(n.v), so that it appears
that x makes no progress relative to n. Suppose the pes-
simism was unwarranted, for argument’s sake, say entirely
unwarranted: h(x.v) = h(n.v) − c(x.a). Then consider a
cheap child of x, say w. We have:

fL(w) = g(w) + h(x.v),
= g(x) + c(w.a) + h(n.v)− c(x.a),
= fL(x)− c(x.a) + c(w.a),
= f(n) + c(w.a),

so in particular, fL(w) < fL(y) because f(n) + c(w.a) <
f(n) + c(y.a). Again suppose that w makes full progress
towards the goal (the pessimism was entirely unwarranted),
so h(w.v) = h(x.v)− c(w.a). So any of its cheap children,
say z, satisfies:

fL(z) = g(w) + c(z.a) + h(x.v)− c(w.a),
= fL(w)− c(w.a) + c(z.a),
= fL(x)− c(x.a) + c(w.a)− c(w.a) + c(z.a),
= fL(x)− c(x.a) + c(z.a),
= f(n) + c(z.a).

Inductively, any low-cost-reachable descendant, say x′, that
makes full heuristic progress, has an fL value of the form
f(n) + c(x′.a), and in particular, fL(x′) < fL(y), that is,
all such descendants are expanded prior to y.

Generalizing, any low-cost-reachable and not heuristi-
cally bad descendant of any cheaply reachable child (x) is
expanded prior to any expensive sibling (y).9 Call that the
good low-cost subspace.

Once such an expensive sibling is finally expanded (and
the cost is found to be justified by the heuristic), then its de-
scendants can start to compete on even footing once more.
Except for the good low-cost subspaces: the good low-cost
subspace of x is entirely expanded prior to the good low-
cost subspace of y. In practice this means that LAMA is quite
consistent about taking all promising low cost actions imme-
diately, globally, like boarding all passengers in a problem,
rather than starting some fly action halfway through a board-
ing sequence.

Then LAMA exhibits a curious, temporary, depth-first be-
havior initially, but in the large exhibits the normal breadth-
first bias of systematic search. Depth-first behavior certainly
results in finding an increasingly good sequence of plans to
the same state. In this case, at every point in the best plan to
some state where a less-expensive sibling leads to a slightly
worse plan to the same state is a point at which LAMA finds
a worse plan first. The travel domain is very strongly con-
nected, so there are many such opportunities, and so we have
a reasonable explanation for how LAMA could possibly be

9The bound on heuristic badness is c(y.a).

re-expanding more states than LAMA-size in the smallest in-
stances of the travel domain.
Overhead. Moreover, the impact of failing to find the right
plan first is quite distinct in the two planners. Consider two
paths to the same plane-shuffling state, the second one actu-
ally (but not heuristically) better. Then LAMA has already
expanded the vast majority, if not the entirety, of the asso-
ciated passenger-shuffling subspace before finding the sec-
ond plan. That entire set is then re-expanded. The size-
based approach is not compelled to exhaust the passenger-
shuffling subspaces in the first place (indeed, it is compelled
to backtrack to other possibilities), and so in the same situa-
tion ends up performing less re-expansion work within each
passenger-shuffling subspace. Then even if the size-based
approach is overall making more mistakes in its use of planes
(finding worse plans first), which is to be expected, the price
per such mistake is notably smaller.
Summary. LAMA is out-performed by LAMA-size, due to
the former spending far too much time expanding and re-
expanding states in the ε-cost plateaus. It fails in “depth-
first” mode: finding not-cheapest almost-solutions, exhaust-
ing the associated cheap subspace, backtracking, finding a
better path to the same state, re-exhausting that subspace,
. . . , in particular exhausting memory extremely slowly (it
spends all of its time re-exhausting the same subspaces).

A.3 Analyzing the Performance of SapaReplan
The contrasting failure mode, “breadth-first”, is character-
ized by exhausting each such subspace as soon as it is en-
countered, thereby rapidly exhausting memory, without ever
finding solutions. This is largely the behavior of SapaRe-
plan (which does eager evaluation), with cost-based methods
running out of memory (much sooner than the deadline, 30
minutes) and size-based methods running out of time. So for
SapaReplan it is the size-based methods that are performing
many more re-expansions, as in a much greater amount of
time they are failing to run out of memory. From the results,
these re-expansions must be in a useful area of the search
space.

In particular it seems that the cost-based methods must
indeed be exhausting the passenger-shuffling spaces more
or less as soon as they are encountered — as otherwise it
would be impossible to both consume all of memory yet fail
to find better solutions. (Even with fuel there are simply too
few distinct states modulo passenger-shuffling.) However,
they do find solutions before getting trapped, in contradic-
tion with theory.

The explanation is just that the cost-based methods are run
with large (5) heuristic weight, thereby introducing signifi-
cant depth-first bias (but not nearly so significant as with pes-
simistic delayed evaluation), so that it is possible for them to
find a solution before attempting to exhaust such subspaces.
It follows that they find solutions within seconds, and then
spend minutes exhausting memory (and indeed that is what
occurs). The size-based methods are run with small heuris-
tic weight (2) as they tend to perform better in the long run
that way. It would be more natural to use the same heuris-
tic weight for both types, but, the cost-based approaches do
conform to theory with small heuristic weights — producing
no solutions, hardly an interesting comparison.


