
Living on the Edge: Safe Search with Unsafe Heuristics

Erez Karpas and Carmel Domshlak
Faculty of Industrial Engineering & Management,

Technion, Israel

Abstract

Considering heuristic search for satisficing and cost-optimal
planning, we introduce the notion of global safeness of a
heuristic, a property weaker than the standard safeness, which
we claim is better for heuristic search. We describe one con-
crete approach for creating globally safe and optimality pre-
serving heuristics by exploiting information in the history of
the search via a new form of inference related to existential
landmarks. We evaluate our approach on some state-of-the-
art heuristic search tools for cost-optimal planning, and dis-
cuss the outcomes of this evaluation.

Introduction
These days, state-space heuristic search is the most promi-
nent approach to classical planning, though the way it is
exploited in planning differ in some crucial respects from
the way it is approached in the search community. In most
heuristic search literature, the assumption is that the search
problem and the heuristic are both given as a “black box”—
the structure of the search space and the way the heuristic
works are hidden from the search algorithm. This assump-
tion suffices for analyzing various properties of the search
algorithms, but limits the palette of generic enhancements
that can possibly be applied to heuristic search. In con-
trast, in domain independent planning, the structure of the
search space is made explicit by means of a description
of the problem in terms of state variables, action precon-
ditions and effects specified in terms of these state vari-
ables, and so on. This allows for exploiting more in-
formation than would be available in “classical” heuristic
search. This is not a new observation — in fact, helpful ac-
tions and preferred operators (Hoffmann and Nebel 2001;
Helmert 2006) are just one example of using more infor-
mation than would be available for a “classical” heuristic-
search algorithm.

Although preferred operators still only look at one search
state, recent work has shown that it’s possible use more in-
formation than is available in a single state. One example is
the LM-A∗ search algorithm (Karpas and Domshlak 2009),
which uses information from multiple paths in the search
space to enhance landmark-based heuristics. Another ex-
ample of a “non-classical” heuristic is selective-max, an on-
line learning approach which uses information from previ-

ously evaluated states, in the form of examples for a classi-
fier (Domshlak, Karpas, and Markovitch 2010).

In this paper, we continue this line of investigation by tak-
ing a closer look at the safeness property of heuristics. A
heuristic function h is called safe if for all states s ∈ S, if
h declares s to be a dead-end (that is, h(s) = ∞), then s
really is a dead-end. We claim that this definition is too re-
strictive, and instead formulate the more desired property of
global-safeness. We also demonstrate how one can derive
a path-dependent globally-safe heuristic, and draw connec-
tions to a new type of information which can be inferred,
which we call existential landmark.

Preliminaries
We consider planning tasks formulated in STRIPS (Fikes and
Nilsson 1971). A planning task Π = 〈P,A, s0, G〉, where P
is a set of propositions, A is a set of actions, each of which
is a triple a = 〈pre(a), add(a), del(a)〉, s0 ⊆ P is the inital
state, and G ⊆ P is the goal. For ease of notation and with-
out loss of generality, in what follows we assume that there
is a single goal proposition (G = {pg}), which can only be
achieved by one action, END.

An action a is applicable in a state s if pre(a) ⊆ s.
Applying action a in state s results in the new state s′ =
(s \ del(a))∪ add(a). A sequnce of actions 〈a0, a1, . . . , an〉
is applicable in state s0 if a0 is applicable in s0 and results
in state s1, a1 is applicable in s1 and results in s2, and so on.
An action sequence 〈a0, a1, . . . , an〉 is a valid plan for Π if
it is applicable in s0, and an = END. An optimal plan is
(one of) the shortest such valid plans. If π1 and π2 are two
action sequences, by π1 · π2 we denote the concatenation of
π1 and π2.

Globally Safe Heuristics
A heuristic h is safe, if for every state s from which there
is a path to the goal, h(s) < ∞. In other words, h does
not declare any false dead ends. Most of the heuristics used
in domain-independent planning (including those based on
delete-relaxation, abstractions, and critical paths) are safe.

While safeness can be a useful property for pruning search
sub-spaces, it is relevant only in problems exhibiting dead-
ends in the first place. In general, we claim that safeness
is too strong a requirement. Consider the hypothetical ideal



case, where we have a heuristic assigning a value of h∗ (or,
actually, any other finite value) to the states along some op-
timal plan, and∞ to all other states. Using any reasonable
search algorithm with this heuristic would lead straight to
finding an optimal solution, without getting sidetracked at
all. However, this heuristic is clearly not safe, since it de-
clares many false dead-ends. This idealized scenario sug-
gests examining substantial relaxations of the safeness prop-
erty, defined below.

Definition 1 (G-safe & GO-safe heuristics) A heuristic h
is called globally safe (G-safe, for short) if, for any plan-
ning task Π, if Π is solvable, then there exists a valid plan
ρ for Π such that for any state s along ρ, h(s) < ∞. In
particular, if there exists such an optimal plan ρ, then h is
called globally safe with respect to optimality (or GO-safe,
for short).

The following proposition follows directly from the defi-
nition.

Proposition 1 Safeness implies GO-safeness implies G-
safeness.

The next propositions capture the main attractiveness of
employing G-safe and GO-safe heuristics.

Proposition 2 Any complete systematic search algorithm,
which detects dead-ends using a G-safe heuristic h, will find
a solution for any solvable planning task Π.

Proof sketch: h is G-safe, and thus there is a plan ρ such that
states along ρ are not declared by h to be dead-ends. Let s
be the shallowest state along ρ which has not been expanded
yet. Since we are using a complete search algorithm, search
will not terminate before s is expanded, unless another so-
lution is found before that. Thus, either the solution ρ will
be found, or another solution will be found before ρ is fully
expanded.

Proposition 3 Let h be a GO-safe heuristic, admissible for
all states which it does not declare as dead-ends. Then, for
any solvable planning task Π, A∗ search using h will find an
optimal solution for Π.

Proof sketch: Consider the transition system induced by
h, which is the transition system of Π, with edges outgoing
from states that are declared by h to be dead-ends removed.
This is the transition system that is searched when using h.
Because h is GO-safe, every optimal path to the goal in the
induced transition system corresponds to an optimal solution
of Π. And since h is admissible in the induced transition
system, A∗ will find an optimal path in that system.

While the notion of globally safe heuristics is appealing in
theory, we still need to show that a concrete non-trivial in-
stance of this notion actually exists. Indeed, at the moment
of writing this paper, we could not provide the reader with
an interesting example of state-dependent G-safe heuristics.
However, the situation is different with the more general

family of path-dependent heuristics, and thus we proceed
with formalizing our relaxed versions of safeness with re-
spect to such heuristics.

Definition 2 (G-safe path-dependent heuristic) A path-
dependent heuristic h is called G-safe, if, for any planning
task Π, if Π is solvable, then there exists a valid plan ρ for
Π, such that for every prefix ρ′ of ρ, h(ρ) < ∞. That is,
when h evaluates any prefix of ρ, it is not declared as a
dead-end. In particular, if there exists such an optimal plan
ρ, then h is called GO-safe.

In fact, since any state-dependent heuristic can be seen
as a path-dependent heuristic which only looks at the last
state reached by the path, Definition 1 can be seen as a
special case of Definition 2. In the rest of the paper, we
describe a procedure for creating GO-safe path-dependent
heuristics, and share our findings on the empirical effective-
ness of adopting GO-safeness.

Unjustified Actions and Global Safeness
Our G-safe path-dependent heuristics are based upon the no-
tion unjustified actions. Informally, an action along a plan is
unjustified if removing it from that plan does not invalidate
the latter. In order to formally define unjustified actions, we
use the notion of plan’s causal links.

Let π = 〈a0, a1, . . . an〉 be an action sequence applicable
in state s0. The triple 〈ai, p, aj〉 forms a causal link if i < j,
p ∈ add(ai), p ∈ pre(aj), p 6∈ si (si is the state before
applying action ai), and for i < k < j, p 6∈ del(ak) ∪
add(ak). In other words, p is a precondition of aj , and is
achieved by ai, and is not deleted or added by some other
action until aj occurs. In such a causal link, ai is called its
supporter, and aj is called its consumer.

Definition 3 (Unjustified Action) Given a plan ρ =
〈a0, a1, . . . an〉, the action instance ai 6= END is unjusti-
fied if there is no causal link in ρ such that ai is the supporter
in that causal link.

An immediate from the definition, yet important for what
comes next, property is that optimal plans never contain un-
justified actions. This brings us to define “hopeless paths”
in the (forward) search.

Definition 4 (Hopeless paths) For any planning task Π,
path π from the initial state s0 to a state s is hopeless if there
is no path π′ from s to the goal such that π · π′ contains no
unjustified actions.

In other words, if π is hopeless, then any plan that has π as
a prefix will contain unjustified occurrences of actions. Us-
ing this definition, we can finally formulate the connection
between unjustified actions and global safeness.

Theorem 1 (Global path-dependent safeness) Let h be a
safe path-dependent heuristic. Then the path-dependent
heuristic

h′(π) :=
{
∞ if π is hopeless
h(π) otherwise



is a GO-safe path-dependent heuristic.

Proof sketch: Again, the claim trivially holds for unsolv-
able tasks. Let Π be a solvable planning task, and let
ρ = 〈a0, a1, . . . an〉 be an optimal plan for Π. By the virtue
of being optimal, π does not contain any unjustified actions.
Let π = 〈a0, a1, . . . ai〉 be a prefix of ρ, leading to state s.
Then π′ = 〈ai+1, ai+2, . . . an〉 is a path from s to the goal,
such that π · π′ contains no unjustified actions. Therefore π
is not hopeless, and there thus is at least one optimal plan
which is never declared as a dead-end by h′.

A word of caution is in place here. Note that according
to Theorem 1 it might be safe to declare a path π as a dead-
end, but not the state s to which π leads. This happens be-
cause of the path-dependent nature of unjustified actions. To
illustrate that, consider the following simple planning task
Π = 〈P,A, s0, G〉, where P = {p1, p2, pg}, s0 = {},
G = {pg}, and the following actions:
• a1 = 〈∅, {p1}, ∅〉
• a2 = 〈{p1}, {p2}, ∅〉
• a12 = 〈∅, {p1, p2}, ∅〉
• END = 〈{p1, p2}, {pg}, ∅〉
Following path π = 〈a1, a12〉 leads to state s = {p1, p2}.
Action a1 along π can not be justified, since a12 achieves p1,
the proposition that a1 achieves, and it is not a consumer of
a1. Therefore, π is hopeless (since there is no path π′ from
s to the goal that can justify a1), and it is indeed globally
safe to declare path π as a dead-end. However, it is not safe
to declare state s as a dead-end, since Π is solvable, and it
is easy to see that s lies on any solution path. The following
theorem addresses this issue.

Theorem 2 (Global safeness along optimal paths)
If h be a safe heuristic, then the heuristic

h′(s) :=
{
∞ if some optimal path from s0 to s is hopeless
h(s) otherwise

is a GO-safe heuristic.

Proof sketch: Let Π be a (solvable) planning task, and s be
a state of Π. If there is no optimal plan for Π which goes
through state s, then by definition, it is GO-safe to declare s
as a dead end. Assume now that there is an optimal plan ρ =
ρ1 · ρ2 for Π such that applying ρ1 in s0 leads to s. Let π be
an optimal path from s0 to s. Assume for contradiction that
π is hopeless, and there is no path π′ from s to the goal such
that π ·π′ contains no unjustified actions. Then, specifically,
π · ρ2 contains some unjustified action. However, π · ρ2 is
an optimal plan (since π is an optimal path to s, ρ2 is an
optimal path from s to the goal, and s is along an optimal
plan), and that contradicts the fact that optimal plans never
contain unjustified actions. Hence, if an optimal path π from
s0 to state s is hopeless, then s is not on an optimal path from
s0 to the goal.

The problem with applying Theorem 2 is that we do not
always know when the current path to some state s is indeed

optimal. However, by modifying the A∗ search algorithm to
reevaluate the heuristic every time a state s is reopened (be-
cause a shorter path to s has been found), we can prune states
according to Theorem 2, and still guarantee that the search
will return an optimal solution. For the sake of brevity, we
omit a formal proof of this, but refer the reader to the proof
that A∗ with an admissible heuristic returns an optimal so-
lution, and specifically to the following lemma (Pearl 1984,
p. 78, Lemma 2): Let n′ be the shallowest open node on an
optimal path π from s0 to some arbitrary node n′′. Then
g(n′) = g?(n′).

Exploiting Unjustified Actions in Search
While Theorem 1 brings us closer to globally safe heuristics,
we still need a way of identifying whether a given path from
the initial state is hopeless. In what follows, we close the
gap by presenting two such methods.

Existential Landmarks
Suppose state s was reached via path π = 〈a0, a1, . . . , an〉.
Using standard causal link analysis, we can identify the
causal links present in π. We make one slight enhancment
to the standard analysis by not allowing an action a to jus-
tify its inverse action a′, where inverse actions are identified
according to the criteria in Hoffmann (2002). Denote by U
the set of actions in π which are not supporters in any causal
link in π. The pseudo code for extracting U is depicted in
Figure 1.

For π to have a continuation π′ such that π · π′ has no
useless occurrences of actions (and thus not be hopeless),
every action in U must be the supporter of some action in
π′. Using the same causal link analysis, we can also identify
which propositions can possibly appear in such causal links
for each action. Denote by pp(a) the set of propositions
which a ∈ U is potentially a supporter of. Note that in some
cases, it is possible to detect dead-ends, just by noticing that
pp(a) = ∅, which means that all of the effects of a have
either been reachieved by some other action or deleted, and
so there is no way to justify a.

For π · π′ to contain no useless actions, for all a ∈ U , a
must support some proposition in pp(a). Let ia(a) = {a′ |
pre(a′)∩pp(a) 6= ∅} denote the set of all actions which have
a precondition in pp(a). Then any continuation π′ of π, such
that π · π′ contains no useless occurrences of actions, must
use an action from ia(a) for each a ∈ U . Although this
seems similar to the notion of disjunctive action landmark,
the difference is that ia(a) does not constrain all plans, but
rather only optimal plans having π as a prefix. Since ia(a)
means that there exists some plan which achieves it, we call
it an existential disjunctive action landmark.

Once we have these existential disjunctive action land-
marks, it is possible to reason about them in combination
with “regular” landmarks. For example, it is possible to
find a cost partitioning between these existential disjunc-
tive action landmarks, and any other set of landmarks, such
as those used by hLA (Karpas and Domshlak 2009). The
“achievers” of such an existential disjunctive action land-
mark are simply the actions that compose the landmark.



causal-link-analysis(π)
support := ∅
// support holds pairs of propositions
// and the actions that supported them
for ai ∈ π (in order)

update(ai)

update(a)
for p ∈ (pre(a) ∩ supported props)

// We have used the supported proposition,
// it is no longer unjustified
a′ := supporter(p)
// Make sure an action doesn’t justify its inverse
if a′ is not the inverse of a

// remove a′ and all its supported propositions
support := support \ {〈p′, a′〉|∃p′ : 〈p′, a′〉 ∈ support}

for p ∈ (add(a) ∪ del(a))
// We need to justify the effects of a later
if p ∈ supported props

// This effect was already achived by another action
// we need to make sure this is not its last effect
a′ := supporter(p)
support := support \ {〈p, a′〉}
if supported by(a′) = ∅ then

return dead-end
support := support ∪ {〈p, a〉}

Macros used:
supported props ≡ {p|∃a : 〈p, a〉 ∈ support}
supported by(a) ≡ {p|〈p, a〉 ∈ support}
supporter(prop) ≡ a s.t. 〈p, a〉 ∈ support

Figure 1: Procedure for the causal link analysis.

A Compilation-Based Approach
A different approach for identifying hopeless paths is based
on compiling into the planning task Π (part of) the con-
straints imposed on it by unjustified actions. Let state s be a
state reached via path π. We will define a new planning task
Π′s,π = 〈P ′, A′, s′, G′〉 as follows:

• P ′ = P ∪ {justified(a) | a ∈ A}
• A′ = {〈pre(a) ∪ {justified(a)},

add(a)∪{justified(a′) | a′ ∈ A, add(a′)∩pre(a) 6= ∅},
del(a) ∪ {justified(a)}〉 | a ∈ A}

• s′ = s ∪ {justified(a) | a is not unjustified in π
or a does not occur in π}

• G′ = G ∪ {justified(a) | a ∈ A}
In words, we add a proposition justified(a) for each action
a, with the meaning that justified(a) holds when action a
has been justified (or does not need to be justified). Applying
action a deletes justified(a), thus forcing some later action
to use one of a’s effects. Applying action a′, which has one
of a’s effects as a precondition, adds justified(a), since a′
used an effect of a.

Note that this compilation is weaker than Definition 3,
since we do not require that no action deletes or adds the
supported proposition along the way, and we do not account
for which action achieved which proposition. However, we
can still show the following.

Theorem 3 (Soundness of Π′) Let Π be a solvable plan-
ning task, and let state s be reached via path π. If π is not
hopeless, then Π′s,π is solvable.

Proof sketch: Path π is not hopeless, therefore there exists
some path π′ such that π · π′ contains no unjustified actions.
We will show that π′ is also a solution for Π′s,π . Since π · π′
contains no unjustified actions, for every unjustified action
a in π, there is an action a′ in π′ that uses an effect of a.
Therefore π′ will achieve all the justified(a) propositions
which were false in s′. Furthermore, no action in π′ is un-
justified, and so for every action a along π′, there is another
action in π′ which achieves justified(a). Since π′ achieves
all of the goals of Π, and all of the justified goals of Π′s,π ,
π′ is a solution for Π′s,π .

It is also possible to come up with a different compila-
tion, which has a proposition achieved(a, p) for each pair
of action a and proposition p (from the original task), and
denotes that p was achieved by action a. Such a compi-
lation must use conditional effects, but has the potential to
be more informative than the simple compilation described
here, since it does not ignore the information about which
action achieved which proposition.

Empirical Evaluation
We have presented the concept of unjustified actions, and
suggested two principled ways in which they can be explited
in heuristic-search planning. Since the compilation-based
approach requires introducing many new state variables (one
for each grounded action), which severly limits the appli-
cabilty of this approach in practice, we did not perform an
empirical evaluation of it in this paper.

We have implemented the existential landmark approach
on top of the Fast Downward planning system (Helmert
2006), and combined the existential disjunctive action land-
marks with the optimal cost partitioning of landmarks
(Karpas and Domshlak 2009). In our evaluation we used
three baseline heuristic: hLM-CUT, hLA, and hGC .

• hGC is the most basic admissible landmark-based heuris-
tic: it only accounts for the goal landmarks, and combines
their information via the optimal action cost partitioning.
In other words, hGC is simply an admissible goal-count
heuristic. We add the existential action landmarks discov-
ered using our approach to the cost partitioning.

• hLA (Karpas and Domshlak 2009) is state-of-the-art ad-
missible landmarks heuristic, with efficient optimal cost
partitioning (Keyder, Richter, and Helmert 2010). The
landmarks used here are those discovered using the RHW
method (Richter and Westphal 2010). Here as well, we
add the existential action landmarks discovered using our
approach to the cost-partitioning.



Domain hGC hGC+ hLA hLA+ hLM-CUT hLM-CUT+

BLOCKS 17 17 21 21 28 28
DEPOT 3 4 7 7 7 7
DRIVERLOG 7 9 12 13 13 13
LOGISTICS00 10 10 20 20 20 20
TRUCKS-STRIPS 3 3 6 5 10 9
ZENOTRAVEL 8 8 9 9 13 13

TOTAL 48 51 75 75 91 90

Table 1: Total number of solved tasks for each method. Re-
sults where there was a change between a baseline and its
enhancement are in bold.

• hLM-CUT (Helmert and Domshlak 2009) is a state-of-the-
art admissible landmarks heuristic, but unfortunately, it
does not support adding the existential landmark infor-
mation to its cost partitioning. Therefore, the only en-
hancement we used with hLM-CUT was path pruning: upon
reaching a state s via path π, we look at the causal link
analysis of π, and if there is an action in π such that
pp(a) = ∅ (and therefore a can not be justified), then we
prune path π.

We compare the baseline heuristics to the same heuristics,
enhanced by our existential landmarks (as explained above).
To ensure admissibility, in the runs enhanced with unjus-
tified action information, we modified A∗ to re-evaluate the
heuristic once a shorter path to a known state has been found.
All of the experiments were conducted with a 3GB mem-
ory limit and a 30 minute time limit, on a single core of a
2.33GHz Intel Q8200 CPU.

Table 1 lists the number of tasks solved using each base-
line configuration, and the number of tasks solved when us-
ing unjustified actions. Overall, there is not much change
in the number of solved tasks, and the overhead involved
in keeping track of unjustified actions even leads to some
losses. However, looking into the results in more details re-
veals a more colorful picture.

Tables 2 lists the average ratios of expanded states, eval-
uations and total solution time, when using unjustified ac-
tions, relative to to the baseline of the same method. For
each heuristic, this is averaged on the tasks solved by both
the baseline and the version enhanced with unjustified ac-
tions.

Looking at Table 2a, we can see that the number of ex-
panded states is reduced drastically. We remark that only in
one ZENOTRAVEL task, using unjustified actions led to more ex-
panded states than with the baseline, when using hLM-CUT.
Especially remarkable is the finding that in LOGISTICS00, we
can reduce the number of expanded states by more than half,
simply by pruning hopeless paths, without modifying the
hLM-CUT heuristic at all. On the other hand, using unjustified
actions with hLM-CUT in BLOCKS did not make any difference.
This is because the hand-empty predicate is achieved by any
action which puts a block down, and is a precondition of any
action which picks a block up, thus any action justifies the
next action.

From Table 2b, we can see that even considering that the

Domain hGC ratio hLA ratio hLM-CUT ratio

BLOCKS 0.93 0.99 1.00
DEPOT 0.56 0.84 0.98
DRIVERLOG 0.58 0.68 0.82
LOGISTICS00 0.57 0.97 0.43
TRUCKS-STRIPS 0.5 0.57 0.9
ZENOTRAVEL 0.53 0.83 0.92

AVG. 0.69 0.87 0.82
NORMALIZED AVG. 0.61 0.81 0.84

(a) Expanded States

Domain hGC ratio hLA ratio hLM-CUT ratio

BLOCKS 0.93 1.00 1.00
DEPOT 0.64 0.92 0.99
DRIVERLOG 0.64 0.76 0.86
LOGISTICS00 0.61 0.99 0.52
TRUCKS-STRIPS 0.64 0.73 0.90
ZENOTRAVEL 0.58 0.89 0.91

AVG. 0.73 0.92 0.85
NORMALIZED AVG. 0.67 0.88 0.86

(b) Evaluations

Domain hGC ratio hLA ratio hLM-CUT ratio

BLOCKS 1.12 1.11 1.06
DEPOT 1.03 1.22 1.02
DRIVERLOG 0.84 0.96 0.98
LOGISTICS00 0.86 1.30 0.64
TRUCKS-STRIPS 1.03 1.29 1.01
ZENOTRAVEL 0.81 1.16 0.93

AVG. 0.96 1.17 0.93
NORMALIZED AVG. 0.95 1.17 0.94

(c) Total Time

Table 2: Average ratios of expanded states / evaluations /
total time with unjustified actions relative to the baseline.
For each heuristic, the average is over tasks solved by both
the baseline and the version enhanced with unjustified ac-
tions. AVG. is the average over all tasks, and NORMAL-
IZED AVG. is the average over domain averages.

same state might be evaluated more than once with unjusti-
fied actions, the number of evaluations is still reduced over-
all. However, there is more than one task where the number
of evaluations is increased over the baseline. Even taking
the overhead of keeping track of unjustified actions into ac-
count, Table 2c still shows us that overall, using unjustified
actions with hLM-CUT and hGC speeds up search.

Related
While the use of information from other states presented
here might seem somewhat similar to the heuristic value
propagation of pathmax (Mero 1984) or BPMX (Felner et
al. 2005), this is not the case. Our approach uses knowl-
edge about the explicit structure of the problem, in the form
of causal links, and is therefore not applicable within the
“classic” heuristic search, black-box view of the problem.
On the other hand, pathmax and BPMX only need informa-
tion about heuristic values and successor relations, and so
they are applicable (and have been applied) without explicit
structure of the problem.



Another field where more information than present in a
single search state is used to make decisions is learning for
planning. Typically, a learning/planning system attempts to
learn some domain-specific knowledge offline from train-
ing examples, in order to create a more efficient planner
on unseen problem instances from that domain. However,
there is very little work on online learning for planning,
which would also constitute a form of non-classical heuristic
search.

A similar notion to unjustified actions, termed useless ac-
tions, was introduced by Wehrle, Kupferschmid, and Podel-
ski (2008). The authors there defined a useless action to be
an action which is not the start of an optimal path. However,
it is PSPACE-hard to determine if an action is useless, and
so Wehrle et al. use an approximation of useless actions, and
can no longer guarantee optimal solutions. Furthermore, the
definition of useless action suffers from the same problem as
the definition of a safe heuristic — any action which is the
start of an optimal path is not useless. It would be very in-
teresting to identify a condition which is sufficient to ensure
that a given action is the start of an optimal path, and then
just prune the rest of the search space.

Conclusion
We have defined a novel notion of global safeness, and have
demonstrated how unjustified actions can be used to derive
globally safe heuristics. We also performed an empirical
evaluation, demonstrating that exploiting global safeness via
unjustified actions can lead to significant improvements to
the performance of sequentially-optimal planning.

Note that using unjustified actions in satisficing search is
even easier since there is no need to worry about maintain-
ing admissibility, and we intend to explore these possibili-
ties in our future work. Finding an efficient way to apply the
compilation-based approach presented here is yet another in-
teresting direction to explore.

References
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In IJCAI, 103–108.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS. In press.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In AIPS. 379-387.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335–340.
Mero, L. 1984. A heuristic search algorithm with modifi-
able estimate. AIJ 23:13–27.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Richter, S., and Westphal, M. 2010. The lama plan-
ner: Guiding cost-based anytime planning with landmarks.
JAIR 39:127–177.
Wehrle, M.; Kupferschmid, S.; and Podelski, A. 2008.
Useless actions are useful. In ICAPS, 388–395. AAAI
Press.


