
Efficient Learning of Action Models for Planning

Neville Mehta and Prasad Tadepalli and Alan Fern
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331, USA.
{mehtane,tadepall,afern}@eecs.oregonstate.edu

Abstract

We consider the problem of learning action models for plan-
ning in two frameworks and present general sufficient con-
ditions for efficient learning. In the mistake-bounded plan-
ning framework, the learner has access to a sound and com-
plete planner for the given action model language, a simu-
lator, and a planning problem generator. In the planned ex-
ploration framework, the learner has access to a planner and
a simulator, but actively generates problems to help refine
its model. We identify sufficient conditions for learning in
both the frameworks. We also show that a concrete hypothe-
sis space that consists of sets of rules with at most k variables
is efficiently learnable in both frameworks.

Introduction
Planning research typically assumes that the planning sys-
tem has access to complete and correct models of the ac-
tions. However, that raises the obvious question: where do
the models come from? In this paper, we formulate and an-
alyze the question of learning action models suitable for
planning. Since the agents might need to plan even before
complete and correct models are learned, model learning,
planning, and plan execution must be interleaved in an au-
tonomous agent.

We focus our attention on learning deterministic action
models for planning for goal achievement. The determinis-
tic planning setting will let us explore strong success cri-
teria, namely, a worst-case polynomial bound on mistakes
or a polynomial number of planning attempts before con-
vergence. It has been shown that deterministic STRIPS ac-
tions with a constant number of preconditions can be learned
from raw experience with at most a polynomial number
of plan prediction mistakes (Walsh and Littman 2008). In
spite of the above positive results, compact action models
in fully observable, deterministic action models are not al-
ways learnable. For example, action models represented as
arbitrary Boolean functions are not learnable under standard
cryptographic assumptions such as the hardness of factoring.
Further, we require that the learner to learn only from self-
generated plans, which further limits what can be learned.
Instead of selecting an action at every step to approximately
optimize the long-term reward as in the PAC-MDP algo-
rithms, our learner is expected to solve problems by generat-
ing plans and executing them. We define two distinct frame-

works for learning action models for planning, and charac-
terize sufficient conditions for success in these frameworks.

Learning action models for planning is different from
learning an arbitrary function from states and actions to next
states because the learner has some control over the actions
it executes, giving it the freedom to ignore modeling the ef-
fects of some actions in certain contexts. For example, most
people who drive do not ever learn a complete model of the
dynamics of their cars; while they might accurately know the
stopping distance or turning radius, they could be oblivious
to many aspects that an expert auto-mechanic is comfortable
with. To capture this intuition, we introduce the concept of
an adequate model, that is, a model that is sufficiently com-
plete and correct for planning for a given class of goals. For
example, one need not know a complete map of a city to nav-
igate effectively. In most cases, it suffices to learn one route
for the places one needs to go to. In other words, any span-
ning tree of the graph of the city over the goals and starting
points of interest would be an adequate model.

In the mistake-bounded planning (MBP) framework, the
goal is to keep solving user-generated planning problems
while learning action models and guarantee at most a poly-
nomial number of mistakes or unsuccessful plans. While
polynomial number of mistakes is not always reasonable,
e.g., when flying real helicopters to learn their dynamics, the
goal here is to characterize the minimal structure of prob-
lems that lends itself to autonomous learning when mistakes
are relatively cheap. We assume that in addition to the prob-
lem generator, the learner has access to a sound and com-
plete planner and a simulator (or the real world). We give
general sufficient conditions for learning an adequate model
with a polynomial mistake bound.

In the spirit of self-directed learning, we also intro-
duce the planned exploration (PLEX) framework, where
the learner needs to generate its own problems to solve to
refine its action model. This requirement translates to an
experiment-design problem, where the learner needs to de-
sign problems in a goal language which help it disambiguate
the action models. We also identify a set of general sufficient
conditions for efficient learning in this framework.

Our sufficient conditions are based on learning schemas
that maintain an optimistic action model which includes all
transitions of an adequate model. Given such an optimistic
model, the correct plan for any problem can always be gen-

erated by a sound and complete planner. However, many in-
correct plans may also be generated. The idea behind our
approach is to simulate the plans generated by the planner,
collect examples of all observed actions, and use them to
refine the action models. In doing so, we fully depend on
determinism. In particular, action models are refined by rul-
ing out all outcomes other than those that actually happened
for a given state-action pair. In the PLEX framework, prob-
lems are generated internally by the learner, which is driven
by the purpose of disambiguating conflicting predictions in
the models.

We consider a specific language, k-SAP (sets of action
productions of at most k variables), and show that it is learn-
able in polynomial time in both the MBP and the PLEX
frameworks for an appropriate goal language.

Formal Preliminaries
A factored planning domainP is a tuple (V,D,A, T), where
V = {v1, . . . , vn} is the set of variables, D is the domain
of the variables in V , and A is the set of actions. S = Dn

represents the state space, and T ⊂ S×A×S is the transition
relation where (s, a, s′) ∈ T signifies that taking action a in
state s results in state s′. The domain parameters, n, |D|, and
|A|, characterize the size of P and are implicit in all claims
of complexity in the rest of this paper.

Action Models and Hypothesis Spaces
We only consider learning deterministic action models.
Hence, the transition relation is in fact a function, although
the learner’s hypothesis space includes nondeterministic
models.

Definition 1. An action model is a relation M ⊆ S×A×S.

This work emphasizes model learning via interaction with
a simulator. The set of positive examples of the transition
function observed via experience is Z ⊆ T . Because T is
deterministic, every positive example (s, a, s′) implicitly en-
tails several negative examples {(s, a, s′′) : s′′ 6= s′}; we let
Z− denote the set of all negative examples given Z.

Definition 2. A model M is weakly consistent with a set of
examples Z if M ∩Z− = ∅. It is strongly consistent with Z
if, in addition, M ⊇ Z.

We consider compact representations of action models in
this paper.

Definition 3. A hypothesis is a representation of an ac-
tion model. The hypothesis space H of action models is the
language of all such hypotheses considered by the learner.
Given an example set Z, the version space of action models
is the subset of all hypotheses in H that are weakly consis-
tent with Z and is denoted asM(Z).

Note that the hypotheses in the version space are only de-
fined to be weakly consistent. This means that our models
may not include all observed positive transitions in them, al-
though they must exclude their negative implications. This
will be important to allow us to ignore some action mod-
els that are not needed for successful planning. With some
abuse of notation, we use the words hypothesis and model

interchangeably. We only consider finite (possibly parame-
terized) hypothesis spaces.

Without loss of generality,H can be structured as a gener-
alization graph where the nodes correspond to sets of equiv-
alent hypotheses (represent the same set of transitions) and
there is a directed edge from node n1 to node n2 if and only
if the model that corresponds to n1 is strictly more general
than (a strict superset of) the model that corresponds to n2.

Definition 4. The height of H is the length of the longest
path from a root node to a leaf node in its generalization
graph.

Definition 5. H is well-structured if, for any example set
Z of some true model, the version spaceM(Z) has a most
general hypothesis mgh(Z). Further, if there exists an algo-
rithm that can compute mgh(Z ∪ {z}) from mgh(Z) and a
new example z in time polynomial in the size of mgh(Z) and
z, then we say thatH is efficiently well-structured.

Note that it follows from the definition that all most gen-
eral hypotheses represent the same model, i.e., the set of
transitions. This is also called the optimistic model because
it includes every transition in every model in M(Z). If H
is well-structured, then its generalization graph has a unique
root node which corresponds to the optimistic model of H.
It turns out that well-structuredness is easier to verify if it
satisfies the following property.

Definition 6. A hypothesis spaceH is closed under union if
M1,M2 ∈ H =⇒ M1 ∪M2 ∈ H.
Lemma 1. H is well-structured if H is finite and closed
under union.

Proof. Let H0 =
⋃

M∈M(Z) M represent the unique union
of all models represented by hypotheses inM(Z). Because
H is finite and closed under union, H0 must be inH. If ∃z ∈
H0 ∩ Z−, then z ∈M ∩ Z− for some M ∈ M(Z). This is
a contradiction since all M ∈ M(Z) are weakly consistent
with Z. Consequently, H0 is weakly consistent with Z, and
is inM(Z). It is more general than (is a superset of) every
other hypothesis inM(Z) because it is their union.

Planning Components
Our action models are intended for planning, which is cap-
tured by the following definitions.

Definition 7. A planning problem is a pair (s0, g) where
s0 ∈ S and the goal condition g is an expression chosen
from a goal language G and represents a set of states in
which it evaluates to true. A state s satisfies a goal g if and
only if g is true in s.

Definition 8. Given a planning problem (s0, g), a plan is
a sequence of actions a1, . . . , ap. The plan is correct w.r.t.
(M, g) if ∃s1, . . . , sp such that (si−1, ai, si) ∈ M for 1 ≤
i ≤ p and the state sp satisfies the goal g.

Definition 9. A planner for the hypothesis-goal space
(H,G) is an algorithm that takes M ∈ H and (s0, g ∈ G)
as inputs and outputs a plan or signals failure. It is sound
w.r.t. (H,G) if, given any M and (s0, g), it produces a cor-
rect plan w.r.t. (M, g) or signals failure. It is complete w.r.t.

(H,G) if, given any M and (s0, g), it produces a correct
plan whenever one exists w.r.t. (M, g).

Note that we generalize the definition of soundness from
its standard usage in the literature in order to apply to non-
deterministic action models, where the nondeterminism is
“angelic” — the planner can control the outcome of actions
when multiple outcomes are possible according to its model
(Marthi, Russell, and Wolfe 2007). One way to implement
such a planner is to do forward search through all possible
action and outcome sequences and return an action sequence
if it leads to a goal under some outcome choices. Our anal-
ysis is agnostic to plan quality or plan length and applies
equally well to suboptimal planners. This is motivated by
the fact that optimal planning is hard for most domains, but
suboptimal planning such as hierarchical planning can be
quite efficient.

We now describe the concept of an adequate action model
for a class of goals.
Definition 10. Let P be a planning domain and G be a goal
language. An action model M is adequate for G in P if M ⊆
T and the existence of a correct plan w.r.t. (T, g) implies the
existence of a correct plan w.r.t. (M, g).H is adequate for G
if ∃M ∈ H such that M is adequate for G.

An adequate model may be partial or incomplete in that
it may not include every possible transition in the transition
function T . However, the model is sufficient to produce a
correct plan w.r.t. (T, g) for every goal g in the desired class.
Thus, the more limited the goal class, the more incomplete
the adequate model can be. In the example of a city map, if
the goal language excludes certain locations, then so can the
spanning tree.
Definition 11. A simulator of the domain is always situated
in the current state s. It takes an action a as input, transitions
to the state s′ resulting from executing a in s, and returns the
current state s′.
Definition 12. Given a goal language G, a problem genera-
tor generates an arbitrary problem (s0, g ∈ G) and sets the
state of the simulator to s0.

Mistake-Bounded Planning Framework
To introduce and prove a general theorem that characterizes
the mistake-bounded planning (MBP) framework, we first
define what it means to make a mistake.
Definition 13. A planning mistake occurs if the planner sig-
nals failure when a correct plan exists w.r.t. the transition
function T or when the plan output by the planner is not
sound w.r.t. T .
Definition 14. Let G be a goal language for which H is
an adequate hypothesis space. H is learnable in the MBP
framework if there exists an algorithm A that interacts with
a problem generator over G, a sound and complete planner
w.r.t. (H,G), and a simulator of the planning domain P , and
outputs a plan or signals failure for each planning problem
while guaranteeing at most a polynomial number of plan-
ning mistakes. Further, H is polynomial-time learnable in
the MBP framework if A always responds in time polyno-
mial in the domain parameters and the length of the longest

Algorithm 1 MBP LEARNING SCHEMA
Input: Hypothesis spaceH, goal language G

1: M ← optimistic model ofH
2: loop
3: (s, g)← PROBLEMGENERATOR(G)
4: plan ← PLANNER(M, (s, g))
5: if plan 6= failure then
6: for a in plan do
7: s′ ← SIMULATOR(a)
8: M ← MODELLEARNER(M, (s, a, s′))
9: s← s′

10: if s satisfies g then
11: print plan
12: else
13: print fail

plan generated by the planner, assuming that a call to the
planner, simulator, or problem generator takes O(1) time.

Along with the domain description, the learner is given a
hypothesis space which is guaranteed to contain an adequate
model for the goals in a goal language. Importantly, the hy-
pothesis space need not contain the true transition function
because an adequate model is good enough for planning.
The goal of the learner is to determine such a model by
continually maintaining an optimistic model of the version
space. It does this by excluding from the optimistic model
any transitions that conflict with the positive observations.
However, it may not necessarily contain all positive obser-
vations in its optimistic model. Note that we cannot bound
the time for the convergence of A because there is no limit
on when the mistakes are made.

Theorem 1. H is learnable in the MBP framework if it is
well-structured, has polynomial height, and is adequate for
the desired goal language.

Proof. Algorithm 1 is a general schema for action model
learning in the MBP framework. The current model M is ini-
tialized to the optimistic model of the hypothesis space H;
this is guaranteed to exist due to H being well-structured.
PROBLEMGENERATOR provides a planning problem and
initializes the current state of SIMULATOR. Given M and
the planning problem, PLANNER always outputs a plan if
one exists because H contains a “target” adequate model
that is weakly consistent with the observations and is al-
ways retained in the version space; the optimistic model
used by PLANNER is more general than any such target
model. If PLANNER signals failure, then there is no plan for
it; otherwise, the plan is executed through SIMULATOR and
MODELLEARNER uses every transition (s, a, s′) to refine
the model M making sure that it does not include any tran-
sitions in {(s, a, s′′) : s′′ 6= s′}. The resulting model is the
most general possible that excludes the illegal transitions.
The plan is output if the final state satisfies the goal. Because
the maximum number of model refinements is bounded by
the height ofH, the number of planning mistakes is polyno-
mial. Thus,H is learnable in the MBP framework.

The algorithm ensures that some adequate model al-
ways remains as a specialization of the optimistic model.
As MODELLEARNER checks only for weak consistency, it
might eliminate models from the version space that do not
include the observed positive transitions. This does not hurt
the algorithm as it only seeks to learn an adequate model,
not an exact one.

The above result generalizes the work on learning
STRIPS operator models from raw experience (without a
teacher) in Walsh and Littman (2008) to arbitrary hypotheses
spaces by identifying sufficiency conditions. (A hypothesis
class considered later in this paper subsume propositional
STRIPS by capturing conditional effects.) It also clarifies
the notion of adequate models, which can be much simpler
than the true transition model, and the influence of the goal
language on the complexity.

Corollary 1. A hypothesis space H is polynomial-time
learnable in the MBP framework if it is efficiently well-
structured, has polynomial height, and is adequate for the
desired goal language.

Proof. This follows from the fact that all components in Al-
gorithm 1 other than MODELLEARNER are assumed to run
in O(1) time.

Planned Exploration Framework
The MBP framework is appropriate when mistakes are per-
missible on user-given problems as long as their total num-
ber is limited. It is not appropriate in cases where no mis-
takes are permitted after an initial training period. We over-
come this limitation in the planned exploration (PLEX)
framework, where the agent seeks to learn an action model
for the domain without an external problem generator. It
generates planning problems for itself based on a goal lan-
guage and solves for them. The key issue here is to generate
a reasonably small number of planning problems such that
solving them would identify a deterministic action model.

Learning a model in the PLEX framework involves know-
ing where and how it is deficient and then planning to reach
states that are informative, which entails formulating plan-
ning problems in a goal language. This framework pro-
vides a polynomial sample convergence guarantee which
is stronger than a polynomial mistake bound of the MBP
framework. Without a problem generator that can change the
simulator’s state, it is impossible for the simulator to transi-
tion freely between strongly connected components (SCCs)
of the transition graph. Hence, we make the assumption that
the transition graph is a disconnected union of SCCs and re-
quire only that the agent learn the model for a single SCC
that contains the initial state of the simulator.

Definition 15. LetP be a planning domain whose transition
graph is a union of SCCs, and letH be an adequate hypoth-
esis space for the goal language G. (H,G) is learnable in
the PLEX framework if there exists an algorithm A that in-
teracts with a sound and complete planner w.r.t. (H,G) and
the simulator for P and outputs a model M ∈ H that is
adequate within the SCC that contains the initial state s0

of the simulator after a polynomial number of planning at-
tempts. Further, (H,G) is polynomial-time learnable in the
PLEX framework if A runs in polynomial time in the do-
main parameters and the length of the longest plan output
by the planner, assuming that every call to the planner and
the simulator take O(1) time.

A key step in planned exploration is designing appropriate
planning problems. We call these experiments as the goal of
solving these problems is to disambiguate nondeterministic
action models. In particular, the agent tries to reach an infor-
mative state where the current model predicts two different
next states for the same action.

Definition 16. Given a model M , the set of informative
states is I(M) = {s : (s, a, s′), (s, a, s′′) ∈ M ∧ s′ 6= s′′},
where a is said to be informative in s.

Definition 17. A set of goals G is a cover of a set of states
R if

⋃
g∈G{s : s satisfies g} = R.

Given the goal language G and a model M , the problem
of experiment design is to find a set of goals G ⊆ G such
that the sets of states that satisfy the goals in G collectively
cover all informative states I(M). If it is possible to plan
to achieve one of these goals, then either the plan passes
through a state where the model is nondeterministic or it ex-
ecutes successfully and the agent reaches the final goal state;
in either case, an informative action can be executed and and
observed transition is used to refine the model. If none of the
goals in G can be successfully planned for, then no informa-
tive states for that action are reachable. We formalize these
intuitions below.

Definition 18. The width of (H,G) is defined as

max
M∈H

min
G⊆G:G is a cover of I(M)

|G|

where minG |G| = ∞ if there is no G ⊆ G to cover a
nonempty I(M).

Theorem 2. (H,G) is learnable in the PLEX framework if
it has polynomial width and H is well-structured, has poly-
nomial height, and is adequate for G.

Proof. Algorithm 2 is a general schema for action model
learning in the PLEX framework. The current model M is
initialized to the optimistic model, which must exist as H
is well-structured. Given M and G, EXPERIMENTDESIGN
computes a polynomial-sized cover G. If G is empty, then
the model cannot be refined further; otherwise, given M and
a goal g ∈ G, PLANNER may signal failure if either no
state satisfies g or states satisfying g are not reachable from
the current state of the simulator. If PLANNER signals fail-
ure on all of the goals, then none of the informative states
are reachable and M cannot be refined further. If PLANNER
does output a plan, then MODELLEARNER either refines M
somewhere along the plan execution or it refines M by ex-
ecuting an informative action after reaching a state that sat-
isfies g. The existence of an adequate model is assured in
the original hypothesis space and there is no risk of losing
such model by removing illegal transitions. A new cover is

Algorithm 2 PLEX LEARNING SCHEMA
Input: Initial state s, hypothesis spaceH, goal language G
Output: Model M

1: M ← optimistic model ofH
2: loop
3: G← EXPERIMENTDESIGN(M,G)
4: if G = ∅ then
5: return M
6: for g ∈ G do
7: plan ← PLANNER(M, (s, g))
8: if plan 6= failure then
9: break

10: if plan = failure then
11: return M
12: for a in plan do
13: s′ ← SIMULATOR(a)
14: M ← MODELLEARNER(M, (s, a, s′))
15: s← s′

16: if M has been updated then
17: break
18: if M has not been updated then
19: a← an element in INFORMATIVEACTIONS(M , s)
20: s′ ← SIMULATOR(a)
21: M ← MODELLEARNER(M, (s, a, s′))
22: s← s′

23: return M

computed every time M is refined, and the process contin-
ues until all experiments are exhausted. As the number of
successful plans is bounded by the height h of H and the
number of failures per successful plan is bounded by a poly-
nomial in the width w of (H,G), the total number of calls to
PLANNER is O(h · poly(w)), which is a polynomial in the
domain parameters. Thus, (H,G) is learnable in the PLEX
framework.

Definition 19. (H,G) permits efficient experiment design if,
for any M ∈ H, ¬ there exists an algorithm that outputs
a polynomial-sized cover of I(M) in polynomial time and
 there exists an algorithm that outputs the set of informa-
tive actions in M for any state in polynomial time.

Note that if (H,G) permits efficient experiment design,
then has polynomial width because no algorithm can always
guarantee to output a polynomial-sized cover otherwise.
Corollary 2. (H,G) is polynomial-time learnable in the
PLEX framework if it permits efficient experiment design
and H is efficiently well-structured and has polynomial
height.

Proof. If (H,G) permits efficient experiment design, then
a cover can be computed in polynomial time. As H is effi-
ciently well-structured, MODELLEARNER can take the cur-
rent model and an observation and return the updated model
in polynomial time. From the proof of Theorem 2 and the
fact that the innermost loop of Algorithm 2 is bounded by the
longest length l of a plan and picking an informative action
can be done efficiently, we can deduce that its computational
complexity is O(h·poly(w)·(l+poly(n, |A|, |D|)), which is

a polynomial in the domain parameters and l. Thus, assum-
ing that all the other components run in O(1) time, (H,G)
is polynomial-time learnable in the PLEX framework.

The key differences between the MBP and PLEX frame-
works are highlighted in Table 1.

Sets of Action Productions
This section describes a concrete representational class for
action models — sets of action productions — and proves its
learnability in the MBP and PLEX frameworks. For brevity,
let d = |D| and m = |A|.

An action production r is defined as “act : pre → post”
where act(r) is an action and the precondition pre(r) and
postcondition post(r) are conjunctions of “variable = value”
literals.

Definition 20. A production r is triggered by a transition
(s, a, s′) if s satisfies the precondition pre(r) and a =
act(r). A production r is (weakly) consistent with (s, a, s′)
if either ¬ r is not triggered by (s, a, s′) or s′ satisfies
the post(r) and all variables not mentioned in post(r) have
the same values in both s and s′.

An example of an action production is “Do : v1 = 0, v2 =
1 → v1 = 2, v3 = 1”. It is triggered only when the Do
action is executed in a state where v1 = 0 and v2 = 1, and
defines the value of v1 to be 2 and v3 to be 1 in the next state,
with all other variables staying unchanged.

A set of action productions (SAP) is consistent with a
state transition if all productions in the SAP are consistent
with it. Let k-SAP be the hypothesis space of models repre-
sented by a SAP with no more than k variables per produc-
tion. Note that k-SAP is strictly more general than propo-
sitional STRIPS operators since it can express conditional
effects, where each conditional effect might depend on a dif-
ferent set of variables.

Lemma 2. k-SAP is efficiently well-structured.

Proof. k-SAP is closed under union because unioning the
productions of any two SAPs results in a SAP, which im-
plies that it is well-structured. Given an observed transition
(s, a, s′), a k-SAP model is refined by removing productions
that are not consistent with (s, a, s′), which takes polyno-
mial time.

Lemma 3. k-SAP has polynomial height.

Proof. The total number of productions in k-SAP =

O
(
m
∑k

i=1

(
n
i

)
(d+1)2i

)
= O(mnkd2k) because a produc-

tion can have one of m actions and up to k relevant variables
figuring on either side of the production, each variable set to
a value in its domain. At the root of the generalization graph
is the hypothesis that contains all the productions, and at the
leaf is the hypothesis that contains no productions. Because
the longest path from the root to the leaf involves remov-
ing a single production at a time, the height of k-SAP is
O(mnkd2k).

Theorem 3. k-SAP is polynomial-time learnable in the
MBP framework.

Table 1: The principal differences between the MBP and PLEX frameworks.
MBP PLEX

Planning problem Externally generated Internally generated
Experiment design Irrelevant Relevant
Sample complexity Polynomial number of mistakes Polynomial number of planning attempts
Computational complexity Polynomial per response Polynomial

Proof. This follows from Lemmas 2 and 3, and Corollary 1.

A k-SAP model is nondeterministic if it contains two pro-
ductions for the same action whose preconditions overlap
but postconditions disagree. This ambiguity can be resolved
by picking any state that triggers both productions and exe-
cuting the corresponding action. Let the goal language Conj
consist of all goals that can be expressed as conjunctions of
“variable = value” constraints.
Lemma 4. (k-SAP, Conj) permits efficient experiment de-
sign.

Proof. Given an action, the possible pairs of overlapping
productions in k-SAP is O(n2kd4k). Each pair gives rise
to exactly one goal described by the conjunctive union of
preconditions of the two productions. Hence, the width of
(k-SAP, Conj) is O(n2kd4k), which is a polynomial in the
domain parameters. Consequently, experiment design is ef-
ficient because it involves searching a polynomial number of
pairs for those with overlapping preconditions and conflict-
ing postconditions.

Theorem 4. (k-SAP, Conj) is polynomial-time learnable in
the PLEX framework.

Proof. This follows from Lemmas 2, 3, and 4, and Corol-
lary 2.

Discussion and Related Work
The first contribution of this work is the identification of the
role of adequate models in characterizing the complexity of
learning with a small number of mistakes. Exact action mod-
els are sometimes too complex for the purposes of planning
adequately and require too much effort to learn. The frame-
works allow the agent to learn models that are adequate for
planning. The second contribution is the development of the
PLEX framework which allows the learner to direct its ex-
ploration in ways that inform its model. We clarify the re-
lationship between the expressiveness of the goal language
and its usefulness in learning the action models. The third
contribution is providing specific algorithms for learning a
concrete hypothesis space that is in some ways more gen-
eral than standard action modeling languages. For example,
unlike propositional STRIPS operators, k-SAP captures the
conditional effects of actions.

Our work is partly inspired by the exploration problem
in model-based reinforcement learning in factored MDPs.
Here one seeks a PAC-MDP algorithm, which guarantees
that the agent is performing suboptimally for at most a poly-
nomial number of time steps in the sizes of the state and

the action spaces (Strehl et al. 2006). RMAX is an exam-
ple of PAC-MDP algorithm which employs the principle
of optimism under uncertainty to explore efficiently (Braf-
man and Tennenholtz 2002). It initiates learning with opti-
mistic transition and reward models that assumes that the
unknown states have high rewards, which automatically en-
courages the agent to visit these states. Unfortunately, inter-
esting MDPs have prohibitively large state spaces and be-
ing polynomial in their size is not good enough. DBN-E3

and Factored-RMAX learn action models represented as dy-
namic Bayesian networks (DBNs) and guarantee at most
a polynomial number of suboptimal actions in the mini-
mal size of their domain models (Kearns and Koller 1999;
Guestrin, Patrascu, and Schuurmans 2002). A generalization
of this approach to arbitrary model classes is based on the
notion of KWIK learning (Li, Littman, and Walsh 2008).
KWIK-learning is a function learning framework that ex-
tends PAC-learning by requiring that the learner knows ex-
actly when its knowledge of the target function is approx-
imately correct. KWIK-learning of action models can be
plugged into RMAX to yield KWIK-RMAX, which guar-
antees polynomial scaling with respect to the size of the ac-
tion models. The key idea is to run RMAX in the outer loop
and generate useful new experience for the internal KWIK
learner. When the KWIK learner reports that it does not
know a particular transition, RMAX assumes a transition to
a high reward state, biasing KWIK-RMAX toward exploring
such states.

The MDP framework is more general than the determinis-
tic action models considered here in that it includes stochas-
ticity and rewards. However, the following reasons moti-
vate the study of deterministic models. First, note that all
these frameworks (including ours) leave open the problem
of probabilistic planning, which is much harder and lesser
understood than deterministic planning. Second, studying
deterministic models offers some important insights. For ex-
ample, we have uncovered the notions of adequacy and well-
structured hypothesis spaces which are central for success-
ful learning in our framework. The well-structured property
is related to the well-ordered property of Natarajan (1987),
which is a necessary and sufficient condition for concept
learning with one-sided error. It is thus possible to view
our work as reducing model-learning to one-sided mistake-
bounded concept learning, where the learned hypothesis is
always guaranteed to be a superset of the target concept.
Without the one-sided mistake guarantee, the learner might
not be able to plan successfully in some cases because its hy-
pothesis may not allow certain transitions that are needed for
a successful plan. To get around this difficulty, Walsh (2010)
studies the efficient learning in the framework of appren-

ticeship learning where a teacher gives examples of better
plans when the learner produces a bad plan. The KWIK
framework can be viewed as another way of getting around
this difficulty, where the learner explicitly signals when its
model is inadequate. Third, studying goal-directed planning
allows us to explicate the structural interplay between the
action model language and the goal language, an issue that
does not arise in the MDP framework.

As for the learning of relational planning operators, Op-
maker in the GIPO system (McCluskey, Richardson, and
Simpson 2002) takes as input a partial domain knowledge
of the object behaviors and descriptions, training operator
sequences, and user interaction and outputs parameterized
flat or hierarchical operator models. In contrast, our learning
schemas facilitate autonomous operator learning for propo-
sitional descriptions of the primitive operators. The ARMS
algorithm (Yang, Wu, and Jiang 2005) learns approximate
operator models from successful example plans (without as-
suming that the intermediate states are provided) by gather-
ing knowledge on the statistical distribution of frequent sets
of actions in the example plans and solving a weighted satis-
fiability problem. Instead, our learning schemas assume full
observability and are online in nature.

While STRIPS-like languages served us well in planning
research by creating a common useful platform, they are not
designed from the point of view of learnability or planning
efficiency. Many domains such as robotics and real-time
strategy games are not amenable to such clean and simple
action specification languages. This suggests an approach
where the learner considers increasingly complex models
as dictated by its planning needs. For example, the model
learner might consider increasing the value of k if the pa-
rameterized hypothesis spaces like k-SAP are inadequate for
the goals encountered. In general, this motivates for a more
comprehensive framework in which planning and learning
are tightly integrated, the premise of this paper. Another di-
rection is to investigate better exploration methods that go
beyond using optimistic models to include Bayesian and
utility-guided optimal exploration.

Acknowledgments
This research is supported by the Army Research Office
under grant number W911NF-09-1-0153. We thank the re-
viewers for many useful comments. We also thank Roni
Khardon for pointing out some crucial errors in a previous
version of the paper and the organizers of the workshop for
their patience.

References
Brafman, R., and Tennenholtz, M. 2002. R-MAX — A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. Journal of Machine Learning Re-
search 3:213–231.
Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002.
Algorithm-Directed Exploration for Model-Based Rein-
forcement Learning in Factored MDPs. In ICML.
Kearns, M., and Koller, D. 1999. Efficient Reinforcement
Learning in Factored MDPs. In IJCAI.

Li, L.; Littman, M.; and Walsh, T. 2008. Knows What It
Knows: A Framework for Self-Aware Learning. In ICML.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic Seman-
tics for High-Level Actions. In ICAPS.
McCluskey, T.; Richardson, N.; and Simpson, R. 2002. An
Interactive Method of Inducing Operator Descriptions. In
International Conference on Artificial Intelligence Planning
Systems.
Natarajan, B. K. 1987. On Learning Boolean Functions. In
Annual ACM Symposium on Theory of Computing.
Strehl, A.; Li, L.; Wiewiora, E.; Langford, J.; and Littman,
M. 2006. PAC Model-free Reinforcement Learning. In
ICML.
Walsh, T., and Littman, M. 2008. Efficient Learning of
Action Schemas and Web-Service Descriptions. In AAAI.
Walsh, T. 2010. Efficient Learning of Relational Models for
Sequential Decision Making. Ph.D. Dissertation, Rutgers
University.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning Action
Models from Plan Examples with Incomplete Knowledge.
In International Conference on Automated Planning and
Scheduling.

