
Incremental Lower Bounds for Additive Cost Planning Problems

Patrik Haslum and John Slaney and Sylvie Thiébaux
Australian National University & NICTA
firstname.lastname@anu.edu.au

Abstract

We define an incremental lower bound function for additive
cost planning, based on repeatedly solving and strengthen-
ing the delete-relaxation of the problem. We show that it is
monotonically increasing, and thus in the limit will produce
an optimal plan. In most domains, however, it is not effective
compared to alternatives such as limited search.

Introduction
Many potential applications of planning require planners to
produce plans of high quality, according to a metric like cost,
makespan, net benefit, or other. Even when generating guar-
anteed optimal plans is not computationally feasible, there
is a need to be able to measure, in absolute terms, how good
the plans found by non-optimal planners are. Current plan-
ning technology does not offer many tools suitable for this
purpose. A lower bound function (i.e., an admissible heuris-
tic) gives an absolute assessment, since the optimal cost is
known to lie between the lower bound and the cost of the
best known plan. But if this gap is too large to give con-
fidence in the quality of the solution, and further search
fails to turn up a better plan, there is not much that can
be done. What is needed in this situation is an incremen-
tal lower bound: a function that can produce increasingly
higher admissible estimates, given more time and memory.

Given any admissible heuristic h (including the “blind”
heuristic h = 0) such an incremental lower bound can be
obtained by running A*, IDA*, or any search algorithm that
approaches the optimum from below, with h for a limited
time, taking the highest proven f -value. But this is not al-
ways effective. As an example in point, columns (b) and
(c) in table 1 shows, for a set of problems, the value of the
LM-Cut heuristic (Helmert and Domshlak 2009) in the ini-
tial state, and the highest lower bound proven by running A*
with this heuristic (Fast Downward implementation) until it
exhausts memory. In only one problem does this result in
a bound higher than the initial, and in no problem does the
search uncover a plan.

In this paper, we propose a different approach to in-
cremental lower bound computation, by repeatedly finding
optimal solutions to relaxations of the planning problem,
which are increasingly less and less relaxed. If we find a
relaxed plan that is also a plan for the original, unrelaxed

(a) (b) (c) (d) (e) (f)
chunk-089 137 104 104 108
chunk-091 12 10 12? 10 12?
window-331 42 31 31 32?
window-332 52 40 40 42
window-333 68 47 47 50
window-334 68 47 47 50
window-335 63 45 45 48
window-336 42 35 35 37
window-337 32 27 27 29
window-338 25 22 23 22 24
window-339 25 22 22 23
window-340 25 21 21 22
window-341 22 20 20 21
window-409 10 9 10? 9 10?

Table 1: Comparison of lower bounds on problems from a
PDDL encoding of DES diagnosis. (All systems run with a
memory limit of 3Gb, and no time limit.)
(a) Cost of best solution found by a non-optimal planner.
(b) LM-Cut-value of the initial state.
(c) Highest lower bound (f -value) proven by A* search with
LM-Cut (where higher than (b)).
(d) Optimal solution costs found by Gamer (Edelkamp and
Kissmann 2008).
(e) h+-value of the initial state.
(f) Highest lower bound proven by h++ A star indicates that
the bound is optimal, i.e., that the final relaxed plan is valid.

problem, we know it is optimal. If not, we use clues from the
failure of the relaxed plan to construct the next relaxation,
in such a way that the same relaxed plan will not be found
again. The relaxation we consider is the standard delete-
relaxation, in which negative effects of actions are ignored.
(This means that we solve the NP-hard problem of finding
an optimal delete-relaxed plan in each iteration.) The delete-
relaxation has the property that a plan achieving atoms p and
q also achieves the conjunction {p, q}. The way in which we
make it less relaxed is by constructing a modified problem,
in which certain conjunctions are made explicit, in the form
of new atoms.1 This carries information about negative in-
teractions between subgoals (achievement of conjuncts) into

1It is basically the P m
? construction of Haslum (2009), applied

to a select set of conjunctions instead of all of size m.

the delete-relaxation of the modified problem. We choose
the conjunctions to encode by analysing the failure of the
current relaxed plan, in a way that guarantees we find a dif-
ferent relaxed plan in the next iteration. This incremental
lower bound function is tentatively named h++.

Columns (e) and (f) in table 1 show the h+ and h++ val-
ues computed, respectively. As can be seen, it achieves bet-
ter bounds than A*/LM-Cut, and in a few cases even finds
an optimal solution. It must, however, be noted that this is
an exception rather than a rule. We have found few other do-
mains where h++ is as effective, compared to the A*/LM-
Cut combination. (Two examples will be presented later.)

Related Work
The idea of incrementally refining relaxations is by no
means new. It is widely used in optimisation algorithms,
for example in the form of incremental generation of
valid cuts in integer-linear programming (e.g. Cornuéjols
2008). An instance of the idea that is closer to planning
is counterexample-guided abstraction refinement, in which
the relaxation is an abstraction of the problem. An optimal
solution (plan) for the abstract problem is checked for fail-
ures wrt to the parts of the original problem ignored by the
current abstraction, and those parts that cause it to fail are
candidates for inclusion in the next abstraction. This idea
has been applied in verification (model checking), and to
planning in adversarial, probabilistic domains (Chatterjee et
al. 2005), but, as far as we are aware, not to deriving lower
bounds for planning with additive cost. The most closely re-
lated instance of the idea is perhaps in the work of van den
Briel et al. (2007), who formulate a relaxation of planning
problems as an integer programming model of a flow prob-
lem. (The problem is further simplified by solving the LP
relaxation of the IP.) It is a relaxation because certain order-
ing constraints, due to non-deleted action preconditions, are
ignored. They use composition of state variables to refine
the relaxation, though not in an incremental fashion.2

Background
We adopt the standard definition of a propositional STRIPS
planning problem, without negation in action preconditions
or the goal (see, e.g., Ghallab, Nau, and Traverso 2004,
chapter 2). We assume that action effects are consistent,
meaning that for each action a, del(a) ∩ add(a) = ∅.3 As
usual, a sequence of actions (or plan) achieves condition c
from state s iff the sequence is executable in s and leads to
a state where c holds. We assume an additive cost objective,
i.e., each action a has a non-negative cost, cost(a), and the

2An incremental refinement method has recently been devel-
oped for this relaxation, and used to create a quite effective cost-
optimal planner. (Menkes van den Briel, pers. comm.)

3The semantics of PDDL permit actions that both delete and
add the same atom. The net effect of such an action is to make the
atom true. The transient delete effect implies that the action cannot
be concurrent with any other action requiring or adding the atom,
but since we consider only sequential (or sequentialisable) plans
this is of no significance.

cost of a plan is the sum of the cost of actions in it. The
initial state is denoted by sI and the goal by G.

The Delete-Relaxation
The delete-relaxation of a planning problem P , denoted P+,
is a problem exactly like P except that del(a) = ∅ for each
a, i.e., no action makes any atom false. The delete-relaxation
heuristic, h+(s, c), is defined as the minimum cost of any
plan achieving c from s in the delete-relaxed problem.

Let A be a set of actions in P . We denote by R+(A) the
set of all atoms that are reachable in P+, starting from the
initial state, using only actions in A. We say a set of actions
A is a relaxed plan iff the goal G ⊆ R+(A). An actual
plan for the delete-relaxed problem is of course a sequence
of actions. That G ⊆ R+(A) means there is at least one
sequencing of the the actions in A that reaches a goal state.
When we need to distinguish a particular sequence of ac-
tions, that is valid a plan for P+, we will call it a sequenced
relaxed plan, or a (relaxed) valid sequencing of A.

We assume throughout that G ⊆ R+(A) for some set of
actions A (which may be the set of all actions in P+), i.e.,
that the goal is relaxed reachable. If it is not, the problem is
unsolvable and we already have the highest possible lower
bound∞.

Computing Minimum-Cost Relaxed Plans
Our lower bound procedure depends on being able to com-
pute a minimum-cost relaxed plan for a planning problem.
It does not matter, for our purposes, how this is done. We
would of course like to do it as efficiently as possible, but
as solving P+ optimally is NP-complete, we cannot expect
any method to be efficient in general. A possible approach
is to treat P+ as a planning problem, like any other, and
solve it using any cost-optimal planning algorithm. Betz
and Helmert (2009) present polynomial-time algorithms for
a few specific planning domains.

We will, however, use an algorithm based on the cor-
respondance between relaxed plans and disjunctive action
landmarks, established by Bonet and Helmert (2010). The
algorithm is iterative in nature, and inspired by Slaney
and Thiébaux’s (2001) optimal planning algorithm for the
Blocksworld domain.4

The Iterative Landmark-Based Algorithm
A disjunctive action landmark (landmark, for short) of a
problem P is a set of actions such that at least one action
in the set must be included in any valid plan for P . For any
collection of landmarks L for P , the set of actions in any
valid plan for P is a hitting set for L, i.e., contains one ac-
tion from each set in L (by definition).

For any set of actions A such that G 6⊆ R+(A), the com-
plement of A (w.r.t. the whole set of actions) is a disjunctive
action landmark for P+. If A is a maximal (w.r.t. set in-
clusion) such “relaxed non-plan”, the landmark is minimal

4Because we are only interested in optimal delete-relaxed plans,
we also use a stronger form of relevance analysis to reduce the size
of the problem: only actions that can achieve a relevant atom for
the first time are relevant.

(w.r.t. set inclusion). This leads to the following algorithm
for computing h+:

Initialise the landmark collection L to ∅. Repeatedly
(1) find a minimum-cost hitting set H for L; (2) test if
G ⊆ R+(H); and if not, (3) extend H , by adding actions,
to a maximal set H ′ such that G 6⊆ R+(H ′), and add the
complement of H ′ to the landmark collection.

The algorithm terminates when the hitting set H passes
the test in step (2). This set is by definition a relaxed plan.
There is no lower-cost relaxed plan, because any plan for P+

must contain an action from every landmark in L, andH is a
minimum-cost hitting set. Finally, the algorithm eventually
terminates, because each landmark generated at step (3) is
distinct from every landmark currently in L (every landmark
in L contains at least one action in H , which the new land-
mark does not) and there is only a finite set of minimal land-
marks for P+. Two steps in this algorithm are frequently
repeated, and therefore important to do efficiently: testing if
the goal is relaxed reachable with a given set of actions, and
finding a hitting set with minimum cost. Their implemen-
tations are detailed below. In spite of all tricks, however,
computing an optimal relaxed plan is costly, in many prob-
lems criplingly so.

Testing Relaxed Reachability The set of atoms relaxed
reachable with a given set of actions, i.e., R+(A), can be
computed in linear time by a variant of Djikstra’s algo-
rithm:5 Keep track of the number of unreached precondi-
tions of each action, and keep a queue of newly reached
atoms, initialised with the initially true atoms, dequeueing
one at a time until the queue is empty. When dequeueing
an atom, decrement the precondition counter for the actions
that have this atom as a precondition, and when the counter
reaches zero, mark atoms added by the action as reached and
place any previously unmarked ones on the queue.

When generating a new landmark, we will perform a se-
ries of reachability computations, with mostly increasing
sets of actions, starting fromH , i.e.,H∪{a1},H∪{a1, a2},
etc. Therefore, each reachability test (except the first) can be
done incrementally. Suppose we have computed R+(A), by
the algorithm above, and now wish to computeR+(A∪{a}).
If pre(a) 6⊆ R+(A), R+(A ∪ {a}) equals R+(A), and the
only thing that must be done is to initialise a’s counter of un-
reached preconditions. If not, mark and enqueue any previ-
ously unreached atoms in add(a), and resume the main loop
until the queue is again empty. If the goal becomes reach-
able, we must remove the last added action (a) from the set,
and thus must restore the earlier state of reachability. This
can be done by saving the state ofR+(A) (including precon-
dition counters) before computing R+(A ∪ {a}), copying it
back if needed, instead of recomputingR+(A) from scratch.

Finding a Minimum-Cost Hitting Set Finding a (prov-
ably) minimum-cost hitting set over the collection of land-
marks L is an NP-hard problem. We solve it using a re-
cursive branch-and-bound algorithm with caching. Given a

5To the best of our knowledge, this method of computing re-
laxed reachability was first implemented in Fast Downward, but
has not been described in any publication.

set L = {l1, . . . , lm} of landmarks to hit, pick a landmark
li ∈ L: the minimum cost of a hitting set for L is
H?(L) = min

a∈li
H?(L− {l | a ∈ l}) + cost(a)

A lower bound on H?(L) can be obtained by selecting any
subset L′ ⊂ L such that l ∩ l′ = ∅ for any l, l′ ∈ L′, i.e., a
set of pair-wise disjoint landmarks, and summing the costs
of their cheapest actions, i.e.,

∑
l∈L′ mina∈l cost(a). Find-

ing the set L′ that yields the maximum lower bound amounts
to solving a weighted independent set problem, but there
are reasonably good and fast approximation algorithms (e.g.
Halldórsson 2000).

Because the branch-and-bound algorithm is invoked re-
cursively on subsets of L, it may prove increased lower
bounds on the cost of hitting these subsets. Improved bounds
are cached, and used in place of the lower bound calcula-
tion whenever a subset is encountered again. In the course
of computing h+, we will be solving a series of hitting set
problems, over a strictly increasing collection of landmarks.
Cached lower bounds may be used not only if a subset of L
is encountered again within the same search, but also if it is
encountered while solving a subsequent hitting set problem.
This makes the caching mechanism quite important.

When finding a hitting set for L ∪ {li+1}, we have an
optimal hitting set for L. H?(L) is clearly a lower bound on
H?(L∪{li+1}), and an initial upper bound can be found by
taking H?(L) + mina∈li+1 cost(a). These bounds are often
very tight, which limits the amount of search. In particular,
if li+1 contains any zero-cost action, the initial upper bound
is matched by the lower bound, and thus already optimal.

Finally, as long as the hitting set is not a relaxed plan, we
do not require it to be optimal, since any hitting set will do as
a starting point for generating another landmark. Thus, we
can use any approximation algorithm to find a non-optimal
hitting set, and invoke the optimal branch-and-bound proce-
dure only when a relaxed plan is found. This scheme not
always more efficient, however, because when the branch-
and-bound algorithm is called, it is typically with a larger
gap between the upper and lower bounds, and with fewer
sets cached, resulting in more search.

The Relaxed Plan Dependency Graph
Although we have defined a relaxed plan as an unordered
set of actions, there are some necessary ordering relations
between actions in this set. These, and the reasons for them,
are captured by the relaxed plan dependency graph defined
below. This graph plays a central role in the identification of
conflicts in a failed relaxed plan.

Let A be relaxed plan, i.e., a set of actions such that
G ⊆ R+(A). We say that A is non-redundant if no strict
subset of A is a relaxed plan. A relaxed plan can be checked
for redundancy by simply testing for each action a in turn
whether G ⊆ R+(A − {a}), and made non-redundant
(though not necessarily in a unique way) by greedily re-
moving actions found to be redundant. The landmark-based
algorithm can produce optimal plans containing redundant
actions, although naturally only when those actions have a
cost of zero. From now on, we will assume all relaxed plans
are non-redundant.

Definition 1 Let A be a non-redundant relaxed plan. Con-
struct a graph G′ with nodes {na | a ∈ A} ∪ {nG}, i.e., the
nodes of G′ correspond to actions in A plus an additional
node which represents the goal. With some abuse of nota-
tion, we write pre(n) for the precondition of node n, which
is pre(a) for a node na and G for node nG. G′ has an edge
from na to n′ iff pre(n′) 6⊆ R+(A − {a}). This edge is
labelled with pre(n′)−R+(A− {a}).

The relaxed plan dependency graph, RPDG(A), is the
transitive reduction6 of G′.

As will be shown shortly, the graph G′ is acyclic, and there-
fore its transitive reduction is unique. (It is also computable
in polynomial time; cf. Aho, Garey, and Ullman 1972.)
Thus, the RPDG is well-defined.

Intuitively, an edge from node n to node n′ in the RPDG
means that the action associated with n is necessary for
pre(n′) to be relaxed reachable, and the edge label docu-
ments why that is, i.e., which atoms in pre(n′) are added by
that action only. However, the RPDG does not capture dis-
junctive dependencies: if several actions in A add atom p,
there will be no edge with p in its label, and the fact that at
least one of those actions is necessary to reach p will not be
visible in the graph.

If there is a path from node n to node n′ in RPDG(A), we
say that the nodes are ordered. Conversely, if there is no path
from n to n′, nor from n′ to n, we say they are unordered.
This terminology is justified by properties (2) and (3) in the
theorem below.

Theorem 2
(1) The graph G′ in definition 1 is acyclic, and hence so is
RPDG(A).
(2) If there is a path from na to nb in RPDG(A), a appears
before b in every valid sequencing of A.
(3) Let na and and nb be two unordered nodes, i.e., such
that neither na is reachable from nb nor nb from na in
RPDG(A). Then there exists a valid sequencing of A in
which a appears before b.
(4) If atom p appears in the label of an outgoing edge from
node na in RPDG(A), then p ∈ add(a).
(5) For any two action nodes na and nb in RPDG(A), the
labels of any pair of outgoing edges from a and b, respec-
tively, are disjoint.
(6) Any two unordered nodes n and n′ in RPDG(A) have a
common descendant, n′′.
Proof: (1) follows directly from property (2) and the fact
that A is non-redundant.

(2) Consider first the case where the path is a single edge
from na to nb, and suppose that there is a valid sequencing
with b before a. This means that the preconditions of b are
reachable using only those actions that appear before b in the
sequence, which do not include a. This contradicts the fact
that pre(b) is not contained in R+(A − {a}). The general
case follows by induction.

(3) Construct the sequence as follows: Let A′ be the set
of all actions except a, b and their descendants. Begin the

6The transitive reduction of a graph is the smallest edge-
subgraph that has the same transitive closure.

sequence by applying all actions in A′ (in any valid order).
After this, apply a, then b, then the remaining actions in any
valid order. Suppose that this fails, because pre(a) does not
hold after applying all actions in A′. Let p ∈ pre(a) be an
unsatisfied precondition. Since p does not hold initially (if it
did, it would still hold after applying the actions inA′), there
must be at least one action in A with p ∈ add(a) which is
not a descendant of a, and no such action is in A′. Thus, it
must be b or a descendant of b. But by definition this implies
a path from b to this action, and thus from b to a.

(4) That p belongs to the label of an edge from na to some
other node n′ means that p ∈ pre(n′) and becomes unreach-
able without action a. This cannot be because p is added by
some other action, b, and pre(b) becomes unreachable with-
out a, because if so, there would be edges from na to nb and
from nb to n, and thus the edge from na to nwould not be in
the transitive reduction. Hence, p must be belong to add(a).

(5) Suppose there are two nodes, na and nb, in
RPDG(A), that both have outgoing edges with labels that
include p (both must be action nodes, since the goal node
has no outgoing edges). By property (4), p must belong to
both add(a) and add(b). If there is a path from na to nb,
then a appears before b in any sequencing of A (by property
(2)), and removing b cannot make p unreachable. If na and
nb are unordered, either a or b can appear first in a valid se-
quencing (by property (3)). Thus, removing just one of a or
b cannot make p unreachable.

(6) Observe first that from every action node na there is
a path to the goal node nG. Since the graph is acyclic, ev-
ery path must end in a leaf (node with no outgoing edges).
A leaf node that is not the goal node is a redundant action,
since removing this action does not make the goal unreach-
able. Thus, any pair of unordered nodes have a common
descendant, the goal node if no other. 2

Note that property (3) holds only for pairs of nodes. The
reason is that the RPDG does not capture disjunctive prece-
dences. Suppose, for example, that actions a and b both add
atom p, and that p is a precondition of action c. (a and b both
also add some other relevant atoms, as otherwise at least one
of them would be redundant.) There are valid sequencings
with c before a (if c is preceded by b) and c before b (if pre-
ceded by a), but not with c before both a and b. Because
of this, every valid sequencing of A is a topological sort of
RPDG(A), but not every topological sort of RPDG(A) is a
valid sequencing of A.

Incrementally Strengthening the Relaxation
The idea behind the incremental lower bound function h++

is as follows: Given a minimal-cost sequenced relaxed plan
A, if it is valid also for the non-relaxed problem P , then the
optimal plan cost for P is equal to the cost of A (and we
have a plan to prove it). If not, then we can identify a set
of “conflicts”, C, which are conjunctive conditions that are
required but fail to hold at some point in the execution of
the plan. We construct a new problem, called PC , in which
these conjunctions are explicitly represented by new atoms.
The new problem has the property that A is not a relaxed
plan for it (or, to be precise, no sequence of representatives

of each action in A is a relaxed plan). The minimum cost
of a relaxed plan for the new problem is a lower bound also
on the cost of solving P . There is no guarantee that it will
be higher than the h+ value for the original problem, but
since the set of non-redundant minimal-cost sequenced re-
laxed plans is finite, repeated application of this procedure
will eventually result in a higher lower bound. In the limit it
will even result in an optimal plan, unless time or memory
limits halt the process.

The PC Construction
Let C = {c1, . . . , cn} be a set of (non-unit) conjunctions
over the atoms in P . We construct a problem PC , in which
these distinguished conjunctions are explicitly represented
by new atoms, called “meta-atoms”. The set of actions in
PC is also modified, so that the truth of the meta-atoms will
accurately reflect the truth of the conjunctions they repre-
sent. This is essentially the Pm∗ construction (Haslum 2009),
applied to a specific set of conjunctive conditions.

Definition 3 The set of atoms of PC contains all atoms of
P , and for each c ∈ C an atom πc. πc is initially true iff c
holds in the initial state of P , and is a goal iff c ⊆ G in P .
For each action a in P and for each subset C ′ of C such that
for each c ∈ C ′ (i) del(a) ∩ c = ∅ and add(a) ∩ c 6= ∅; and
(ii) any c′ ∈ C such that c′ ⊂ c and c′ satisfies (i) is also in
C ′, PC has an action αa,C′ with

pre(αa,C′) = pre(a) ∪
⋃
c∈C′(c− add(a))∪

{πc | c ⊆ (pre(a) ∪
⋃
c∈C′(c− add(a))), c ∈ C}

add(αa,C′) = add(a) ∪ {πc | c ∈ C ′}∪
{πc | c ⊆ add(a), c ∈ C}

del(αa,C′) = del(a) ∪ {πc | c ∩ del(a) 6= ∅, c ∈ C}

and cost(αa,C′) = cost(a).

Each action αa,C′ in PC is constructed from an action a in
P . We call this the original action for αa,C′ . Conversely, for
each action a in P we call the actions in PC whose original
action is a the representatives of a. Note that PC always has
at least one representative of each action a, namely αa,∅.

Intuitively, meta-action αa,C′ corresponds to applying a
in a state such that each conjunction c ∈ C ′ will be made
true by applying a, which is why αa,C′ adds πc. This means
that a does not delete any part of c, and the part of c not
made true by a is already true. For any conjunction c that
is made true by a alone (i.e., such that c ⊆ add(a)), πc is
added by every representative of a.

The size of PC is (potentially) exponential in the size of
C, i.e., the number of conditions, but not in their size.

Theorem 4 Given any plan for PC , the corresponding se-
quence of original actions is a plan for P . Conversely, given
any plan for P , there is a plan for PC made up of a repre-
sentative of each action in the plan for P (and hence of equal
cost).
Proof: The first claim follows directly from that the precon-
ditions and effects of each action in PC on atoms present in
P are identical to those of the original action in P .

For the second, we choose by induction a representative
of each action in the plan such that in each state resulting
from the execution of the plan for PC , πc is true whenever
c is true. It is then easy to see that each action in this plan
will be executable, since the precondition of an action in PC
includes a meta-atom πc if and only if it includes all of c, and
that the goal condition will hold at the end.

The correspondence holds in the initial state by definition.
Suppose the current state is s, and that a is the next action in
the plan for P . Let s′ be the next state in the execution of the
plan in P , i.e., the state that results from applying a in s. Let
C ′ be the subset of conditions in C that hold in s′. For each
c ∈ C ′, one of the following cases must hold: (1) c holds in
s and c ∩ del(a) = ∅; (2) c ⊆ add(a); or (3) c 6⊆ add(a),
c∩add(a) 6= ∅, c−add(a) holds in s and c∩del(a) = ∅. Let
C ′′ = C ′−({c | c ⊆ add(a)}∪{c | c holds in s}), i.e., C ′′ is
exactly the subset of conditions in C ′ that hold in s′ because
of case (3), and choose the representative αa,C′′ . There is
such an action in PC because condition (i) of the definition
is implied by case (3), and condition (ii) by the choice of C ′′
as the set of all c ∈ C that hold in s′ by this case. If c holds
in s′ by case (1), πc holds in the current state of execution
in PC by inductive assumption, and it is not deleted by the
chosen representative. If c holds in s′ by cases (2) or (3),
it is added by the chosen representative. Finally, for each c
that holds by case (3), c − add(a) must hold in s: thus, all
atomic preconditions of the chosen representative are true in
the current state, and therefore, by inductive assumption, so
are any precondition meta-atoms representing conjunctions
of the atomic preconditions. 2

As of corollary, any lower bound on the cost of solving PC
is also a lower bound on the cost of any plan for P .

Compared to P , PC contains no additional information.
The reason why this construction is nevertheless useful is
that the delete-relaxation of PC may be more informative
than the delete-relaxation of P . If we have any additional
source of information about unreachability in P , such as
static mutexes or invariants, this can be used in the construc-
tion of PC to further strengthen (PC)+, by not including
πc in the add effects of any action for any condition c ∈ C
that is known to be unreachable, in P . (The correspondance
shown in theorem 4 holds also with this modification, since
the chosen representatives only add meta-atoms for condi-
tions made true by the plan.) Our current implementation
uses static mutexes found by h2.

Conflict Extraction for a Sequenced Relaxed Plan
Consider a sequenced relaxed plan A. Deciding if it is a
valid plan for the real problem, P , is easily done by simu-
lating its execution. If the sequence is not a valid plan, then
simulating it will at some point fail, meaning that the pre-
condition of the next action to be applied does not hold in
the current state. Call this the failed condition, and let nf be
the corresponding node in RPDG(A). (Note that the failed
condition may also be the goal.) Let p be some unsatisfied
atom in the failed condition. Since the sequence is valid
in the relaxed sense, p was either true initially or added by
some action preceding the point of failure. Thus, p was true

in some earlier state also in the real execution of the plan,
but deleted by some action taking place between that point
and the point of failure. Call that action the deleter, and let
nd be its node in RPDG(A). We distinguish two cases:

Case 1: There is a path from nd to nf in RPDG(A). In
this case, for each edge on the path from nd to nf choose an
atom q from the edge label and form the conflict {q, p}.

Case 2: There is no path from nd to nf in RPDG(A).
Clearly there cannot be a path from nf to nd, since nd ap-
peared before nf in the sequence, which means the nodes
are unordered. Let nc be the one of their nearest com-
mon descendants that appears first in the sequence, and let
Ld and Lf be atom sets constructed by choosing one atom
from each edge label on the path from nd to nc and the
path from nf to nc, respectively. Form the set of conflicts
{{q, q′} | q ∈ Ld, q′ ∈ Lf ∪ {p}}. By property (5) of the-
orem 2, each conflict in the set is proper, in the sense that
each in pair q and q′ are distinct atoms.

Theorem 5 Let A = a1, . . . , an be a non-redundant se-
quenced relaxed plan for P which is not a real plan for P ,
and let C be a set of conflicts extracted as described above.
No sequence A′ = α1, . . . , αn, where each αi is a represen-
tative of ai, is a relaxed plan for PC .
Proof: In the execution of A, we have the two nodes nd and
nf , as described above. We examine the two possible cases:

Case 2 (nd and nf are unordered): Let nc be the nearest
common descendant that is first in the sequence. The edges
of the path from nd to nc are labeled with atoms q1, . . . , qm
(possibly among others), and the edges of the path from nf
to nc are labeled with atoms q′1, . . . , q

′
l. Since p is a precon-

dition of the failed action, we can prepend it to the second
path. The following picture illustrates:

nd n1q1
· · ·

q2
nm−1

qm−1

nf
p

n′1
q′1

· · ·
q′2

n′l−1

nc

qm

q′l

Each pair of nodes where one is taken from the first path and
the other from the second (including nf) are unordered, and
each conjunction {qi, q′j} is represented by a meta-atom in
PC . The final condition, {qm, q′l} is contained in pre(nc),
and thus π{qm,q′l} belongs to the precondition of any repre-
sentative of nc (resp. to the goal, if nc is the goal node). We
show that none of these meta-atoms hold at any point prior
to nc in the relaxed execution of the sequence. This implies
it is not a valid sequenced relaxed plan for PC .

Let ad be the deleter (the action associated with nd). Im-
mediately after ad, π{q1,p} is false, since it was not true be-
fore (q1 was not true before ad, as otherwise it could not
label the outgoing edge from nd) and no representative of
ad adds it (by definition, since p ∈ del(ad)). Suppose we
have taken some steps along both paths: the next actions are
ai and a′j , respectively. By inductive assumption, π{qi,q′j}

does not hold. Every representative of ai in PC has qi in
its precondition. No representative of ai adds q′j . (Some ac-
tions on the first path might add p, but if so, they come after
af in the sequence. This is ensured by the way the conflict

was extracted: ad lies between the last point where p was
true and af .) Thus, any representative that adds π{qi+1,q′j}
must be of the form αai,C′ with {qi+1, q

′
j} ∈ C ′, and thus

its precondition must include q′j . Therefore, its precondi-
tion also includes π{qi,q′j} and no such representative is re-
laxed applicable. Hence, π{qi+1,q′j} is false after taking the
next step along the first path, i.e., after executing ai. By the
same argument, after taking a step along the second path,
i.e., after executing aj , π{qi,q′j+1} is false. Thus, by induc-
tion, π{qm,q′l} is false after executing the last in sequence of
the actions represented by nm−1 and n′l−1.

Next, suppose that π{qm,q′l} is added by some meta-
action, say α, between the last of nm−1 and n′l−1, and nc.
α must also add at least one of qm and q′l. (This is true also
if qm and q′l are meta-atoms, due to condition (ii) in defini-
tion 3.) Suppose it adds qm: then nα and nm−1 cannot be
unordered, and neither can nα be ordered before nm−1, be-
cause if so, qm would not label the edge from nm−1 to nc.
(Recall the meaning of an edge in the RPDG: removing the
action associated with nm−1 makes the precondition qm of
nc relaxed unreachable.) Thus, nα follows nm−1. Similarly,
if α adds q′l, nα must follow nl−1. If α does not add q′l, it
must have q′l as a precondition. This implies that there is an
edge, labeled with q′l, from nl−1 to nα, because there is no
other action adding q′l before nc (if there were q′l would not
label the edge from nl−1 to nc), and thus not before nα. In
summary, whether α adds either one of qm and q′l or both, nα
is a common descendant of nm−1 and nl−1. Since α must
appear before nc in the sequence, this contradicts the choice
of nc as the first-in-sequence nearest common descendant.

Case 1 (nd precedes nf): This case is similar to the pre-
vious, but simpler in that we have only one path. The edge
labels along this path include atoms q1, . . . , qm, and the con-
flict set contains {qi, p} for each qi, so PC has a correspond-
ing meta-atom π{qi,p}. The precondition of the failed node
contains {qm, p}, and thus the precondition of any represen-
tative of this action (or the goal, if the failed node is nG)
in PC includes π{qm,p}. As in the previous case, none of
these meta-atoms will hold in the relaxed execution of the
sequence, and thus the failed action is not relaxed applicable.
π{q1,p} does not hold immediately after ad. No action taking
place between ad and af in the sequence adds p (again, this
is because ad lies between the last point where p was true
and af) and thus any representative of any of these actions
which adds π{qi+i,p} requires π{qi,p}. 2

Conflict Extraction for Non-sequenced Plans
A non-sequenced relaxed plan is valid for the real problem
iff there exists a sequencing of it that is a valid plan. Enumer-
ating the sequencings of a relaxed plan is straightforward:
starting with an empty sequence, non-deterministically
choose the next action to apply from those whose precon-
ditions are initially true or added by previously applied ac-
tions, never applying an action more than once. Backtrack-
ing systematically over the non-deterministic choices yields
all sequencings. (When choosing the next action to apply,
we divide the candidates into sets of mutually commutative

actions and branch only on which set to apply. Changing the
order of actions in a commutative set will not change the re-
laxed or real validity of a sequence. It may, however, affect
which conflicts are found, as described below.)

The conflict extraction procedure above is defined for se-
quenced relaxed plans, and there is a spectrum ways to apply
it to a non-sequenced plan: At one end, we may choose one
arbitrary sequencing and add only the conflicts geneated by
this sequence. We may then find for the modified problem a
relaxed plan comprised of the same set of actions, but if so, it
will not permit them to be sequenced in the same way. At the
other end of the spectrum, we may add the union of conflicts
extracted from all sequencings of the relaxed plan, ensuring
that the modified problem requires a different relaxed plan.
Both methods have their drawbacks: Eliminating only one
sequencing at a time can result in many iterations, in each of
which we must compute a minimum-cost relaxed plan. On
the other hand, adding a large number of conjunctions can
cause the size of the modified problem to blow out.

We adopt a middle ground: We enumerate all sequencings
(modulo interleaving of commutative actions), and identify
in each all triplets (nd, nf , p) of deleter, failed node and
false atom p ∈ pre(nf), then choose a set of such triplets
containing at least one from every sequence, and take the
union of conflict sets generated by each chosen triplet. The
choice is made with the aim of minimising the size of the
final conflict set. (This is again a weighted hitting set prob-
lem, which we solve with an approximation algorithm.) The
number of conjunctions generated by (nd, nf , p) is esti-
mated by the length of the shortest path from nd to nf , if
they are ordered (case 1), and the smallest product of the
length of their shortests paths to a nearest common descen-
dant, if they are not (case 2). If the deleter and failed node
are unordered and have several nearest common descen-
dants, we choose only one. (The nearest common descen-
dants are all unordered, so there exist sequencings with each
one of them appearing first. This is where the order of com-
mutative actions may affect which conflicts are generated.)
By theorem 5, there is at least one choice that generates a
conjunction not already represented by a meta-atom.

Iterating the Procedure
The h++ procedure iterates finding a relaxed plan, extract-
ing a set of conflicts, and adding meta-atoms representing
them to the problem, until the relaxed plan is also a real plan
(or we run out of patience or memory). In the process, we
construct a sequence of problems, P , PC1 , (PC1)C2 , etc.
The conflict extraction procedure described above generates
only binary conjunctions, but from the second iteration on,
the atoms in such a pair may themselves be meta-atoms.

In fact, what we do is slightly different: Instead of
(· · · (PC1)···)Ck , we construct the problem P (C1∪...∪Ck),
which is not the same. That is, instead of creating meta-
atoms representing conjunctions of meta-atoms, we take the
union of the sets of original atoms they represent as the
new conjunction. Let atoms(πc) = c, when πc is a meta-
atom, and atoms(p) = {p}, when p is an original atom.
When we generate a conflict {π, π′}, where π and π′ may

10
15

20
25

30

Problems (sorted by size & h+)

Lo
w

er
 b

ou
nd

 o
n

co
st

+++
+

+
++
+
+

++
+
+
++
+
+
+++++

++
+

+
+
++
++

+

+
+
+++

+
++
++
+
+
++++++

+

++
+
++++

++
+

+++
++
+++++

+
+
++

+
+
+++
+

+

+
+
+
+
+++++

+
++
++
++
+
+

+
+
+

+
++
+
+
++
+++
+
++
++
+++++++

++++
+
+
++

+
+
++
++
+++++

++

++
+
+

++

+
++
+
+

+
++
+
+
++
++
+
++
+++
++
+

x

x

x
x

x

x

xx
x

x
xx
x
x
x

x
x
x
xx

x
x
x
x
x

x
x

x
x
x
x
xx

x

xxx
xxx
x
x
x
xxxx

x

x

x

x
xx
x
x
x

x
x
xx
xx
x

x
x

x

x

x

x

x

x

x

x

x
x

xxxx
x

xx

x

x

x

x

x
x
x
x

x
x

x
xx
xx

x

x
x

xxx
x
x

x

xx

xx
x
x

xx

x
x

x

x
x

x

x
x

xxx

x

x
x

x

xx

xx

xx
x

x
x

x

x

xx

x

x
x

x

x

x
x

x

xx

x

x
x

xx

x

x
x

x
x

x

x

x

x

x
x

x

x
x
x
xx

x

12 14 16 18 20 22 24

(a)

10
0

20
0

30
0

40
0

50
0

60
0

Problems (sorted by h+)

Lo
w

er
 b

ou
nd

 o
n

co
st

+
+

+ + +
+ + +

+ +
+

+
+ + + + +

+
+ + +

+ + + + + +
+

+

+

x
x

x x x
x x

x
x x

x
x

x x x
x x

x
x x x

x x
x x x

x x
x

x

(b)

Figure 2: Comparison between h++ and A*/LM-Cut on
problems from the (a) Blocksworld and (b) Woodworking
(IPC 2008) domains. The graphs show the h+ value (–) and
the highest lower bound proven by h++ (+) and A* (×),
within a 1 hour CPU limit. Problems are sorted by increas-
ing size and/or h+ value.

be either original or meta-atoms, the new conjunction is
atoms(π) ∪ atoms(π′).

There are two reasons for this: First, if we build up
conjunctions by combining meta-atoms pair-wise, we can
end up with several meta-atoms that in fact represent the
same conjunction of original atoms, which is clearly redun-
dant. Second, the delete-relaxation of P (C1∪...∪Ck) is in
fact a stronger relaxation of P than the delete-relaxation of
(· · · (PC1)···)Ck . The reason for this is that in the second,
“incremental”, construction only meta-atoms representing
conditions in the set Ci will be added to the precondition
of new action representatives created at that step. (Note that
in definition 3, pre(αa,C′) contains πc for every c ∈ C con-
tained in the set of original atoms in its precondition.) In
practice, P (C1∪...∪Ck) is of course constructed incremen-
tally, not rebuilt from scratch each iteration. This can be
done by keeping track of conjunctions already represented
by meta-atoms, so that these can be added to the precondi-
tions of new actions as required.

Additional Results
As noted in the introduction, we have found few planning
domains in which h++ exceeds, or even comes close to,

the performance of A* search with the LM-Cut heuristic,
as measured by the highest lower bound proven within time
and memory limits. Figure 2 shows results for two such do-
mains: Blocksworld (3ops) and Woodworking (IPC 2008).
We can observe an interesting trend: Small or easy problems
are quickly solved by A*, but often not by h++, but as prob-
lems grow larger and/or have costlier (presumably longer)
plans, the relative efficiency of A*/LM-Cut drops, such that
it is eventually dominated even by h+, while h++ continues
to sometime make a modest improvement over h+. (An-
other comparison that should be made is of course with A*
search using h+ as the heuristic.)

The properties of a problem that affect the efficiency of
h++ are different from those that affect A*. For instance,
a flat f -landscape, like that often caused by zero-cost ac-
tions, has little impact on h++ (an abundance of zero-cost
actions is even helpful, since it makes finding an optimal
hitting set easier). On the other hand, the efficiency of h++

is sensitive to the structure of the problem delete-relaxation:
First, because the time taken to compute h++ is (nearly al-
ways) dominated by the h+ computation, which is in many
problems prohibitively expensive. Second, if the delete-
relaxation is inaccurate, the initial h+ value will be far from
the optimal real plan cost, and if there are many alternative
relaxed plans, or many ways to sequence them, the number
of iterations of problem modification needed to boost the
h++ value above the initial h+ value will be large. It is in-
teresting to note that in the three problem domains we found
where h++ is competitive with A*/LM-Cut, although they
are not delete-free, optimal plans require most atoms to be
made true only once.

Conclusions & Open Questions
Incremental lower bound functions are vital for inspiring
confidence in the quality of plans produced by planners that
do not offer any optimality guarantees, and thus important
for acceptance of automated planning in many applications.
The idea of repeatedly solving increasingly less and less re-
laxed problem relaxations seems an attractive approach to
constructing such functions, but has not been widely ex-
plored. We have proposed one realisation of this idea, based
on the common delete-relaxation. Its present incarnation,
however, performs well, compared to alternatives such as
bounded A* search, in only a few domains; for most prob-
lems, it is hopelessly inefficient.

There are many open questions, and options to explore,
concerning the effectiveness h++, and incremental lower
bound functions more generally. First, in many problems
not even a first optimal relaxed plan can be computed in rea-
sonable time: is this due to the intrinsic hardness of h+, or
is the iterative landmark-based algorithm we use inefficient
compared to other conceivable methods? Betz and Helmert
(2009) present polynomial-time algorithms for computing
h+ in a few specific domains: are there efficient h+ algo-
rithms for larger classes of domains? (e.g., characterised
by properties of the problems causal or domain transition
graphs). Second, the size of PC often grows exponentially
with the number of conditions in C. A slightly different en-
coding of conjunctions can be done with only a linear size

increase, using conditional action effects. This encoding has
a weaker delete-relaxation, but still sufficient for theorem 5
to hold.7 To make use of it, however, we need a method of
computing optimal delete-relaxed plans for problems with
conditional effects.

Finally, incremental lower bound functions can be devised
in an analogous manner based on other relaxations, such as
abstraction or the flow-based order relaxation used van den
Briel et al. There are surely domains in which these will be
more accurate than the delete-relaxation, just as there are a
few in which the delete-relaxation is best.

References
Aho, A.; Garey, M.; and Ullman, J. 1972. The transitive
reduction of a directed graph. SIAM Journal on Computing
1(2):131–137.
Betz, C., and Helmert, M. 2009. Planning with h+ in the-
ory and practice. In Proc. of the ICAPS’09 Workshop on
Heuristics for Domain-Independent Planning.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. 19th European Confer-
ence on Artificial Intelligence (ECAI’10), 329–334.
Chatterjee, K.; Henzinger, T.; Jhala, R.; and Majumdar, R.
2005. Counterexample-guided planning. In Proc. 21st Inter-
national Conference on Uncertainty in Artificial Intelligence
(UAI’05), 104–111.
Cornuéjols, G. 2008. Valid inequalities for mixed
integer linear programs. Mathematical Programming
112(1):3–44. http://dx.doi.org/10.1007/
s10107-006-0086-0.
Edelkamp, S., and Kissmann, P. 2008. GAMER: Bridging
planning and general game playing with symbolic search. In
IPC 2008 Planner Abstracts.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers. ISBN: 1-55860-856-7.
Halldórsson, M. 2000. Approximations of weighted in-
dependent set and hereditary subset problems. Journal of
Graph Algorithms and Applications 4(1):1–16.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Proc. of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09).
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS’09).
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125. http://users.cecs.anu.
edu.au/˜jks/bw.html.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning.
In Proc. 13th International Conference on Principles and
Practice of Constraint Programming (CP’07), 651–665.

7Thanks to Joerg Hoffmann and Emil Keyder for pointing this
out.

