
Erez Karpas Sergio Jiménez Celorrio Subbarao Kambhampati (Eds.)

PAL 2011

3rd Workshop on Planning and Learning

Co-located with ICAPS 2011

Freiburg, Germany, June 13, 2011

Proceedings

c©2011 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes.
Re-publication of material from this volume requires permission by the copyright owners.

Editors’ addresses:

karpase@technion.ac.il, sjimenez@inf.uc3m.es, rao@asu.edu

Preface
Planning has been defined as the process of thinking before acting, while machine learning has been defined as the process of
improving with experience. Although these two areas seem to be quite different, machine learning is actually very useful in all
stages of planning, from learning models for planning problems, to learning domain-specific search control, and even online
learning during problem solving. This workshop aims to provide a forum for discussing current advances in using learning
techniques for all areas of planning.

Automated planners traditionally reason about correct and complete descriptions of planning tasks. These descriptions
include models of the actions that can be carried out in the environment together with a specification of the state of the environ-
ment and the goals to achieve. In the real-world, actions may result in numerous outcomes, the perception of the state of the
environment may be partial and the goals may not be completely defined. Specifying planning tasks from scratch under these
conditions becomes complex, even for experts.

Furthermore, despite great progress that has been made in the field of domain independent planning — powerful domain-
independent heuristics, useful landmarks analysis or novel propagators for use in a planning-as-CSP framework, to name but a
few — hand-crafted domain-specific planners tend to outperform general domain independent planners. The drawback of such
guidance is the amount of human effort needed to produce suitable guidance for each domain — the key motivation behind
domain-independent approaches.

Machine learning can be used to help with both of these problems. The aim is to eliminate the human bottleneck by
automating the process of acquiring domain-specific knowledge (either in the form of a domain model, or as search guidance).
In doing so, the system as a whole becomes domain independent once again — the learning system can be used on each domain
of interest.

This workshop aims to provide a forum for discussing issues surrounding the use of learning techniques in planning,
continuing the lineage of the events of ICAPS 2007 and 2009. The topics that will be covered include, but are not limited to:

• Approaches to learning search guidance

• Approaches to learning of planning models — action modelling, model-lite planning, . . .

• Representation of learned knowledge — control rules, heuristics, macro-actions, . . .

• Applying learning to portfolio-based planners

• Hybrid learned-guidance–generic-heuristic search

• Applications of planning and learning

• Learning during planning

• Future Challenges for the IPC Learning Part

• Using machine learning in activity/plan/goal recognition

• The impact of problems sets on what can be learned

We thank the authors for their submissions and the program committee for their hard work.

May 2011 Erez Karpas, Sergio Jiménez Celorrio and Subbarao Kambhampati

2

Organizing Committee
Erez Karpas, Technion – Israel Institute of Technology
Sergio Jiménez Celorrio, Universidad Carlos III de Madrid
Subbarao Kambhampati, Arizona State University

Program Committee
Daniel Borrajo, Universidad Carlos III de Madrid
Alan Fern, Oregon State University
Alfonso Gerevini, Universitá degli Studi di Brescia
Bob Givan, Purdue University
Hakim Newton, NICTA
Adele Howe, Colorado State University
Roni Khardon, Tufts University
Shaul Markovitch, Technion
Lee McCluskey, University of Huddersfield
Ioannis Refanidis, University of Macedonia
Scott Sanner, NICTA and ANU
Prasad Tadepalli, Oregon State University
Jia-Hong Wu
Sungwook Yoon, PARC
Shlomo Zilberstein, University of Massachusetts, Amherst

3

Contents
Instance-Based Parameter Tuning and Learning for Evolutionary AI Planning

Mátyás Brendel and Marc Schoenauer 5

FD-Autotune: Domain-Specific Configuration using Fast Downward
Chris Fawcett, Malte Helmert, Holger Hoos, Erez Karpas, Gabriele Röger and Jendrik Seipp 13

Generating Fast Domain-Specific Planners by Automatically Configuring a Generic Parameterised Planner
Mauro Vallati, Chris Fawcett, Alfonso E. Gerevini, Holger H. Hoos and Alessandro Saetti 21

Fast Downward Stone Soup: A Baseline for Building Planner Portfolios
Malte Helmert, Gabriele Röger and Erez Karpas 28

Learning Domain Control Knowledge for TLPlan and Beyond
Tomás de la Rosa and Sheila McIlraith 36

Efficient Learning of Action Models for Planning
Neville Mehta, Prasad Tadepalli and Alan Fern 44

Reactive, Proactive, and Passive Learning about Incomplete Actions
Christopher Weber and Daniel Bryce 52

Reasoning about Robocup-soccer Narratives
Hannaneh Hajishirzi, Julia Hockenmaier, Erik T. Mueller and Eyal Amir 60

Cost-Based Learning for Planning
Srinivas Nedunuri, William R. Cook and Douglas R. Smith 68

Learning and Application of High-Level Concepts with Conceptual Spaces and PDDL
Richard Cubek and Wolfgang Ertel 76

4

Instance-Based Parameter Tuning and Learning for Evolutionary AI Planning

Mátyás Brendel and Marc Schoenauer
Projet TAO, INRIA Saclay & LRI

Université Paris Sud
Orsay, France

Abstract

Learn-and-Optimize (LaO) is a generic surrogate
based method for parameter tuning combining learning
and optimization. In this paper LaO is used to tune
Divide-and-Evolve (DaE), an Evolutionary Algorithm
for AI Planning. The LaO framework makes it possi-
ble to learn the relation between some features describ-
ing a given instance and the optimal parameters for this
instance, thus it enables to extrapolate this relation to
unknown instances in the same domain. Moreover, the
learned model is used as a surrogate-model to acceler-
ate the search for the optimal parameters. It hence be-
comes possible to solve intra-domain and extra-domain
generalization in a single framework. The proposed im-
plementation of LaO uses an Artificial Neural Network
for learning the mapping between features and optimal
parameters, and the Covariance Matrix Adaptation Evo-
lution Strategy for optimization. Results demonstrate
that LaO is capable of improving the quality of the DaE
results even with only a few iterations. The main lim-
itation of the DaE case-study is the limited amount of
meaningful features that are available to describe the in-
stances. However, the learned model reaches almost the
same performance on the test instances, which means
that it is capable of generalization.

Introduction
Parameter tuning is basically a general optimization prob-
lem applied off-line to find the best parameters for com-
plex algorithms, for example for Evolutionary Algorithms
(EAs). Whereas the efficiency of EAs has been demon-
strated on several application domains (Yu et al. 2008;
Lobo, Lima, and Michalewicz 2007), they usually need
computationally expensive parameter tuning. Consequently,
one is tempted to use either the default parameters of the
framework he is using, or parameter values given in the lit-
erature for problems that are similar to his one.

Being a general optimization problem, there are as many
parameter tuning algorithms as optimization techniques
(Eiben et al. 2007; Montero, Riff, and Neveu 2010). How-
ever, several specialized methods have been proposed, and
the most prominent today are Racing (Birattari et al. 2002),
REVAC (Nannen, Smit, and Eiben 2008), SPO (Bartz-
Beielstein, Lasarczyk, and Preuss 2005), and ParamILS
(Hutter et al. 2009). All these approaches face the same cru-

cial generalization issue: can a parameter set that has been
optimized for a given problem be successfully used to an-
other one? The answer of course depends on the similarity
of both problems. However, even in an optimization do-
main as precisely defined as AI Planning, there are very few
results describing meaningful similarity measures between
problem instances. Moreover, until now, sufficiently precise
and accurate features have not been specified that would al-
low the user to accurately describe the problem, so that the
optimal parameter-set could be learned from this feature-set,
and carried on to other problems with similar description. To
the best of our knowledge, no design of a general learning
framework with some representative domains of AI planning
has been proposed, and no general experiments has been car-
ried out yet in this direction.

In the SAT domain, however, one work must be given as
an example of what can be done along those lines. In (Hut-
ter et al. 2006), many relevant features have been gathered
based on half a century of SAT-research, and hundreds of
papers. Extensive parameter tuning on several thousands of
instances has allowed the authors to learn, using function
regression, a meaningful mapping between the features and
the running-time of a given SAT solver with given param-
eters. Optimizing this model makes it possible to choose
the optimal parameters for a given (unknown) instance. The
present paper aims at generalizing this work made in AI
planning, with one major difference: the target will be here
to optimize the fitness value for a given runtime, and not the
runtime to solution – as the optimal solution is generally not
known for AI planning problems. The Learn-and-Optimize
(LaO) framework consists of the combination of optimizing
(i.e., parameter tuning) and learning, i.e., finding the map-
ping between features and best parameters. Furthermore,
the results of learning will already be useful during further
the optimization phases, using the learned model as in stan-
dard surrogate-model based techniques (see e.g., (Bardenet
and Kégl 2010) for a Gaussian-process-based approach).

LaO can of course be applied to any target optimization
methodology that requires parameter tuning. In this pa-
per, the target optimization technique is Evolutionary Al-
gorithms (EA), more precisely the evolutionary AI planner
called Divide-and-Evolve (DaE). However, DaE will be here
considered as a black-box algorithm, without any modifica-
tion for the purpose of this work than its original version

5

described in (Jacques Bibai et al. 2010b).
The paper is organized as follows: AI Planning Problems

and the classical YAHSP solver are briefly introduced in
section . Section describes the evolutionary Divide-and-
Evolve algorithm. Section introduces the original, top level
parameter tuning method, Learn-and-Optimize. The case
study presented in Section applies LaO to DaE, following
the rules of the International Planning Competition 2011 –
Learning Track. Finally, conclusions are drawn and further
directions of research are proposed in Section .

AI Planning

An Artificial Intelligence (AI) planning problem is defined
by the triplet of an initial state, a goal state, and a set of
possible actions. An action modifies the current state and
can only be applied if certain conditions are met. A solu-
tion plan to a planning problem is an ordered list of actions,
whose execution from the initial state achieves the goal state.
The quality criterion of a plan depends on the type of avail-
able actions: in the simplest case (e.g. STRIPS domain), it
is the number of actions; it may also be the total cost of the
plan for actions with cost; and it is the total duration of the
plan, aka makespan, for temporal problems with so called
durative actions.

Domain-independent planners rely on the Planning Do-
main Definition Language PDDL2.1 (Fox and Long 2003).
The history of PDDL is closely related to the different
editions of the International Planning Competitions (IPCs
http://ipc.icaps-conference.org/), and the
problems submitted to the participants, written in PDDL, are
still the main benchmarks in AI Planning.

The description of a planning problem consists of two
separate parts usually placed in two different files: the
generic domain on the one hand and a specific instance sce-
nario on the other hand. The domain file specifies object
types and predicates, which define possible states, and ac-
tions, which define possible state changes. The instance sce-
nario declares the actual objects of interest, gives the initial
state and provides a description of the goal. A state is de-
scribed by a set of atomic formulae, or atoms. An atom is
defined by a predicate followed by a list of object identifiers:
(PREDICATE NAME OBJ1 ... OBJN).

The initial state is complete, whereas the goal might be a
partial state. An action is composed of a set of preconditions
and a set of effects, and applies to a list of variables given
as arguments, and possibly a duration or a cost. Precondi-
tions are logical constraints which apply domain predicates
to the arguments and trigger the effects when they are satis-
fied. Effects enable state transitions by adding or removing
atoms.

A solution plan to a planning problem is a consistent
schedule of grounded actions whose execution in the initial
state leads to a state that contains the goal state, i.e., where
all atoms of the problem goal are true. A planning problem
defined on domain D with initial state I and goal G will be
denoted in the following as PD(I, G).

Divide-and-Evolve
Early approaches to AI Planning using Evolutionary Algo-
rithms directly handled possible solutions. However, as it is
often the case in Evolutionary Combinatorial optimization,
those direct encoding approaches have limited performance
in comparison to the traditional AI planning approaches.
Furthermore, hybridization with classical methods has been
the way to success in many combinatorial domains, as wit-
nessed by the fruitful emerging domain of memetic algo-
rithms (Hart, Krasnogor, and Smith 2005). Along those
lines, though relying on an original “memetization” prin-
ciple, a novel hybridization of Evolutionary Algorithms
(EAs) with AI Planning, termed Divide-and-Evolve (DaE)
has been proposed (Schoenauer, Savéant, and Vidal 2006;
2007). For a complete formal description, see (Jacques
Bibai et al. 2010a).

The basic idea of DaE in order to solve a planning task
PD(I, G) is to find a sequence of states S1, . . . , Sn, and to
use some embedded planner to solve the series of planning
problems PD(Sk, Sk+1), for k ∈ [0, n] (with the convention
that S0 = I and Sn+1 = G). The generation and optimiza-
tion of the sequence of states (Si)i∈[1,n] is driven by an evo-
lutionary algorithm. The fitness (quality criterion) of a list
of partial states S1, . . . , Sn is computed by repeatedly call-
ing the external ’embedded’ planner to solve the sequence
of problems PD(Sk, Sk+1), {k = 0, . . . , n}. The concate-
nation of the corresponding plans (possibly with some com-
pression step) is a solution of the initial problem. Any ex-
isting planner can be used as embedded planner, but since
guarantee of optimality at all calls is not mandatory in order
for DaE to obtain good quality results (Jacques Bibai et al.
2010a), a sub-optimal, but fast planner is used: YAHSP (Vi-
dal 2004) is a lookahead strategy planning system for sub-
optimal planning which uses the actions in the relaxed plan
to compute reachable states in order to speed up the search
process.

A state is a list of atoms built over the set of predicates and
the set of object instances. However, searching the space of
complete states would result in a rapid explosion of the size
of the search space. Moreover, goals of planning problem
need only to be defined as partial states. It thus seems more
practical to search only sequences of partial states, and to
limit the choice of possible atoms used within such partial
states. However, this raises the issue of the choice of the
atoms to be used to represent individuals, among all possi-
ble atoms. The result of the previous experiments on differ-
ent domains of temporal planning tasks from the IPC bench-
mark series (Bibai, Savéant, and Schoenauer 2009) demon-
strates the need for a very careful choice of the atoms that
are used to build the partial states. The method used to build
the partial states is based on an estimation of the earliest
time from which an atom can become true. Such estimation
can be obtained by any admissible heuristic function (e.g
h1, h2... (Haslum and Geffner 2000)). The possible start
times are then used in order to restrict the candidate atoms
for each partial state. A partial state is built at a given time
by randomly choosing among several atoms that are possi-
bly true at this time. The sequence of states is then built by
preserving the estimated chronology between atoms (time

6

consistency).
An individual in DaE is hence represented as a variable-

length ordered time-consistent list of partial states, and each
state is a variable-length list of atoms that are not pairwise
mutex, as far as the initial grounding of all atoms can tell
(exactly determining if two atoms are mutex amounts to
solving a complete planning problem). Furthermore, all op-
erators that manipulate the representation (see below) main-
tain the chronology between atoms and the approximate lo-
cal consistency of a state, i.e. avoid pairwise mutexes.

One-point crossover is used, adapted to variable-length
representation in that both crossover points are indepen-
dently chosen, uniformly in both parents. Four different mu-
tation operators have been designed, and once an individual
has been chosen for mutation (according to a population-
level mutation rate), the choice of which mutation to apply
is made according to user-defined relative weights. Because
an individual is a variable length list of states, and a state is
a variable length list of atoms, the mutation operator can act
at both levels: at the individual level by adding (addState)
or removing (delState) a state; or at the state level by adding
(addAtom) or removing (delAtom) some atoms in the given
state. The list of DaE parameters that will be tuned in this
paper is given in Table 3.

Learn-and-Optimize for Parameter Tuning
The General LaO Framework
As already mentioned, parameter tuning is actually a gen-
eral global optimization problem, thus facing the routine is-
sue of local optimality. But a further problem arises in pa-
rameter tuning, and this is the generality of the tuned pa-
rameters. Tuning only one instance has of course a sense if
only that instance is to be solved. Parameters tuned for one
instance however, may not be optimal for other instances,
as (Bibai et al. 2010) demonstrates. Furthermore, this pa-
per also demonstrates that parameter tuning for several do-
mains simultaneously is even more difficult, if at all possi-
ble. Even when generalizing parameters learned on one in-
stance to another instance of the same domain (intra-domain
generalization) might be problematic, as there are instances
with very different complexity in the same domain. The
issue is of course even more critical when aiming at inter-
domain generalization, i.e., learning the parameters on one
or several instances, and using the learned parameters on
instances of different domain than that of the training in-
stances. Indeed, differences between the domains may cause
a problem, and even instances of apparent similar complex-
ity (e.g. same number of objects) may require different set-
tings from domain to domain. The poor results with global
tuning in (Bibai et al. 2010) indicate that these are issues to
be considered. One workaround this generalization issue is
to relax the constraint of finding a single universally optimal
parameter-set, that certainly does not exist, and to focus on
learning a complex relation between instances and optimal
parameters.

The proposed Learn-and-Optimize framework (LaO)
aims at learning such relation, thus, in the ideal case, solv-
ing both the intra-domain and extra-domain generalization

problems, by adding learning to optimization. The underly-
ing hypothesis is that there exists a relation between some
features describing an instance and the optimal parameters
for solving this instance, and the goal of this work is to pro-
pose a general methodology to do so. If well designed, the
features should describe differences both between instances
from the same domain, and differences between instances of
different domains – and hence differences between domains,
too. The case study analyzed here deals with AI planning,
and some features extracted from both the domain-file and
the instance-file will be proposed later.

Suppose for now that we have n features and m parame-
ters, and we are doing per-instance parameter tuning on in-
stance I. For the sake of simplicity and generality, both the
fitness, the features and the parameters are considered as real
values. Parameter tuning is the optimization (e.g., minimiza-
tion) of the fitness function (quality-criterion) fI : Rm →
R, the expected value of the stochastic algorithm DaE exe-
cuted with parameter p ∈ Rm. The optimal parameter set is
defined by popt(I) = argminp{fI(p)}.

For each instance I, consider the set F (I) ∈ Rn of the
features describing this instance. Two relations have to be
taken into account: each planning instance has features, and
it has an optimal parameter-set. In order to be able to gen-
eralize, we have to get rid of the instance, and collapse both
relations into one single relation between feature-space and
parameter-space. By getting rid of the dependency to I we
get the relation as:

p(F) : Rn → Rm, p(F) = popt (1)
Where both F and popt is taken for that instance I of

which F belongs to. For the sake of simplicity let us assume
that there exists an unambiguous mapping from the feature
space to the optimal parameter space. However, we will in-
dicate, if some problems in the results may be caused by an
unambiguity. The relation p(F) between features and opti-
mal parameters can be learned by any supervised learning
method capable of representing, interpolating and extrapo-
lating Rn → Rm mappings, provided sufficient data are
available.

A simple method could be to use any standard parameter
tuning method for an appropriate training set of instances in
a given domain, and then to use an appropriate supervised
learning method in order to learn the relationship between
the features and the best parameters. However, learning and
optimizing may be combined, and this is the main idea be-
hind LaO. The idea of using some surrogate model in op-
timization is not new. Here, however, there are several in-
stances to optimize, and only one model is available, that
maps the feature-space into the parameter-space. Neverthe-
less, there is no question about how to use such a model of
p(F) in optimization: one can always ask the model for hints
about a given parameter-set. Of course, if the model were
perfectly fit to the training data, it would be useless, since
it would return the same hint as trained. Therefore under-
fitting when learning the mapping from feature-space to
parameter-space is beneficial during the optimization phase
in order to get new hints. One shall of course also avoid the
regular threat on learning algorithms, that is over-fitting. It

7

seems reasonable that the stopping criterion of LaO is deter-
mined by the stopping criterion of the optimizer algorithm.
After exiting one can also do a re-training of the learner with
the best parameters found.

The proposed LaO algorithm is an open framework: one
could use any appropriate learner for the mapping and any
kind of optimizer for parameter tuning. LaO can of course
be generalized to parameter tunning outside of AI planning.
In most cases, where the parameters of an algorithm are to be
tuned, there are instances of application, and in each of these
cases, there is a possibility to improve the tuning by also
learning the relation between some features and the optimal
parameters.

An Implementation of LaO
A simple multilayer Feed-Forward Artificial Neural Net-
work (ANN) trained with standard backpropagation was
chosen here for the learning of the features-to-parameters
mapping, though any other supervised-learning algorithm
could have been used. The implicit hypothesis is that the re-
lation p(F) is not very complex, which means that a simple
ANN may be used. In this work, one mapping is trained for
each domain. Training a single domain-independent ANN
is left for future work.

The other decision for LaO implementation is the choice
of the optimizer used for parameter tuning. Because pa-
rameter optimization will be done successively for sev-
eral instances, the simple yet robust (1+1)-Covariance Ma-
trix Adaptation Evolution Strategy (Hansen and Ostermeier
2001), in short CMA-ES, was chosen, and used with its ro-
bust own default parameters. The advantage of CMA-Es is
that it does not need derivatives – which we do not have –
yet it tries to estimat a natural gradient with only a small
amount of computational time.

One original component, though, was added to some di-
rect approach to parameter tuning: gene-transfer between
instances. There will be one (1+1)-CMA-ES running for
each instance, because using larger population sizes for a
single instance would be far too costly. However, the (1+1)-
CMA-ES algorithms running on all training instances form
a population of individuals. The idea of gene-transfer is to
use some ’crossover’-like mechanism between the individu-
als of this population. Of course, the optimal parameter sets
for the different instances are different; However, a good
’chromosome’ of one instance may at least help another in-
stance. Thus it may be used as a hint in the optimization
of that other instance. Therefore random gene-transfer was
used in the present implementation of LaO, by calling the
so-called Genetransferer. When the Genetransferer is re-
quested for a hint for one instance, it returns with uniform
random distribution the so-far best parameter of a different
instance (preventing, of course, that the default parameters
are tried twice). Another benefit from gene-transfer is that
it may smoothen out the ambiguities between instances, by
increasing the probability for instances with the same fea-
tures to test the same parameters, and thus the possibility
to find out that the same parameters are appropriate for the
same features. Algorithm 1 shows the pseudo-code of the
resulting LaO.

Algorithm 1 learn-and-optimize()
Require: #cma, #epochs, instances
1: while exitCriterionFalse() do
2: for c = 1→ #cma do
3: for all I ∈ instances do
4: p← I.callCMA() //each instance has its own CMA
5: f ← I.evaluate(p) //also keeping track of best p
6: I.updateCMA(f)
7: c← c + 1
8: for all I ∈ instances do
9: I∗ ← callGenetransferer(I) //a different instance

10: p← I∗.getBestParameter()
11: f ← I.evaluate(p)
12: for all I ∈ instances do
13: p← I.getBestParameter()
14: F ← I.getFeatures()
15: addANN(F, p)
16: trainANN(#epochs)
17: for all I ∈ instances do
18: F ← I.getFeatures()
19: p← callANN(F)
20: f ← I.evaluate(p)
21: return

Care must be taken when using the ANN and the Gen-
etransferer as external hints within the standard CMA-ES
process, to avoid corrupting it. CMA-ES should be informed
about the external hints, if they improve the fitness-function.
The proposed solution is to handle them as if they were the
hint of the CMA-ES algorithm, i.e. to replace a standard re-
quest from CMA-ES by the value of the external hint, thus
minimizing possible corruption. The global step size is up-
dated with true or false, depending on the improvement or
lack of improvement, and as in the usual CMA-ES algo-
rithm, the covariance matrix is updated only in the later case.

One additional technical difficulty arose with CMA-ES:
each parameter is here restricted to an interval. This seems
reasonable and makes the global algorithm more stable.
Hence the variables of the search-space of the optimizer
are actually normalized linearly onto the [0,1] interval. It
is hence possible to apply a simple version of the box con-
straint handling technique described in (Hansen et al. 2009),
with a penalty term simply defined by ||pfeas − p||, where
pfeas is the closest value in the box, i.e. the orthogonal pro-
jection to the border. Moreover, only pfeas was recorded as
a feasible solution , and later passed to the ANN. Note that
the GeneTransferer and the ANN itself cannot send hints
outside of the box. In order to not to compromise too much
CMA-ES, several iterations of this were carried out for one
hint of the ANN and one gene-transfer.

The implementation of LaO algorithm uses the Shark li-
brary (Igel, Glasmachers, and Heidrich-Meisner 2008) for
CMA-ES and the FANN library for ANN (Nissen 2003). To
evaluate each parameter-setting with each instance, a cluster
was used, that has approximately 60 nodes, most of them
with 4 cores, some with 8. However, this cluster is used
by many researchers, therefore our algorithm was automat-
ically scheduled to only use the spare CPU cycles on this
cluster. Because of the heterogeneity of the hardware ar-

8

Domain # of # training # test ANN quality-ratio quality-ratio quality-ratio
Name iterations instances instances error in LaO ANN on train ANN on test
Freecell 16 108 230 0.1 1.09 1.05 1.04
Grid 10 55 124 0.09 1.09 1.05 1.03
Mprime 8 64 152 0.08 1.11 1.05 1.04

Table 1: Results by domains (only the actually usable training instances are shown). ANN-error is given as MSE, as returned
by FANN. The quality-improvement ratio in Lao is that of the best parameter-set found by LaO.

chitecture used here, it is not possible to rely on accurate
predicted running times. Therefore, for each evaluation, the
number of YAHSP evaluations is fixed for DaE. Note that
the number of YAHSP evaluations is approximately propor-
tional to the running time, so that the execution time for a
particular computer is also determined independently of the
parameter-settings. For example, even if the size of the pop-
ulation is increased, because of the fixed number of eval-
uations that is allowed, the number of generations will be
limited accordingly in order to approximatively allow the
same running time for each parameter-setting optimization.
Moreover, since DaE is not deterministic, 11 independent
runs were carried out for each DaE experiment with a given
paramter-set, and the fitness of this parameter set was taken
to be the median fitness-value obtained by DaE.

Results
In the Planning and Learning Part of IPC2011 (IPC), 5
sample domains were pre-published, with a corresponding
problem-generator for each domain: Ferry, Freecell, Grid,
Mprime, and Sokoban. Ferry and Sokoban were excluded
from this study since there were not enough number of in-
stances at hand to learn any mapping. For each of the re-
maining 3 domains, 100 instances were generated, since this
seemed to be appropriate for a running time of approxi-
mately 2-3 weeks: The competition track description fixes
running time as 15 minutes. For each instance, 11 indepen-
dent trials were run on a dedicated server to measure the
median of number of evaluations with our default parame-
ters. The termination criterion was the number of YAHSP
evaluations. The median of those 11 runs were used as a ter-
mination criterion for each instance in the train set on any
computer afterwards. However, many instances were never
solved within 15 minutes, and those instances were dropped
from the rest of experiment. The remaining instances were
used for training.

Table 1 shows the data for each domain, as you can see
from the approximately 100 instances from each domain we
could not always make use of all training instances, except
in the Freecell domain (108). In the other domains the more
complex instances could not be solved in 15 minutes on the
dedicated server.

Table 1 also shows information about results. The Mean
Square Error (MSE) of the retrained ANN is shown for each
domain. Note that since there can be multiple optimal pa-
rameters for the same instance (fitness-function is discrete),
there might be an unavoidable error of the ANN. 5 itera-
tions of CMA-ES were carried out, followed by one ANN

Name Default CMA-ES Transferer ANN
Freecell 0 – 9 64 – 66 18 – 8 18 – 17
Grid 2 – 24 66 – 60 16 – 11 17 – 5
Mprime 2 – 45 59 – 36 2 – 11 18 – 8

Table 2: The share of the different sub-algorithm in finding
the optimal parameters. For each sub-algorithm (Default,
CMA-ES, Transferer=Genetransferer or ANN), the percent-
age of instances on which this method gave the best param-
eter set. Each cell shows 2 figures: the first one considers all
occurrences of a method, no matter if another method also
leads to an equivalent parameter set, as good as the first one.
The second figures only consider the first method (from left
to right) that discovered the best parameter-set.

and one Genetransferer, and this cycle was iterated in the al-
gorithm. This means that for example for the Grid domain
LaO was running for 10 iterations and CMA-ES was called
50 times in total. One has to note that this is not much, but
we were restricted by time. The ANN had 3 fully connected
layers, and the hidden layer had the same number of neu-
rons as the input. Learning was done by the conventional
back-propagation algorithm, which is the default in FANN.
In one iteration of LaO the ANN was only trained once for
50 iterations (called epochs in FANN) without reseting the
weights, so that we avoid over-training. The aim of not reset-
ing the weights was that the ANN makes a graded transition
from the previous best known parameter-set to the new best
known parameter-set, which could help optimization by try-
ing some intermediate values. This means that over the 10
iterations of LaO in the domain Grid 500 iterations (epochs)
of the ANN were carried out in total. However, note that
the best parameters were trained with much less iterations,
depending on the time when they were found. In the worst
case, if the best parameter was found in the last iteration of
LaO, it was trained for only 50 epochs and not used any-
more, only recorded in the logs. This is why retraining is
needed in the end.

A parameter-set in LaO may come from different sources,
namely it can be the default parameter-set, or requested from
the CMA-ES, the Genetransferer or the ANN. It is an impor-
tant information to know how good these sources work in
optimization. Table 2 serves this purpose: it shows the share
of the sub-algorithms in finding the optimal parameter-set in
LaO, i.e. how each source contributes to the best parameter-
settings in the end. For each source the first number shows
the ratio the source contributed to the best result if tie-breaks
are taken into account, the second number shows the same,

9

Domain # goals # fluents # objects mutexdensity
Freecell 2 [28,34] 31.17, 1.68 [32, 38] 35.17, 1.68 [0.14, 0,17] 0.15, 0.005
Grid [7,9] 8, 1 [58,59] 74.07, 9.38 [56,90] 72.07, 9.38 [0.08, 0.1] 0.09, 0.009
Mprime [8,9] 9, 1 [32,40] 36, 2.09 [42,52] 47, 2.009 [0.03 0.03] 0.03, 0
IPC6 all [1,110] 23.32, 19.2 [4,217] 30.6, 25.5 [7,301] 45.2, 35.16 [0,0.48] 0.1, 0.07

Table 4: Statistics of some features per domains in the train-set. Values given are [min,max] average, standard deviation
respectively. If a feature is constant, one number is given.

Name Min Max Default
Probability of crossover 0.0 1 0.8
Probability of mutation 0.0 1 0.2
Rate of mutation add station 0 10 1
Rate of mutation delete station 0 10 3
Rate of mutation add atom 0 10 1
Rate of mutation delete atom 0 10 1
Mean average for mutations 0.0 1 0.8
Time interval radius 0 10 2
Maximum number of stations 5 50 20
Maximum number of nodes 100 100 000 10 000
Population size 10 300 100
Number of offspring 100 2 000 700

Table 3: DaE parameters that are controlled by LaO

if only the first best parameter-set is taken into account. Note
that the order of the sources is as it is in the table: for ex-
ample if CMA-ES found a different parameter-settings with
the same fitness as the default, that is not included in the first
ratio, but it is included in the second. Analyzing both num-
bers can lead to interesting conclusions. For example, for
domain Mprime the default parameter-settings was the op-
timal for 45% of the instances, however, only in 2% of the
instances there was no other parameter-setting found with
the same quality. In the domain Freecell, the share of ANN
is quite high (18%), moreover we can see that in most of the
cases the other sources did not find a parameter-set equally
good (17%). While Genetransferer in Freecell take equal
share (18%) of all the best parameters, but only a part of
them (8%) were unique. Note that CMA-ES was returning
the first hint in each iteration and had 5 times more possibil-
ities than the ANN. Taking this into account both the ANN
and Genetransferer made an important contribution to opti-
mization.

Termination criterion in the competition was simply the
available time, the algorithm was running for several weeks
on our cluster, which is used also for other research, i.e.
only a small number of 4 or 8-core processors were avail-
able for each domain in average. After stopping LaO, re-
training was made with 300 ANN epochs with the best data,
because the ANN’s saved directly from LaO may be under-
trained. The MSE error of the ANN did not decrease using
more epochs, which indicates that 300 iterations are enough
at least for this amount of data and for this size of the ANN.
Tests with 1000 iterations did not produce better results and
neither training the ANN uniquely with the first found best
parameters.

The controlled parameters of DaE are described in table
3. For a detailed description of these parameters, see (Bibai
et al. 2010). The feature-set consists of 12 features. First
there are 5 important features: the number of fluents, goals,
predicates, objects and types. These were extracted from
the domain file or the instance file using the PDDL parser.
One further feature we think could even be more important
is called mutex-density, which is the number of mutexes di-
vided by the number of all fluent-pairs. We also kept 6 less
important features: number of lines, words and byte-count -
obtained by the linux command ”wc” - of the instance and
the domain file. These features were kept only for historical
reasons: they were used in the beginning as some ”dummy”
features.

Figure 1: Distribution of the features ”number of objects”
and ”mutex-density” in train-set in Freecell domain. One dot
represents one problem, error-bars show standard deviation.

Table 4 shows some statistical properties of some selected
features for each domain. Most of the features were corre-
lated with each other, like #objects, #fluents, #goals and also
the wc-features. This means that actually we do not have
much information on the input-side. Mutex-density is good,
because it is independent of the other features, as it is shown
in figure 1. You can see that we have all kind of mutex-
densities regardless of the number of objects. Standard-
deviation-boxes look also the same for each value of number
of objects.

Figure 2 shows the optimal parameter-values for
mutation-rate and the feature “number of objects” for each

10

Figure 2: Relation between the feature ”number of objects”
and the parameter ”mutation rate” in LaO, in the train-set in
Freecell domain. Values of ”mutation rate” are the optimal
values found by LaO. This looks bad, but not unexpected.
We can explain this. It is however questionable to show it.
Error-bars-show standard deviation.

Figure 3: Relation between the feature ”number of objects”
and the parameter ”mutation rate” as learned by the ANN,
during evaluation on the test-set in Freecell domain.

training instance in the domain Freecell after terminating.
Figure 3 shows for the trained ANN the same feature and
parameter for the test-instances. We can see here what kind
of model we get after training on the data produced by LaO.
Note that these figures are the projection of the multidi-
mensional feature- and parameter-space. The seeming un-
ambiguity can have several explanations: (i) other features
may be involved in the relation (ii) LaO was executed for
a short time, therefore the relation is far from the real, op-
timal parameter-sets (iii) the feature-set is too weak to re-

solve an unambiguity. Nevertheless, the ANN seems to ’cut
through’: it reduces the relation as shown in the figure and
this is acceptable.

Since testing was also carried out on the cluster, the ter-
mination criterion for testing was also the number of eval-
uations fixed for each instance. For evaluation the quality-
improvement (quality-ratio) metric as used in IPC competi-
tions. As a baseline we took the default parameter-setting.
The ratio of the fitness value for the default parameter and
the tuned parameter was computed and average was taken
over the instances in the train or test-set.

Q =
Fitnessbaseline

Fitnesstuned
(2)

Note that since our termination criterion is number of
evaluations, there was no unsolved instance. If an instance
was unsolvable with default parameters within the specified
time, it was dropped.

Table 1 also presents several quality-improvement ratios.
Label ”in LaO” means that the best found parameter is
compared to the default. By definition this ratio can not
be less than 1 for any instance. We also present quality-
improvement ratios for the retrained ANN on the training-
set and the test-set. In these later cases, numbers less then
1 are possible, but were rare. As it can be seen we achieved
a considerable quality-gain in training, but the transfer of
this improvement to the ANN-model was only partial. Rea-
sons for this may be different. First, there is the unambigu-
ity of the mapping, second, the ANN may not be complex
enough for the mapping, but most probably the feature-set
is not powerful enough. On the other hand, the ANN model
generalizes excellently to the independent test-set. Quality-
improvement ratios dropped only by 0.01, i.e. the knowl-
edge incorporated in the ANN was transferable to the test
cases and usable almost to the same extent as for the train
set. Our results are quite similar for each domain. Even
the size of the training set seems not to be so crucial. For
example for Freecell all the instances (108 out of 108 gener-
ated) could be used, because they were not so hard. On the
other hand, only few Grid instances (55 out of 107 gener-
ated) could be used. However, both performed well. The ex-
planation for this may be that both the 32 and 108 instances
covered well the whole range of solvable instances.

Conclusions and Future Work
Our method presented in this paper is a surrogate-model
based combined learner and optimizer for parameter tuning.
We demonstrated that our algorithm is capable of improv-
ing the quality of the DaE algorithm considerably even with
only a few iterations. An appropriate number of iterations,
like 1000 shall be carried out to demonstrate the capabil-
ity of the algorithm. We also demonstrated that some of
this quality-improvement can be incorporated into an ANN-
model, which is also able to generalize excellently to an in-
dependent test-set.

Since LaO is only a framework, as indicated other kind of
learning methods, and other kind of optimization techniques
may be incorporated. If an ANN is used, the optimal struc-
ture has to be determined, or a more sophisticated solution

11

is to apply one of the so-called Growing Neural Network
architectures. Also the benefit of gene-transfer and/or cross-
over might be investigated further. Gene-transfer shall be
improved so that chromosomes are transfered deterministi-
cally in order of similarity of instances measured by similar-
ity of features. One shall also test how inter-domain gener-
alization works. It might be possible to learn a mapping for
all domains, since the features may grasp the specificity of a
domain. The present results indicate that the current feature
set is too small and should be extended for better results.
Feature-selection would become important only if the num-
ber of features is large compared to the number of examples.
Unfortunately, this is not the case yet.

Acknowledgements
This work is funded through French ANR project DESCAR-
WIN ANR-09-COSI-002.

References
Bardenet, R., and Kégl, B. 2010. Surrogating the surro-
gate: accelerating gaussian-process-based global optimiza-
tion with a mixture cross-entropy algorithm. In Proceedings
of the 27th International Conference on Machine Learning
(ICML 2010).
Bartz-Beielstein, T.; Lasarczyk, C.; and Preuss, M. 2005.
Sequential parameter optimization. In McKay, B., ed., Proc.
CEC’05, 773–780. IEEE Press.
Bibai, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2010.
On the generality of parameter tuning in evolutionary plan-
ning. In et al., J. B., ed., Genetic and Evolutionary Compu-
tation Conference (GECCO), 241–248. ACM Press.
Bibai, J.; Savéant, P.; and Schoenauer, M. 2009. Divide-
And-Evolve Facing State-of-the-Art Temporal Planners dur-
ing the 6th International Planning Competition. In Cotta, C.,
and Cowling, P., eds., EvoCOP’09), number 5482 in LNCS,
133–144. Springer-Verlag.
Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K.
2002. A Racing Algorithm for Configuring Metaheuristics.
In GECCO ’02, 11–18. Morgan Kaufmann.
Eiben, A. E.; Michalewicz, Z.; Schoenauer, M.; and Smith,
J. E. 2007. Parameter control in evolutionary algorithms. In
Lipcoll et al. (2007). chapter 2, 19–46.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR
20:61–124.
Hansen, N., and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary Computation 9(2):159–195.
Hansen, N.; Niederberger, S.; Guzzella, L.; and Koumout-
sakos, P. 2009. A method for handling uncertainty in evolu-
tionary optimization with an application to feedback control
of combustion. IEEE Transactions on Evolutionary Compu-
tation 13(1):180–197.
Hart, W.; Krasnogor, N.; and Smith, J., eds. 2005. Recent
Advances in Memetic Algorithms. Studies in Fuzziness and
Soft Computing, Vol. 166. Springer Verlag.

Haslum, P., and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. AIPS-2000, 70–82.
Hutter, F.; Hamadi, Y.; Hoos, H. H.; and Leyton-Brown,
K. 2006. Performance prediction and automated tuning of
randomized and parametric algorithms. In CP 2006, number
4204 in lncs, 213–228. Springer Verlag.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Igel, C.; Glasmachers, T.; and Heidrich-Meisner, V. 2008.
Shark. Journal of Machine Learning Research 9:993–996.
Jacques Bibai; Pierre Savéant; Marc Schoenauer; and Vin-
cent Vidal. 2010a. An evolutionary metaheuristic based
on state decomposition for domain-independent satisficing
planning. In ICAPS 2010, 18–25. AAAI press.
Jacques Bibai; Pierre Savéant; Marc Schoenauer; and Vin-
cent Vidal. 2010b. On the benefit of sub-optimality within
the divide-and-evolve scheme. In Cowling, P., and Merz,
P., eds., EvoCOP 2010, number 6022 in Lecture Notes in
Computer Science, 23–34. Springer-Verlag.
Lobo, F.; Lima, C.; and Michalewicz, Z., eds. 2007. Param-
eter Setting in Evolutionary Algorithms. Berlin: Springer.
Montero, E.; Riff, M.-C.; and Neveu, B. 2010. An evalua-
tion of off-line calibration techniques for evolutionary algo-
rithms. In Proc. ACM-GECCO, 299–300. ACM.
Nannen, V.; Smit, S. K.; and Eiben, A. E. 2008. Costs and
benefits of tuning parameters of evolutionary algorithms. In
Proceedings of the 20th Conference on Parallel Problem
Solving from Nature.
Nissen, N. 2003. Implementation of a Fast Artificial Neural
Network Library (FANN). Technical report, Department of
Computer Science University of Copenhagen (DIKU).
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006.
Divide-and-Evolve: a New Memetic Scheme for Domain-
Independent Temporal Planning. In Gottlieb, J., and Raidl,
G., eds., Proc. EvoCOP’06. Springer Verlag.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2007. Divide-
and-Evolve: a Sequential Hybridization Strategy using Evo-
lutionary Algorithms. In Michalewicz, Z., and Siarry, P.,
eds., Advances in Metaheuristics for Hard Optimization,
179–198. Springer.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS’04),
150–159. Whistler, BC, Canada: AAAI Press.
Yu, T.; Davis, L.; Baydar, C.; and Roy, R., eds. 2008. Evolu-
tionary Computation in Practice. Studies in Computational
Intelligence 88, Springer Verlag.

12

FD-Autotune: Domain-Specific Configuration using Fast Downward
Chris Fawcett

University of British Columbia
fawcettc@cs.ubc.ca

Malte Helmert
Albert-Ludwigs-Universität Freiburg
helmert@informatik.uni-freiburg.de

Holger Hoos
University of British Columbia

hoos@cs.ubc.ca

Erez Karpas
Technion

karpase@technion.ac.il

Gabriele Röger
Albert-Ludwigs-Universität Freiburg
roeger@informatik.uni-freiburg.de

Jendrik Seipp
Albert-Ludwigs-Universität Freiburg

seipp@informatik.uni-freiburg.de

Abstract

In this work, we present the FD-Autotune learning planning
system, which is based on the idea of domain-specific con-
figuration of the latest, highly parametric version of the Fast
Downward Planning Framework by means of a generic auto-
mated algorithm configuration procedure. We describe how
the extremely large configuration space of Fast Downward
was restricted to a subspace that, although still very large,
can be managed by a state-of-the-art automated configuration
procedure. Additionally, we give preliminary results obtained
from applying our approach to the nine domains of the IPC-
2011 learning track, using the well-known ParamILS config-
urator and the recently developed HAL experimentation en-
vironment.

Introduction
Developers of state-of-the-art, high-performance algorithms
for combinatorial problems, such as planning, are frequently
faced with many interdependent design choices. These
choices can include the heuristics to use during search, op-
tions controlling the behaviour of these heuristics, as well as
which search techniques to use and in what combination.

Recent work in other combinatorial problem domains
such as satisfiability (SAT) and mixed-integer program-
ming (MIP) suggests that by exposing these design choices
as parameters, developers can leverage generic tools for
automated algorithm configuration to find performance-
optimizing configurations of the resulting highly parame-
terised algorithm (Hutter et al. 2007; Hutter, Hoos, and
Leyton-Brown 2010). In fact, the configurations resulting
from this process often perform substantially better than
those found manually through exploration by human ex-
perts.

These results suggest the following new approach to
building a learning planner. Given a highly-parametric, gen-
eral purpose planner P , a representative set I of planning
instances from a specific domain, and a performance metric
m to be optimised, we can obtain a configuration of the pa-
rameters of P optimised for performance on I with respect
to m using a generic automated algorithm configuration tool.

For this submission, we apply the above approach using
a new, highly-parameterised version of the Fast Downward
planning system (Helmert 2006) and the state-of-the-art

automated algorithm configuration tool ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), creating
domain-specific planning algorithms FD-Autotune.s (speed)
and FD-Autotune.q (quality). FD-Autotune.s refers to the
specific configuration of Fast Downward resulting from us-
ing mean runtime to find an initial satisficing plan as the
optimisation metric, and FD-Autotune.q is the configuration
obtained when using mean plan cost after a fixed runtime as
the optimisation metric. Due to the highly structured and po-
tentially infinite configuration space of Fast Downward, we
carefully limited the number of parameters in order to com-
ply with the requirements of ParamILS and to retain as many
potential planner configurations as possible. Our learning
approach was implemented to take advantage of HAL, a re-
cently released tool for automating the specification and ex-
ecution of common empirical algorithm design and analysis
tasks (Nell et al. 2011).

The remainder of this paper is organised as follows.
First, we describe the Fast Downward Planning Frame-
work, as well as the configuration spaces used for both
FD-Autotune.s and FD-Autotune.q. Next, we give a brief
overview of both recent work in automated algorithm con-
figuration and of the HAL experimentation environment.
We then describe the experimental design of our IPC-2011
learning track submission and give preliminary results for
the nine learning track domains. Finally, we briefly discuss
some avenues for further work in this area.

The Fast Downward Planning Framework
In this section, we describe the capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS+ representation. This is done by finding groups
of propositions which are mutually exclusive and combin-
ing them into a single SAS+ variable. The preprocessor

13

performs a relevance analysis and precomputes some data
structures that are used by the search component and cer-
tain heuristics. The search component, whose capabilities
we will describe in detail here, searches for a solution to the
given SAS+ task.

Search
The search component features three main types of search
algorithms:

• Eager Best-First Search — the classic best-first search.
The same search code is used for greedy best-first search,
A∗, and weighted A∗ by plugging in different f functions.
The multi-path-dependent LM-A∗ (Karpas and Domshlak
2009) is also implemented here.

• Lazy Best-First Search — this is best-first search with de-
ferred evaluation (Richter and Helmert 2009). Here as
well, the same search code is used for lazy greedy best-
first search and lazy weighted A∗ by using a different f
function.

• Enforced Hill-Climbing (Hoffmann and Nebel 2001) —
an incomplete local search technique. This has been
slightly generalised from classic EHC to allow preferred
operators from multiple heuristics, as well as enabling or
disabling preferred operator pruning.

Each of these search algorithms can take several parame-
ters and use one or more heuristics (heuristic combination
methods will be discussed next). In addition, these searches
can be run in an iterated fashion. This can be used, for ex-
ample, to produce RWA∗ (Richter, Thayer, and Ruml 2010),
the search algorithm used in LAMA (Richter and Westphal
2010).

Heuristic Combination
As mentioned previously, the search algorithms described
above can work with multiple heuristic evaluators. There
are several heuristic combination methods available in the
Fast Downward planning system, which are implemented as
different kinds of open lists.

Some of these combination methods amount to simple
arithmetic combinations of heuristic values and can use a
standard (“regular”) open list implementation, while others
treat the different heuristic estimates 〈h1(s), . . . , hn(s)〉 as
a vector that is not reduced to a single scalar value (Röger
and Helmert 2010).1 As a result, some of these latter meth-
ods do not necessarily induce a total order on the set of open
states. The following combination methods are available in
Fast Downward, in addition to performing a regular search
using a single heuristic:
• Max — takes the maximum of several heuristic estimates:

max{h1(s), . . . , hn(s)}.
• Sum — takes the sum or weighted sum of several heuristic

estimates: w1h1(s) + · · ·+ wnhn(s).

1To simplify discussion, this description assumes that search al-
gorithm behaviour only depends on heuristic values, but all these
algorithms can also take into account path costs, as in A∗ or
weighted A∗.

• Selective Max (Domshlak, Karpas, and Markovitch 2010)
— a learning-based method which chooses one heuristic
to evaluate at each state: hi(s) where i is chosen on a per-
state basis using a naive Bayes classifier trained on-line.

• Tie-breaking — considers the heuristics in fixed order:
first consider h1(s); if ties need to be broken, consider
h2(s); and so on.

• Pareto-optimal — considers all states whose heuristic
value vector is not Pareto-dominated by another heuristic
value vector as candidates for expansion, with selection
between multiple candidates performed randomly.

• Alternation (Dual Queue) — uses heuristics in a round-
robin fashion: the first expansion uses h1(s), the second
uses h2(s), and so on until hn(s) and then continuing
again with h1(s). Alternation can also be enhanced by
boosting (Richter and Helmert 2009).

Each combination method can take several parameters. One
important parameter is whether the open list contains only
states which have been reached via preferred operators, or
all states.

Moreover, wherever this makes sense, instead of using
different heuristics as their components, these combination
methods can also combine the results of different open lists
which can themselves employ combination methods, and
this nesting can even be performed recursively. For exam-
ple, it is possible to use alternation over one regular heuris-
tic, one Pareto-based open list, and one open list that uses
tie-breaking over various weighted sums.

Such combinations allow us to build the “classic” boosted
dual queue of Fast Downward: use an alternation approach,
which combines two standard open lists, one of which holds
all states, and the other only preferred states, both of which
are based on a single heuristic estimate. To use two heuristic
estimates as in Fast Diagonally Downward (Helmert 2006)
or LAMA (Richter and Westphal 2010), alternation over
four open lists would be used (for each heuristic, one hold-
ing all states and one holding only preferred states).

Heuristics
So far, we have discussed the search algorithms and heuristic
combination methods available in the Fast Downward plan-
ning system. We now turn our attention to the heuristics
available in Fast Downward. Due to the number of heuris-
tics, we simply list the available heuristics, with pointers to
relevant literature.

Admissible Heuristics
• Blind — 0 for goal states, 1 (or cheapest action cost for

non-unit-cost tasks) for non-goal states
• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and

Geffner 1999) — the relaxation-based maximum heuristic
• hm (Haslum and Geffner 2000) — a very slow implemen-

tation of the hm heuristic family
• hM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —

the merge-and-shrink heuristic
• hLA (Karpas and Domshlak 2009; Keyder, Richter, and

Helmert 2010) — the admissible landmark heuristic

14

Algorithm Categorical Numeric Total Configurations

FD-Autotune.s 40 5 45 2.99× 1013

FD-Autotune.q 64 13 77 1.94× 1026

Table 1: The number of categorical and numeric parameters
in the reduced configuration space for both FD-Autotune.s and
FD-Autotune.q, as well as the total number of distinct configura-
tions for each.

• hLM-cut (Helmert and Domshlak 2009) — the landmark-
cut heuristic

Inadmissible Heuristics
• Goal Count — number of unachieved goals

• hadd (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based additive heuristic

• hFF (Hoffmann and Nebel 2001) — the relaxed plan
heuristic

• hcg (Helmert 2004) — the causal graph heuristic

• hcea (Helmert and Geffner 2008) — the context-enhanced
additive heuristic (a generalisation of hadd and hcg)

• hLM (Richter, Helmert, and Westphal 2008; Richter and
Westphal 2010) — the landmark heuristic

Apart from Goal Count, all heuristics listed above are cost-
based versions (that is, they support non-unit cost actions).
This also allows another option for these heuristics: action-
cost adjustment. It is possible to tell the heuristics (as well as
the search code) to treat all actions as unit-cost (regardless of
their true cost) or to add 1 to all action costs. This has been
found to be helpful in tasks with 0-cost actions (Richter and
Westphal 2010).

Configuration Space
The configuration space of Fast Downward poses a chal-
lenge in formulating the parameter space to be explored by a
parameter-tuning algorithm: structured parameters. For ex-
ample, it is possible to configure an alternation open list that
alternates between two internal alternation open lists, each
of which alternates between their own internal alternation
open lists, and so on. Since ParamILS (Hutter et al. 2007)
does not handle structured parameters, we had to limit the
configuration space somewhat.

The configuration spaces used in this work (as shown in
Table 2, located in the appendix) contain a Boolean param-
eter for each heuristic (all heuristics for satisficing planning,
only admissible heuristics for optimal planning), indicating
whether that heuristic is in use or not. The other parameters
of the heuristic (if any) are conditional on the heuristic being
used.

For optimal planning, the search algorithm is predeter-
mined (A∗), and so our only other choice is, when more than
one heuristic is used, how the heuristics are combined (the
relevant options are Max and Selective Max). This is con-
trolled by another parameter, which is conditional on more
than one heuristic being chosen.

For satisficing planning, the setting that applies to the
planning and learning competition, the theoretical config-
uration space is much more complex, since combination
methods such as alternation and weighted sums introduce
an infinite set of possibilities.

To keep the configuration space manageable, we only al-
low one layer of alternation, and its components must be
standard open lists (sorted by scalar ranking values), one
for each heuristic that was selected, and possibly more if
preferred operators are used. In addition, we can combine
search algorithms using iterated search as in RWA∗. Here,
we limit the number of searches to a maximum of 5, in order
to avoid an infinitely large structured configuration space.
As shown in Table 1, FD-Autotune.s and FD-Autotune.q
have many parameters, with 2.99×1013 and 1.94×1026 dis-
tinct configurations, respectively. (The difference is due to
the fact that iterated search is not very useful for the “speed”
setting, and hence is not enabled there.) These configuration
spaces are some of the largest ever experimented with using
automated algorithm configuration tools.

Automated Configuration
For the configuration task faced in the context of this work,
we chose to use the FocusedILS variant of ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), because it
is the only procedure we are aware of that has been demon-
strated to perform well on algorithm configuration problems
as hard as the one encountered here. ParamILS is fun-
damentally based on Iterated Local Search (ILS), a well-
known, general stochastic local search method that inter-
leaves phases of simple local search – in particular, iterative
improvement – with so-called perturbation phases that are
designed to escape from local optima.

In the FocusedILS variant of ParamILS, ILS is used to
search for high-performance configurations of a given tar-
get algorithm (here: Fast Downward) by evaluating promis-
ing configurations. To avoid wasting CPU time on poorly-
performing configurations, FocusedILS carefully controls
the number of target algorithm runs performed for candi-
date configurations; it also adaptively limits the amount of
runtime allocated to each algorithm run using knowledge
of the best-performing configuration found so far. Further
information on ParamILS can be found in earlier work by
Hutter, Hoos, and Stützle (2007) and Hutter et al. (2009),
and interesting applications have been reported by Hutter et
al. (2007), and Hutter, Hoos, and Leyton-Brown (2010).

Implementation using HAL
For realising our learning planning system as well as for all
experiments performed in this work, we took advantage of
the features in HAL, a recently developed tool to support
both the computer-aided design and the empirical analysis
of high-performance algorithms (Nell et al. 2011). We used
several meta-algorithmic procedures provided by HAL, pri-
marily the algorithm configuration tool ParamILS and the
plug-ins providing support for empirical analysis of one or
two algorithms. We also leveraged the robust support in

15

HAL for data management and run distribution on compute
clusters.

For each given planning domain, our submission uses
HAL to run ten independent runs of ParamILS on a provided
set of training instances, using a maximum runtime cutoff of
900 CPU seconds for each run of Fast Downward and a to-
tal configuration time limit of five CPU days. In the case
of FD-Autotune.s, we can leverage support in ParamILS for
adaptive runtime capping to drastically reduce the runtime
required for each run of Fast Downward.

After all ten configuration runs have completed, we run
Fast Downward with a runtime cutoff of 900 CPU seconds
on each instance in the training set in order to evaluate the
so-called training score for each of the ten incumbent config-
urations. For FD-Autotune.s, this score is the mean runtime
required to find a satisficing solution, and for FD-Autotune.q
it represents the mean plan cost, with timeouts assigned a
(dummy) cost of 231− 1. The incumbent configuration with
the best training score is returned as the learned knowledge
for the given domain.

Preliminary IPC-2011 Learning Track Results

We have applied the framework introduced in this work
to the domains used for the learning track of the 7th In-
ternational Planning Competition (IPC-2011), currently in
progress at the time of this writing. The training sets for
each domain used for configuration consisted of 60 ran-
domly generated instances, selected such that the default
configurations of Fast Downward could find an initial sat-
isficing solution in less than 3 minutes of CPU time. Tar-
get instance distributions were provided by the competition
organizers, and our test sets for each domain contained 30
randomly generated instances from the same distribution.

The FD-Autotune.s configurations for each domain are
shown in Table 3 (located in the appendix), and performance
comparisons between the FD-Autotune.s default configura-
tion and the optimised configurations on each domain are
shown in Figures 1 and 2. From these results, it is clear that
the configuration of FD-Autotune.s is very successful in all
domains, although neither the default nor the optimised con-
figuration for the Spanner domain can solve any instances
from the test set within the given CPU time limits.

Unfortunately, this process did not result in adequate per-
formance from FD-Autotune.q, as the tuned configurations
never outperformed FD-Autotune.s and in many cases could
not solve the instances in our test sets. We believe that this
is because the tuned configurations were optimised for pro-
ducing plans of high quality on the (easier) training sets,
without any regard to the speed with which they found a
solution. Additionally, due to the fixed runtime cutoff of
900 CPU-seconds and the lack of adaptive capping when
configuring for solution quality with ParamILS, much fewer
runs of Fast Downward could be performed in the time al-
located for configuration. As a result, the performance of
these solvers on the training sets did not scale to the much
harder test sets.

Conclusions and Future Work
We believe that the generic approach underlying our work
on FD-Autotune represents a promising direction for the fu-
ture development of efficient planning systems. In partic-
ular, we suggest that it is worth including many different
variants and a wide range of settings for the various compo-
nents of a planning system, instead of committing at design
time to particular choices and settings. Algorithm develop-
ers can then use automated procedures for finding configura-
tions of the resulting highly parameterised planning systems
that perform well on the problems arising in a specific appli-
cation domain (or domains) under consideration. We plan to
further investigate framing the highly structured and poten-
tially infinite space of Fast Downward in ways that permit
the effective use of automated algorithm configuration pro-
cedures, such as ParamILS.

We note that our approach naturally benefits from fu-
ture improvements in planning systems (and in particular,
from new heuristic ideas that can be integrated, in the form
of parameterised components, into existing, flexible plan-
ning systems or frameworks) as well as from progress in
developing automated algorithm configuration procedures.
In principle, planning systems developed in this way can
also be used in combination with techniques for auto-
mated algorithm selection, giving even greater performance
than any single configuration alone (Xu et al. 2008; 2009;
Xu, Hoos, and Leyton-Brown 2010). We also see much
potential in testing new heuristics and algorithm compo-
nents, based on measuring the performance improvements
obtained by adding them to an existing highly-parameterised
planner followed by automatic configuration for specific do-
mains. The results may not only reveal to which extent new
design elements are useful, but also under which circum-
stances they are most effective – something that would be
very difficult to determine manually.

Acknowledgements The authors would like to thank
WestGrid and Compute-Calcul Canada for providing ac-
cess to the cluster hardware used in our experiments, and
Chris Nell for providing support for HAL. HH acknowl-
edges funding through the MITACS NCE and through an
NSERC Discovery Grant.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP, 360–372.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In AAAI,
714–719.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI, 1071–1076.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.

16

Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In ICAPS, 140–147.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In AAAI, 1547–1550.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5–
6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hutter, F.; Babic, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision proce-
dures. Formal Methods in Computer-Aided Design 27–34.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2010. Auto-
mated configuration of mixed integer programming solvers.
In Lodi, A.; Milano, M.; and Toth, P., eds., Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, volume 6140 of Lecture
Notes in Computer Science. Springer. 186–202.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic al-
gorithm configuration based on local search. In AAAI, 1152–
1157.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335–340.
Nell, C.; Fawcett, C.; Hoos, H. H.; and Leyton-Brown, K.
2011. HAL: A framework for the automated analysis and
design of high-performance algorithms. In LION-5. To ap-
pear.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In ICAPS, 273–
280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137–144.
Röger, G., and Helmert, M. 2010. The more, the merrier:

Combining heuristic estimators for satisficing planning. In
ICAPS, 246–249.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2009.
SATzilla2009: an automatic algorithm portfolio for SAT.
Solver description, SAT competition 2009.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hy-
dra: Automatically configuring algorithms for portfolio-
based selection. In AAAI, 210–216.

17

 1

 10

 100

 1000

 1 10 100 1000
FD

-A
u
to

tu
n
e
.s

 c
o
n
fi
g

u
re

d

FD-Autotune.s default

(a) Training set performance

 1

 10

 100

 1000

 1 10 100 1000

FD
-A

u
to

tu
n
e
.s

 c
o
n
fi
g

u
re

d

FD-Autotune.s default

(b) Test set performance

Figure 1: These scatter plots show the performance increase realised by the configured FD-Autotune.s compared to the default,
using runs of 900 CPU seconds on 540 (training) and 270 (test) instances obtained by combining our respective training and
test sets for all nine IPC-2011 domains. Points below the main diagonal indicate instances where the configured FD-Autotune.s
outperforms the default, and in this case this outperformance is often of several orders of magnitude.

C
P

U
 T

im
e

(s
)

1

2

5

10

20

50

100

200

300

500

700
900

Barman
(default)

Barman
(configured)

Blocksworld
(default)

Blocksworld
(configured)

Depots
(default)

Depots
(configured)

Gripper
(default)

Gripper
(configured)

Parking
(default)

Parking
(configured)

Rover
(default)

Rover
(configured)

Satellite
(default)

Satellite
(configured)

Spanner
(default)

Spanner
(configured)

TPP
(default)

TPP
(configured)

●●●●●●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●●●●
●●●
●

●

●●●
●●●
●
●●

Training set performance

(a) Training set performance

C
P

U
 T

im
e

(s
)

1

2

5

10

20

50

100

200

300

500

700
900

Barman
(default)

Barman
(configured)

Blocksworld
(default)

Blocksworld
(configured)

Depots
(default)

Depots
(configured)

Gripper
(default)

Gripper
(configured)

Parking
(default)

Parking
(configured)

Rover
(default)

Rover
(configured)

Satellite
(default)

Satellite
(configured)

Spanner
(default)

Spanner
(configured)

TPP
(default)

TPP
(configured)

●●

●

●

●●

Test set performance

(b) Test set performance

Figure 2: Box plots for the CPU time used by the default and automatically configured FD-Autotune.s, on the training and
test sets for each of the nine IPC-2011 domains. Each training (test) set was composed of 60 (30) instances, and each run of
Fast Downward was allocated 900 CPU seconds of runtime for both the training and the test sets. Box plots for all default
configurations are light grey, while the plots for the configured FD-Autotune.s are dark grey. Note that for 5 of these domains,
the default configuration fails to solve all or nearly all of the instances in the test set for that domain.

18

Parameter name Domain FD-Autotune.s Default FD-Autotune.q Default
add heuristic enabled {true, false} false true
add heuristic cost type {0, 1, 2} − 0
add heuristic pref ops {true, false} − false
blind heuristic enabled {true, false} false false
cea heuristic enabled {true, false} false true
cea heuristic cost type {0, 1, 2} − 0
cea heuristic pref ops {true, false} − true
cg heuristic enabled {true, false} false true
cg heuristic cost type {0, 1, 2} − 2
cg heuristic pref ops {true, false} − false
ff heuristic enabled {true, false} true false
ff heuristic cost type {0, 1, 2} 1 −
ff heuristic pref ops {true, false} true −
goalcount heuristic enabled {true, false} false true
goalcount heuristic cost type {0, 1, 2} − 0
goalcount heuristic pref ops {true, false} − true
hm heuristic enabled {true, false} false false
hm heuristic m {1, 2, 3} − −
hmax heuristic enabled {true, false} false false
lm ff synergy {true, false} − −
lm heuristic enabled {true, false} false false
lm heuristic admissible {true, false} − −
lm heuristic conjunctive landmarks {true, false} − −
lm heuristic cost type {0, 1, 2} − −
lm heuristic disjunctive landmarks {true, false} − −
lm heuristic hm m {1, 2, 3} − −
lm heuristic no orders {true, false} − −
lm heuristic only causal landmarks {true, false} − −
lm heuristic pref ops {true, false} − −
lm heuristic reasonable orders {true, false} − −
lm heuristic type {lm rhw, lm zg, lm hm, lm exhaust, lm rhw hm1} − −
lmcut heuristic enabled {true, false} false false
lmcut heuristic cost type {0, 1, 2} − −
mas heuristic enabled {true, false} false false
mas heuristic max states {10 000, 50 000, 100 000, 150 000, 200 000} − −
mas heuristic merge strategy {5} − −
mas heuristic shrink strategy {4, 7, 6, 12} − −
search 0 cost type {0, 1} 1 1
search 0 eager pathmax {true, false} − −
search 0 ehc preferred usage {0, 1} − −
search 0 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} 2000 1000
search 0 search open list tb {true, false} false false
search 0 search reopen {true, false} false false
search 0 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} 10 7
search 0 type {none, ehc, eager, lazy} lazy lazy
search 1 cost type {0, 1} − 0
search 1 eager pathmax {true, false} − −
search 1 ehc preferred usage {0, 1} − −
search 1 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − 5000
search 1 search open list tb {true, false} − true
search 1 search reopen {true, false} − false
search 1 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − 3
search 1 type {none, ehc, eager, lazy} − lazy
search 2 cost type {0, 1} − 0
search 2 eager pathmax {true, false} − true
search 2 ehc preferred usage {0, 1} − −
search 2 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − 500
search 2 search open list tb {true, false} − true
search 2 search reopen {true, false} − true
search 2 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − 10
search 2 type {none, ehc, eager, lazy} − eager
search 3 cost type {0, 1} − −
search 3 eager pathmax {true, false} − −
search 3 ehc preferred usage {0, 1} − −
search 3 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − −
search 3 search open list tb {true, false} − −
search 3 search reopen {true, false} − −
search 3 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − −
search 3 type {none, ehc, eager, lazy} − none
search 4 cost type {0, 1} − −
search 4 eager pathmax {true, false} − −
search 4 ehc preferred usage {0, 1} − −
search 4 search boost {0, 100, 200, 500, 1 000, 2 000, 5 000} − −
search 4 search open list tb {true, false} − −
search 4 search reopen {true, false} − −
search 4 search w {1, 1.125, 1.25, 1.5, 2, 3, 5, 7, 10,∞} − −
search 4 type {none, ehc, eager, lazy} − none

Table 2: Parameters in the configuration space for the satisficing planner, comprising 45 parameters for FD-Autotune.s and 77 parameters
for FD-Autotune.q. The parameters for each heuristic are only active if the corresponding heuristic is enabled. If search i type is none for
some i, then that entry is left out of the iterated search in Fast Downward. “−” indicates that the given parameter is not active.

19

Parameter name FD-Autotune.s Default Barman Blocksworld Depots Gripper Parking Rover Satellite Spanner Tpp
add heuristic enabled false false false false false false false false false false
add heuristic cost type − − − − − − − − − −
add heuristic pref ops − − − − − − − − − −
blind heuristic enabled false false false false false false false false true false
cea heuristic enabled false false false false false false false false true false
cea heuristic cost type − − − − − − − − 1 −
cea heuristic pref ops − − − − − − − − true −
cg heuristic enabled false false false false false true false true false false
cg heuristic cost type − − − − − 1 − 2 − −
cg heuristic pref ops − − − − − true − true − −
ff heuristic enabled true true true false true false true false false true
ff heuristic cost type 1 2 1 − 0 − 1 − − 1
ff heuristic pref ops true false true − false − false − − false
goalcount heuristic enabled false false false false false false false true false false
goalcount heuristic cost type − − − − − − − 2 − −
goalcount heuristic pref ops − − − − − − − true − −
hm heuristic enabled false false false false false false false false false false
hm heuristic m − − − − − − − − − −
hmax heuristic enabled false false false false false false false false false false
lm ff synergy − true − − true − true − − true
lm heuristic enabled false true false true true true true false false true
lm heuristic admissible − false − true false false false − − false
lm heuristic conjunctive landmarks − true − false true true true − − true
lm heuristic cost type − 2 − 0 2 0 0 − − 2
lm heuristic disjunctive landmarks − − − − − − − − − −
lm heuristic hm m − 1 − 1 1 1 1 − − 1
lm heuristic no orders − true − true true false false − − true
lm heuristic only causal landmarks − − − − − − − − − −
lm heuristic pref ops − true − − true false true − − true
lm heuristic reasonable orders − false − − true false false − − true
lm heuristic type − lm hm − lm hm lm hm lm hm lm hm − − lm hm
lmcut heuristic enabled false false false false false false false false false false
lmcut heuristic cost type − − − − − − − − − −
mas heuristic enabled false false false false false false false false false false
mas heuristic max states − − − − − − − − − −
mas heuristic merge strategy − − − − − − − − − −
mas heuristic shrink strategy − − − − − − − − − −
search 0 cost type 1 1 1 0 1 0 0 0 1 0
search 0 eager pathmax − − − − − − − − false −
search 0 ehc preferred usage − − − − − − − − − −
search 0 search boost 2000 200 5000 200 2000 5000 500 0 5000 2000
search 0 search open list tb false − − false − − true − false −
search 0 search reopen false false false false true true false true true false
search 0 search w 10 ∞ ∞ 3 ∞ ∞ 10 ∞ 1 ∞
search 0 type lazy lazy lazy lazy lazy lazy lazy lazy eager lazy

Table 3: Results for FD-Autotune.s on the nine provided IPC-2011 learning track domains. “−” indicates that the given parameter is not
active.

20

Generating Fast Domain-Optimized Planners by Automatically Configuring a
Generic Parameterised Planner

Mauro Vallati
University of Brescia

mauro.vallati@ing.unibs.it

Chris Fawcett
University of British Columbia

fawcettc@cs.ubc.ca

Alfonso E. Gerevini
University of Brescia
gerevini@ing.unibs.it

Holger H. Hoos
University of British Columbia

hoos@cs.ubc.ca

Alessandro Saetti
University of Brescia
saetti@ing.unibs.it

Abstract

When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect to
the domain analysis or compilation performed during prepro-
cessing, the heuristic functions used during search, and other
features of the search algorithm. These design decisions can
have a large impact on the performance of the resulting plan-
ner. By providing many alternatives for these choices and ex-
posing them as parameters, planning systems can in principle
be configured to work well on different domains. However,
usually planners are used in default configurations that have
been chosen because of their good average performance over
a set of benchmark domains, with limited experimentation of
the potentially huge range of possible configurations.
In this work, we propose a general framework for automati-
cally configuring a parameterised planner, showing that sub-
stantial performance gains can be achieved. We apply the
framework to the well-known LPG planner, which has 62 pa-
rameters and over 6.5 × 1017 possible configurations. We
demonstrate that by using this highly parameterised planning
system in combination with the off-the-shelf, state-of-the-art
automatic algorithm configuration procedure ParamILS, sub-
stantial performance improvements on specific planning do-
mains can be obtained.

Introduction
When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect
to the domain analysis or compilation performed during pre-
processing, the heuristic functions used during search, and
several other features of the search algorithm. These design
decisions can have a large impact on the performance of the
resulting planner. By providing many alternatives for these
choices and exposing them as parameters, highly flexible
domain-independent planning systems are obtained, which
then, in principle, can be configured to work well on differ-
ent domains, by using parameter settings specifically cho-
sen for solving planning problems from each given domain.
However, usually such planners are used with default config-
urations that have been chosen because of their good aver-
age performance over a set of benchmark domains, based on
limited manual exploration within a potentially vast space of
possible configurations. The hope is that these default con-
figurations will also perform well on domains and problems
beyond those for which they were tested at design time.

In this work, we advocate a different approach, based
on the idea of automatically configuring a generic, param-
eterised planner using a set of training planning problems
in order to obtain planners that perform especially well in
the domains of these training problems. Automated config-
uration of heuristic algorithms has been an area of intense
research focus in recent years, producing tools that have im-
proved algorithm performance substantially in many prob-
lem domains. To our knowledge, however, these techniques
have not yet been applied to the problem of planning.

While our approach could in principle utilise any suf-
ficiently powerful automatic configuration procedure, we
have chosen the FocusedILS variant of the off-the-shelf,
state-of-the-art automatic algorithm configuration procedure
ParamILS (Hutter, Hoos, & Stützle 2007; Hutter et al.
2009). At the core of the ParamILS framework lies Iter-
ated Local Search (ILS), a well-known and versatile stochas-
tic local search method that iteratively performs phases of
a simple local search, such as iterative improvement, in-
terspersed with so-called perturbation phases that are used
to escape from local optima. The FocusedILS variant
of ParamILS uses this ILS procedure to search for high-
performance configurations of a given algorithm by eval-
uating promising configurations, using an increasing num-
ber of runs in order to avoid wasting CPU-time on poorly-
performing configurations. ParamILS also avoids wasting
CPU-time on low-performance configurations by adaptively
limiting the amount of runtime allocated to each algorithm
run using knowledge of the best-performing configuration
found so far.

ParamILS has previously been applied to configure state-
of-the-art solvers for several combinatorial problems, in-
cluding propositional satisfiability (SAT) (Hutter et al.
2007) and mixed integer programming (MIP) (Hutter, Hoos,
& Leyton-Brown 2010). This resulted in a version of the
SAT solver Spear that won the first prize in one category of
the 2007 Satisfiability Modulo Theories Competition (Hut-
ter et al. 2007); it further contributed to the SATzilla solvers
that won prizes in 5 categories of the 2009 SAT Competition
and led to large improvements in the performance of CPLEX
on several types of MIP problems (Hutter, Hoos, & Leyton-
Brown 2010). Differently from SAT and MIP, in planning,
explicit domain specifications are available through a plan-
ning language, which creates more opportunities for plan-
ners to take problem structure into account within param-

21

eterised components (e.g., specific search heuristics). This
can lead to more complex systems, with greater opportuni-
ties for automatic parameter configuration, but also greater
challenges (bigger, richer design spaces can be expected to
give rise to trickier configuration problems).

One such planning system is LPG (see, e.g., Gerevini,
Saetti, & Serina 2003, Gerevini, Saetti, & Serina 2008).
Based on a stochastic local search procedure, LPG is a well-
known efficient and versatile planner with many components
that can be configured very flexibly via 62 exposed config-
urable parameters, which jointly give rise to over 6.5× 1017

possible configurations. This configuration space is one of
the largest considered so far in applications of ParamILS.
In this work, we used ParamILS to automatically config-
ure LPG on various propositional domains, starting from a
manually-chosen default parameter setting with good per-
formance on a broad range of domains.

We tested our approach using ParamILS and LPG on 11
domains of planning problems used in previous international
planning competitions (IPC-3–6). Our results demonstrate
that by using automatically determined, domain-optimized
configurations (LPG.sd), substantial performance gains can
be achieved compared to the default configuration (LPG.d).
Using the same automatic configuration approach to opti-
mise the performance of LPG on a merged set of bench-
mark instances from different domains also results in im-
provements over the default, but these are less pronounced
than those obtained by automated configuration for single
domains.

We also investigated to which extent the domain-
optimized planners obtained by configuring the general-
purpose LPG planner perform well compared to other state-
of-the-art domain-independent planners. Our results indi-
cate that, for the class of domains considered in our analysis,
LPG.sd is significantly faster than LAMA (Richter & West-
phal 2008), the top-performing propositional planner of the
last planning competition (IPC-6).1

Moreover, in order to understand how well our approach
works compared to state-of-the-of-art systems in automated
planning with learning, we have experimentally compared
LPG.sd with the planners of the learning track of IPC-
6, showing that in terms of speed and usefulness of the
learned knowledge, our system outperforms the respective
IPC-6 winners, PbP (Gerevini, Saetti, & Vallati 2009) and
ObtuseWedge (Yoon, Fern, & Givan 2008).

Recently, LPG.sd has been entered into the learning track
of the 7th International Planning Competition (IPC-7) as
ParLPG, and we give preliminary results on the competition
domains in this paper.

While in this work, we focus on the application of the
proposed framework to the LPG planner, we believe that
similarly good results can be obtained for highly parame-

1The version of LAMA used in the IPC-6 competition exposes
only four Boolean parameters, which its authors recommend to
leave unchanged; it is therefore not suitable for studying auto-
matic parameter configuration. A newer, much more flexibly con-
figurable version of LAMA has become available very recently, as
part of the Fast Downward system, which we are studying in ongo-
ing work.

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic functionE;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

terised versions of other existing planning systems. In gen-
eral, our results suggest that in the future development of
efficient planning systems, it is worth including many dif-
ferent variants and a wide range of settings for the various
components, instead of committing at design time to particu-
lar choices and settings, and to use automated procedures for
finding configurations of the resulting highly parameterised
planning systems that perform well on the problems arising
in a specific application domain under consideration.

In the rest of this paper, we first provide some background
and further information on LPG and its parameters. Next, af-
ter a description of the parameter configuration process, we
describe in detail our experimental analysis and results, in-
cluding preliminary results from our IPC-7 submission. Fi-
nally, we give some concluding remarks and discuss some
avenues for future work.

The Generic Parameterised Planner LPG
In this section, we provide a very brief description of LPG
and its parameters. LPG is a versatile system that can be
used for plan generation, plan repair and incremental plan-
ning in PDDL2.2 domains (Hoffmann & Edelkamp 2005).
The planner is based on a stochastic local search procedure
that explores a space of partial plans represented through
linear action graphs, which are variants of the very well-
known planning graph (Blum & Furst 1997).

Starting from the initial action graph containing only
two special actions representing the problem initial state
and goals, respectively, LPG iteratively modifies the current
graph until there is no flaw in it or a certain bound on the
number of search steps is exceeded. Intuitively, a flaw is
an action in the graph with a precondition that is not sup-
ported by an effect of another action in the graph. LPG at-
tempts to resolve flaws by inserting into or removing from
the graph a new or existing action, respectively. Figure 1
gives a high-level description of the general search process
performed by LPG. Each search step selects a flaw σ in
the current action graph A, defines the elements (modified
action graphs) of the search neighborhood of A for repair-
ing σ, weights the neighborhood elements using a heuristic
function E, and chooses the best one of them according to
E with some probability n, called the noise parameter, and
randomly with probability 1 − n. Because of this noise pa-
rameter, which helps the planner to escape from possible
local minima, LPG is a randomised procedure.

LPG exposes 62 configurable parameters; these control
various aspects of the system and can be grouped into seven

22

Domain Configuration P1 P2 P3 P4 P5 P6 P7 Total

Blocksworld 1 1 2 1 5 1 2 13
Depots 2 2 1 1 2 2 2 12
Gold-miner 2 3 0 1 4 2 1 13
Matching-BW 1 2 2 1 3 0 2 11
N-Puzzle 4 5 3 2 14 5 2 35
Rovers 0 1 0 0 0 2 1 4
Satellite 2 7 3 1 11 5 3 32
Sokoban 0 1 1 1 1 1 2 7
Zenotravel 3 5 2 3 11 5 3 32
Merged set 0 1 0 1 5 2 2 11
Number of parameters 6 15 8 6 17 7 3 62

Table 1: Number of parameters of LPG that are changed by
ParamILS in the configurations computed for nine domains
independently considered (rows 2–10) and jointly consid-
ered (“merged set” row). Each of the columns P1–P7 corre-
sponds to a different parameter category (i.e., planner com-
ponent).

distinct categories, each of which corresponds to a different
component of LPG:
P1 Preprocessing information (e.g., mutually exclusive re-

lations between actions).
P2 Search strategy (e.g., the use and length of a “tabu list”

for the local search, the number of search steps before
restarting a new search, and the activation of an alternative
systematic best-first search procedure).

P3 Flaw selection strategy (i.e., different heuristics for de-
ciding which flaw should be repaired first).

P4 Search neighborhood definition (i.e., different ways of
defining/restricting the basic search neighborhood).

P5 Heuristic function E (i.e., a class of possible heuristics
for weighting the neighborhood elements, with some vari-
ants for each of them).

P6 Reachability information used in the heuristic functions
and in neighborhood definitions (e.g., the minimum num-
ber of actions required to achieve an unsupported precon-
dition from a given state).

P7 Search randomisation (i.e., different ways of statically
and dynamically setting the noise value).

The last row of Table 1 shows the number of LPG’s param-
eters that fall into each of these seven categories (planner
components).

Experimental Analysis
In this section, we present the results of a large experi-
mental study examining the effectiveness of the automated
approach outlined in the introduction in terms of planning
speed.

Benchmark domains and instances
In our first set of experiments, we considered problem
instances from eight known benchmark domains used in
the last four international planning competitions (IPC-3–6),
Depots, Gold-miner, Matching-BW, N-Puzzle, Rovers,

Satellite, Sokoban, and Zenotravel, plus the well-
known Blocksworld domain. These domains were selected
because they are not trivially solvable, and random instance
generators are available for them, such that large training
and testing sets of instances can be obtained.

For each domain, we used the respective random instance
generator to obtain two disjoint sets of instances: a training
set with 2000 relatively small instances (benchmark T), and
a testing set with 400 middle-size instances (benchmark MS).
The size of the instances in training set T was chosen such
that the instances could be solved by the default configura-
tion of LPG in 20 to 40 CPU seconds on average. For testing
set MS, the size of the instances was chosen such that the in-
stances could on average be solved by the default configura-
tion of LPG in 50 seconds to 2 minutes. This does not mean
that all our problem instances can actually be solved by LPG,
since we merely determined the size of the instances accord-
ing to the performance of the default configuration, and then
we used the random instance generators to derive the actual
instances.

For the experiments comparing automatically determined
configurations of LPG against the planners that entered the
learning track of IPC-6, we employed the same instance sets
as those used in the competition.

Automated configuration using ParamILS
For all configuration experiments we used the FocusedILS
variant of ParamILS version 2.3.5 with default parameter
settings. Using the default configuration of LPG as the
starting point for the automated configuration process, we
concurrently performed 10 independent runs of FocusedILS
per domain, using random orderings of the training set in-
stances.2 Each run of FocusedILS had a total CPU-time cut-
off of 48 hours, and a cutoff time of 60 CPU seconds was
used for each run of LPG performed during the configuration
process. The objective function used by ParamILS for eval-
uating the quality of configurations was mean runtime, with
timeouts and crashes assigned a penalised runtime of ten
times the per-run cutoff (the so-called PAR-10 score). Out
of the 10 configurations produced by these runs, we selected
the configuration with the best training set performance (as
measured by FocusedILS) as the final configuration of LPG
for the respective domain.

Additionally, we used FocusedILS for optimising the con-
figuration of LPG across all of the selected domains together.
As with our approach for individual domains, we performed
10 independent runs of FocusedILS starting from the de-
fault configuration; again, the single configuration with the
best performance on the merged training set as measured by
FocusedILS was selected as the final result of the configura-
tion process.

The final configurations thus obtained were then evalu-
ated on the testing set of instances (benchmark MS) for each
domain, using a per-run timeout of 600 CPU seconds.

For convenience, we define the following abbreviations
corresponding to configurations of LPG:

2Multiple independent runs of FocusedILS were used, because
this approach can help ameliorate stagnation of the configuration
process occasionally encountered otherwise.

23

Domain LPG.d LPG.r

Score % solved Score % solved

Blocksworld 99.00 99 0.00 16
Depots 86.00 86 0.00 18
Gold-miner 91.00 91 0.00 19
Matching-BW 14.00 14 0.15 9
N-Puzzle 59.10 89 34.75 86
Rovers 85.81 100 31.21 53
Satellite 96.02 100 18.99 37
Sokoban 73.20 74 2.06 28
Zenotravel 98.70 100 2.47 24
Total 702.8 83.7 89.6 32.2

Table 2: Speed scores and percentage of problems solved by
LPG.d and LPG.r for 100 problems in each of 9 domains of
benchmark MS.

• Default (LPG.d): The default configuration of LPG.
• Random (LPG.r): Configurations selected independently

at random from all possible configurations of LPG.
• Specific (LPG.sd): The specific configuration of LPG

found by ParamILS for each domain.
• Merged (LPG.md): The configuration of LPG obtained by

running ParamILS on the merged training set.
Table 1 shows, for each parameter category of LPG, the

number of parameters that are changed from their defaults
by ParamILS in the derived domain-optimized configura-
tions (LPG.sd) and in the configuration obtained for the
merged training set (LPG.md).
Empirical result 1 Domain-optimized configurations of
LPG differ substantially from the default configuration.
Moreover, we noticed that usually the changed parameter
settings are considerably different from each other.

Results on specific domains
The performance of each configuration was evaluated us-
ing the performance score functions adopted in IPC-6 (Fern,
Khardon, & Tadepalli 2008). The speed score of a configu-
ration C is defined as the sum of the speed scores assigned to
C over all test problems. The speed score assigned to C for a
planning problem p is 0 if p is unsolved and T ∗p /T (C)p oth-
erwise, where T ∗p is the lowest measured CPU time to solve
problem p and T (C)p denotes the CPU time required by C to
solve problem p. Higher values for the speed score indicate
better performance.

Table 2 shows the results of the comparison between
LPG.d and LPG.r, which we conducted to assess the per-
formance of the default configuration on our benchmarks.
Empirical result 2 LPG.d is much faster and solves many
more problems than LPG.r.
Specifically, LPG.r solves very few problems in 6 of the 9
domains we considered, while LPG.d solves most of the
considered problems in all but one domain. This observation
also suggests that the default configuration is a much bet-
ter starting point for deriving configurations using ParamILS
than a random configuration. In order to confirm this intu-
ition, we performed an additional set of experiments using

 0.1

 1

 10

 100

 U

 0.1 1 10 100 U

Figure 2: CPU time (log. scale) of LPG.sd versus LPG.d for
the problems in bechmark set MS. The x-axis shows runtime
of LPG.d and the y-axis runtime of the optimized LPG.sd
solvers, measured in CPU seconds; U indicates runs that
timed out with the given runtime cutoff.

the random configuration as starting point. As expected, the
resulting configurations of LPG perform much worse than
LPG.sd, and sometimes even worse than LPG.d.

Figure 2 shows the performance of LPG.sd and LPG.d on
the individual benchmark instances in the form of a scat-
terplot. We consider all instances solved by at least one of
these planners. Each cross symbol indicates the CPU time
used by LPG.d and LPG.sd to solve a particular problem
instance of benchmarks MS. When a cross appears below
(above) the main diagonal, LPG.sd is faster (slower) than
LPG.d; the distance of the cross from the main diagonal in-
dicates the performance gap (the greater the distance, the
greater the gap). The results in Figure 2 indicate that LPG.sd
performs almost always better than LPG.d, often by 1–2 or-
ders of magnitude.

Table 3 shows the performance of LPG.d, LPG.md, and
LPG.sd for each domain of benchmark MS in terms of speed
score, percentage of solved problems and average CPU time
(computed over the problems solved by all the considered
configurations). These results indicate that LPG.sd solves
many more problems, is on average much faster than LPG.d
and LPG.md, and that for some benchmark sets LPG.sd al-
ways performs better than or equal to the other configura-
tions, as the IPC score of LPG.sd is sometimes the maximum
score (i.e., 400 points for benchmark MS).3

Empirical result 3 LPG.sd performs much better than both
LPG.d and LPG.md.

As can be seen from the last row of Table 3, LPG.md per-
forms usually better than LPG.d on the test sets for the in-
dividual domains. Moreover, it performs better than LPG.d

3Additional results using, for each of the nine considered do-
mains, 2000 test problems of the same size as those used for the
training, and 50 test problems considerably larger than those in the
MS benchmark, indicate a performance behaviour very similar to
(or even better than) the one observed for the MS instances consid-
ered in Table 3.

24

Domain Speed score % solved Average CPU time
LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd LPG.d LPG.md LPG.sd

Blocksworld 21.3 74.8 400 98.8 100 100 105.3 28.17 4.29
Depots 124 164 345 90.3 99 98.5 78.1 42.4 5.7
Gold-miner 18.5 232 374 90.5 100 100 94.4 7.4 1.6
Matching-BW 9.74 72.5 375 15.8 55.3 97.8 93.8 42.3 5.6
N-Puzzle 20.1 27.0 347 85 86.3 86.8 321.0 247 31.20
Rovers 131 162 400 100 100 100 72.2 52.9 21.2
Satellite 104 111 400 100 100 100 64.0 59.2 1.3
Sokoban 26.7 191 335 75.8 94.8 96.5 24.6 6.15 1.19
Zenotravel 49.1 97.2 397 100 99.8 100 103.7 57.6 11.1
All above 280.3 304.3 – 83.3 91.5 – 115.4 38.8 –

Table 3: Speed score, percentage of solved problems, and average CPU time of LPG.d, LPG.md and LPG.sd for 400 MS
instances in each of 9 domains, independently considered, and in all domains (last row).

Domain LPG.sd vs. LAMA LPG.sd vs. PbP

∆-speed ∆-solved ∆-speed ∆-solved

Blocksworld +377.4 +52 +361.7 ±0
Depots +393.9 +381 +211.1 +54
Gold-miner +400 +400 +395.6 +319
Matching-BW +227.8 +118 +40.7 +330
N-Puzzle +255.7 +4 +279.8 −20
Rovers +392.9 +14 +313.4 +9
Satellite +388.1 +157 +253.6 +9
Sokoban +340.1 +278 −41.6 +5
Zenotravel +368.3 ±0 −282.1 +8
Total +3144 +1404 +1532 +714

Table 4: Performance gap between LPG.sd and LAMA
(columns 2–3) and LPG.sd and PbP (columns 4–5) for 400
MS problems in each of 9 domains in terms of speed score
and number of solved problems.

on the sets obtained by merging the test sets for all individ-
ual domains, which indicates that by using a merged training
set, we successfully produced a configuration with good per-
formance on average across all selected domains.

Empirical result 4 LPG.md performs better than LPG.d.

Next, we compared our LPG configurations with state-of-
the-art planning systems – namely, the winner of the IPC-
6 classical track, LAMA (configured to stop when the first
solution is computed), and the winner of the IPC-6 learn-
ing track, PbP. The performance gap between LPG.sd and
these planners for MS problems are shown in Table 4, where
we report the speed score and the number of solved prob-
lems (positive numbers mean that LPG.sd performs better).
These experimental results indicate clearly that our configu-
rations of LPG are significantly faster and solve many more
problems than LAMA.

Empirical result 5 LPG.sd performs significantly better
than LAMA on well-known non-trivial domains.

Moreover, LPG.sd outperforms PbP in most of the se-
lected domains: only for Sokoban and Zenotravel, PbP
obtains a better speed score (but performs slightly worse in
terms of solved problems). Interestingly, for these domains
the multiplanner of PbP runs a single planner with an asso-

Planner # unsolved Speed score ∆-score

LPG.sd 38 93.23 +59.7
ObtuseWedge 63 63.83 +33.58
PbP 7 69.16 −3.54
RFA1 85 11.44 –
Wizard+FF 102 29.5 +10.66
Wizard+SGPlan 88 38.24 +7.73

Table 5: Performance of the top 5 planners that took part in
the learning track of IPC-6 plus LPG.sd, in terms of number
of unsolved problems, speed score and score gap with and
without using the learned knowledge for the problems of the
learning track of IPC-6.

ciated set of macro-actions; these macro-actions clearly help
to significantly speed up the search phase of this planner.

Empirical result 6 For the well-known benchmark do-
mains considered here, LPG.sd performs significantly better
than PbP.

Results on learning track of IPC-6

To evaluate the effectiveness of our approach against re-
cent learning-based planners, we compared our LPG.sd con-
figurations with planners that entered the learning track
of IPC-6, based on the same performance criteria as used
in the competition. Table 5 shows performance in terms
of number of unsolved problems, speed score, and per-
formance gap with and without using the learned knowl-
edge (positive numbers mean that the planner performs bet-
ter using the knowledge); the results in this table indicate
that LPG.sd performs better than every solver that partici-
pated in the IPC-6 learning track, including the version of
PbP that won this track. Although LPG.sd solves fewer
problems than PbP, it achieves the best score as it is the
fastest planner on 3 domains (Gold-miner, N-Puzzle and
Sokoban), and it performs close to PbP on one additional
domain (Matching-BW). Furthermore, the results in Ta-
ble 5 indicate that the performance gap between LPG.sd and
LPG.d is significant, and is greater than the gap achieved by
ObtuseWedge, the planner recognised as best learner of the

25

Domain Speed score % solved Average time
LPG.d LPG.sd LPG.d LPG.sd LPG.d LPG.sd

Barman – – – – – –
BW 14.12 30 80 100 259.5 95.3
Depots 6.52 20.5 37 70 315.4 52.1
Gripper 20.36 30 100 100 77.6 27.4
Parking – – – – – –
Rovers 18.64 28 93 93 157.11 27.7
Satellite 23.67 30 100 100 70.1 24.5
Spanner 17.73 30 100 100 272.7 25.3
Tpp – 14 – 47 – 73.29

Table 6: Speed score, percentage of solved problems and
average CPU time of LPG.d and LPG.sd for 30 instances
from the test sets of IPC-7 domains. BW indicates the
Blocksworld domain, and “–” is used when LPG.sd or
LPG.d failed to solve any of the problem instances for a
given domain.

IPC-6 competition.4

Empirical result 7 According to the evaluation criteria of
IPC-6, LPG.sd performs better than the winners of the
learning track for speed and best-learning.

Preliminary results on the learning track of IPC-7
At the time of this writing, LPG.sd is participating in the
learning track of the 7th International Planning Competi-
tion (IPC-7).5 In this submission, we utilised several meta-
algorithmic procedures provided by HAL, a recently devel-
oped tool supporting both the computer-aided design and the
empirical analysis of high-performance algorithms (Nell et
al. 2011). In addition to the HAL plugin for the FocusedILS
variant of ParamILS, we used the plugins providing sup-
port for the empirical analysis of a single algorithm’s perfor-
mance. We also leveraged HAL’s built-in support for com-
pute clusters and data management.

For each of the 9 IPC-7 domains, ten independent runs
of ParamILS were performed using a randomly generated
training set containing 60 to 70 instances solvable by LPG.d
within the 900 second competition cutoff. Each run of LPG
was given a runtime cutoff of 900 CPU seconds, and the
total runtime cutoff for configuration was 5 CPU days. The
configuration with the best training quality as reported by a
subsequent empirical analysis of the ParamILS incumbents
was selected as the representative LPG.sd configuration for
each domain.

Table 6 shows results for 900 CPU second runs of LPG.sd
and LPG.d on each of these IPC-7 domains, using randomly
generated test sets of 30 instances of the same size and hard-
ness as those that will be used for evaluating the competing
planners. Although at the time of this writing, the actual
instances to be used in the competition to evaluate our sub-
mission were not yet available, the competition organisers

4As observed in (Gerevini, Saetti, & Vallati 2009), the negative
∆-score of PbP is mainly due to some implementation bugs that
have been fixed in a version developed after the competition.

5The implementation of LPG.sd used for IPC-7 is named
ParLPG.

had announced in advance the instance distributions they in-
tended to use.

The IPC-7 speed score for a configuration C is defined as
the sum of the speed scores assigned to C over all test prob-
lems. The speed score assigned to C for a planning problem
p is 0 if p is unsolved, and 1/(1 + log10(T (C)p/T

∗
p)) oth-

erwise, where T ∗p is the lowest measured CPU time to solve
problem p and T (C)p denotes the CPU time required by C
to solve problem p. Obviously, higher values for the speed
score indicate better performance.

The results in Table 6 show that, for all but two of the IPC-
7 domains, LPG.sd obtains better speed scores than LPG.d
and, on average, is considerably faster. Moreover, for three
of the nine domains (Depots, Tpp and Blocksworld), it
solves many more problems. For Barman and Parking, nei-
ther LPG.d nor LPG.sd are able to solve any of the generated
test instances.

Empirical result 8 For the domains used in IPC-7, LPG.sd
performs significantly better than LPG.d.

Conclusions and Future Work
We have investigated the application of computer-assisted
algorithm design to automated planning and proposed a
framework for automatically configuring a generic planner
with several parameterised components to obtain specialised
planners that work efficiently on given domains. In a large-
scale empirical analysis, we have demonstrated that our ap-
proach, when applied to the state-of-the-art, highly parame-
terised LPG planning system, effectively generates substan-
tially improved domain-optimized planners.

Our work and results also suggest a potential method
for testing new heuristics and algorithm components, based
on measuring the performance improvements obtained by
adding them to an existing highly-parameterised planner fol-
lowed by automatic configuration for specific domains. The
results may not only reveal to which extent new design el-
ements are useful, but also under which circumstances they
are most effective – something that would be very difficult
to determine manually.

In the planning literature, few other approaches to auto-
matically configuring the parameters of a planner have been
investigated. In particular, Vrakas et al. proposed an adap-
tive planner, called HAPRC, with parameters tuned based
on some features of the problem under consideration. The
results described in (Vrakas et al. 2003) are obtained consid-
ering every possible configuration of the planner parameters,
which is infeasible for systems with many parameters (such
as LPG). Moreover, the techniques used for learning the
configuration are completely different from ours: HAPRC
uses a classification based algorithm, while our approach
uses stochastic local search in the space of parameter con-
figurations.

We see several avenues for future work. Concerning
the automatic configuration of LPG, we are conducting
an experimental analysis about the usefulness of the pro-
posed framework for identifying configurations improving
the planner performance in terms of plan quality. More-
over, we plan to apply the framework to metric-temporal
planning domains. Finally, we believe that our approach

26

can yield good results for other planners that have been ren-
dered highly configurable by exposing many parameters. In
particular, preliminary results from ongoing work indicate
that substantial performance gains can be obtained when ap-
plying our approach to a very recent, highly parameterised
version of the IPC-4 winner Fast Downward.

Acknowledgements. The authors would like to thank WestGrid
and Compute-Calcul Canada for providing access to some of the
cluster hardware used in our experiments. HH gratefully acknowl-
edges funding through an NSERC Discovery Grant and Discovery
Accelerator Supplement. We also thank Frank Hutter for useful
comments on an earlier draft, Chris Nell for support using HAL
and Ivan Serina for a useful discussion about LPG’s parameters.

References
Blum, A., and Furst, M., L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–300.
Fern, A.; Khardon, R.; and Tadepalli, P. 2008. Learning
track of the 6th international planning competition. Avail-
able at http://eecs.oregonstate.edu/ipc-learn/.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. Artificial Intelligence 172(8-9):899–944.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-09),
191–199.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. Learning and
Exploiting Configuration Knowledge for a Portfolio-based
Planner. In Proceedings of the ICAPS-09 Workshop on Plan-
ning & Learning.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelligence
Research 24:519–579.
Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision proce-
dures. In Formal Methods in Computer-Aided Design, 27–
34. IEEE CS Press.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010. Auto-
mated configuration of mixed integer programming solvers.
In Proceedings of the 7th International Conference on the
Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR
2010), 186–202.
Nell, C.; Fawcett, C.; Hoos, H. H.; Leyton-Brown, K. 2011.
HAL: A Framework for the Automated Analysis and Design
of High-Performance Algorithms. In Proceedings of the 5th
International Conference on Learning and Intelligent Opti-
mization (LION 5), to appear.

Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic al-
gorithm configuration based on local search. In Proceedings
of the 22nd Conference on Artificial Intelligence (AAAI-07),
1152–1157.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd Conference on
Artificial Intelligence (AAAI-08), 975–982.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. Journal of Machine
Learning Research (JMLR) 9:683–718.
Vrakas, D.; Tsoumakas, G.; Bassiliades, N; and Vlahavas,
I. 2003. Learning Rules for Adaptive Planning. In Pro-
ceedings of the Thirteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS-03).

27

Fast Downward Stone Soup: A Baseline for Building Planner Portfolios

Malte Helmert and Gabriele Röger
University of Freiburg, Germany

{helmert,roeger}@informatik.uni-freiburg.de

Erez Karpas
Technion, Israel

karpase@technion.ac.il

Abstract

Fast Downward Stone Soup is a sequential portfolio planner
that uses various heuristics and search algorithms that have
been implemented in the Fast Downward planning system.
We present a simple general method for concocting “plan-
ner soups”, sequential portfolios of planning algorithms, and
describe the actual recipes used for Fast Downward Stone
Soup in the sequential optimization and sequential satisficing
tracks of IPC 2011.
This paper is, first and foremost, a planner description. Fast
Downward Stone Soup was entered into the sequential (non-
learning) tracks of IPC 2011. Due to time constraints, we did
not enter it into the learning competition at IPC 2011. How-
ever, we believe that the approach might still be of interest to
the planning and learning community, as it represents a base-
line against which other, more sophisticated portfolio learners
can be usefully compared.

Before We Can Eat
Since the original implementation of the Fast Downward
planner (Helmert 2006; 2009) for the 4th International Plan-
ning Competition (IPC 2004), various researchers have used
it as a starting point and testbed for a large number of ad-
ditional search algorithms, heuristics, and other capabili-
ties (e. g., Helmert, Haslum, and Hoffmann 2007; Helmert
and Geffner 2008; Richter, Helmert, and Westphal 2008;
Helmert and Domshlak 2009; Richter and Helmert 2009;
Röger and Helmert 2010; Keyder, Richter, and Helmert
2010).

Experiments with these different planning techniques
have convinced us of two facts:

1. There is no single common search algorithm and heuristic
that dominates all others for classical planning.

2. The coverage of a planning algorithm is often not dimin-
ished significantly when giving it less runtime, or put
differently: if a planner does not solve a planning task
quickly, it is likely not to solve it at all.

Fast Downward Stone Soup is a planning system that
builds on these two observations by combining several com-
ponents of Fast Downward into a sequential portfolio. In a
sequential portfolio, several algorithms are run in sequence
with short (compared to the 30 minutes allowed at the IPC)

timeouts, in the hope that at least one of the component al-
gorithms will find a solution in the time allotted to it.

There are two main versions of Fast Downward Stone
Soup entered into the IPC: one for optimal planning, and
one for satisficing planning. (Each version in turn has two
variants, which differ from each other in smaller ways than
the optimal planner differs from the satisficing one.)

The optimal portfolio planner exchanges no information
at all between the component solvers that are run in se-
quence. The overall search ends as soon as one of the solvers
finds a solution, since there would be no point in continuing
after this.

The satisficing portfolio planner is an anytime system that
can improve the quality of its generated solution over time.
Here, the only information communicated between the com-
ponent solvers is the quality of the best solution found so far,
so that later solvers in the sequence can prune states whose
“cost so far” (g value) is already as large as or larger than
the cost of the best solution that was previously generated.

What is Stone Soup?
The name “Fast Downward Stone Soup” draws from a folk
tale (for example told in Hunt and Thomas 2000, p. 7), in
which hungry soldiers who are left without food take camp
near a small village. They boil a pot of water over their
campfire, and into the water they put three stones. This
strange behaviour incites the curiosity of the villagers, to
whom the soldiers explain that their “stone soup” is known
as a true delicacy in the land where they come from, and that
it would taste even better after adding some carrots. If the
villagers could provide some carrots, they might participate
in the feast. Hearing this, one of the villagers fetches the
required ingredient, after which the soldiers explain that the
recipe could be improved even further by adding potatoes,
which another villager readily provides. Ingredient after in-
gredient is added in this fashion, until the soldiers are happy
with the soup and finish its preparation with the final step in
the recipe: removing the stones.

The stone soup tale is a story of collaboration. The fi-
nal result, which benefits from the ingredients provided by a
large number of villagers as well as the initiative of the sol-
diers, is more tasty and more satisfying than what any of the
involved parties could have produced by themselves.

28

We consider the story a nice metaphor for the bits-and-
pieces additions by many different parties that Fast Down-
ward has seen in the last four or so years, which is part of the
reason for calling the planner “Fast Downward Stone Soup”.
The second reason is that sequential portfolio algorithms in
general can be seen as a “soup” of different algorithms that
are stirred together to achieve a taste that hopefully exceeds
that of the individual ingredients.

The idea to name a piece of software after the stone soup
story is inspired by a similar case, the open-source com-
puter game “Dungeon Crawl Stone Soup1”, which inciden-
tally would make for an excellent challenge of AI planning
technology, similar to but much more complex than the ven-
erable Rog-O-Matic (Mauldin et al. 1984).

Culinary Basics
Fast Downward Stone Soup is not a very sophisticated port-
folio planner. Due to deadline pressures, our portfolio was
chosen by a very simple selection algorithm, which had to
be devised and implemented within a matter of a few hours,
without any experimental evaluation, and based on limited
and noisy training data. The algorithm does not aim to min-
imize the training data needed, does not use a separate train-
ing and validation set, and completely ignores the intricate
time/cost trade-off in satisficing planning. Therefore, we do
not recommend our approach as state of the art or even par-
ticularly good; rather, we describe it here to document what
we did, and as a baseline for future, more sophisticated port-
folio approaches.

In order to build a portfolio, we assume that the following
information is available:

• A set of planning algorithms A to serve as component
algorithms (“ingredients”) of the portfolio. Our imple-
mentation assumes that this set is not too large; we used
11 ingredients for optimal planning and 38 ingredients for
satisficing planning.

• A set of training instances I, for which portfolio perfor-
mance is optimized. We used the subset of IPC 1998–
2008 instances that were supported by all planning algo-
rithms we used as ingredients, a total of 1116 instances.2

• Complete evaluation results that include, for each algo-
rithm A ∈ A and training instance I ∈ I,

– the runtime t(A, I) of the given algorithm on the given
training instance on our evaluation machines, in sec-
onds, and

– the plan cost c(A, I) of the plan that was found. (For
training instances from IPC 1998–2006, this is simply
the plan length.)

1http://crawl.develz.org
2Fine print: we included IPC 2008 instances which require ac-

tion cost support, even though three of our ingredients for optimal
planning did not support costs. These planners automatically failed
on all IPC 2008 instances. IPC 2008 used different instance sets for
satisficing and optimal planning, and we followed this separation
in our training. For technical reasons to do with hard disk space us-
age on our experimentation platform, we omitted the cyber security
domain from IPC 2008 from the satisficing benchmark suite.

We used a timeout of 30 minutes and memory limit of
2 GB to generate this data. In cases where an instance
could not be solved within these bounds, we set t(A, I) =
c(A, I) =∞.
The plan cost is of course only relevant for the satisfic-
ing track, since in the optimization track, all component
algorithms produce optimal plans. We did not consider
anytime planners as possible ingredients. If we had, a sin-
gle runtime value and plan cost value would of course not
have been sufficient to describe algorithm performance on
a given instance.
In the following, we represent a (sequential) portfolio as

a mapping P : A → R+
0 which assigns a time limit to each

component algorithm. Time limits can be 0, indicating that
a given algorithm is not used in the portfolio. The total time
limit of portfolio P is the sum of all component time limits,∑

A∈A P (A).

Judging the Taste of a Soup
We say that portfolio P solves a given instance I if any of the
component algorithms solves it within its assigned runtime,
i. e., if there exists an algorithm A such that t(A, I) ≤ P (A).
The solution cost achieved by portfolio P on instance I is
the minimal cost over all component algorithms that solve
the task in their allotted time, c(P, I) := min { c(A, I) |
A ∈ A, t(A, I) ≤ P (A) }. (If the portfolio does not solve
I , we define the achieved solution cost as infinite.)

To evaluate the quality of a portfolio, we compute an in-
stance score in the range 0–1 for each training instance and
sum this quantity over all training instances to form a port-
folio score. Higher scores correspond to better portfolios
for the given benchmark set, either because they solve more
instances, or because they find better plans.

In detail, training instances not solved by the portfolio are
assigned a score of 0. The score of a solved instance I is
computed as the lowest solution cost of any algorithm in al-
gorithm set A on I , minA∈A c(A, I), divided by the cost
achieved by the portfolio, c(P, I). Note that this ratio al-
ways falls into the range 0–1 since the cost achieved by the
portfolio cannot be lower than the cost achieved by the best
component algorithm. (We assume that optimal costs are
never 0, so that division by 0 is avoided.)

This scoring function is almost identical to the one used
for IPC 2008 and IPC 2011 except that we use the best solu-
tion quality among our algorithms as the reference quality,
rather than an objective “best known” solution as mandated
by the actual IPC scoring functions. This difference is sim-
ply due to lack of time in preparing the portfolios; we did
not have a set of readily usable reference results.

In the case of optimal planning, only optimal planning al-
gorithms can be used as ingredients. In this case, the scoring
function simplifies to 0 for unsolved and 1 for solved tasks,
since all solutions for a given instance have the same cost.

Preparing a Planner Soup
We now describe the generic algorithm for building a plan-
ner portfolio, and then detail the specific ingredients used
for IPC 2011.

29

build-portfolio(algorithms, results, granularity, timeout):
portfolio := {A 7→ 0 | A ∈ algorithms }
repeat btimeout/granularityc times:

candidates := successors(portfolio, granularity)
portfolio := arg maxC∈candidates score(C, results)

portfolio := reduce(portfolio, results)
return portfolio

Figure 1: Algorithm for building a portfolio.

We use a simple hill-climbing search in the space of port-
folios, shown in Figure 1. In addition to the set of ingre-
dients (algorithms) and evaluation results (results) as de-
scribed above, it takes two further arguments: the step size
with which we add time slices to the current portfolio (gran-
ularity) and an upper bound on the total time limit for the
portfolio to be generated (timeout). Both parameters are
measured in seconds. In all cases, we set the total time limit
to 1800, the time limit of the IPC.

Portfolio generation starts from an initial portfolio which
assigns a runtime of 0 to each ingredient (i. e., does noth-
ing and solves nothing). We then perform hill-climbing: in
each step, we generate a set of possible successors to the
current portfolio, which are like the current portfolio except
that each successor increases the time limit of one particular
algorithm by granularity. (Hence, the number of successors
equals the number of algorithms.) We then commit to the
best successor among these candidates and continue, for a
total of btimeout/granularityc iterations. (If we continued
further after this point, the total time limit of the generated
portfolio would exceed the given timeout.)

Of course there may be ties in determining the best suc-
cessor, for example if none of the successors improves the
current portfolio. Such ties are broken in favour of succes-
sors that increase the timeout of the component algorithm
that occurs earliest in some arbitrary total order that we fix
initially. We did not experiment with more sophisticated tie-
breaking strategies or other search neighbourhoods.

After hill-climbing, a post-processing step reduces the
time limit applied to each ingredient by considering the dif-
ferent ingredients in order (the same arbitrary order used for
breaking ties between successors in the hill-climbing phase)
and setting the time limit of each ingredient to the lowest
(whole) number that would still lead to the same portfolio
score. For example, if algorithm A is assigned a time limit of
720 seconds after hill-climbing but reducing this time limit
to 681 seconds would not affect the portfolio score, its time
limit is reduced to 681 (or less, if that still does not affect the
score).

Optimizing IPC 2011 Soups
For the sequential optimization track of IPC 2011, we used
the following ingredients in the portfolio building algorithm:

• blind: A∗ with a “blind” heuristic that assigns 0 to goal
states and the lowest action cost among all actions of the
given instance to all non-goal states. Apart from bug fixes
and other minor changes, this is the baseline planner used

in the sequential optimization track of IPC 2008. This
algorithm was contributed by Silvia Richter.

• hmax: A∗ with the hmax heuristic introduced by Bonet
and Geffner (2001). This was implemented by Malte
Helmert with contributions by Silvia Richter.

• LM-cut: A∗ with the landmark-cut heuristic (Helmert
and Domshlak 2009). This was implemented by Malte
Helmert. The LM-cut planner was also entered into IPC
2011 as a separate competitor.

• RHW landmarks, h1 landmarks and BJOLP: LM-A∗ with
the admissible landmark heuristic (Karpas and Domshlak
2009) using “RHW landmarks” (Richter, Helmert, and
Westphal 2008), h1-based landmarks (Keyder, Richter,
and Helmert 2010) and, in the case of the “big joint op-
timal landmarks planner (BJOLP)”, the combination of
both, respectively.
The landmark synthesis algorithms were implemented by
Silvia Richter and Matthias Westphal (RHW landmarks)
and Emil Keyder (h1-based landmarks), the admissible
landmark heuristic by Erez Karpas with some improve-
ments by Malte Helmert based on earlier code by Silvia
Richter and Matthias Westphal, and the LM-A∗ algorithm
by Erez Karpas.
BJOLP was also entered into IPC 2011 as a separate com-
petitor.

• M&S-LFPA: A∗ with a merge-and-shrink heuristic
(Helmert, Haslum, and Hoffmann 2007), using the orig-
inal abstraction strategies suggested by Helmert et al.
(“linear f -preserving abstractions”). We use three differ-
ent abstraction size limits: 10000, 50000, and 100000.
This was implemented by Malte Helmert.

• M&S-bisim 1 and M&S-bisim 2: A∗ with two different
merge-and-shrink heuristics, using the original merging
strategies of Helmert et al. and two novel shrinking strate-
gies based on the notion of bisimulation. The new shrink-
ing strategies were implemented by Raz Nissim.
A sequential portfolio of these two planners was entered
into IPC 2011 as a separate competitor called “Merge-
and-Shrink”.

After some unprincipled initial experimentation, we set
the granularity parameter for the portfolio building algo-
rithm to 120 seconds. The resulting portfolio is shown in
Table 1, which also shows the score (number of solved tasks)
of the portfolio and of its ingredients on the training set.3

We see that the portfolio makes use of four of the eleven
possible ingredients: LM-cut, BJOLP, and the two new
merge-and-shrink variants.

With 654 solved instances, the portfolio significantly out-
performs BJOLP, the best individual configuration, which
solves 605 instances. Moreover, the portfolio does not fall
far short of the holy grail of portfolio algorithms (sequential

3The performance of the M&S-LFPA algorithms appears to be
very bad because we did not manage to implement action-cost sup-
port for these algorithms in time, so that they failed on all IPC
2008 tasks. Hence, the numbers reported are not indicative of the
true potential of these heuristics.

30

Algorithm Score Time Marginal

BJOLP 605 455 46
RHW landmarks 597 0 —
LM-cut 593 569 26
h1 landmarks 588 0 —
M&S-bisim 1 447 175 8
hmax 427 0 —
M&S-bisim 2 426 432 20
blind 393 0 —
M&S-LFPA 10000 316 0 —
M&S-LFPA 50000 299 0 —
M&S-LFPA 100000 286 0 —

Portfolio 654 1631
“Holy Grail” 673

Table 1: Variant 1 of Fast Downward Stone Soup (sequential
optimization). For each algorithm A, the table shows the
score (number of solved instances) achieved by A on the
training set when given the full 1800 seconds, next to the
time that A is assigned by the portfolio. The last column
shows the marginal contribution of A, i. e., the number of
instances that are no longer solved when removing A from
the portfolio.

or otherwise), which is to solve the union of all instances
solved by any of the possible ingredients. In our training
set, there are 673 instances solved by any of the component
algorithms, only 19 more than solved by the portfolio.

The portfolio in Table 1 is not globally optimal in the
sense that no other fixed sequential portfolio could achieve
a higher score. Indeed, after the planner submission dead-
line, and with substantial manual effort, we managed to find
a slightly better portfolio that solves one more training in-
stance while respecting the 1800 second limit. However,
while our portfolio is not optimal on this training set, it is
certainly close. We conclude that for this data set, a more
sophisticated algorithm for searching the space of portfolios
would not increase the number of solved instances substan-
tially. However, a more sophisticated algorithm might guard
against overfitting, and hence achieve better performance on
unseen instances.

We entered the portfolio shown in Figure 1 into the se-
quential optimization track of IPC 2011 as variant 1 of Fast
Downward Stone Soup. To partially guard against the dan-
gers of overfitting to our training set, we also entered a sec-
ond portfolio as variant 2, which included equal portions of
blind search, LM-cut, BJOLP, and the two M&S-bisim vari-
ants.

Satisficing IPC 2011 Soups
Computing a good portfolio for satisficing planning is more
difficult than in the case of optimal planning for various rea-
sons. One major difficulty in the case of Fast Downward is
that there is a vastly larger range of candidate algorithms to
consider.

Initial experiments showed that in some cases greedy
best-first search was preferable to weighted A∗; in other

cases the opposite was true, with no weight uniformly better
than others. Sometimes, deferred evaluation is the algorithm
of choice, sometimes eager evaluation is better (Richter
and Helmert 2009). And last not least, combining differ-
ent heuristics is very often, but far from always, beneficial
(Röger and Helmert 2010).

Since generating experimental data on all training in-
stances takes a significant amount of time, we had to limit
our set of ingredients to a subset of all promising candidates.
Specifically, we only considered planning algorithms with
the following ingredients:

• search algorithm: Of the various search algorithms im-
plemented in Fast Downward, we only experimented with
greedy best-first search and with weighted A∗ with a
weight of 3. (This weight was chosen very arbitrarily with
no experimental justification at all.)

• eager vs. lazy: We considered both “eager” (textbook)
and “lazy” (deferred evaluation) variants of both search
algorithms. This is backed by the study of Richter and
Helmert (2009), in which these two variants appear to be
roughly equally strong, with somewhat different strengths
and weaknesses.

• preferred operators: We only considered search algo-
rithms that made use of preferred operators. For eager
search, we only used the “dual-queue” method of exploit-
ing preferred operators, for lazy search only the “boosted
dual-queue” method, using the default (and rather arbi-
trary) boost value of 1000. These choices are backed by
the results of Richter and Helmert (2009).

• heuristics: Somewhat arbitrarily, we restricted attention
to four heuristics: additive heuristic hadd (Bonet and
Geffner 2001), FF/additive heuristic hFF (Hoffmann and
Nebel 2001; Keyder and Geffner 2008), causal graph
heuristic hCG (Helmert 2004), and context-enhanced ad-
ditive heuristic hcea (Helmert and Geffner 2008).
These are the four heuristics that in past experiments have
produced best performance when used in isolation. We
did not include the landmark heuristic used in LAMA
(Richter and Westphal 2010), even though it has been
shown to produce very good performance when com-
bined with some of the other heuristics (see, e. g., Richter,
Helmert, and Westphal 2008).
Since Fast Downward supports combinations of multiple
heuristics and these are very often beneficial to perfor-
mance (Röger and Helmert 2010), we considered plan-
ner configurations for each of the 15 non-empty subsets
of the four heuristics. Backed by the results of Röger
and Helmert (2010), we only considered the “alternation”
method of combining multiple heuristics.

• action costs: We only considered configurations of the
planner that treat all actions as if they were unit-cost in
the computation of heuristic values and (for weighted A∗)
g values. This was more due to a mistake in setting up
the experiments to generate the training data than due to
a conscious decision, but as Richter and Westphal (2010)
have shown, this is not necessarily a bad way of handling

31

Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 926.13 / 1021 88 1.82 / 0
Weighted A∗ (w = 3) Lazy hFF 921.71 / 1023 340 10.02 / 5
Greedy best-first Eager hFF, hCG 919.24 / 1023 76 1.15 / 0
Greedy best-first Eager hadd, hFF, hCG 909.75 / 1021 0 —
Greedy best-first Eager hFF, hCG, hcea 907.52 / 1010 73 1.25 / 0
Greedy best-first Eager hFF, hcea 906.92 / 1008 0 —
Greedy best-first Eager hadd, hFF, hCG, hcea 903.57 / 1012 0 —
Greedy best-first Eager hadd, hFF 900.52 / 1015 90 1.51 / 1
Greedy best-first Eager hadd, hCG, hcea 892.08 / 1012 0 —
Greedy best-first Eager hadd, hFF, hcea 890.96 / 1002 0 —
Greedy best-first Eager hCG, hcea 889.93 / 1009 0 —
Greedy best-first Eager hadd, hCG 888.64 / 1014 0 —
Greedy best-first Lazy hFF 880.12 / 1042 171 7.24 / 9
Greedy best-first Eager hcea 878.58 / 990 84 3.45 / 2
Greedy best-first Eager hadd, hcea 877.41 / 999 0 —
Greedy best-first Lazy hFF, hCG, hcea 874.64 / 1035 0 —
Weighted A∗ (w = 3) Eager hFF 874.18 / 920 87 2.75 / 0
Greedy best-first Eager hadd 872.74 / 1006 0 —
Greedy best-first Lazy hFF, hcea 872.48 / 1037 0 —
Greedy best-first Lazy hFF, hCG 871.77 / 1045 49 1.93 / 2
Greedy best-first Lazy hadd, hFF, hCG, hcea 861.06 / 1032 0 —
Greedy best-first Lazy hadd, hFF, hcea 860.64 / 1031 0 —
Greedy best-first Lazy hadd, hFF, hCG 860.04 / 1042 0 —
Greedy best-first Lazy hadd, hFF 859.72 / 1046 0 —
Weighted A∗ (w = 3) Lazy hcea 849.66 / 1001 0 —
Weighted A∗ (w = 3) Eager hcea 844.67 / 938 0 —
Greedy best-first Lazy hCG, hcea 841.78 / 1026 27 1.25 / 0
Greedy best-first Lazy hadd, hcea 839.60 / 1020 0 —
Greedy best-first Lazy hadd, hCG, hcea 835.33 / 1019 0 —
Greedy best-first Lazy hadd, hCG 831.28 / 1030 0 —
Weighted A∗ (w = 3) Lazy hadd 830.39 / 1006 50 0.90 / 0
Weighted A∗ (w = 3) Eager hadd 828.76 / 936 166 3.35 / 3
Greedy best-first Lazy hcea 827.57 / 1014 56 2.04 / 2
Weighted A∗ (w = 3) Eager hCG 822.46 / 906 89 2.30 / 1
Greedy best-first Lazy hadd 808.80 / 1019 0 —
Greedy best-first Eager hCG 802.47 / 920 0 —
Weighted A∗ (w = 3) Lazy hCG 782.14 / 908 73 2.57 / 1
Greedy best-first Lazy hCG 755.43 / 924 0 —

Portfolio 1057.57 / 1071 1519
“Holy Grail” 1078.00 / 1078

Table 2: Variant 1 of Fast Downward Stone Soup (sequential satisficing). The performance column shows the score/coverage
of the configuration over all training instances. The portfolio uses 15 of the 38 possible configurations, running them between
27 and 340 seconds. The last column shows the decrease of score and number of solved instances when removing only this
configuration from the portfolio.

32

Search Evaluation Heuristics Performance Time Marg. Contribution

Greedy best-first Eager hFF 960.77 / 1021 330 26.12 / 4
Greedy best-first Lazy hFF 914.58 / 1042 411 22.32 / 14
Greedy best-first Eager hcea 909.07 / 990 213 9.93 / 5
Greedy best-first Eager hadd 904.49 / 1006 204 4.56 / 3
Greedy best-first Lazy hcea 856.91 / 1014 57 6.17 / 4
Greedy best-first Lazy hadd 840.94 / 1019 63 1.64 / 0
Greedy best-first Eager hCG 829.34 / 920 208 3.48 / 0
Greedy best-first Lazy hCG 781.27 / 924 109 3.17 / 1

Portfolio 1064.23 / 1069 1595
“Holy Grail” 1073.00 / 1073

Table 3: Variant 2 of Fast Downward Stone Soup (sequential satisficing). Columns as in Table 2.

action costs in the IPC 2008 benchmark suite, and all pre-
vious IPC benchmarks are unit-cost anyway.

The implementations of these various planner compo-
nents are due to Malte Helmert (original implementation of
lazy greedy best-first search; implementation of all heuris-
tics except FF/additive), Silvia Richter (implementation of
all other search algorithms and of FF/additive heuristic),
with further contributions by Gabriele Röger (search al-
gorithms, preferred operator handling mechanisms, heuris-
tic combination handling mechanisms) and by Erez Karpas
(search algorithms).

We should emphasize that many potentially good search
algorithms were not included in our portfolio, such as the
combination of FF/additive heuristic and landmark heuristic
used by LAMA (Richter and Westphal 2010). Also, the eval-
uation data we used for our analysis was partially noisy since
some runs were performed before and others after major bug
fixes, and machines with different hardware configurations
were used for different experiments, introducing additional
noise. Finally, there is good reason to believe that our simple
hill-climbing algorithm for building portfolios is not good
enough to find the strongest possible portfolios according to
our scoring criterion.

For variant 1 of Fast Downward Stone Soup in the se-
quential satisficing track, we considered all possible ingre-
dient combinations for greedy best-first search but due to
limited time only included results for weighted A∗ using
single-heuristic algorithms.

With all the caveats mentioned above, the portfolio found
by the hill-climbing procedure, shown in Table 2, does in-
deed achieve a substantially better score than any of the in-
gredient algorithms. (After significant experimentation, we
set the granularity parameter of the algorithm to 90 seconds.)
The total score for the best ingredient, eager greedy search
with the FF/additive heuristic, is 926.13, while the portfolio
scores 1057.57, which is a very substantial gap. The dif-
ference between the portfolio and the “holy grail” score of
1078 (achieved by a portfolio which runs each candidate al-
gorithm for 1800 seconds, which of course hugely exceeds
the IPC time limit) is much smaller, but nevertheless sub-
stantial, so we suspect that better sequential portfolios than
the one we generated exist.

For variant 2 we used only greedy best-first search with a
single heuristic. The hill-climbing procedure (this time us-
ing a granularity of 110 seconds) found the portfolio shown
in Table 3. Note that the performance scores are not com-
parable to the ones of variant 1 because they are computed
for a different algorithm set A. The best single algorithm
is again eager greedy search with the FF/additive heuristic
with a score of 960.77. The total score of the portfolio is
1064.23 which likewise is a huge improvement over the best
single algorithm. The gap to the “holy grail” score of 1073
is narrower than for variant 1.

Serving the Soup
We have finished our description of how we computed the
portfolio that entered the IPC. We now describe how exactly
a run of the portfolio planner proceeds. The simplified view
of a portfolio run is that the different ingredients are run in
turn, each with their specified time limit, on the input plan-
ning task. However, there are some subtleties that make the
picture more complicated:
• The Fast Downward planner that underlies all our ingredi-

ents consists of three components: translation, knowledge
compilation, and search (Helmert 2006). The translation
and knowledge compilation steps are identical for all in-
gredients, so we only run them once, rather than once for
each ingredient. (To reflect that this computation is com-
mon to all algorithms, the training data we use for select-
ing portfolios is also based on search time only, not total
planning time.)
While translation and knowledge compilation are usu-
ally fast, there are cases where they can take substantial
amounts of time, which means that by the time the actual
portfolio run begins, we are no longer left with the com-
plete 1800 second IPC time limit.

• The overall time budget can also change in unexpected
ways during execution of the portfolio when an ingredient
finishes prematurely. In addition to planner bugs, there
are three reasons why an algorithm might finish before
reaching its time limit: running out of memory, termi-
nating cleanly without solving the instance4, or finding a
4Most of our ingredients are complete algorithms which will

33

plan. In cases where the full allotted time is not used up
by a portfolio ingredient, we would like to do something
useful with the time that is saved.

• If a solution is found, we need to consider how to pro-
ceed. For optimal planning, the only sensible behaviour
is of course to stop and return the optimal solution, but for
satisficing search it is advisable to use the remaining time
to search for cheaper solutions.

The first and second points imply that we need to adapt
to changing time limits in some way. The second and third
points imply that the order in which algorithms are run can
be important. For example, we might want to first run al-
gorithms that tend to fail or succeed quickly. For the first
optimization portfolio, we addressed this ordering issue by
beginning with those algorithms that use up memory espe-
cially quickly. For the first satisficing portfolio, we sorted
algorithms by decreasing order of coverage, hence begin-
ning with algorithms likely to succeed quickly. For the other
portfolios, we used more arbitrary orderings.

To address changing time budgets, we treat per-algorithm
time limits defined by the portfolio as relative, rather than
absolute numbers. For example, consider a situation where
after translation, knowledge compilation and running some
algorithms in the portfolio, there are still 930 seconds of
computation time left. Further, assume that the remaining
algorithms in the portfolio have a total assigned runtime
of 900 seconds, of which 300 seconds belong to the next
algorithm to run. Then we assign 310 seconds, which is
300/900 = 1/3 of the remaining time, to the next algo-
rithm. Note that this implies that once the last algorithm in
the portfolio is reached, it automatically receives all remain-
ing computation time.5

The final point we need to discuss is how to take care of
the anytime aspect of satisficing planning. We do this in a
rather ad-hoc fashion, by modifying the portfolio behaviour
after the first solution is found. First of all, the best solution
found so far is always used for pruning based on g values:
only paths in the state space that are cheaper than the best
solution found so far are pursued.6

In both satisficing portfolios, all search algorithms ini-
tially ignore action costs (as in our training), since this can
be expected to lead to the best coverage (Richter and West-
phal 2010). However, unless all actions of task to solve are
unit-cost, once a solution has been found we re-run the suc-
cessful ingredient in a way that takes action costs into ac-
count, since this can be expected to produce solutions of
higher quality (again, see Richter and Westphal 2010). This

not terminate without finding a solution on solvable inputs, but a
few exceptions exist. Namely, those algorithms that are based on
hCG and/or hcea are not complete because these heuristics can as-
sign infinite heuristic estimates to solvable states, hence unsafely
pruning the search space.

5If the last algorithm in the sequence terminates prematurely,
we have leftover time with nothing left to do. Our portfolio runner
contains special-purpose code for this situation. We omit details as
this seems to be an uncommon corner case.

6We do not prune based on h values since the heuristics we use
are not admissible.

is done in the same way as in the LAMA planner, by treat-
ing all actions of cost c with cost c + 1 in the heuristics, to
avoid the issues with zero-cost actions noted by Richter and
Westphal (2010). All remaining ingredients of the portfolio
are modified in the same way for the current portfolio run.

In the second sequential portfolio, for which we specifi-
cally limited consideration to greedy best-first search (which
tends to have good coverage, but poor solution quality), we
make an additional, more drastic modification once a so-
lution has been found. Namely, we discard all further in-
gredients mentioned in the portfolio, based on the intuition
that the current ingredient managed to solve the instance
and therefore appears to be a good algorithm for the given
instance. Hence, we use the remaining time to perform
an anytime search based on the same heuristic and search
type (lazy vs. greedy) as the successful algorithm, using the
RWA∗ algorithm (Richter, Thayer, and Ruml 2010) with the
weight schedule 〈5, 3, 2, 1〉.

Towards Better Recipes
We close our planner description by briefly mentioning a
number of shortcomings of the approach we pursued for Fast
Downward Stone Soup, as well as some steps towards im-
provements.

First, we used a very naive local search procedure. The
need to tune the granularity parameter in the portfolio build-
ing algorithm highlights a significant problem with our lo-
cal search neighbourhood. With a low granularity, it can
easily happen that no single step in the search neighbour-
hood improves the current portfolio, causing the local search
to act blindly. On the other hand, with a high granularity,
we must always increase the algorithm time limits by large
amounts even though a much smaller increase might be suf-
ficient to achieve the same effect. A more adaptive neigh-
bourhood would be preferable, for example along the lines
of greedy algorithms for the knapsack problem that prefer
packing items that maximize the value/weight ratio.

Second, our approach needed complete experimental data
for each ingredient of the portfolio. This is a huge limita-
tion because it means that we cannot experiment with nearly
as many different algorithm variations as we would like to
(as hinted in the description of the satisficing case, where we
omitted many promising possibilities). A more sophisticated
approach that generates additional experimental data (only)
when needed and aims at making decisions with limited ex-
perimental data, as in the FocusedILS parameter tuning al-
gorithm (Hutter et al. 2009) could mitigate this problem.

Third, we had to choose all possible ingredients for the
portfolio a priori. We believe that there is significant poten-
tial in growing a portfolio piecemeal, adding one ingredient
at a time, and then specifically searching for a new ingre-
dient that complements what is already there, similar to the
Hydra algorithm that has been very successfully applied to
SAT solving (Xu, Hoos, and Leyton-Brown 2010).

Fourth, unlike systems like Hydra or ISAC (Kadioglu et
al. 2010) that learn a classifier to determine on-line which
algorithm from a given portfolio to apply to a given instance,
we only use sequential portfolios, i. e., apply each selected
ingredient to each input instance when running the portfolio

34

planner. We believe that this is actually not such a serious
problem in planning due to the “solve quickly or not at all”
property of many current planning algorithms. Indeed, it
may be prudent not to commit to a single algorithm selected
by an imperfect classifier.

Finally, the largest challenge we see is in building a port-
folio that addresses the anytime nature of satisficing plan-
ning in a principled fashion, ideally exploiting information
from previous successful searches to bias the selection of the
next algorithm to run in order to find an improved solution.
As far as we know, this is a wide open research area, and we
believe that it holds many interesting theoretical questions as
well as potential for significant practical performance gains.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2004),
161–170. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hunt, A., and Thomas, D. 2000. The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research
36:267–306.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC – instance-specific algorithm configuration. In

Coelho, H.; Studer, R.; and Wooldridge, M., eds., Proceed-
ings of the 19th European Conference on Artificial Intelli-
gence (ECAI 2010), 751–756. IOS Press.
Karpas, E., and Domshlak, C. 2009. Cost-optimal plan-
ning with landmarks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1728–1733.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
588–592.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.
Mauldin, M. L.; Jacobson, G.; Appel, A.; and Hamey, L.
1984. ROG-O-MATIC: A belligerent expert system. In Pro-
ceedings of the Fifth Biennial Conference of the Canadian
Society for Computational Studies of Intelligence.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 273–280. AAAI
Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy
of forgetting: Faster anytime search via restarting. In Braf-
man, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 137–
144. AAAI Press.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R.; Geffner, H.; Hoffmann, J.; and Kautz, H., eds.,
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010), 246–
249. AAAI Press.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hy-
dra: Automatically configuring algorithms for portfolio-
based selection. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), 210–216.
AAAI Press.

35

Learning Domain Control Knowledge for TLPlan and Beyond
Tomás de la Rosa

Departamento. de Informática
Universidad Carlos III de Madrid

Leganés (Madrid). Spain
trosa@inf.uc3m.es

Sheila McIlraith
Computer Science Department

University of Toronto
Toronto, Ontario, Canada

sheila@cs.toronto.edu

Abstract

Domain control knowledge has been convincingly shown to
improve the efficiency of planning. In particular, the for-
ward chaining planner, TLPlan, has been shown to perform
orders of magnitude faster than other planning systems when
given appropriate domain-specific control information. Un-
fortunately, domain control knowledge must be hand coded,
and appropriate domain control knowledge can elude an un-
skilled domain expert. In this paper we explore the problem
of learning domain control knowledge in the form of domain
control rules in a subset of linear temporal logic. Our ap-
proach is realized in two stages. Given a set of training exam-
ples, we augment the feature space by learning useful derived
predicates. We use these derived predicates with the domain
predicates to then learn domain control rules for use within
TLPlan. Experimental results demonstrate the effectiveness
of our approach.

Introduction
Hand-tailored automated planning systems augment plan-
ning systems with extra domain-specific control knowl-
edge (DCK) and a means of processing that knowledge to
help guide search. They have proven extremely effective
at improving the efficiency of planning, sometimes show-
ing orders of magnitude improvements relative to domain-
independent planners and/or solving problems that evade
other planners. One of the keys to their success has been
their ability to drastically reduce the search space by elim-
inating those parts of the space that do not comply with
the DCK. The best-known hand-tailored planning systems
are TLPLAN (Bacchus and Kabanza 2000), TALPLANNER
(Kvarnström and Doherty 2000), and SHOP2 (Nau et al.
2003). SHOP2 provides DCK in the form of Hierarchical
Task Networks (HTNs) – tasks that hierarchically decom-
pose into subtasks and ultimately into primitive actions. In
contrast, both TLPLAN and TALPLANNER exploit DCK in
the form of control rules specified in Linear Temporal Logic
(LTL) (Pnueli 1977).

Unfortunately, the effectiveness of hand-tailored plan-
ning systems relies on the quality of the DCK provided by
an expert, and while even simple DCK has proven help-
ful, the provision of high-quality DCK can be time con-
suming and challenging. In 2003, Zimmerman and Kamb-
hampati surveyed the use of machine learning techniques
within automated planning, identifying offline learning of
domain knowledge and search control as promising avenues
for future research (Zimmerman and Kambhampati 2003).

Since then there has been renewed interest in the appli-
cation of machine learning techniques to planning in or-
der to automatically acquire control knowledge for domain-
independent planners. However, there has been no work on
learning LTL domain control rules.

In this paper we explore the problem of learning DCK in
the form of domain control rules in a subset of LTL. The
control rules are learned from a set of training examples,
and are designed to serve as input to TLPLAN. TLPLAN is
a highly optimized forward-chaining planner that uses do-
main control rules, specified in LTL, to prune partial plans
that violate the rules as it performs depth-first search. Con-
trol rules are typically encoded using the predicates of the
original domain together with new derived predicates that
capture more complex relationships between properties of a
state. As such the challenge of learning LTL control rules for
input to TLPLAN requires not only learning the rules them-
selves but also the derived predicates that act as new features
in the feature space of the learning task.

The contributions of this paper include: an algorithm
for learning LTL domain control rules from training exam-
ples, exploiting techniques from inductive logic program-
ming (ILP); and a technique for generating derived predi-
cates in order to expand the feature space of a learning prob-
lem. The creation of a good feature space is central to effec-
tive learning. As such the ability to generate relevant derived
predicates has broad applicability in a diversity of learning
problems for planning. We evaluate our techniques on three
benchmarks from previous IPC competitions. The results
demonstrate the effectiveness of our approach, since the new
learning-based TLPLAN is competitive with state-of-the-art
planners. In the next section, we briefly review LTL and the
planning model we consider in our work. This is followed
by a more precise statement of the learning task, including
the language, the generation of the training examples and the
learning algorithm. Next we discuss our experimental eval-
uation. We conclude with a summary of our contributions
and a discussion of related and future work.

Preliminaries
In this section we define the class of planning problems we
consider and review LTL notation and semantics.

Planning: Our planning formalism corresponds to the non-
numeric and non-temporal version of the Planning Domain
Definition Language (PDDL). For simplicity, we assume
that our domains are not encoded with conditional effects

36

and that preconditions are restricted to conjunctions of lit-
erals. We use first-order predicate logic notation, but our
planning problems range over finite domains and thus can
be expressed as propositional planning problems.

A planning domain D has a first-order language L with
the standard first-order symbols, variables and predicate
symbols. We assume our language is function-free with the
exception of 0-ary constant terms. A planning task Π is de-
fined as the tuple (C,O,X , s0, G) where:

1. C is a finite set of constants in Π. We refer to L(Π) as the
domain language extended with task-specific constants.
L(Π) defines the state space for the task. A state s of Π is
a conjunction of atoms over L(Π).

2. O is the set of operators, where each o ∈ O is a pair
(pre, eff) where pre is a first-order formula that stipulates
the preconditions of an operator, and eff is the effect of
o, normally expressed as a conjunction of literals. The
set of operators O define the set of applicable actions A
by grounding variables in o with suitable constants drawn
from C. An action a ∈ A is applicable in a state s if pre
holds in s. When an action is applied, the result is a new
state s′ where atoms in s are modified according to eff .

3. X is a set of axioms where each δ ∈ X is the pair
(head, body) with head an atom and body a first-order
formula. Axioms in X define the set of derived predi-
cates. The rest of predicates in L(Π) are called fluent
predicates.

4. s0 is the set of atoms representing the initial state.
5. G is the set of atoms representing the goals.

A solution to the planning task Π is a plan
π = (a1, . . . , an) where ai ∈ A and each ai is ap-
plied sequentially in state si−1 resulting in state si. sn is
the final state and G ⊆ sn. If there is no a plan with fewer
actions than n then the plan is said to be optimal.

LTL: First-order linear temporal logic (FOLTL) is an exten-
sion of standard first-order logic with temporal modalities.
The first-order language L is augmented with modal oper-
ators � (always), ♦ (eventually), U (until), and # (next).
We refer to this new language as LT . Formulas in LT are
constructed using logical connectives in the standard man-
ner and if φ1 and φ2 are well-formed formulas (wff), then
�φ1,♦φ1,#φ1 and φ1Uφ2 are wff as well. Formulas are
interpreted over a sequence of states σ = 〈s0, s1, . . . 〉where
each si shares the same universe of discourse (i.e., in a par-
ticular planning task Π). Here we briefly describe the se-
mantics of temporal operators. For a more general descrip-
tion refer to (Emerson 1990) or in the planning context to
(Bacchus and Kabanza 2000). If φ1 and φ2 are LT formu-
las, and υ is a function that substitutes variables with con-
stants of LT , we say temporal operators are interpreted over
a state sequence σ as follows:

1. 〈σ, si, υ〉 � �φ1 iff for all j ≥ i, 〈σ, sj , υ〉 � φ1. i.e., φ1

is true for all states in σ.
2. 〈σ, si, υ〉 � #φ1 iff 〈σ, si+1, υ〉 � φ1. i.e., φ1 is true in

next state in σ.
3. 〈σ, si, υ〉 � ♦φ1 iff there exists j ≥ i, such that
〈σ, sj , υ〉 � φ1. i.e., φi will eventually become true in

some state in the future.
4. 〈σ, si, υ〉 � φ1Uφ2 iff there exists j ≥ i such that
〈σ, sj , υ〉 � φ2 and for all k, with i ≥ k < j, 〈σ, sk, υ〉 �
φ1. i.e., φ1 is and remains true until φ2 becomes true.

LTL and TLPLAN: As in TLPLAN, we will not use the
♦ (eventually) modal operator, since it does not result in
pruning of the planning search space. (I.e. ♦φ will always
hold in the current state, because the planner expects φ to
become true sometime in the future.) Note that TLPLAN
also exploits an additional goal modality, which is helpful
for planning and which we also exploit. GOALf expresses
that f is a goal of the planning problem being addressed.
In order to determine whether or not a plan prefix, gener-
ated by forward chaining planner, TLPLAN, could lead to
a plan that satisfies an arbitrary LTL formula, TLPLAN ex-
ploits the notion of progression over LTL with finite domain
and bounded quantification. Intuitively, progression of an
LTL formula breaks a formula down into a formula that must
hold in the current state, conjoined with a formula that must
hold in the rest of the plan being constructed. The progres-
sion algorithm is defined for each LTL modality, and is de-
scribed in detail in (Bacchus and Kabanza 2000).

Learning Restricted LTL
The task we address in this paper is to automatically learn
domain control rules for input to TLPLAN. Following (Bac-
chus and Kabanza 2000) consider the Blocksworld example
�(∀x:clear(x)goodtower(x)→

#(clear(x) ∨ ∃y:on(x,y)goodtower(y))
where goodtower(x) is a derived predicate encoding that
block x and all others blocks below are in their final posi-
tion. The rule in the example indicates that all good towers
will remain the same in the next state or if another block is
stacked on the top of a good tower, it is also well placed.

The learning paradigm we use is similar to the one used in
the learning track of IPC-2008. A learning component takes
as input a set of high-quality problem- or domain-specific
bootstrap plans from which plan properties are learned that
are used to augment the planner or planning domain so that
subsequent plan generation over related planning instances
is improved.

In this particular instance, we generate our own set of
training examples from a set of training problems, as de-
scribed in detail below. Normally training examples are
plans for simpler (generally smaller) formulations of the
planning problem being addressed. From here they may
be transformed into a representation suitable for input to
the learning component. In our problem, the input to our
learning component ultimately takes the form of sequences
of states that result from the execution of (optimal) plans.
Given this training input, we proceed in two steps: first
learning new features of our training examples through
the generation of derived predicates, and then from these
augmented training examples, learning our domain control
rules. The first step – generation of derived predicates – is
an optional step and we evaluate the quality and impact of
our control rules both with and without the use of our learned
derived predicates.

37

As noted in the introduction, TLPLAN exploits LTL do-
main control rules by pruning partial plans (states) that vio-
late the domain control rules. As noted by the developers of
TLPLAN, only a subset of LTL formulas have the capacity
to prune states. For example, if in every state the property
ϕ must hold, then the corresponding TLPLAN LTL formula
will be �ϕ, i.e., always ϕ. Indeed, every control rule re-
ported in (Bacchus and Kabanza 2000) was of this form. As
such, we restrict the problem to finding ϕ restricted to for-
mulas over L ∪ {#,U}.
Definition 1 (R-LTL formula) An R-LTL formula is a re-
stricted LTL formula of the form �ϕ, where ϕ is a well-
formed formula in the language L∪ {#,U} (written LT R).

These R-LTL formulas will be learned from the input to
our learning component which, as described above, takes the
form of sequences of states obtained from simpler related
planning problems that we have solved.

Definition 2 (Optimal state sequence) Given a planning
task Π, an optimal state sequence σ+ = 〈s0, . . . , sm〉
is a state sequence where every si belongs to a state se-
quence resulting from the execution of an optimal plan π =
〈a1, . . . , an〉 from the initial state, with m ≤ n.

Definition 3 (Suboptimal state sequence) Given a plan-
ning task Π, a suboptimal state sequence σ− =
〈s0, . . . , sm〉 is a state sequence where at least one si, with
i > 0, does not belong to any state sequence resulting from
the execution of every optimal plan π = 〈a1, . . . , an〉 from
the initial state.

Although we use optimal sequences to induce DCK, we
do not expect to learn control formulas that generate solely
optimal plans. The inherent process of induction over a
restricted set of examples, and the complex structure of the
hypothesis spaces hinder this.

The Control Rule Learning Task: Given,
• the language LT R for the target formula.
• the universe of discourse1, H , for the target formula.
• background knowledge B on LT R(H), expressed as a

(possibly empty) set of axioms.
• A set of positive and negative examples, such that:

– for each example indexed by i, 1 ≤ i ≤ n there is an
associated universe of discourse, D1, . . . , Dn

– A set of positive examples E+ in LT R(Di), represent-
ing optimal state sequences σ+.

– A set of negative examplesE− inLT R(Di), represent-
ing suboptimal state sequences σ−.

The target of learning is to find a (hypothesis) formula ϕ in
LT R(H) such that all examples inE+ are interpretations of
ϕ and all examples in E− are not interpretations of ϕ.

Training Examples
As noted above, the input to our R-LTL learning compo-
nent is a set positive and negative examples. I.e., a set of

1Recall that a universe of discourse is the set of objects about
which knowledge is being expressed.

sequences of states that results from the execution of actions
from optimal (respectively, suboptimal) plans. In order to
generate this input, we start with a set of training problems
– a set of planning problems to be solved. These prob-
lems are solved with a Best-first Branch-and-Bound algo-
rithm (BFS-BnB) using the FF relaxed plan heuristic (Hoff-
mann and Nebel 2001). After finding a first plan, the al-
gorithm tries to find shorter plans until it has explored the
entire search space. The right way of achieving this is
with an admissible heuristic. In practice, however, using
known domain-independent admissible heuristic leads the
algorithm to only solve very small problems, many times
uninteresting from learning perspective. The FF heuristic
works reasonably well for meaningful small problems with
rare over-estimation during the exhaustive BFS-BnB search.
Exceptions are treated as noise in the training data. After
solving each of the problems in the original suite, the result
is a set of all possible (optimal) solutions. Training prob-
lems should be small enough to allow BFS-BnB to perform
the exhaustive search, but also should be big (interesting)
enough to deliver some knowledge to the training base.

We have characterized the control rule learning task with
respect to a set of optimal and suboptimal state sequences.
However, the relevant feature of these sequences is the good
and bad transitions that exist between consecutive states.
A good transition, as characterized by a 2-sequence σT =
〈si, si+1〉, maintains the plan on an optimal path. In con-
trast, a bad transition, also characterized by a 2-sequence,
denotes the point at which a heretofore optimal plan devi-
ates from its optimal path, becoming suboptimal. Our train-
ing examples reflect this. E+ contains all good transitions
i.e., all 2-sequences σ+

T , while E− contains all bad transi-
tions, σ−T = 〈si, si+1〉 where si+1 is part of a suboptimal
path. Note that those 2-sequences where both states are in a
suboptimal path are not of interest for learning because they
don’t reflect the transition from an optimal to a suboptimal
path, which we want our control rules to avoid.

Thus, given a planning task Π and the sequence σT =
〈si, si+1〉, an example for our learning component will com-
prise the following information for each 2-sequence:
class: positive or negative
current state: all atoms in si

next state: for every atoms in si+1 such that its predicate
symbol, P , appears in some effect of an operator in O,
assert a new predicate next P , with parameters corre-
sponding to the original atom. It is irrelevant to have static
atoms in both current and next state. This simplification
does not confer additional meaning but does reduces the
size of the example.

goal predicates: assert new predicates as follows,
• for every P in G assert a new predicate goal P .
• for every P inG that is true in si, assert a new predicate
achievedgoal P .
• for every P in G that is false in si, assert a new predi-

cate targetgoal P .
These new meta-style predicates are used within the learn-

ing algorithm to induce particular LTL formulas. For ex-
ample, the next meta-predicate serves to induce ©ϕ sub-

38

formulas, and goal serves to induce the goal modality used
in TLPLAN. achieved and targetgoal are pre-defined pred-
icates for all domains with the appropriate semantics.

LTL Formula Learning Algorithm
In the previous subsection, we described the control rule
learning task and the form of our example input. In order to
realize this algorithm, we use the ICL Tool (Inductive Clas-
sification Logic) which is part of the ACE Toolkit (Raedt et
al. 2001). ICL learns first-order formulas (in DNF or CNF
format) with respect to a specific class of examples. For
our work, we learn the positive class described in the learn-
ing examples. The ICL algorithm performs a beam search
within the hypothesis space, using as successor the possi-
ble refinement of rules. Since handling all formula refine-
ments is in general intractable, ICL and many others ILP
algorithms imposes declarative constraints to the inductive
hypothesis search called language bias. The language bias
in ICL is defined in a language called Dlab (Nedellec et al.
1996). In Dlab one can indicate how many and which pred-
icates of the language can be introduced to the refinement of
a single formula. In our work we automatically construct the
language bias in Dlab syntax using the types and predicate
definition of the domain. The only restriction we impose is
to have one or zero literals in the head of a clause. In the
latter case the head is the false constant. After learning first-
order formulas with ICL, we translate them into R-LTL for-
mulas (i.e., changing next P and goal P meta-predicates
as explained previously).

To this point, we have not addressed the issue of learning
formulas containing the U modal operator. We argue that it
is not necessary as a result of the following theorem.

Theorem 1 An R-LTL formula �ϕ1, where ϕ1 only has
temporal modalities over first-order expressions (non-nested
#and U), has an equivalent formula �ϕ2 where ϕ2 is over
the language L ∪ {#}.

Proof Sketch:If we treat any first-order expression with a
modal operator as an atomic formula, the formula ϕ1 could
be written in DNF or CNF format. � operator is distributive
over ∧ and ∨, so we can for any sub-formula containing U,
get the sub-formula in the form �(φ1Uφ2). Following the
rules for progression of LTL (Bacchus and Kabanza 2000):

�(φ1Uφ2) ≡ φ1Uφ2 ∧#�(φ1Uφ2)
φ1Uφ2 ≡ φ2 ∨ (φ1 ∧#(φ1Uφ2))

Additionally, the sub-formula #(φ1Uφ2) cannot be false in
�(φ1Uφ2) because it is actually true in every state of the
sequence being progressed, thus �(φ1Uφ2) ≡ �(φ2 ∨ φ1).

Learning Derived Predicates
In the previous section we described our approach to learn-
ing R-LTL formulas for input to TLPLAN. In the introduc-
tion, we noted that LTL control rules are often specified in
terms of additional derived predicates that capture additional
properties of the state of the world. In this section we dis-
cuss how to generate such derived predicates with a view to
improving the quality of the R-LTL formulas we learn.

Derived predicates serve two purposes within planning.
They serve as a parsimonious way of encoding certain pre-
conditions, and they capture more complex properties of the
state of the world. Given a set of predicates that are suf-
ficient for planning, our goal is to learn derived predicates
that will be of utility in the expression of control knowledge.
We have identified three types of derived predicates that are
found in DCK reported by (Bacchus and Kabanza 2000) as
well as in other learning approaches detailed in the related
work section. They are:

Compound Predicates: The union of two predicates. For
instance, in the Blocksworld domain, predicates (clear A)
and (on A B) produce the new predicate (clear on A B).

Abstracted Predicates: A new predicate that is created by
ignoring a variables. For instance, predicate (on A B)
produces the new predicate (abs on A), representing that
block A is on another block.

Recursive Predicate: A predicate with at least two argu-
ments of the same type begets a predicate that encodes
transitive relations between constants. For instance

above(A, B) ≡ on(A, B) ∨ (on(A, X) ∧ above(X, B))

These types of derived predicates are primitive schemas,
analogous to relational clichés (Silverstein and Pazzani
1991), which are patterns for building conjunctions of pred-
icates, together with constraints on the combination of pred-
icates and variables.

The above mentioned predicates can also be combined in
different ways to produce more complex predicates. For in-
stance, in the Parking domain, a new predicate that relates
the curb where a car is parked can be derived by abstracting
a compound predicate as follows:

behind car at curb num(Car, FrontCar, Curb) ≡
behind car(Car, FrontCar)∧
at curb num(FrontCar, Curb)

abs behind car at curb num(Car, Curb) ≡
∃x(behind car(Car, x) ∧ at curb num(x, Curb)

In this work, we learn derived predicates to augment the
background knowledge used to learn the R-LTL formulas.
The syntactic form of the above three derived predicate types
is described in terms of the head and body of axioms.

Definition 4 (Compound predicate) Given two pred-
icates, pred1(a1, . . . , an) and pred2(b1, . . . , bm) a
compound predicate is an axiom δ = 〈head, body〉 where
head is a new predicate pred1 pred2(c1, . . . , co) and
body = pred1(a1, . . . , an) ∧ pred2(b1, . . . , bm). The
predicate symbol in head is the string concatenation of
pred1 and pred1 predicate symbols with an ” ” in between,
and the arguments c1, . . . , co are the free variables in body.

Definition 5 (Abstracted predicate) Given a predicate
pred(a1, . . . , an), an abstracted predicate is an ax-
iom δ = 〈head, body〉 where head is a new predicate
abs pred(c1, . . . , co) and body is pred(a1, . . . , an) with
one ai existentially bound, called typed variable. Arguments
c1, . . . , co are the free variables in body.

39

Quantifications in TLPLAN is bounded, so to build ab-
stracted predicates, the typed variable is bounded to the
unary predicate encoding the argument type. Therefore, the
semantics of an abstracted predicate is that the typed vari-
able may be replaced by any constant of the variable type.

Definition 6 (Link-recursive predicate) Given a
2-ary predicate pred(a1, a2), a link-recursive
predicate is an axiom δ = 〈head, body〉 where
head = link rec pred(a1, a2) and body has the form:

pred(a1, a2) ∨ ∃ax.(pred(a1, ax) ∧ link rec pred(ax, a2)

Definition 7 (End-recursive predicate) Given a 2-
ary predicate pred1(a1, a2) and a n-ary predicate
pred2(ax, b1, . . . , bn−1) with n ≥ 1, an end-recursive
predicate is an axiom δ = 〈head, body〉 where
head = end rec pred(ax) and body has the form:

pred2(ax, b1, . . . , bn−1)∨∃ay.(pred(a1, a2)∧end rec pred(ay))

with substitutions [ax/a1], [ay/a2] for right recursion or
[ax/a2], [ay/a1] for left recursion.

The task of learning derived predicates consists of search-
ing through the space of new derived predicates until reach-
ing certain criteria for improving the task of learning the
R-LTL formula. We elaborate on the form of this criteria
below. The space of new derived predicates is defined by
the possible compound, abstracted, and recursive predicates
that can be constructed from the original predicates of the
domain model. Formally, we say that given the inputs (with
empty background knowledge) for the learning task of a for-
mula ϕ in LTR(H), the task of acquiring derived predicates
for the learning task consists of selecting background knowl-
edge Bi in the form of logic programs, such that ϕ improves
a given evaluation criterion.

Derived Predicates Learning Algorithm
The learning algorithm performs a beam search in the space
of possible new derived predicates. As with most ILP al-
gorithms a best-first search is not feasible. Figure 1 shows
the pseudo-code for the algorithm. Derived predicate func-
tions (i.e., compound, abtracted and recursive) compute
all possible combinations of each type of derived predicate,
given a list of current predicates in node n. Each successor
adds a single new derived predicate to the current predicates
from the combinations computed by these functions. The
algorithm stops when at depth d+ 1 any node improved the
best evaluation at depth d. It returns the best set of predi-
cates found so far. The argument eval set is a set of prob-
lems (different from the training set) used for evaluation pur-
poses. At each node, a set of rules is induced with the cur-
rent predicates and function feval evaluates how good these
rules are with regard to problems in eval set. The function
feval could obviously be replaced by the accuracy of the rule
learner. However, we found in empirical evaluations that
guiding the search with this accuracy does not guarantee an
increase in the number of solved problems.

The translation of derived predicate into TLPLAN DCK
is straightforward. Each derived predicate returned by
LEARNDERIVEDPREDS is defined as a new predicate using

LEARNDERIVEDPREDS (preds, feval, eval set, k): preds

beam← {preds}; irrelevant← ∅
repeat

best fn← facc(first(beam)); successors← ∅
for all n in beam do

Add {compound(n) ∪ abstracted(n) ∪
recursive(n)} − irrelevant

to successors
for all n′ in successors do

evaluate facc(n
′, eval set)

if facc(n
′, eval set) < best fn then

Add n′ to irrelevant
beam← first k n′s in sorted(successors, facc)

until facc(first(beam))> best fn
return first(beam)

Figure 1: Algorithm for learning derived predicates.

(def-defined-predicate (abs_2_targetgoal_on ?block1)

(exists (?block2) (block ?block2)

(targetgoal_on ?block1 ?block2)))

Figure 2: TLPLAN abstracted predicate (Blocksworld)

the formula that is the body of the axiom definition. Fig-
ure 2 shows the definition of an abstracted predicate for the
Blocksworld domain, using the TLPLAN DCK language. R-
LTL formulas learned with the best set of derived predicates
are translated as described in the previous section, but may
now refer to one or more derived predicates.

Experimental Evaluation
We have implemented the ideas presented in previous sec-
tions within an extension to TLPLAN that we call LELTL,
which stands for LEarning Linear Temporal Logic. In this
section we present the experimental evaluation we have per-
formed with LELTL. The aim of this evaluation is two-fold:
we want to evaluate the strength of the LELTL planner com-
pared to a state-of-the-art planner; and we want to compare
the control rules we learned to DCK that a planning expert
has encoded for the domains we consider. As an additional
outcome of our evaluation, we will provide a comparison of
the TLPLAN approach to current state-of-the-art planners,
since previous comparisons were done 8 years ago and the
state of the art has advanced significantly in that period. We
used the following configurations for our experiments:

LAMA: IPC-2008 winner. Serves as a baseline for com-
parison (Richter, Helmert, and Westphal 2008). It was
configured to stop at the first solution to make compari-
son with depth-first algorithms fair.

TLPLAN: TLPLAN using hand-coded control rules cre-
ated by a planning expert.

LeLTL (Basic): TLPLAN using R-LTL formulas contain-
ing only domain predicates and additional goal predicates.

LeLTL-DP (Fully automated): TLPLAN with DCK
comprising learned derived predicates and R-LTL
formulas over domain and derived predicates.

40

We evaluated these configuration over three benchmarks:
Blocksworld, Parking, and Gold Miner. The Blocksworld
domain is known to be a good example of a domain requir-
ing extra predicates in order to learn useful DCK, and it’s
also one of the domains in which TLPLAN had the most sig-
nificant gain in performance. The Parking and Gold Miner
domains were part of the IPC-2008 Learning Track.

The evaluation involved several steps. The first step was
to learn the control rules with and without the derived pred-
icates. To do so, training examples were produced from a
set of 10 small problems generated by random problem gen-
erators freely available to the planning community. A val-
idation set of 20 problems was generated for the LEARN-
DERIVEDPRED algorithm, which was run with k = 3. Ex-
ploratory tests revealed that increasing k beyond 3 did not
yield significant changes to the quality of the rules. The rule
learner took up to 57 seconds to induce a set of rules.

Once the rules had been learned, they were evaluated in
the context of the various planners. For each domain we
tested 30 instances. The Parking and Gold Miner prob-
lem sets have 30 problems. For Blocksworld we selected
the 30 larger typed instances from IPC-2000. To evaluate
TLPLAN, we used the Blocksworld DCK reported in (Bac-
chus and Kabanza 2000), simplified to only handle goals
with on and ontable predicates. (i.e., goals are rarely speci-
fied with holding or clear predicates). No TLPLAN control
rules existed for several of the domains. In these cases, we
hand-coded the control rules. Each planner was run with a
time bound of 900 seconds.

We appeal to the scoring mechanism used in the IPC-2008
learning track to present our results. With respect to the plan
length, for each problem the planner receivesN∗i /Ni points,
whereN∗i is the minimum number of actions in any solution
returned by a participant for the problem i (i.e., the shortest
plan returned by any of the planners), and Ni is the number
of actions returned by the planner in question, for the prob-
lem i. If the planner did not solve the problem it receives
a score of 0 for that problem. The metric for measuring the
performance of a given planner in terms of CPU time is com-
puted with the same scheme but replacing N by T , where T
is the measure of computation time. Since we used 30 prob-
lems for the test sets, any planner can get at most 30 points
for each metric. In both cases, high scores are good.

Table 1 shows the number of problems solved by each
configuration in the evaluated domains. Table 2 shows the
scores for the plan length metric and Table 3 shows the
scores for the CPU time metric. We comment on the results
for each domain separately.

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 17 30 0 28
Parking 29 12 16 30
Gold-miner 29 27 30 27

Table 1: No. problems solved in test sets of 30 problems

Blocksworld: TLPLAN is clearly the best planner in this
domain with LELTL-DP a close 2nd with respect to prob-
lems solved, topping TLPLAN on quality. LAMA did not

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 7.21 29.78 0.00 28.00
Parking 28.13 4.24 1.43 18.57
Gold-miner 28.63 13.27 16.96 15.44

Table 2: Plan length scores. High score is good.

Domain LAMA TLPlan LeLTL LeLTL-DP
Blocksworld 0.24 30.00 0.00 0.16
Parking 10.50 9.49 1.87 25.00
Gold-miner 29.00 1.89 4.10 1.45

Table 3: CPU Time scores obtained by different planners.

solve 13 problems because it did not scale well. LELTL-
DP learned the recursive derived predicate depicted in Fig-
ure 3. The control formula contains ten clauses, seven of
them exploiting this derived predicate. As we explained be-
fore, predicate (abs 2 targetgoal on A) encodes that block
A needs to be placed somewhere else. Therefore, the se-
mantic of the recursive predicate is that block A is not well
placed or it is on another block (B) that recursively follows
the same condition (i.e.,B or a block beneath is in the wrong
place). Interestingly, this actually represents the concept
of “bad tower”, which was originally defined as the nega-
tion of the well-known “good tower” concept in the original
TLPLAN control formula for Blocksworld.

Figure 4 shows the planner execution times in the
Blocksworld domain. The x-axis is the instance number and
the y-axis is the CPU time in logarithmic scale. TLPLAN
performs two orders of magnitude faster than LAMA
or LELTL-DP. LAMA solved 12 problems faster than
LELTL-DP. However, LELTL-DP performance shows that
it is more reliable for solving problems. Moreover, LELTL-
DP found the best-cost solution in the 28 problems it solved.
Both TLPLAN and LELTL-DP scale as a function of the
problem size. LAMA’s performance seems to be influenced
by other properties, such as the problem difficulty.
Parking: The objective of this domain is to arrange a set
of cars in a specified parking configuration where cars can
be single or serially parked at a set of curbs. In this do-
main we were unable to manually code an effective control
formula for TLPLAN. LAMA performs quite well in this
domain and got the top score for the quality metric. LELTL
solved 16 problems, performing reasonably well using a 15-
clauses control formula without the use of derived predi-
cates. LELTL-DP improves the basic configuration and got
the top score for the time metric. It used two new compound
predicates and 14 clauses in its control formula. Some of
these clauses can be understood intuitively, giving us feed-
back to our hand-coded formulas. An example of a clause in
the Parking domain is presented in Figure 5. The compound
predicate specifies that Car S should be placed at Curb U,
which is now clear. The clause imposes the restriction of
(def-defined-predicate

(rec_1r_on_abs_2_targetgoal_on ?a)

(or (abs_2_targetgoal_on ?a)

(exists (?b) (block ?b)

(and (on ?a ?b)

(rec_1r_on_abs_2_targetgoal_on ?b)))))

Figure 3: Learned recursive derived predicate (Blocksworld)

41

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

T
im

e

Problem No.

blocksworld domain

LAMA
TLPlan

LeLTL-DP

Figure 4: Comparative execution time (Blocksworld)

(forall (?s) (car ?s)

(forall (?t) (car ?t)

(forall (?u) (curb ?u)

(implies (and (targetgoal_behind_car ?t ?s)

(curb_clear_targetgoal_at_curb_num ?s ?u)

(next (behind-car ?s ?t)))

(false)))))

Figure 5: A clause with a learned compound predicate (Parking)

not parking cars in the opposite way whenever the curb at
which they should be parked is available in the current state.
Gold-miner: The objective of this domain is to navigate in
a grid of cells, destroying rocks with a laser and bombs until
reaching a cell containing the gold. All configurations eas-
ily found plans, but only LAMA could find plans of good
quality. Even using derived predicates, it is difficult to rep-
resent concepts for a grid navigation, such as ”good path”.
Recursive predicates can represent paths connecting cells re-
cursively, but there is no way to indicate if a path is better
than another (i.e., related cells in a link-recursive predicate
can say that two cell are connected, but do not express any-
thing about the length). LELTL-DP learned a compound
predicate to represent a cell next to the gold, but it slightly
degrades the performance of the basic configuration.
Performance Note: We tried to learn DCK for other do-
mains such as Satellite, Rovers and Depots, but we did not
achieve good results. Even optimized hand-tailored DCK
does not lead TLPLAN to good performance. TLPLAN
does not perform action grounding as most of state-of-the-
art planners do. Thus, it is overwhelmed by continuous
variable unifications when progressing control formulas in
problems with large numbers of objects. On the other hand,
TLPLAN is still reported as competitive. This is achieved
by precondition control rather than control formulas. I.e.,
action preconditions are augmented to preclude execution of
actions leading to bad states. Consequently, there is no for-
mula to progress and the instantiation of actions is restricted
to those leading to a plan.

Discussion and Related Work
While the objective of our work was to learn R-LTL con-
trol rules, it is interesting to contrast what we have done to

the general use of DCK in TLPLAN. TLPLAN supports the
expression of DCK in a diversity of forms as well as per-
forming various preprocessing procedures. In the work re-
ported here, we did not attempt to replicate TLPLAN’s ini-
tialization sequence. This is a procedure that modifies the
initial state for domain knowledge enrichment. It includes
the use of techniques such as propagating type hierarchy as
unary types, and removing useless facts or pre-computing
some derived predicate. We also did not attempt to learn
derived predicates for use within domain operators for the
purpose of precondition control. This would necessitate a
modification to the domain representation (changing opera-
tor preconditions and effects) to permit the planner to only
generate the successors satisfying a control formula, rather
than representing the control formula as an explicit rule. The
version of TLPLAN submitted to IPC-2002 exploited signif-
icant precondition control as an alternative to control formu-
las. The main benefit of this approach is that it eliminates
the need to progress LTL formulas, which in some circum-
stances can be computationally expensive. By way of il-
lustration, consider a Blocksworld problem where all “good
towers” are pre-computed by the initialization sequence and
the Unstack operator is re-written as:

(def-adl-operator (stack ?x ?y)

(pre (?x) (block ?x) (?y) (block ?y)

(and (holding ?x) (clear ?y)

(goodtowerbelow ?y)))

(and (del (holding ?x)) (del (clear ?y))

(add (clear ?x)) (add (handempty))

(add (on ?x ?y))

(add (goodtowerbelow ?x))))

While neither learning precondition control nor mod-
ifying the domain representation were objectives of our
work, precondition control from our control rules could be
achieved via regression.

On a different topic, Theorem 1 implies that when LTL
is used to express pruning constraints, the formula inside
2 need only exploit the # modality. This suggests that the
two-stage approach presented here could be exploited within
a diversity of planning systems without explicit LTL. Such
a system would need a representation language able to en-
code information regarding the current state and changes re-
alized when an action is applied (reaching the next state)
and also would need an inference engine that computes ax-
iom rules. An example of such a language is the one used in
Prodigy (Veloso et al. 1995), which uses IF-THEN control
rules for pruning purposes, though they were used combined
with preferred and direct selection rules.

Regarding our rule learner, the use of the rule learner ICL
was not a limitation for learning the necessary set of LTL. In
this work we focused on only using the # modality because
this was consistent with expert DCK examples we analyzed
and because of Theorem 1.

This work is closely related to work that tries to learn
generalized policies for guiding search. For example,
L2ACT (Khardon 1999) induces a set of rules from training
examples, but a set of axioms must be given to the system
as background knowledge. Some equivalence can be found
between axioms in LELTL-DP and L2ACT. LELTL-DP
gets its axioms by deriving them from the domain defini-
tion (e.g., (achieved goal on x y)) or by learning them via

42

the derived predicate learning process. (Martin and Geffner
2004) presented a technique for learning a set of rules for the
Blocksworld domain without the definition of background
knowledge. In this case DCK was represented in a concept
language which was suitable for encoding different object
(block) situations. A grammar specified how to combine
different concepts in order to produce complex concepts, in-
cluding the recursive ones needed for Blocksworld. This
approach has the limitation that actions are restricted to one
parameter, therefore both the domain model and DCK need
different representations.

Recently, (Yoon, Fern, and Givan 2008) and (De la Rosa,
Jiménez, and Borrajo 2008) achieved more significant re-
sults from learning in a variety of domains because they
use learned DCK in combination with heuristic search tech-
niques. The former learns a set of rules in taxonomic syntax
and the latter learns a set of relational decision trees. These
systems attempt to reproduce the search path observed in
the training data. Their result is often referred to as a gen-
eralized policy, since given a state, problem goals, and in
some cases extra features, the policy can return the action
to be applied. In contrast, LELTL is focused on pruning
and as such tries to characterize the whole space of possible
”correct” paths (positive class), rather than a particular path.
Learning-assisted planning is not restricted to systems that
learn generalized policies or similar DCK.

Conclusions and Future Work
In this paper we presented an approach to learning domain
control knowledge for TLPlan in the form of control rules in
a subset of LTL. We achieved this in two stages. 1) We used
an off-the-shelf rule learner to induce control formulas in a
subset of LTL, designed to prune suboptimal partial plans.
Our technique is easily extendable to learning LTL for other
purposes, such as recognizing user preferences or tempo-
rally extended goals. 2) We also proposed a greedy search
technique to discover new concepts in the form of derived
predicates that, when used as background knowledge, im-
prove the generation of more complex but useful rules. To
do so, we used a general ILP approach that can be applied
in other learning-based planners that use a predicate logic
representation. The following were some of the key insights
and contributions that made our approach work:

• Adaptation of the planning problem representation so that
LTL formulas could be learned with a standard first-order
logic rule learner.

• Characterization of the state space in terms of two classes
of state sequences, allowing the learning component to
learn from both positive and negative examples.

• Identification of a core subset of LTL that yielded pruning
in TLPLAN control rules.

• Development of a technique for automated generation of
derived predicates that enhance the feature space in which
rules are hand-coded or induced by a learning algorithm.

• Evaluation of the proposed approach, illustrating that with
appropriate training examples it is feasible to generate
DCK for TLPLAN and that with effective DCK, TLPLAN
remains a state-of-the-art planning system.

In future work we wish to extend our approach in order
to integrate the learned DCK into the domain model via pre-
condition control. Experimental results revealed that con-
trol formulas represented in CNF adversely affect the scal-
ability of the planner. We further wish to investigate the
use of learned derived predicates as background konwledge
for learning-based planners such as ROLLER (De la Rosa,
Jiménez, and Borrajo 2008).

Acknowledgments This work has been partially sup-
ported by the spanish projects TIN2008-06701-C03-03 &
CCG08-UC3M/TIC-4141, and by the Natural Sciences and
Engineering Research Council of Canada (NSERC) .

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. Artificial Intelli-
gence 116(1-2):123–191.
De la Rosa, T.; Jiménez, S.; and Borrajo, D. 2008. Learning
relational decision trees for guiding heuristic planning. In Pro-
ceedings of the 18th ICAPS.
Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Science.
MIT Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Khardon, R. 1999. Learning action strategies for planning do-
mains. Artificial Intelligence 113:125–148.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A temporal
logic based forward chaining planner. Annals of Mathematics and
Artificial Intelligence 30:119–169.
Martin, M., and Geffner, H. 2004. Learning generalized policies
from planning examples using concept languages. Appl. Intell
20:9–19.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D.;
and F.Yaman. 2003. SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nedellec, C.; Rouveirol, C.; Bergadano, F.; and Tausend, B. 1996.
Declarative bias in ilp. In Raedt, L. D., ed., Advances in ILP, vol
32 of Frontiers in AI and Applications. IOS Press.
Pnueli, A. 1977. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS-77), 46–57.
Raedt, L. D.; Blockeel, H.; Dehaspe, L.; and Laer, W. V. 2001.
Three companions for data mining in first order logic. In Dze-
roski, S., and Lavrac, N., eds., Relational Data Mining. Springer-
Verlag. 105–139.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proceedings of the 23rd AAAI Conference (AAAI-
08), 975–982. AAAI Press.
Silverstein, G., and Pazzani, M. J. 1991. Relational clichés: Con-
straining induction during relational learning. In Proceedings of
the 18th International Workshop on Machine Learning, 203–207.
Veloso, M. M.; Carbonell, J.; Pérez, M. A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating planning and learning: The
PRODIGY architecture. JETAI 7(1):81–120.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control knowl-
edge for forward search planning. JMLR 9:683–718.
Zimmerman, T., and Kambhampati, S. 2003. Learning-assisted
automated planning: looking back, taking stock, going forward.
AI Magazine 24:73 – 96.

43

Efficient Learning of Action Models for Planning

Neville Mehta and Prasad Tadepalli and Alan Fern
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331, USA.
{mehtane,tadepall,afern}@eecs.oregonstate.edu

Abstract

We consider the problem of learning action models for plan-
ning in two frameworks and present general sufficient con-
ditions for efficient learning. In the mistake-bounded plan-
ning framework, the learner has access to a sound and com-
plete planner for the given action model language, a simu-
lator, and a planning problem generator. In the planned ex-
ploration framework, the learner has access to a planner and
a simulator, but actively generates problems to help refine
its model. We identify sufficient conditions for learning in
both the frameworks. We also show that a concrete hypothe-
sis space that consists of sets of rules with at most k variables
is efficiently learnable in both frameworks.

Introduction
Planning research typically assumes that the planning sys-
tem has access to complete and correct models of the ac-
tions. However, that raises the obvious question: where do
the models come from? In this paper, we formulate and an-
alyze the question of learning action models suitable for
planning. Since the agents might need to plan even before
complete and correct models are learned, model learning,
planning, and plan execution must be interleaved in an au-
tonomous agent.

We focus our attention on learning deterministic action
models for planning for goal achievement. The determinis-
tic planning setting will let us explore strong success cri-
teria, namely, a worst-case polynomial bound on mistakes
or a polynomial number of planning attempts before con-
vergence. It has been shown that deterministic STRIPS ac-
tions with a constant number of preconditions can be learned
from raw experience with at most a polynomial number
of plan prediction mistakes (Walsh and Littman 2008). In
spite of the above positive results, compact action models
in fully observable, deterministic action models are not al-
ways learnable. For example, action models represented as
arbitrary Boolean functions are not learnable under standard
cryptographic assumptions such as the hardness of factoring.
Further, we require that the learner to learn only from self-
generated plans, which further limits what can be learned.
Instead of selecting an action at every step to approximately
optimize the long-term reward as in the PAC-MDP algo-
rithms, our learner is expected to solve problems by generat-
ing plans and executing them. We define two distinct frame-

works for learning action models for planning, and charac-
terize sufficient conditions for success in these frameworks.

Learning action models for planning is different from
learning an arbitrary function from states and actions to next
states because the learner has some control over the actions
it executes, giving it the freedom to ignore modeling the ef-
fects of some actions in certain contexts. For example, most
people who drive do not ever learn a complete model of the
dynamics of their cars; while they might accurately know the
stopping distance or turning radius, they could be oblivious
to many aspects that an expert auto-mechanic is comfortable
with. To capture this intuition, we introduce the concept of
an adequate model, that is, a model that is sufficiently com-
plete and correct for planning for a given class of goals. For
example, one need not know a complete map of a city to nav-
igate effectively. In most cases, it suffices to learn one route
for the places one needs to go to. In other words, any span-
ning tree of the graph of the city over the goals and starting
points of interest would be an adequate model.

In the mistake-bounded planning (MBP) framework, the
goal is to keep solving user-generated planning problems
while learning action models and guarantee at most a poly-
nomial number of mistakes or unsuccessful plans. While
polynomial number of mistakes is not always reasonable,
e.g., when flying real helicopters to learn their dynamics, the
goal here is to characterize the minimal structure of prob-
lems that lends itself to autonomous learning when mistakes
are relatively cheap. We assume that in addition to the prob-
lem generator, the learner has access to a sound and com-
plete planner and a simulator (or the real world). We give
general sufficient conditions for learning an adequate model
with a polynomial mistake bound.

In the spirit of self-directed learning, we also intro-
duce the planned exploration (PLEX) framework, where
the learner needs to generate its own problems to solve to
refine its action model. This requirement translates to an
experiment-design problem, where the learner needs to de-
sign problems in a goal language which help it disambiguate
the action models. We also identify a set of general sufficient
conditions for efficient learning in this framework.

Our sufficient conditions are based on learning schemas
that maintain an optimistic action model which includes all
transitions of an adequate model. Given such an optimistic
model, the correct plan for any problem can always be gen-

44

erated by a sound and complete planner. However, many in-
correct plans may also be generated. The idea behind our
approach is to simulate the plans generated by the planner,
collect examples of all observed actions, and use them to
refine the action models. In doing so, we fully depend on
determinism. In particular, action models are refined by rul-
ing out all outcomes other than those that actually happened
for a given state-action pair. In the PLEX framework, prob-
lems are generated internally by the learner, which is driven
by the purpose of disambiguating conflicting predictions in
the models.

We consider a specific language, k-SAP (sets of action
productions of at most k variables), and show that it is learn-
able in polynomial time in both the MBP and the PLEX
frameworks for an appropriate goal language.

Formal Preliminaries
A factored planning domainP is a tuple (V,D, A, T), where
V = {v1, . . . , vn} is the set of variables, D is the domain
of the variables in V , and A is the set of actions. S = Dn

represents the state space, and T ⊂ S×A×S is the transition
relation where (s, a, s′) ∈ T signifies that taking action a in
state s results in state s′. The domain parameters, n, |D|, and
|A|, characterize the size of P and are implicit in all claims
of complexity in the rest of this paper.

Action Models and Hypothesis Spaces
We only consider learning deterministic action models.
Hence, the transition relation is in fact a function, although
the learner’s hypothesis space includes nondeterministic
models.

Definition 1. An action model is a relation M ⊆ S×A×S.

This work emphasizes model learning via interaction with
a simulator. The set of positive examples of the transition
function observed via experience is Z ⊆ T . Because T is
deterministic, every positive example (s, a, s′) implicitly en-
tails several negative examples {(s, a, s′′) : s′′ 6= s′}; we let
Z− denote the set of all negative examples given Z.

Definition 2. A model M is weakly consistent with a set of
examples Z if M ∩Z− = ∅. It is strongly consistent with Z
if, in addition, M ⊇ Z.

We consider compact representations of action models in
this paper.

Definition 3. A hypothesis is a representation of an ac-
tion model. The hypothesis space H of action models is the
language of all such hypotheses considered by the learner.
Given an example set Z, the version space of action models
is the subset of all hypotheses in H that are weakly consis-
tent with Z and is denoted asM(Z).

Note that the hypotheses in the version space are only de-
fined to be weakly consistent. This means that our models
may not include all observed positive transitions in them, al-
though they must exclude their negative implications. This
will be important to allow us to ignore some action mod-
els that are not needed for successful planning. With some
abuse of notation, we use the words hypothesis and model

interchangeably. We only consider finite (possibly parame-
terized) hypothesis spaces.

Without loss of generality,H can be structured as a gener-
alization graph where the nodes correspond to sets of equiv-
alent hypotheses (represent the same set of transitions) and
there is a directed edge from node n1 to node n2 if and only
if the model that corresponds to n1 is strictly more general
than (a strict superset of) the model that corresponds to n2.

Definition 4. The height of H is the length of the longest
path from a root node to a leaf node in its generalization
graph.

Definition 5. H is well-structured if, for any example set
Z of some true model, the version spaceM(Z) has a most
general hypothesis mgh(Z). Further, if there exists an algo-
rithm that can compute mgh(Z ∪ {z}) from mgh(Z) and a
new example z in time polynomial in the size of mgh(Z) and
z, then we say thatH is efficiently well-structured.

Note that it follows from the definition that all most gen-
eral hypotheses represent the same model, i.e., the set of
transitions. This is also called the optimistic model because
it includes every transition in every model in M(Z). If H
is well-structured, then its generalization graph has a unique
root node which corresponds to the optimistic model of H.
It turns out that well-structuredness is easier to verify if it
satisfies the following property.

Definition 6. A hypothesis spaceH is closed under union if
M1, M2 ∈ H =⇒ M1 ∪M2 ∈ H.

Lemma 1. H is well-structured if H is finite and closed
under union.

Proof. Let H0 =
⋃

M∈M(Z) M represent the unique union
of all models represented by hypotheses inM(Z). Because
H is finite and closed under union, H0 must be inH. If ∃z ∈
H0 ∩ Z−, then z ∈M ∩ Z− for some M ∈ M(Z). This is
a contradiction since all M ∈ M(Z) are weakly consistent
with Z. Consequently, H0 is weakly consistent with Z, and
is inM(Z). It is more general than (is a superset of) every
other hypothesis inM(Z) because it is their union.

Planning Components
Our action models are intended for planning, which is cap-
tured by the following definitions.

Definition 7. A planning problem is a pair (s0, g) where
s0 ∈ S and the goal condition g is an expression chosen
from a goal language G and represents a set of states in
which it evaluates to true. A state s satisfies a goal g if and
only if g is true in s.

Definition 8. Given a planning problem (s0, g), a plan is
a sequence of actions a1, . . . , ap. The plan is correct w.r.t.
(M, g) if ∃s1, . . . , sp such that (si−1, ai, si) ∈ M for 1 ≤
i ≤ p and the state sp satisfies the goal g.

Definition 9. A planner for the hypothesis-goal space
(H,G) is an algorithm that takes M ∈ H and (s0, g ∈ G)
as inputs and outputs a plan or signals failure. It is sound
w.r.t. (H,G) if, given any M and (s0, g), it produces a cor-
rect plan w.r.t. (M, g) or signals failure. It is complete w.r.t.

45

(H,G) if, given any M and (s0, g), it produces a correct
plan whenever one exists w.r.t. (M, g).

Note that we generalize the definition of soundness from
its standard usage in the literature in order to apply to non-
deterministic action models, where the nondeterminism is
“angelic” — the planner can control the outcome of actions
when multiple outcomes are possible according to its model
(Marthi, Russell, and Wolfe 2007). One way to implement
such a planner is to do forward search through all possible
action and outcome sequences and return an action sequence
if it leads to a goal under some outcome choices. Our anal-
ysis is agnostic to plan quality or plan length and applies
equally well to suboptimal planners. This is motivated by
the fact that optimal planning is hard for most domains, but
suboptimal planning such as hierarchical planning can be
quite efficient.

We now describe the concept of an adequate action model
for a class of goals.
Definition 10. Let P be a planning domain and G be a goal
language. An action model M is adequate for G in P if M ⊆
T and the existence of a correct plan w.r.t. (T, g) implies the
existence of a correct plan w.r.t. (M, g).H is adequate for G
if ∃M ∈ H such that M is adequate for G.

An adequate model may be partial or incomplete in that
it may not include every possible transition in the transition
function T . However, the model is sufficient to produce a
correct plan w.r.t. (T, g) for every goal g in the desired class.
Thus, the more limited the goal class, the more incomplete
the adequate model can be. In the example of a city map, if
the goal language excludes certain locations, then so can the
spanning tree.
Definition 11. A simulator of the domain is always situated
in the current state s. It takes an action a as input, transitions
to the state s′ resulting from executing a in s, and returns the
current state s′.
Definition 12. Given a goal language G, a problem genera-
tor generates an arbitrary problem (s0, g ∈ G) and sets the
state of the simulator to s0.

Mistake-Bounded Planning Framework
To introduce and prove a general theorem that characterizes
the mistake-bounded planning (MBP) framework, we first
define what it means to make a mistake.
Definition 13. A planning mistake occurs if the planner sig-
nals failure when a correct plan exists w.r.t. the transition
function T or when the plan output by the planner is not
sound w.r.t. T .
Definition 14. Let G be a goal language for which H is
an adequate hypothesis space. H is learnable in the MBP
framework if there exists an algorithm A that interacts with
a problem generator over G, a sound and complete planner
w.r.t. (H,G), and a simulator of the planning domain P , and
outputs a plan or signals failure for each planning problem
while guaranteeing at most a polynomial number of plan-
ning mistakes. Further, H is polynomial-time learnable in
the MBP framework if A always responds in time polyno-
mial in the domain parameters and the length of the longest

Algorithm 1 MBP LEARNING SCHEMA
Input: Hypothesis spaceH, goal language G

1: M ← optimistic model ofH
2: loop
3: (s, g)← PROBLEMGENERATOR(G)
4: plan ← PLANNER(M, (s, g))
5: if plan 6= failure then
6: for a in plan do
7: s′ ← SIMULATOR(a)
8: M ← MODELLEARNER(M, (s, a, s′))
9: s← s′

10: if s satisfies g then
11: print plan
12: else
13: print fail

plan generated by the planner, assuming that a call to the
planner, simulator, or problem generator takes O(1) time.

Along with the domain description, the learner is given a
hypothesis space which is guaranteed to contain an adequate
model for the goals in a goal language. Importantly, the hy-
pothesis space need not contain the true transition function
because an adequate model is good enough for planning.
The goal of the learner is to determine such a model by
continually maintaining an optimistic model of the version
space. It does this by excluding from the optimistic model
any transitions that conflict with the positive observations.
However, it may not necessarily contain all positive obser-
vations in its optimistic model. Note that we cannot bound
the time for the convergence of A because there is no limit
on when the mistakes are made.

Theorem 1. H is learnable in the MBP framework if it is
well-structured, has polynomial height, and is adequate for
the desired goal language.

Proof. Algorithm 1 is a general schema for action model
learning in the MBP framework. The current model M is ini-
tialized to the optimistic model of the hypothesis space H;
this is guaranteed to exist due to H being well-structured.
PROBLEMGENERATOR provides a planning problem and
initializes the current state of SIMULATOR. Given M and
the planning problem, PLANNER always outputs a plan if
one exists because H contains a “target” adequate model
that is weakly consistent with the observations and is al-
ways retained in the version space; the optimistic model
used by PLANNER is more general than any such target
model. If PLANNER signals failure, then there is no plan for
it; otherwise, the plan is executed through SIMULATOR and
MODELLEARNER uses every transition (s, a, s′) to refine
the model M making sure that it does not include any tran-
sitions in {(s, a, s′′) : s′′ 6= s′}. The resulting model is the
most general possible that excludes the illegal transitions.
The plan is output if the final state satisfies the goal. Because
the maximum number of model refinements is bounded by
the height ofH, the number of planning mistakes is polyno-
mial. Thus,H is learnable in the MBP framework.

46

The algorithm ensures that some adequate model al-
ways remains as a specialization of the optimistic model.
As MODELLEARNER checks only for weak consistency, it
might eliminate models from the version space that do not
include the observed positive transitions. This does not hurt
the algorithm as it only seeks to learn an adequate model,
not an exact one.

The above result generalizes the work on learning
STRIPS operator models from raw experience (without a
teacher) in Walsh and Littman (2008) to arbitrary hypotheses
spaces by identifying sufficiency conditions. (A hypothesis
class considered later in this paper subsume propositional
STRIPS by capturing conditional effects.) It also clarifies
the notion of adequate models, which can be much simpler
than the true transition model, and the influence of the goal
language on the complexity.

Corollary 1. A hypothesis space H is polynomial-time
learnable in the MBP framework if it is efficiently well-
structured, has polynomial height, and is adequate for the
desired goal language.

Proof. This follows from the fact that all components in Al-
gorithm 1 other than MODELLEARNER are assumed to run
in O(1) time.

Planned Exploration Framework
The MBP framework is appropriate when mistakes are per-
missible on user-given problems as long as their total num-
ber is limited. It is not appropriate in cases where no mis-
takes are permitted after an initial training period. We over-
come this limitation in the planned exploration (PLEX)
framework, where the agent seeks to learn an action model
for the domain without an external problem generator. It
generates planning problems for itself based on a goal lan-
guage and solves for them. The key issue here is to generate
a reasonably small number of planning problems such that
solving them would identify a deterministic action model.

Learning a model in the PLEX framework involves know-
ing where and how it is deficient and then planning to reach
states that are informative, which entails formulating plan-
ning problems in a goal language. This framework pro-
vides a polynomial sample convergence guarantee which
is stronger than a polynomial mistake bound of the MBP
framework. Without a problem generator that can change the
simulator’s state, it is impossible for the simulator to transi-
tion freely between strongly connected components (SCCs)
of the transition graph. Hence, we make the assumption that
the transition graph is a disconnected union of SCCs and re-
quire only that the agent learn the model for a single SCC
that contains the initial state of the simulator.

Definition 15. LetP be a planning domain whose transition
graph is a union of SCCs, and letH be an adequate hypoth-
esis space for the goal language G. (H,G) is learnable in
the PLEX framework if there exists an algorithm A that in-
teracts with a sound and complete planner w.r.t. (H,G) and
the simulator for P and outputs a model M ∈ H that is
adequate within the SCC that contains the initial state s0

of the simulator after a polynomial number of planning at-
tempts. Further, (H,G) is polynomial-time learnable in the
PLEX framework if A runs in polynomial time in the do-
main parameters and the length of the longest plan output
by the planner, assuming that every call to the planner and
the simulator take O(1) time.

A key step in planned exploration is designing appropriate
planning problems. We call these experiments as the goal of
solving these problems is to disambiguate nondeterministic
action models. In particular, the agent tries to reach an infor-
mative state where the current model predicts two different
next states for the same action.

Definition 16. Given a model M , the set of informative
states is I(M) = {s : (s, a, s′), (s, a, s′′) ∈ M ∧ s′ 6= s′′},
where a is said to be informative in s.

Definition 17. A set of goals G is a cover of a set of states
R if

⋃
g∈G{s : s satisfies g} = R.

Given the goal language G and a model M , the problem
of experiment design is to find a set of goals G ⊆ G such
that the sets of states that satisfy the goals in G collectively
cover all informative states I(M). If it is possible to plan
to achieve one of these goals, then either the plan passes
through a state where the model is nondeterministic or it ex-
ecutes successfully and the agent reaches the final goal state;
in either case, an informative action can be executed and and
observed transition is used to refine the model. If none of the
goals in G can be successfully planned for, then no informa-
tive states for that action are reachable. We formalize these
intuitions below.

Definition 18. The width of (H,G) is defined as

max
M∈H

min
G⊆G:G is a cover of I(M)

|G|

where minG |G| = ∞ if there is no G ⊆ G to cover a
nonempty I(M).

Theorem 2. (H,G) is learnable in the PLEX framework if
it has polynomial width and H is well-structured, has poly-
nomial height, and is adequate for G.

Proof. Algorithm 2 is a general schema for action model
learning in the PLEX framework. The current model M is
initialized to the optimistic model, which must exist as H
is well-structured. Given M and G, EXPERIMENTDESIGN
computes a polynomial-sized cover G. If G is empty, then
the model cannot be refined further; otherwise, given M and
a goal g ∈ G, PLANNER may signal failure if either no
state satisfies g or states satisfying g are not reachable from
the current state of the simulator. If PLANNER signals fail-
ure on all of the goals, then none of the informative states
are reachable and M cannot be refined further. If PLANNER
does output a plan, then MODELLEARNER either refines M
somewhere along the plan execution or it refines M by ex-
ecuting an informative action after reaching a state that sat-
isfies g. The existence of an adequate model is assured in
the original hypothesis space and there is no risk of losing
such model by removing illegal transitions. A new cover is

47

Algorithm 2 PLEX LEARNING SCHEMA
Input: Initial state s, hypothesis spaceH, goal language G
Output: Model M

1: M ← optimistic model ofH
2: loop
3: G← EXPERIMENTDESIGN(M,G)
4: if G = ∅ then
5: return M
6: for g ∈ G do
7: plan ← PLANNER(M, (s, g))
8: if plan 6= failure then
9: break

10: if plan = failure then
11: return M
12: for a in plan do
13: s′ ← SIMULATOR(a)
14: M ← MODELLEARNER(M, (s, a, s′))
15: s← s′

16: if M has been updated then
17: break
18: if M has not been updated then
19: a← an element in INFORMATIVEACTIONS(M , s)
20: s′ ← SIMULATOR(a)
21: M ← MODELLEARNER(M, (s, a, s′))
22: s← s′

23: return M

computed every time M is refined, and the process contin-
ues until all experiments are exhausted. As the number of
successful plans is bounded by the height h of H and the
number of failures per successful plan is bounded by a poly-
nomial in the width w of (H,G), the total number of calls to
PLANNER is O(h · poly(w)), which is a polynomial in the
domain parameters. Thus, (H,G) is learnable in the PLEX
framework.

Definition 19. (H,G) permits efficient experiment design if,
for any M ∈ H, ¬ there exists an algorithm that outputs
a polynomial-sized cover of I(M) in polynomial time and
­ there exists an algorithm that outputs the set of informa-
tive actions in M for any state in polynomial time.

Note that if (H,G) permits efficient experiment design,
then has polynomial width because no algorithm can always
guarantee to output a polynomial-sized cover otherwise.
Corollary 2. (H,G) is polynomial-time learnable in the
PLEX framework if it permits efficient experiment design
and H is efficiently well-structured and has polynomial
height.

Proof. If (H,G) permits efficient experiment design, then
a cover can be computed in polynomial time. As H is effi-
ciently well-structured, MODELLEARNER can take the cur-
rent model and an observation and return the updated model
in polynomial time. From the proof of Theorem 2 and the
fact that the innermost loop of Algorithm 2 is bounded by the
longest length l of a plan and picking an informative action
can be done efficiently, we can deduce that its computational
complexity is O(h·poly(w)·(l+poly(n, |A|, |D|)), which is

a polynomial in the domain parameters and l. Thus, assum-
ing that all the other components run in O(1) time, (H,G)
is polynomial-time learnable in the PLEX framework.

The key differences between the MBP and PLEX frame-
works are highlighted in Table 1.

Sets of Action Productions
This section describes a concrete representational class for
action models — sets of action productions — and proves its
learnability in the MBP and PLEX frameworks. For brevity,
let d = |D| and m = |A|.

An action production r is defined as “act : pre → post”
where act(r) is an action and the precondition pre(r) and
postcondition post(r) are conjunctions of “variable = value”
literals.

Definition 20. A production r is triggered by a transition
(s, a, s′) if s satisfies the precondition pre(r) and a =
act(r). A production r is (weakly) consistent with (s, a, s′)
if either ¬ r is not triggered by (s, a, s′) or ­ s′ satisfies
the post(r) and all variables not mentioned in post(r) have
the same values in both s and s′.

An example of an action production is “Do : v1 = 0, v2 =
1 → v1 = 2, v3 = 1”. It is triggered only when the Do
action is executed in a state where v1 = 0 and v2 = 1, and
defines the value of v1 to be 2 and v3 to be 1 in the next state,
with all other variables staying unchanged.

A set of action productions (SAP) is consistent with a
state transition if all productions in the SAP are consistent
with it. Let k-SAP be the hypothesis space of models repre-
sented by a SAP with no more than k variables per produc-
tion. Note that k-SAP is strictly more general than propo-
sitional STRIPS operators since it can express conditional
effects, where each conditional effect might depend on a dif-
ferent set of variables.

Lemma 2. k-SAP is efficiently well-structured.

Proof. k-SAP is closed under union because unioning the
productions of any two SAPs results in a SAP, which im-
plies that it is well-structured. Given an observed transition
(s, a, s′), a k-SAP model is refined by removing productions
that are not consistent with (s, a, s′), which takes polyno-
mial time.

Lemma 3. k-SAP has polynomial height.

Proof. The total number of productions in k-SAP =
O
(
m
∑k

i=1

(
n
i

)
(d+1)2i

)
= O(mnkd2k) because a produc-

tion can have one of m actions and up to k relevant variables
figuring on either side of the production, each variable set to
a value in its domain. At the root of the generalization graph
is the hypothesis that contains all the productions, and at the
leaf is the hypothesis that contains no productions. Because
the longest path from the root to the leaf involves remov-
ing a single production at a time, the height of k-SAP is
O(mnkd2k).

Theorem 3. k-SAP is polynomial-time learnable in the
MBP framework.

48

Table 1: The principal differences between the MBP and PLEX frameworks.
MBP PLEX

Planning problem Externally generated Internally generated
Experiment design Irrelevant Relevant
Sample complexity Polynomial number of mistakes Polynomial number of planning attempts
Computational complexity Polynomial per response Polynomial

Proof. This follows from Lemmas 2 and 3, and Corollary 1.

A k-SAP model is nondeterministic if it contains two pro-
ductions for the same action whose preconditions overlap
but postconditions disagree. This ambiguity can be resolved
by picking any state that triggers both productions and exe-
cuting the corresponding action. Let the goal language Conj
consist of all goals that can be expressed as conjunctions of
“variable = value” constraints.
Lemma 4. (k-SAP, Conj) permits efficient experiment de-
sign.

Proof. Given an action, the possible pairs of overlapping
productions in k-SAP is O(n2kd4k). Each pair gives rise
to exactly one goal described by the conjunctive union of
preconditions of the two productions. Hence, the width of
(k-SAP, Conj) is O(n2kd4k), which is a polynomial in the
domain parameters. Consequently, experiment design is ef-
ficient because it involves searching a polynomial number of
pairs for those with overlapping preconditions and conflict-
ing postconditions.

Theorem 4. (k-SAP, Conj) is polynomial-time learnable in
the PLEX framework.

Proof. This follows from Lemmas 2, 3, and 4, and Corol-
lary 2.

Discussion and Related Work
The first contribution of this work is the identification of the
role of adequate models in characterizing the complexity of
learning with a small number of mistakes. Exact action mod-
els are sometimes too complex for the purposes of planning
adequately and require too much effort to learn. The frame-
works allow the agent to learn models that are adequate for
planning. The second contribution is the development of the
PLEX framework which allows the learner to direct its ex-
ploration in ways that inform its model. We clarify the re-
lationship between the expressiveness of the goal language
and its usefulness in learning the action models. The third
contribution is providing specific algorithms for learning a
concrete hypothesis space that is in some ways more gen-
eral than standard action modeling languages. For example,
unlike propositional STRIPS operators, k-SAP captures the
conditional effects of actions.

Our work is partly inspired by the exploration problem
in model-based reinforcement learning in factored MDPs.
Here one seeks a PAC-MDP algorithm, which guarantees
that the agent is performing suboptimally for at most a poly-
nomial number of time steps in the sizes of the state and

the action spaces (Strehl et al. 2006). RMAX is an exam-
ple of PAC-MDP algorithm which employs the principle
of optimism under uncertainty to explore efficiently (Braf-
man and Tennenholtz 2002). It initiates learning with opti-
mistic transition and reward models that assumes that the
unknown states have high rewards, which automatically en-
courages the agent to visit these states. Unfortunately, inter-
esting MDPs have prohibitively large state spaces and be-
ing polynomial in their size is not good enough. DBN-E3

and Factored-RMAX learn action models represented as dy-
namic Bayesian networks (DBNs) and guarantee at most
a polynomial number of suboptimal actions in the mini-
mal size of their domain models (Kearns and Koller 1999;
Guestrin, Patrascu, and Schuurmans 2002). A generalization
of this approach to arbitrary model classes is based on the
notion of KWIK learning (Li, Littman, and Walsh 2008).
KWIK-learning is a function learning framework that ex-
tends PAC-learning by requiring that the learner knows ex-
actly when its knowledge of the target function is approx-
imately correct. KWIK-learning of action models can be
plugged into RMAX to yield KWIK-RMAX, which guar-
antees polynomial scaling with respect to the size of the ac-
tion models. The key idea is to run RMAX in the outer loop
and generate useful new experience for the internal KWIK
learner. When the KWIK learner reports that it does not
know a particular transition, RMAX assumes a transition to
a high reward state, biasing KWIK-RMAX toward exploring
such states.

The MDP framework is more general than the determinis-
tic action models considered here in that it includes stochas-
ticity and rewards. However, the following reasons moti-
vate the study of deterministic models. First, note that all
these frameworks (including ours) leave open the problem
of probabilistic planning, which is much harder and lesser
understood than deterministic planning. Second, studying
deterministic models offers some important insights. For ex-
ample, we have uncovered the notions of adequacy and well-
structured hypothesis spaces which are central for success-
ful learning in our framework. The well-structured property
is related to the well-ordered property of Natarajan (1987),
which is a necessary and sufficient condition for concept
learning with one-sided error. It is thus possible to view
our work as reducing model-learning to one-sided mistake-
bounded concept learning, where the learned hypothesis is
always guaranteed to be a superset of the target concept.
Without the one-sided mistake guarantee, the learner might
not be able to plan successfully in some cases because its hy-
pothesis may not allow certain transitions that are needed for
a successful plan. To get around this difficulty, Walsh (2010)
studies the efficient learning in the framework of appren-

49

ticeship learning where a teacher gives examples of better
plans when the learner produces a bad plan. The KWIK
framework can be viewed as another way of getting around
this difficulty, where the learner explicitly signals when its
model is inadequate. Third, studying goal-directed planning
allows us to explicate the structural interplay between the
action model language and the goal language, an issue that
does not arise in the MDP framework.

As for the learning of relational planning operators, Op-
maker in the GIPO system (McCluskey, Richardson, and
Simpson 2002) takes as input a partial domain knowledge
of the object behaviors and descriptions, training operator
sequences, and user interaction and outputs parameterized
flat or hierarchical operator models. In contrast, our learning
schemas facilitate autonomous operator learning for propo-
sitional descriptions of the primitive operators. The ARMS
algorithm (Yang, Wu, and Jiang 2005) learns approximate
operator models from successful example plans (without as-
suming that the intermediate states are provided) by gather-
ing knowledge on the statistical distribution of frequent sets
of actions in the example plans and solving a weighted satis-
fiability problem. Instead, our learning schemas assume full
observability and are online in nature.

While STRIPS-like languages served us well in planning
research by creating a common useful platform, they are not
designed from the point of view of learnability or planning
efficiency. Many domains such as robotics and real-time
strategy games are not amenable to such clean and simple
action specification languages. This suggests an approach
where the learner considers increasingly complex models
as dictated by its planning needs. For example, the model
learner might consider increasing the value of k if the pa-
rameterized hypothesis spaces like k-SAP are inadequate for
the goals encountered. In general, this motivates for a more
comprehensive framework in which planning and learning
are tightly integrated, the premise of this paper. Another di-
rection is to investigate better exploration methods that go
beyond using optimistic models to include Bayesian and
utility-guided optimal exploration.

Acknowledgments
This research is supported by the Army Research Office
under grant number W911NF-09-1-0153. We thank the re-
viewers for many useful comments. We also thank Roni
Khardon for pointing out some crucial errors in a previous
version of the paper and the organizers of the workshop for
their patience.

References
Brafman, R., and Tennenholtz, M. 2002. R-MAX — A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. Journal of Machine Learning Re-
search 3:213–231.
Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002.
Algorithm-Directed Exploration for Model-Based Rein-
forcement Learning in Factored MDPs. In ICML.
Kearns, M., and Koller, D. 1999. Efficient Reinforcement
Learning in Factored MDPs. In IJCAI.

Li, L.; Littman, M.; and Walsh, T. 2008. Knows What It
Knows: A Framework for Self-Aware Learning. In ICML.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic Seman-
tics for High-Level Actions. In ICAPS.
McCluskey, T.; Richardson, N.; and Simpson, R. 2002. An
Interactive Method of Inducing Operator Descriptions. In
International Conference on Artificial Intelligence Planning
Systems.
Natarajan, B. K. 1987. On Learning Boolean Functions. In
Annual ACM Symposium on Theory of Computing.
Strehl, A.; Li, L.; Wiewiora, E.; Langford, J.; and Littman,
M. 2006. PAC Model-free Reinforcement Learning. In
ICML.
Walsh, T., and Littman, M. 2008. Efficient Learning of
Action Schemas and Web-Service Descriptions. In AAAI.
Walsh, T. 2010. Efficient Learning of Relational Models for
Sequential Decision Making. Ph.D. Dissertation, Rutgers
University.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning Action
Models from Plan Examples with Incomplete Knowledge.
In International Conference on Automated Planning and
Scheduling.

50

51

Reactive, Proactive, and Passive Learning about Incomplete Actions

Christopher Weber and Daniel Bryce
christopherweber@hotmail.com, daniel.bryce@usu.edu

Department of Computer Science
Utah State University

Abstract

Agents with incomplete knowledge of their actions can either
plan around the incompleteness, learn by querying a domain
expert, or learn through trial and error. In deciding what to
learn, an agent must consider whether an incomplete action
feature is relevant to achieving its goals. In deciding how to
learn an action feature, the agent can i) try to execute the ac-
tion and passively observe the outcome, ii) react by querying
a domain expert when it fails to learn by passive observation,
or iii) proactively query a domain expert prior to executing
the action. The challenge is that by learning about incom-
plete action features an agent may determine its plan will fail
and re-plan, and thus change which action features are rele-
vant to achieving it goals. We desire agents that can ask as
few questions as possible in achieving their goals.

We present a number of strategies for i) planning with incom-
plete knowledge of actions to identify relevant incomplete ac-
tion features (preconditions and effects), ii) reasoning about
plan failure explanations to identify which features will be
learned passively or proactively, and iii) techniques for diag-
nosing action failures to reactively learn about actions when
passive learning fails. We test the following configurations of
our agent: i) learning only passively and asking no questions;
ii) asking questions and re-planning until the plan is guar-
anteed to succeed; iii) planning, acting until the plan fails,
diagnosing the failure, and re-planning; and iv) while diag-
nosing failures, proactively querying about a subset of the
future action features that are likely to cause failures. We find
that passive learning alone can lead to dead-ends, perfecting a
plan prior to execution requires many questions, and balanc-
ing passive learning with reactive learning strikes a good bal-
ance between avoiding dead-ends and minimizing the number
of questions.

Introduction

Knowledge engineering (Bertoli, Botea, and Fratini 2009)
and machine learning (Wu, Yang, and Jiang 2007; Oates and
Cohen 1996) have been applied to constructing representa-
tions for planning, but pose intensive human and/or data re-
quirements, only to leave a potential mismatch between the
environment and model (Kambhampati 2007). Recently, we
(Weber and Bryce 2011) showed that instead of placing ef-
fort upon making domains complete it is possible for our
planner DeFAULT to plan with incomplete knowledge of an
agent’s action descriptions (i.e., plan around the incomplete-
ness). Agents executing such robust plans fail and re-plan

less often than agents that ignore incompleteness when plan-
ning (Chang and Amir 2006). While we demonstrated that
planning in incomplete domains can help agents passively
learn about domains, we ignore cases where domain experts
are available to help engineer the agent’s knowledge. We
extend our prior work (Weber and Bryce 2011) to consider
agents that can query a domain expert, as in instructable
computing (Mailler et al. 2009), but must carefully select
their questions.

Selecting questions is a problem that has been studied
in problems such as preference elicitation (Boutilier 2002),
machine learning (Gervasio, Yeh, and Myers 2011), and
model-based diagnosis (de Kleer, Mackworth, and Reiter
1992). Incomplete action knowledge is unique in that plans
have rich causal structure that makes questions highly cou-
pled, and frequent re-planning can change which questions
are relevant.

We seek to understand whether asking questions is at all
necessary, and if so, how to select the fewest questions.
Agents that passively learn by trial and error can reach sce-
narios where it is impossible to learn about actions that im-
pact goal achievement without asking questions. For exam-
ple, an agent might apply an action with n possible precon-
ditions that are unsatisfied in the current state, and to know
why the action failed (i.e., which of the possible precondi-
tions are actual preconditions), it would need to apply the
action again in several different states (some of which may
be unreachable) to isolate the problem. Instead, the agent
could reactively query the domain expert to determine the
problem, or prior to executing the action proactively query
the domain expert. Reactive agents take a risk that the ac-
tion will not fail (i.e., the possible preconditions are not re-
quired), and proactive agents will not risk failure.

We systematically test different approaches to planning,
acting, and learning with incomplete actions that:

1. Ask no questions, but learn passively.

2. Proactively ask questions and re-plan until a plan is guar-
anteed to succeed.

3. Reactively ask questions only when learning passively in-
sufficiently learns about an action.

4. Proactively ask about highly impactful future failures and
3.

52

We find that the first approach can lead to dead-ends where
the agent fails or because of its passive learning it is inca-
pable of formulating an effective plan. The second tech-
nique is highly successful, but asks many questions. The
third, asks fewer questions and overcomes the problems of
passive learning. The fourth asks more questions but reaches
dead-ends less often.

Our presentation includes a discussion of incomplete
STRIPS, belief maintenance and planning in incomplete do-
mains, strategies for selecting questions, an empirical evalu-
ation in several domains, related work, and a conclusion.

Background & Representation

Incomplete STRIPS relaxes the classical STRIPS model to
allow for possible preconditions and effects (Garland and
Lesh 2002). Incomplete STRIPS domains are identical to
STRIPS domains, with the exception that the actions are in-
completely specified. Much like planning with incomplete
state information (Bonet and Geffner 2000), the action in-
completeness is not completely unbounded. The precon-
ditions and effects of each action can be any subset of the
propositions P ; the incompleteness is with regard to a lack
of knowledge about which of the subsets correspond to each
precondition and effect.

Incomplete STRIPS Domains: An incomplete STRIPS do-
main D defines the tuple (P , A, I , G, F), where: P is a set
of propositions, A is a set of incomplete action descriptions,
I ⊆ P defines a set of initially true propositions, G ⊆ P
defines the goal propositions, and F is a set of proposi-
tions describing incomplete domain features. Each action
a ∈ A defines pre(a) ⊆ P , a set of known preconditions,
add(a) ⊆ P , a set of known add effects, and del(a) ⊆ P ,
a set of known delete effects. The set of incomplete do-
main features F is comprised of propositions of the form
pre(a, p), add(a, p), and del(a, p), each indicating that p is
a respective possible precondition, add effect, or delete ef-
fect of a.

Consider the following incomplete domain:

P = {p, q, r, g},
A = {a, b, c},
I = {p, q},
G = {g}, and

F = {pre(a, r), add(a, r), del(a, p), del(b, q), pre(c, q)}.
The known features of the actions are defined:

pre(a) = {p, q},
pre(b) = {p}, del(b) = {p}, add(b) = {r}, and

pre(c) = {r}, add(c) = {g}.
An interpretation F i ⊆ F of the incomplete STRIPS do-

main defines a STRIPS domain, in that every feature f ∈ F i

indicates that a possible precondition or effect is a respective
known precondition or known effect; those features not in
F i are not preconditions or effects.

Incomplete STRIPS Plans: A plan π for D is a sequence
of actions, that when applied, can lead to a state where
the goal is satisfied. A plan π = (a0, ..., an−1) in an
incomplete domain D is a sequence of actions, that cor-
responds to the optimistic sequence of states (s0, ..., sn),
where s0 = I , pre(at) ⊆ st for t = 0, ..., n, G ⊆ sn,

and st+1 = st\del(at) ∪ add(at) ∪ {p|add(a, p) ∈ F} for
t = 0, ..., n− 1.

For example, the plan (a, b, c) corresponds to the state
sequence (s0 = {p, q}, s1 = {p, q, r}, s2 = {q, r}, s3 =
{q, r, g}), where the goal is satisfied in s3. We note that
r ∈ s1 even though r is only a possible add effect of a;
without listing r in s1, the known precondition of b would
not be satisfied. While it is possible that in the true domain
r is not an add effect of a, in the absence of contrary infor-
mation we optimistically assume r is an add effect so that
we can synthesize a plan. Pessimistically disallowing such
plans is admissible, but constraining, and we prefer to find a
plan that may work to finding no plan at all. Naturally, we
prefer plans that succeed under more interpretations.

Belief Maintenance & Planning
An agent can act, ask questions, and plan. Acting and asking
a question provide observations of the incomplete domain
that can be learned from, and planning involves predicting
future states (in the absence of observations). In the follow-
ing, we discuss how observations can be filtered to update
an agent’s knowledge φ (defined over the literals of F), and
what can be assumed about predicted states (when taking
knowledge into account). We denote by d(π) a plan’s failure
explanations/diagnoses, which is represented by a proposi-
tional sentence over F .

We use φ to reason about actions and plans by making
queries of the form φ |= add(a, p) (“Is p a known add ef-
fect of a?”), φ 6|= add(a, p) and φ 6|= ¬add(a, p) (“Is p
a possible/unknown add effect of a?”), or φ |= d(π) (“Is
the current knowledge consistent with every interpretation
where π is guaranteed to fail?”). It is often the case that it is
unknown if an incomplete feature f ∈ F exists in the true
domain that is consistent with φ (i.e., φ 6|= f and φ 6|= ¬f),
and we denote this by “φ?f”.
Filtering Observations: An agent that acts in incomplete
STRIPS domains will start with no knowledge of the in-
complete features (i.e., φ = ⊤), however, taking actions
provides state transition observations of the form o(s, a, s′),
and asking questions (i.e., “Is f true or false?”) provides ob-
servations of the form f or ¬f . Thus the function filter
returns the updated knowledge φ′ after an observation, and
is defined:

filter(φ, f) = φ ∧ f

filter(φ,¬f) = φ ∧ ¬f

filter(φ, o(s, a, s)) = φ ∧ ((fail ∧ o−) ∨ o+)

filter(φ, o(s, a, s′)) = φ ∧ o+, s 6= s′

where

o− =
∨

pre(a,p)∈F :
p6∈s

pre(a, p)

o+ = opre ∧ oadd ∧ odel

opre =
∧

pre(a,p)∈F :
p6∈s

¬pre(a, p)

53

⊥

⊥

⊥ d̃el(b̃, q)

⊤

⊤ ⊤

pre(a, r)

pre(a, r) ∨ ¬add(a, r) pre(a, r) ∨ (del(a, p) ∧ ¬add(a, r))

pre(a, r) ∨ del(a, p)

del(a, p)

del(b, q)

pre(a, r) ∨ del(a, p) ∨ (del(b, q) ∧ pre(c, q))

p0

q0

r0 r1 r2 r3

p1 p2 p3

q1 q2 q3

a0 b1 c2

pre(a, r) ∨ (del(a, p) ∧ ¬add(a, r))

pre(a, r) ∨ del(a, p) ∨ (del(b, q) ∧ pre(c, q))

g3

Figure 1: Labeled Plan

oadd =
∧

add(a,p)∈F :
p∈s′\s

add(a, p) ∧
∧

add(a,p)∈F :
p6∈s∪s′

¬add(a, p)

odel =
∧

del(a,p)∈F:
p∈s\s′

del(a, p) ∧
∧

del(a,p)∈F :
p∈s∩s′

¬del(a, p)

We assume that the state will remain unchanged upon ex-
ecuting an action whose precondition is not satisfied, and
because the state is observable, filter(φ, o(s, a, s)) ref-
erences the case where the state does not change and
filter(φ, o(s, a, s′)), the case where it changes. If the state
does not change, then either the action failed (o−) and one
of its unsatisfied possible preconditions is a precondition or
the action succeeded (o+). We use the fail literal to de-
note interpretations under which a plan failed because it is
not always observable that the plan has failed. If the state
changes, then the agent knows that the action succeeded. If
an action succeeds, the agent learns that i) each possible pre-
condition that was not satisfied is not a precondition (opre),
ii) each possible add effect that appears in the successor but
not the predecessor state is an add effect and each that does
not appear in either state is not an add effect (oadd), iii) each
possible delete effect that appears in the predecessor but not
the successor is a delete effect and each that appears in both
states is not (odel).

Planning: We label predicted state propositions and ac-
tions with domain interpretations that will respectively fail
to achieve the proposition or fail to achieve the precondi-
tions of an action. That is, labels indicate the cases where a
proposition will be false (i.e., the plan fails to establish the
proposition). Labels d(·) are represented as propositional
sentences over F whose models correspond to failed domain
interpretations.

Initially, each proposition p0 ∈ s0, in the state from which
a plan is generated, is labeled d(p0) =⊥ to denote that there
are no interpretations in the current state where a proposition
may be false (the state is fully-observable), and each p0 6∈ s0

is labeled d(p0) = ⊤ to denote they are known false. For all
t ≥ 0, we define:

d(at) =d(at−1) ∨
∨

p∈pre(a) or

φ|=pre(a,p)

d(pt) ∨
∨

p:φ?pre(a,p)

(d(pt) ∧ pre(at, p))

d(pt+1) =





d(pt) ∧ d(at) : p ∈ add(at)
or φ |= add(at, p)

d(pt) ∧ (d(at)∨ : φ?add(at, p)
¬add(at, p))

⊤ : p ∈ del(at)
or φ |= del(at, p)

d(pt) ∨ del(at, p) : φ?del(at, p)
d(pt) : otherwise

where d(a−1) =⊥. The intuition behind the label propaga-
tion is that an action will fail in the domain interpretations
d(at) where a prior action failed, a known precondition is
not satisfied, or a possible precondition is not satisfied. As
defined for d(pt+1), the plan will fail to achieve a propo-
sition at time t + 1 in all interpretations where i) the plan
fails to achieve the proposition at time t and the action fails,
ii) the plan fails to achieve the proposition at time t and the
action fails or it does not add the proposition in the inter-
pretation, iii) the action deletes the proposition, iv) the plan
fails to achieve the proposition at time t or in the interpreta-
tion the action deletes the proposition, or v) the action does
not affect the proposition and prior failures apply.

A consequence of our definition of action failure is that
each action fails if any prior action fails. This definition fol-
lows from the semantics that the state becomes undefined
if we apply an action whose preconditions are not satisfied.
While we use this notion in plan synthesis, we explore the
semantics that the state does not change (i.e., it is defined)
upon failure when acting in incomplete domains. The prag-
matic reason that we define action failures in this manner
is that we can determine all failed interpretations affecting
a plan d(π), by defining d(π) = d(an−1) ∨

∨
p∈G d(pn)

(i.e., failure to execute an action is propagated to a failure to
achieve the goal).

For example, consider the plan depicted in Figure 1. The
propositions in each state and each action at each time are
labeled by the propositional sentence below it. The edges
in the figure connecting the propositions and actions de-
note what must be true to successfully execute an action or

54

achieve a proposition. The dashed edges indicate that action
incompleteness affects the ability of an action or proposition
to support a proposition. For example, a possibly deletes p,
so the edge denoting its persistence is dashed. The proposi-
tional sentences d(·) below each proposition and action de-
note the domain interpretations where a action will fail or a
proposition will not be achieved. For example, b at time one,
b1, will fail if either pre(a, r) or del(a, p) is true in the inter-
pretation. Thus, d(π) = pre(a, r) ∨ del(a, p) ∨ (del(b, q) ∧
pre(c, q)) and any domain interpretation satisfying d(π) will
fail to execute the plan and achieve the goal.
Incomplete Domain Relaxed Plans: The DeFAULT plan-
ner (Weber and Bryce 2011) guides its expansion of plans
that are labeled with failure explanations by computing re-
laxed plans with failure explanations. Finding a relaxed
plan that attempts to minimize failure explanations involves
propagating failed interpretation labels in a planning graph.
Propagating labels relies on selecting an action to support
each proposition, and we select the supporter at+k(p) at step
k of the planning graph for state st with the fewest failed in-

terpretations, denoted by its label d̂(at+k(p)).
A relaxed planning graph with propagated labels

is a layered graph of sets of vertices of the form
(Pt,At, ...,At+m,Pt+m+1). The relaxed planning graph
built for a state st defines Pt = {pt|p ∈ st}, At+k =
{at+k|∀p∈pre(a)pt+k ∈ Pt+k, a ∈ A ∪ A(P)}, and

Pt+k+1 = {pt+k+1|at+k ∈ At+k, p ∈ add(a) ∪ {p|φ 6|=
¬add(a, p)}, for k = 0, ...,m. Much like the successor
function used to compute next states, the relaxed planning
graph assumes an optimistic semantics for action effects by
adding possible add effects to proposition layers, but, as we
will explain below, it associates failed interpretations with
the possible adds.

Each planning graph vertex has a label, denoted d̂(·). The

failed interpretations d̂(pt) affecting a proposition are de-

fined such that d̂(pt) = d(pt), and for k ≥ 0,

d̂(at+k) =
∨

p∈pre(a) or

φ|=pre(a,p)

d̂(pt+k) ∨
∨

φ?pre(a,p)

(d̂(pt+k) ∧ pre(a, p))

d̂(pt+k+1) =





d̂(at+k(p)) : p ∈ add(at+k(p))
or φ |= add(at+k(p), p)

d̂(at+k(p))∨ : φ?add(at+k(p), p)
¬add(at+k(p), p)

Every action in every level k of the planning graph will fail
in any interpretation where their preconditions are not sup-
ported. A proposition will fail to be achieved in any inter-
pretation where the chosen supporting action fails to add the
proposition.

The relaxed planning graph expansion terminates at the
level t+k+1 where the goals have been reached at t+k+1.
The h∼FF heuristic makes use of the chosen supporting ac-
tion at+k(p) for each proposition that requires support in
the relaxed plan, and, hence, measures the number of ac-
tions used while attempting to minimize failed interpreta-
tions. The failure explanation of the relaxed plan is defined

by d(π̂) =
∨

p∈G

d̂(pt+m+1). We also use the hFF heuristic

Algorithm 1: Passive(s,G, Ã)

Input: state s, goal G, actions Ã
φ← ⊤; π ← Plan(s,G, Ã, φ);1

while π 6= () and G 6⊆ s do2

ã← π.first(); π ← π.rest();3

if pre(ã) ⊆ s and φ 6|= ∨
fpre(ã,p)∈F :p6∈s

p̃re(ã, p) then
4

s′ ← Execute(ã);5

φ← φ ∧ o(s, ã, s′);6

s← s′;7

else8

φ← φ ∧ fail;9

end10

if φ |= fail then11

φ← ∃failφ;12

π ← Plan(s,G, Ã, φ);13

end14

end15

(Hoffmann and Nebel 2001) for comparison, which does not
select supporting actions based on failure explanations.

Passive Learning

A passive learner would rather act under uncertainty and ask
no questions of the domain expert. Passive learning agents
are potentially reckless because they apply actions whose
preconditions may be unsatisfied.

Using their knowledge φ, it is possible to determine if the
next action in a plan, or any subsequent action, can or will
fail. If φ ∧ d(π) is satisfiable, then π can fail, and if φ |=
d(π), then π will fail. Algorithm 1 is the strategy used by the
passive learning agent. The algorithm involves initializing
the agent’s knowledge and plan (line 1), and then while the
plan is non-empty and the goal is not achieved (line 2) the
agent proceeds as follows. The agent selects the next action
in the plan (line 3) and determines if it can apply the action
(line 4). If it applies the action, then the next state is returned
by the environment/simulator (line 5) and the agent updates
its knowledge (line 6) and state (line 7), otherwise the agent
determines that the plan will fail (line 9). If the plan has
failed (line 11), then the agent forgets its knowledge of the
plan failure by projecting over fail (line 12) and finds a new
plan using its new knowledge (line 13).

For example, the passive agent might observe the state
transition o1 = o({p, q}, a, {p, q}) upon executing a, and
φ′ = filter(φ, o1) = ¬del(a, r). The agent must re-plan
because φ′ |= d(π).

Proactive Learning

Proactive learning relies on planning under uncertainty and
asking about action features that are relevant to the plan. The
extent to which an agent is proactive is determined by how
many of the relevant questions they ask before starting to ex-
ecute actions. We explore three levels of proactivity: com-
plete, asking all questions prior to execution; partial, inter-

55

leaving execution (to learn passively) and question asking;
and none, asking no questions prior to executing the rele-
vant actions. In the following, we discuss how to identify
relevant questions, given a plan, and how to rank the ques-
tions so that the agent can prove a plan will fail as quickly
as possible.
Relevant Questions: A question is relevant to a plan π if the
incomplete feature f is entailed by a potential diagnosis δ of
plan failure. Each diagnosis δ of the plan failure explanation
d(π) is a conjunction of incomplete features that must inter-
act to destroy the plan. Thus, if δ |= d(π) and δ |= f , then
the set of relevant questions is:

Qd(π) ={f |δ |= d(π), δ |= f or δ |= ¬f}
The example plan defines Qd(π) =

{pre(a, r), del(a, p), del(b, q), pre(c, q)} because each
feature appears in a diagnosis.
Ranking Relevant Questions: The features in smaller car-
dinality diagnoses have more impact on the plan because a
smaller number of unfavorable answers are needed to prove
the plan will fail; asking about these features will enable
an agent to fail fast. Moreover, features appearing in more
diagnoses have a high impact on plan failure. We define a
diagnosis-impact measure, where we prefer questions about
the incomplete action feature f where

f = argmax
f∈Qd(π)

∑

δ:δ|=d(π),
δ|=f

1
|{f |δ |= f}|2

The denominator of the expression above is squared to pe-
nalize the contribution of larger diagnoses. This measure
determines the incomplete feature most likely to cause the
plan to fail.

Using this measure for the example plan questions will
select pre(a, r) and del(a, p) as equally preferred questions
because both appear in a size one diagnosis. These features
are single points of failure.
Partial Proactivity: Asking about every relevant feature
will lead to a potentially large set of questions. Agents may
be able to passively learn about many of the features, so ask-
ing questions only about the most impactful features can re-
duce the number of questions. There are a number of meth-
ods for defining the partial set of questions, such as defin-
ing a threshold on the diagnosis impact measure or selecting
the features that appear in unit cardinality diagnoses (single
faults). The strategy that we evaluate in the empirical eval-
uation is to opportunistically ask about features that appear
in a unit cardinality diagnosis of d(π).

Reactive Learning

Agents that passively learn may fail to learn about impor-
tant action features. For example, if the agent executes
action a1, which has the possible precondition q (which
is unsatisfied in the current state) and the possible add ef-
fect p, but the resulting state does not change, then φ =
(fail ∧ pre(a1, q)) ∨ ¬add(a1, p). At this point, the agent
is not sure that it failed, and because φ 6|= pre(a1, q) and
φ 6|= add(a1, p) the agent cannot modify its actions prior to

re-planning. If the agent re-plans (deterministically), then it
will generate the same plan starting with a1 because it did
not learn definitively about a1. The agent will continue to
re-plan and fail indefinitely (i.e., it reaches a learning dead-
end).

Instead, the agent can realize that it may have failed
and diagnose whether it failed and why. By asking about
pre(a1, q) and add(a1, p), the agent can learn about the ac-
tion and potentially generate a different plan. For example,
if it learns that pre(a1, q) holds, then it will not plan the ac-
tion because q is not satisfied in the current state. If it learns
that ¬add(a1, p) holds, then the action is useless and will
not be planned.

The agent can rank the questions that create ambiguity
(multiple diagnoses) in φ in the same manner as proactive
questions. Reactive agents will continue to ask questions
until φ has a single implicant δ where δ |= φ. Having a
single implicant means that the agent knows if it failed or
not, and if it did fail why it failed. For example, after asking
about add(a1, p), the agent may know fail ∧ pre(a1, q) ∧
add(a1, p) or ¬add(a1, p). In the first, case the agent can
infer φ |= pre(a1, q) and that a1 will not be applicable. In
the second case, the agent can infer φ |= ¬add(a1, p) and
that a1 is irrelevant.

Empirical Evaluation

The empirical evaluation is divided into three sections: the
domains used for the experiments, the test setup used, and
results. The questions that we would like to answer include:

• Q1: Will adding reactive learning to passive learning im-
prove agent success?

• Q2: Does proactive learning improve reactive strategies
without asking too many questions?

• Q3: Does the type of planner used by the agent affect
success and number of questions across the strategies?

Domains: We use four domains in the evaluation: a modi-
fied Pathways, Bridges, a modified PARC Printer, and Barter
World (Weber and Bryce 2011). In all domains, we derived
multiple instances by randomly (with probabilities 0.25, 0.5,
0.75, and 1.0 for each action) injecting incomplete features.
With these variations of the domains, the instances include
up to ten thousand incomplete features each. All results are
taken from ten random instances (varying F) of each prob-
lem and ten ground-truth domains selected by the simulator.

The Pathways domain from the International Planning
Competition (IPC) involves actions that model chemical re-
actions in signal transduction pathways. Pathways is a nat-
urally incomplete domain where the lack of knowledge of
the reactions is quite common because they are an active re-
search topic in biology.

The Bridges domain consists of a traversable grid and the
task is to find a different treasure at each corner of the grid.
In Bridges, a bridge might be required to cross between
some grid locations (a possible precondition), many of the
bridges may have a troll living underneath that will take all
the treasure accumulated (a possible delete effect), and the
corners may give additional treasures (possible add effects).
Grids are square and vary in dimension (2-16).

56

Strategy Solved Learning Dead-End Physical Dead-End Timeout

Passive Only 4110 / 4314 1053 / 588 2510 / 2251 0 / 522
Passive/Reactive 4934 / 4766 0 / 0 2732 / 2385 0 / 523
Passive/Reactive/Proactive 5439 / 5004 0 / 0 2213 / 1916 0 / 755
Proactive Only 7531 / 6537 0 / 0 22 / 63 54 / 1072

Table 1: Summary of results on 7675 instances across the domains using two heuristics (hFF /h∼FF) within the agent. Results
include the number of solved problems, number of learning dead-ends reached, number of physical dead-ends reached, and
timeouts.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive Only 2.72 / 2.18 1.72 / 1.18 12.91 / 13.03 0.80 / 1.78 0 / 0
Passive/Reactive/Proactive 3.33 / 2.77 1.39 / 1.01 11.58 / 12.11 0.94 / 2.32 2.54 / 2.03
Proactive Only 6.27 / 5.47 0 / 0 10.07 / 10.50 3.14 / 8.73 5.27 / 4.47

Table 2: Domains solved by all techniques (3422 instances), with an average of 81.8 actions per domain, and an average of 24
incomplete action features.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive/Reactive 8.23 / 4.14 7.23 / 3.14 16.20 / 15.02 2.06 /4.48 2.04 / 0.75
Passive/Reactive/Proactive 6.64 / 4.03 4.70/ 2.10 13.11 / 13.18 2.26 / 5.77 6.44 / 3.81
Proactive Only 14.34 / 12.44 0 / 0 9.82 / 10.32 7.86 / 28.28 13.34 / 11.42

Table 3: Barter World instances solved by all techniques (662 instances), with an average of 99.11 actions per domain, and an
average of 59.59 incomplete action features.

Strategy Plans Re-Plan Acts TotalTime ?’s

Passive/Reactive 8.87 / 6.07 7.87 / 5.07 16.13 / 16.18 1.73 / 6.29 2.41 / 1.53
Passive/Reactive/Proactive 7.09 / 4.93 5.15 / 2.96 12.86 / 13.61 1.52 / 8.26 6.72 / 4.39
Proactive Only 15.70 / 14.24 0 / 0 9.52 / 10.02 6.21 / 34.99 14.70 / 13.21

Table 4: Pathways instances solved by all techniques (310 instances), with an average of 85.05 actions per domain, and an
average of 56.55 incomplete action features.

The PARC Printer domain from the IPC involves planning
paths for sheets of paper through a modular printer. A source
of domain incompleteness is that a module accepts only cer-
tain paper sizes, but its documentation is incomplete. Thus,
paper size becomes a possible precondition to actions using
the module.

The Barter World domain involves navigating a grid and
bartering items to travel between locations. The domain is
incomplete because actions that acquire items are not always
known to be successful (possible add effects) and traveling
between locations may require certain items (possible pre-
conditions) and may result in the loss of an item (possible
delete effects). Grids vary in dimension (2-16) and items in
number (1-4).

Test Setup: The tests were run on a Linux machine with
a 3 Ghz processor, with a 2GB memory limit and 60 min-
utes time limit for each instance. All code was written in
Java and run on the 1.6 JVM. The DeFAULT planner uses
a greedy best first search with deferred heuristic evaluation
and a dual-queue for preferred and non-preferred operators
(Helmert 2006).

Results: Tables 1 to 4 list the performance of the various
strategies on the instances in each domain. Within each ta-
ble, the results are listed as DeFAULT using different heuris-

tics “hFF /h∼FF ” – DeFAULT uses best first search, so
its ability to find plans that reason about incompleteness is
solely directed by the heuristic. The rows in the tables corre-
spond to the previously mentioned strategies: passive learn-
ing only; passive and reactive learning; passive, reactive,
and proactive learning; and proactive learning only. The
columns in Table 1 are the number of instances solved (the
agent achieves the goal), the number of instances where a
failure to learn prevents the agent from achieving the goal
(a learning dead-end), the number of instances where the
agent cannot re-plan (a physical dead-end), and the number
of instances where the agent runs out of time. Table 2 to 4
list the average number of planner invocations, number of
planner invocations after executing at least one action, num-
ber of actions executed, total time, and number of questions.
Table 2 lists results for three strategies and includes only
those instances where all three strategies were able to solve
the same instance; we did not include all strategies because
reactive strategies do not engage if the passive strategy suc-
ceeds. Tables 3 and 4 list respective results for Barter World
and Pathways because in these two domains it is possible
to have learning dead-ends (where the agent cannot success-
fully learn passively).

57

To answer Q1, Table 1 and 2 indicate that adding reactive
learning to passive learning or using only proactive learning
do improve upon passive learning alone. All other strategies
improve upon passive learning by solving more problems,
encountering no learning dead-ends, re-planning less dur-
ing execution, and executing fewer actions. However, these
improvements come at the cost of spending more time and
potentially running out of time, generating more plans, and
asking more questions. These results match our intuitions
about reactive learning because we are able to diagnose ac-
tion failures and avoid the same action failure when we re-
plan.

The tables indicate that for Q2, yes, in conjunction with
passive and reactive learning proactive learning is beneficial,
solving more problems, encountering fewer dead-ends, gen-
erating fewer plans, taking less actions, and using less total
time than passive and reactive strategies. Proactive strategies
can avoid executing actions that will lead to dead-ends by
asking about the actions early. Purely proactive strategies,
while typically more successful, tend to ask nearly twice
as many questions as mixed proactive, passive, and reac-
tive strategies. Limiting the number of proactive questions
and attempting to learn passively (while addressing learning
dead-ends with reactive learning) seems to strike a useful
balance between avoiding failure and overburdening a do-
main expert with questions.

In terms of Q3, we see that the type of planner used by the
agent does have an impact, verifying our prior results (We-
ber and Bryce 2011). We see that using a classical planning
heuristic that ignores action incompleteness can often solve
more problems, but the problems that it doesn’t solve are
mostly due to reaching dead-ends. The heuristic that reasons
about incompleteness reaches fewer dead-ends, asks fewer
questions, re-plans less, and tends to fail more often because
of timeouts; this suggests that improving the heuristic while
still reasoning about incompleteness is a promising direction
for future work.

Related Work

Our investigation is an instantiation of model-lite planning
(Kambhampati 2007), and is motivated by work on in-
structable computing (Mailler et al. 2009). This work is a
natural extension of the Garland and Lesh (2002) model for
evaluating plans in incomplete domains, but our method for
computing plan failure explanations is slightly different in
that we actually synthesize plans in incomplete domains as
well as investigate learning strategies.

Prior work of Chang and Amir (2006) addresses planning
with incomplete models, but does not attempt to synthesize
robust plans, which is similar to our planner that uses the
FF heuristic. We have shown that incorporating knowledge
about domain incompleteness into the planner can lead to a
more effective agent in both execution and question asking.
We also differ in that we do not assume direct feedback from
the environment about action failures, we can learn action
preconditions, and we can query a domain expert.

Safra and Tennenholtz (1994) also address the issue of
learning about transition models during planning, but only

focus on the complexity of planning and learning under var-
ious restrictions on the size of possible plans and transition
models. Our framework falls under the most general of those
considered by Safra and Tennenholtz (1994) and is thus not
tractable.

While similar in motivation, our work is related to, but
significantly different from the ARMS (Wu, Yang, and Jiang
2007) action learning system. ARMS is an offline system
for generating action models from partial observations of
plans (states and actions). ARMS encodes its observations
as a weighted Max-SAT problem and derives action models
that best match the observations. Our approach learns from
partial observations of actions due to fully-observable state
transitions and can actively learn through executing actions
or querying an expert. ARMS also learns PDDL operator
schemas, where we learn ground STRIPS actions.

Conclusion

We have presented three techniques for learning about in-
complete actions that either passively learn by execution,
reactively diagnose execution failures, or proactively seek
to learn about features that may cause future plan failure.
The learning methods are focused by plans so that learn-
ing is goal-directed, allowing us to ignore irrelevant action
features. We found that i) proactively asking to learn all
relevant incomplete action features leads to a large number
of questions; ii) passively learning can lead to dead-ends;
iii) reactively diagnosing failures while passively learning
avoids dead-ends; and iv) combining reactive, passive, and
proactive learning increases success without asking pro-
hibitively more questions.

Acknowledgements: This work was supported by DARPA
contract HR001-07-C-0060.

References

Bertoli, P.; Botea, A.; and Fratini, S., eds. 2009. ICKEPS.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of AIPS’00.

Boutilier, C. 2002. A pomdp formulation of preference elic-
itation problems. In AAAI/IAAI, 239–246.

Chang, A., and Amir, E. 2006. Goal achievement in partially
known, partially observable domains. In ICAPS’06.

de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. 54–65.

Garland, A., and Lesh, N. 2002. Plan evaluation with in-
complete action descriptions. In Proceedings of AAAI’02.

Gervasio, M.; Yeh, E.; and Myers, K. 2011. Learning to ask
the right questions to help a learner learn. In Proceedings of
the IUI’11.

Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.

58

Kambhampati, S. 2007. Model-lite planning for the web age
masses. In Proceedings of AAAI’07.

Mailler, R.; Bryce, D.; Shen, J.; and Orielly, C. 2009.
Mable: A framework for natural instruction. In AAMAS’09.

Oates, T., and Cohen, P. R. 1996. Searching for planning
operators with context-dependent and probabilistic effects.
In AAAI/IAAI, Vol. 1, 863–868.

Safra, S., and Tennenholtz, M. 1994. On planning while
learning. Journal of Artificial Intelligence Research 2:2–
111.

Weber, C., and Bryce, D. 2011. Planning and acting in
incomplete domains. In Proceedings of ICAPS’11.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. Arms: an automatic
knowledge engineering tool for learning action models for
ai planning. K. Eng. Rev. 22(2):135–152.

59

Reasoning about Robocup-soccer Narratives

Hannaneh Hajishirzi1, Julia Hockenmaier1, Erik T. Mueller2, and Eyal Amir1

1{hajishir, eyal, juliahmr}@illinois.edu, 2etm@us.ibm.com
1University of Illinois at Urbana-Champaign, 2IBM TJ Watson

Abstract
The ability to translate natural language into a semantic rep-
resentation that is amenable to further inference is a hallmark
of natural language understanding. Since the interpretations
of individual sentences have to be combined into a coherent
whole, it has long been known that a planning-like approach
to natural language understanding which incorporates world
knowledge in the form of preconditions and effects of events
can be used e.g. in text generation systems. This paper argues
that such domain knowledge can also play an important role
in learning to understand text. We present a planning-based
approach which learns to translate simple narratives into a co-
herent sequence of events without labeled training data. We
apply our approach to the reconstruction of Robocup soccer
games, and show that it outperforms state-of-the-art super-
vised learning systems in this domain.

1 Introduction
Natural language understanding requires the ability to trans-
late individual sentences into a semantic representation of
the underlying entities, their properties, relations, actions
and the effect of their actions on the state of the world. It
furthermore requires the ability to combine the semantic rep-
resentations of individual sentences into a coherent whole,
which in turn makes it possible to draw inferences that go
beyond what is explicitly mentioned, and is therefore nec-
essary for a ’deep’ understanding of the text. For example,
knowing who has possession of the ball at any point during a
soccer game from a commentary of the game alone requires
the ability to infer numerous events that are implied but may
not be explicitly mentioned.

This paper argues that the assumption that text is coher-
ent provides a strong bias that can be exploited when learn-
ing to understand language. One particularly simple form
of coherence requires that events can only take place when
their preconditions are met. For example, a soccer player
cannot kick the ball unless he is currently in possession of
the ball. We present an unsupervised approach which in-
corporates such domain knowledge in the form of soft con-
straints to learn to understand sports commentaries. We use
human commentaries of four championship games in the
Robocup simulation league(Chen, Kim, & Mooney 2010),
and map each narrative to a sequence of events such as pass,
kick, steal, offside. Soccer commentaries are simple narra-
tives which differ from more complex narratives and other

forms of text in that they report a linear sequence of events
that unfold over time. In a simple narrative, each sentence
leads therefore to an incremental update of the overall se-
mantic representation, or discourse model (Webber 1978;
Johnson-Laird 1983; Grosz & Sidner 1986), making it pos-
sible to reconstruct the original temporal sequence of events
and draw further inferences.

In this paper we examine how prior domain knowledge
of the preconditions and effects of events (specified in a
STRIPS-like framework (Fikes & Nilsson 1971)) and a
bias towards coherent discourse models can be exploited
in learning how to map narratives to event descriptions.
In contrast to other recently proposed approaches (e.g.,
(Zettlemoyer & Collins 2009; Chen, Kim, & Mooney 2010;
Kate & Mooney 2007)), we do not require any labeled train-
ing data. Our system also does not require an agent which
receives indirect supervision by interacting with a physical
environment (e.g., (Branavan et al. 2009; Vogel & Jurafsky
2010)). It is often very hard, if not infeasible, to either cre-
ate human-annotated data or to have access to an interactive
environment that provides indirect supervision. In our ex-
periments we show that knowledge about the preconditions
and effects of events alleviates the need for labeled training
data. In particular, our unsupervised approach outperforms
the state-of-the-art supervised approach of (Chen, Kim, &
Mooney 2010) on understanding Robocup soccer commen-
taries, even when we extend it to incorporate similar domain
knowledge at inference time.

Similar to (Chen, Kim, & Mooney 2010), we formulate
language understanding as a classification problem in which
we have to predict events from individual sentences. In con-
trast to other approaches, our classifier also receives as input
our guess of the current state of the world. The classifier
assigns a score to each possible event. We interpret these
scores as utilities, and use dynamic programming to find the
sequence of events that has maximal utility. Events that vio-
late domain constraints (because their preconditions are not
met in what we assume to be the current state of the world)
are penalized. An alternative approach (to be explored in
future work) might treat this task as a complex sequence
labeling problem where each element of the sequence cor-
responds to an individual sentence and the label to the pre-
dicted event. Our classifier is trained in an iterative fash-
ion that is reminiscent of self-training or hard EM (Bishop

60

2006). Starting from an initial guess of a coherent event
sequence we iteratively retrain it on the sequence of events
that has maximal utility according to the current version of
the classifier.

1.1 Related Work
There are several symbolic narrative understanding systems
(e.g., (Hobbs et al. 1993)) which apply abductive reasoning
to a very large knowledge base by considering every element
of the text as a logical element, but do not model uncertainty
which is essential for narrative understanding.

There are other approaches that map natural language text
to meaning representations. Some (Zettlemoyer & Collins
2009) use annotated labeled data and are focused in texts
describing facts rather than describing dynamics of a sys-
tem. Most similar to our approach are (Branavan et al. 2009;
Chen, Kim, & Mooney 2010) which map narratives to se-
quence of events with applications in understanding instruc-
tions or generating commentaries. (Branavan et al. 2009)
use reinforcement learning and have access to a physical en-
vironment to provide supervision for assigning rewards to
selecting events. (Chen, Kim, & Mooney 2010) have access
to the actual events of soccer games and use a mapping be-
tween commentaries and real events of the game for training.
In contrast, our approach uses prior knowledge about events,
does not have access to real events happened in the soccer,
does not interact with a real physical environment, and uses
binary classifiers instead of reinforcement learning.

Several approaches introduce reasoning, learning, or
planning algorithms in a probabilistic logical framework to
model events. Planning and reasoning approaches, unlike
us, assume that the probability distribution over events are
known. Exact reasoning approaches (e.g.,(Baral & Tuan
2002; Reiter 2001)) are not feasible in our problem as they
usually consider all the possible paths of the probabilis-
tic event sequence. Sampling possible deterministic events
of the narrative (Hajishirzi & Amir 2008) is still too ex-
pensive. Probabilistic planning approaches (Majercik &
Littman 1998) usually find the most likely plan given ini-
tial and goal states.Learning approaches (Deshpande et al.
2007; Zettlemoyer, Pasula, & Kaelbling 2005) compute the
probability distribution over different events. Unlike us,
these approaches use annotated labeled data and train their
classifier for a single probabilistic event rather than accumu-
lating information from selected events using an inference
subroutine. corresponding to every transition is known.

Our approach is also related to research in plan and (more
so) activity recognition. Some apprpaches (e.g., (Kautz
1987)) use logical elements and symbolic reasoning, but
are not able to rank different consistent plans. Other ap-
proaches use probabilistic reasoning (e.g., Bayesian net-
works in (Charniak & Goldman 1993) or HMMs in (Bui
2003)). Other approaches (e.g., (Riley & Veloso 2004;
Liao et al. 2007)) incorporate learning and reasoning in
dynamic models such as HMMs or Markov Decision Pro-
cesses. These approaches are usually augmented with an-
notated labeled data or do not use logics to model the do-
main. Most recently, (Sadilek & Kautz 2010) recognize ac-
tivities by applying relational inference and learning (with

noisy GPS information as training labels). They neither im-
proves initial estimates of labels nor use consistency check-
ing. Moreover, using hard and soft constraints, they augment
their system with richer (more expensive) prior knowledge
compared to our few event descriptions.

2 Problem Definition
The problem that we address here is to find the best sequence
of events that interprets an input narrative. Events are de-
scribed in terms of preconditions and effects.

2.1 Natural Language Narratives
A narrative describes the dynamics of a system as a se-
quence of sentences in natural language. Specifically, a
narrative is a temporal sequence of length T of sentences
〈w1, w2, . . . , wT 〉. Examples of such narratives are com-
mentaries, stories, reports, and instructions. Through this
paper we work with commentaries of four final games of
Robocup soccer simulation league taken from (Chen, Kim,
& Mooney 2010).
Sentence: Every sentence in the narrative is either an ob-
servation about the state of the system (e.g., “Offside has
been called on the Pink team.”) or a change that happens in
the state of the system (e.g., “Pink9 tries to kick to Pink10
but was defended by Purple3”). There is uncertainty in un-
derstanding the associated meaning of a sentence as the sen-
tences are in natural language. For example, the above sen-
tence can be interpreted as passing between players, bad-
passing between players, a player kicking the ball, or a
player defending the other player.
State of the world: The state of the world depicts the un-
derlying state of the system that is changing over time. For
example, after sentence “Pink goalie kicks off to Pink2” the
state of the world is “Pink2 has possession of the ball” which
shows the actual state of the soccer game.

2.2 Meaning Representations
Our meaning representation framework consists of (1) log-
ical elements for representing the domain and (2) prior
knowledge about specifications of events.
Representation Language: We use a logical language to
represent events, entities, and states. The language con-
sists of a finite set of constants (e.g., teams PurpleTeam,
PinkTeam and players Pink1, Purple1, Pink2,
Purple2), variables (e.g., player1, team), predicates
(e.g., Holding(player, ball), atCorner(), atPenalty()),
and events (e.g., pass(player1, player2), kick(player1),
steal(player1)).

Definition 1. The languageL of our meaning representation
framework is a tuple L = (C,V,F,E) consisting of
• C a finite set of constants representing objects in the do-

main
• V a finite set of variables
• F a finite set of predicates (called fluents) whose values

change over time
• E a finite set of deterministic event names

We define a fluent literal as a formula of the form
f(x1, . . . , xk) or ¬f(x1, . . . , xk) (also represented by f(~x))

61

where x1, ..., xk ∈ V ∪ C are either variables or constants.
In this setting, the grounding of a fluent f(~x) is defined as
replacing each variable in ~x with a constant c ∈ C.

A state s in this framework is defined as a full assignment
of {true, false} to all the groundings of all the fluents in
F . However, it is generally the case that, at any partic-
ular time step, the values of many fluents are not known.
Therefore, we define states of narratives as partial states
which are conjunctions of fluent literals whose truth val-
ues are known. A partial state σ is a function σ : GF →
{true, false, unknown}whereGF is the set of ground flu-
ents. We interchangeably represent a partial state σ as a con-
junction of fluent literals where a fluent literal is in the form
of either f (for σ(f) = true) or ¬f (for σ(f) = false).

Event: Events are represented as event names together
with a list of parameters and are generally specified with
preconditions and effects as STRIPS actions. Every event
either describes the state or deterministically maps a state to
a new state. Event descriptions are available to our system
as prior knowledge and are described in a relational form.
This means that the parameters of the events are variables
rather than constants.
Definition 2. Let e be an event name and ~x be variables as
event parameters. If Precond(~x) and Effect(~x) are conjunc-
tions of fluent literals then the effect axiom for the event e(~x)
is represented as:
• Preconditions: Precond(~x)
• Effects: Effect(~x)

Here we use the frame assumption that the truth value
of a fluent stays the same unless it is changed by an
event. For example, “pass(player1, player2) with Pre-
conditions: holding(player1), Effects: holding(player2)”
describes the event pass that changes the possession
of the ball from player1 to player2. Or the event
“kick(player1) with Preconditions: holding(player1), Ef-
fects: ¬holding(player1)” describes that the player1 is no
longer holding the ball after he shoots.

Most events associated with Robocup commentaries in-
volve actions with the ball such as kicking and passing.
There are some other events that show game information
such as whether the current state is penalty, offside, or cor-
ner. For example the event corner is described as “corner()
Preconditions: true, Effects: atCorner()”.

The set of deterministic events includes a noise event
called Nothing that has no preconditions and no effects. The
reason for including this noise event is that some narratives
include sentences that are not mapped to any actual events.
For example, sentence “Today we have a nice match be-
tween pink and purple teams” does not map to any of the
described events for the soccer game. In addition, the noise
event helps to fix inconsistencies that exist in the narrative.
For example, a soccer commentary is not always consistent
if the commentator has missed commenting on some of the
events of the game. Mapping sentences to the noise event al-
lows some flexibility for mapping other sentences correctly.

2.3 Transition Model for Sentences
Each sentence in the narrative describes an uncertainty
among different events. We assign a score to all the possible

events associated with a sentence. This score also depends
on the current state. The score corresponding to a sentence
w and state s is represented as P (ei|w, s) for all the events
ei.

To map the narrative to sequence of events we first need
to compute P (ei|w, s) for every sentence in the narrative.
We model this score as a logistic function (Bishop 2006)
and learn it in an iterative learning procedure (Section 3.1).
Each iteration involves estimating the label for the training
examples and modifying the model accordingly.

We assume that at most one of the domain events will
be mapped to each sentence. For instance, for sentence
“Pink6 tried to pass to Pink10 but was intercepted by
Purple3” the goal is to map the sentence to final event
BadPass(Pink6, Purple3) rather than fine grained events
like kick(Pink6), then pass(Pink6, P ink10), and then
BadPass(Pink6, Purple3).

3 Mapping Narratives to Event Sequences
Our approach, ITerative Event Mapping (ITEM), uses prior
knowledge and is built upon two subroutines of inference
and learning. Iterative learning subroutine (Section 3.1)
learns scores of different events corresponding to every sen-
tence. Inference subroutine (Section 3.2) finds the best event
sequence using the learned scores. Our approach uses prior
knowledge in initializing labels, building training examples
by updating the current state, and in the inference subrou-
tine.

3.1 Iterative Learning
Our iterative learning subroutine IterTrain is illustrated in
Figure 2. The inputs to this subroutine are narratives and
prior knowledge about event effect axioms. We train a bi-
nary classifier to separate the correct event from the other
events for every sentence and state.

Our algorithm divides the set of input narratives
to training and test narratives. It then generates
training examples (ei, w, s) from the training narra-
tives using Example Generator. Afterwards, it com-
putes features ~Φ(ei, w, s) for each training example using
Feature Extractor. Since the correct labels of training exam-
ples are not known, the algorithm estimates initial training
labels generated by Initial Label Generator that uses prior
knowledge. Next, it uses Classifier to learn the model pa-
rameters ~Θ for the current training examples and the esti-
mated labels. It uses logistic regression (Bishop 2006) and
computes the binomial probability P (ei|w, s) that event ei

is the correct interpretation of sentence w in state s.
In the next iterations, the algorithm uses the learned

model parameters and finds new labels for the training ex-
amples. These steps will re-iterate until convergence i.e.,
||~Θt+1 − ~Θt|| < ε.

For testing, we use ComputeP over the final learned model
to compute scores of events associated with every sentence
in the test narrative. In following we describe details of dif-
ferent subroutines used for training.
Training Example Generator: This module takes a train-
ing narrative as a sequence of sentences 〈w1 . . . wT 〉. It re-
turns training examples in the form of (sentence wt, event

62

Algorithm 1. ITEM(Train Tx1..3, Test Tx, EA)
• Input: Train narratives Tx1..3, Test narrative Tx, PAM
1. ~Θ← IterTrain(Tx1..3,EA,K,N)

2. Inference(Tx, ~Θ)

Algorithm 2. IterTrain(Tx,PAM, N)
• Input: training narrative Tx, effect axioms EA, language L
1. Repeat until ~Θt+1 − ~Θt < ε

(a) (wi, ei, si)i:1..S ← ExampleGenerator(Tx,EA, N)
(b) for i : 1 to S

i. ~Fi ← FeatureExtractor(wi, ei, si)
ii. li ← LabelGenerator(wi, ei, si,EA)

(c) ~Θ← Classifier(~Fi:1..S , li:1:S)

Algorithm 3. ComputeP(event e, sentence w, state s, ~Θ)
1. for ei in PAM.DA:

(a) ~Φi ← FeatureExtractor(w, ei, s)

(b) scorei ← LogisticFunction(~Φi, ~Θ)
2. P (e|s, st)← normalize scorei

Algorithm 4. Inference(Tx,~Θ, E, EA)
• Input: Test narrative Tx = 〈w1 . . . wT 〉, ~Θ, E
• Output: sequence of events 〈e1, . . . , eT 〉
1. if t = 1 initialize V1,ei , S1,ei , Seq1,ei

from Eq. 1
2. for t = 2 . . . T

(a) for ei in E:
i. e← arg maxei∈E(Vt−1,ei)
ii. st−1 ← St−1,ev

iii. Vt,ei = ComputeP(ei, wt, st−1, ~Θ) + Vt−1,e

iv. if Precond(ei) 6|= st−1: Vt,ei ← Vt,ei − 1
v. Seqei,t ← Seqe,t−1 + [ei]

vi. St,ei ← Progress(st−1, ei)
3. eT ← arg maxei∈E(VT,ei), e1..T−1 ← Seqet,t

Figure 1: The ITerative Event Mapping (ITEM) algorithm to find
the best event sequence corresponding to a narrative, with subrou-
tines IterTrain to find the model parameters ~Θ by training on train
narratives, ComputeP to compute the normalized score over differ-
ent events associated with every sentence, and Inference to find the
best event sequence given the scores and the event descriptions.

ei, state s). Recall that our learning algorithm computes the
probability that ei is the interpretation of wt in the s. This
module first samples events from the space of events and
generates pairs of (sentence, event). It then updates the state
of the narrative for each pair of event and sampled event.
This provides the final triplets.

To build pairs of (wt, ei) for each sentence wt, we first
sample N events ei uniformly from the set of events E. For
example, we sample events pass, steal, and kick for the
sentence “P7 passes the ball to P9” in Figure 2. Next, we
extract the words in the sentence that correspond to a player
name. For that, we assume that we know the list of play-
ers for the soccer game. For example, arguments for the
above sentence are P7 and P9. We then ground the sam-
pled events using these extracted arguments from the sen-
tence. To ground the event we replace the variables in the
event pass(player1, player2) with P7 and P9 that are con-
stants in our logical language. For the above sentence the
grounded event is pass(P7, P9).

We then compute the state of the narrative given the
sampled events. So far we have N sequences of sam-
pled events evsi = 〈e1, . . . eT 〉 corresponding to consec-

! "#$%&'()*+)'(,-./*$01234(
5-6/78)*+)'(9:..(
;<#$%8)*+)(
"%:%#8(=-./*$01234(

>#:%?6#(
;@%6:+A-$(

17#$%#$+#'(
#<#$%'(7%:%#4(

! B7#$%C'7%#:.1234'%6?#D((
B7#$%&')*+)12E4'(
,-./*$01234D(

! F(

;@:GH.#(
I#$#6:%-6
1J'#'74(

K.:77*L#6(

!  !"#$%8(23(
H:77#7(M-6J:6/(
%-(2EN(

!  !"#$&8(=#()*+)7(
%,#(9:..(%-(2CON(

"#$%#$+#7(

21#PJ'74(

!  (('(!!)*+,-.(
((26#8(,-./*$01@4(

(;Q8,-./*$01R4(
!  ((/$"(0)*-.(
((26#8(S,-./*$01@4((

(;Q8(,-./*$01@4(

26*-6(
T$-J.#/0#(

U(

V#J(.:9#.7(

! B7#$%C'7%#:.1234'%6?#D(
! B7#$%&')*+)1HE4('(
,-./*$01234D(

W$*A:.(X:9#.(
I#$#6:%-6(

Y(
Z(

[H/:%#(
X:9#.7(

Figure 2: The architecture of our iterative learning approach
IterTrain (Algorithm 2) to compute the model parameters ~Θ and
returning the normalized score of every event given the sentence
and the current state.

utive sentences. We build a new sequence in the form of
〈s0, e1, s1, e2, s2, . . . , eT , sT 〉. Every st is the state of the
narrative at time t and is computed using prior knowledge of
event axioms. We initialize the state of the world by true i.e.,
s0 = true. We update each state st−1 at time t given event
et using a progress subroutine. We form training examples
as triplets (wt, et, st−1) from the new sequence.

For example, a sequence of events sampled for the
narrative in Figure 2 is 〈steal(P7), kick(P9)〉. We up-
date the state given the sampled event sequence and derive
〈true, steal(P7), holding(P7), kick(P9),¬holding(P9)〉.
The reason is that s1 is holding(P7) if event steal(P7)
happens in state s0 = true. From this sequence we
extract two training examples (sent1, steal(P7), true) and
(sent2, kick(P9), holding(P7)).

Progress subroutine, Progress(st−1, et), takes as input an
event et and the current state st−1. It then returns the up-
dated state st if the preconditions of the event et is consis-
tent with st−1. The current state st is updated by applying
the effect axioms of the event et.
Feature Extractor: This module takes an example (sen-
tencew, event e, state s) as input and returns the correspond-
ing feature vector ~Φ = (1, ~φw, ~φe, ~φs) where 1 is a bias. ~φw

is a binary vector representing the sentencew where each el-
ement in the vector shows the presence of the corresponding
words of the vocabulary in the sentence. ~φe is a binary vec-
tor to represent the event e where each element in the vector
represents the presence of the corresponding event name in
the training example. ~φs is a binary vector representing the
state s where each element in the vector represents the truth
value of the corresponding fluent name in the state s.
Label Generator: This module takes as input an example
(sentence w, event e, state s) and automatically generates a

63

boolean label as an estimate of the actual label. This mod-
ule distinguishes us from supervised learning approaches as
here we automatically generate labels. The intuition behind
a positive label is that event e is a correct meaning of the
sentence w given that the state s.

Initial Label Generator: In the first iteration, this mod-
ule uses prior knowledge about events (event effect axioms)
and automatically assigns labels to the training examples.
More specifically, an example will be assigned a positive la-
bel if the preconditions of event e are consistent with the
current state s and the name of event e has low edit dis-
tance to a word in the sentence w. For instance, train-
ing example (sent1, steal(P7), true) has been assigned a
positive label since steal(P7) is feasible in s0 = true.
However, the example (sent2, kick(P9), holding(P7)) has
been assigned a negative label as kick(P9) is not feasible if
s = holding(P7).

Update Labels: In next iterations, labels are generated
by applying the current classifier to training examples. This
module uses the weights learned by the current classifier and
assigns a score to training examples. An example (w, e, s)
would be assigned a positive label if its score is higher than
the score of replacing the event e in the example with other
events in the dataset.
Classifier: At each iteration, the classifier takes train-
ing examples (ei, w, s) together with generated labels for
that iteration and returns a weight vector. This module
first removes negative examples randomly to balance train-
ing examples and make the number of positive and nega-
tive labels comparable. It then trains a linear classifier (lo-
gistic regression (Bishop 2006)). We use logistic regres-
sion to compute binomial probability P (ei|w, s) to assign
a score to the events given the sentence w and state s. We
model this score as a logistic function i.e., P (ei|w, s) =
1/(1 + exp(−~Θt × ~Φ(ei, w, s)) where ~Φ is the feature vec-
tor associated with training examples and ~Θ is a vector of
model parameters which we want to learn. The output of the
classifier is model parameters ~Θ = (θ1, ~θw, ~θe, ~θs) which is
used to compute the score of events.

To test, ComputeP computes the score of events ei cor-
responding to the test sentence w in the state s. ComputeP
first uses the arguments of the sentence and grounds all the
possible events ei associated with the sentence. It computes
the score of each test example using logistic function with
learned parameters. It then normalizes the scores of exam-
ples (w,ei,s).

Then, the inference subroutine (next section) uses the
computed scores to find the best event sequence correspond-
ing to the test narrative.

3.2 Inference
The inference subroutine is a Viterbi-like (Rabiner 1989)
dynamic programming approach that finds the best event
sequence corresponding to the input narrative and our
model. Inference (Algorithm 4) takes as input the narrative
〈w1, . . . , wT 〉, event effect axioms EA, and the normalized
scores of different events computed for the narrative sen-
tences.

Intuitively, the inference subroutine selects the event that
is most likely and feasible in the state of the narrative. To
model this, we assign a value Vt,ei

to selecting event ei at
time t. Notice that V represents the utility of selecting the
corresponding event and is not a probability function. This
utility is computed by summing the accumulated utility up
to time t and the immediate normalized score of selecting
event ei. The utility is penalized if the event ei is not feasible
in the current state. The following recursive relations show
how we compute the utility function.

V1,ei = P(ei|w1, s0), S1,ei = Progress(s0, ei)
Vt,ei

= P(ei|wt, st−1) + Vt−1,e + rst−1,ei

St,ei
= Progress(st−1, ei) (1)

where s0 = true, e = arg maxei∈E(Vt−1,ei
), st−1 =

St−1,e, and rs,ei
=

{
−1 Precond(ei) 6|= s
0 otherwise is a func-

tion for penalizing infeasible events. Here Vt,ei shows
the value of selecting event ei in the time step t. This
value is initialized with the normalized score of events for
the first sentence and the initial state. These scores are
derived using the ComputeP procedure: P(ei|w1, s0) =
computeP(ei, w, s, ~Θ). If the preconditions of ei is not con-
sistent with the current state st−1 we penalize the value of
choosing this event using a penalty function rst−1,ei

which
is a real number between 0 and -1. In our experiments, we
set this penalty function as −1 to penalize the events with
higher scores more than the events with lower scores. The
current state St,ei

is derived by Progressing state st−1 with
event ei.

To update the best sequence of events, we use the follow-
ing recursive formulas. Seqt,ei

shows the best sequence of
events if event ei is selected at time t. The following recur-
sive equations show how we model Seq.

Seq1,ei
= [ei]

Seqt,ei
= Seqt−1,e + [ei] (2)

where e = arg maxei∈E(Vt−1,ei
). The event sequence

Seqt,ei
is updated by keeping a pointer to the previously

best selected event in the recursive step. Finally, the best
sequence of events is derived as selecting the event at time
T that has the highest value and backtrack recursively i.e.,
eT = arg maxei∈E(VT,ei) and e1..T−1 = SeqeT ,T .

4 Experiments
In this section we evaluate our algorithm, ITEM, to map nar-
ratives to a sequence of events. We work with Robocup soc-
cer commentaries. The task is to compute the accuracy of
the mapped event sequence with respect to a gold standard
event sequence. We compare the accuracy of our approach
with baseline algorithms and state-of-the-art approach that
uses annotated labeled data. Through our experiments we
show that prior knowledge about event effect axioms allevi-
ates the need for labeled data.

4.1 Robocup Soccer Commentaries
We use the Robocup soccer commentaries dataset (Chen,
Kim, & Mooney 2010). The data is based on commentaries

64

of four championship games of Robocup simulation league
in years 2001 to 2004. Each game is associated with a se-
quence of comments in English. There are in total of 1872
comments where 2001, 2002, 2003, and 2004 games have
672, 459, 398, and 343 comments, respectively. Figure 2
shows a sample sequence of sentences in the commentary of
2001 game.

The meaning representations corresponding to the com-
mentaries are from the Robocup dataset. We add a holding
fluent and a Nothing event to the list of events in (Chen,
Kim, & Mooney 2010). In addition, we manually describe
effect axioms for events. Events for the soccer commentary
include actions with the ball or other game information. In
total there are 16 event names among which 3 with two ar-
guments, 4 with one argument, and 10 with zero arguments.
The number of fluent names in the domain is 10. We assign
constants as team names and player names. In total there are
24 constants.

In addition to the English comments about the game, the
original dataset includes real events (represented in meaning
representation language) that happen in the original game
tagged with time. Our ITEM algorithm does not use this
event log of the game. This makes us different from the
approach in (Chen, Kim, & Mooney 2010). They use anno-
tated labeled data in the form of a a mapping between natural
language comment and the real events that occurred within
5 time steps of when the comment was recorded.

4.2 Mapping Sentences to Events
For evaluation purposes only, we use gold-standard labels
in the dataset where each sentence is manually matched to
the correct event. We evaluate the accuracy of the output se-
quence of events by computing the proportion of the events
that have been correctly assigned to the sentences. We re-
port the results for every game. We also report the micro-
average accuracy over all the examples. For computing the
micro-average accuracy we compute the weighted sum of
the accuracies for each game given the number of sentences
in the game. We compare the accuracy of our approach with
(Chen, Kim, & Mooney 2010) and several baselines.

Our approach (ITEM) With respect to our learning algo-
rithm, we train on three Robocup games (e.g., 2001, 2002,
and 2003) and test on the last game (e.g., 2004). We run
IterTrain with parameters N=10 (number of samples for
each sentence) and compute the weight vector. The aver-
age number of training examples per iteration is about 700.
To generate training examples, we use Example Generator
module that samples events for sentences, ground events
based on the arguments of the sentence (player names), and
update the states based on the events. There are cases that
we miss the arguments as for example the player name is
mentioned in the form of “Pink Goalie” rather than “Pink1”.
There are cases that the sampled event requires more argu-
ments than the player arguments extracted for the sentence.
For example, sentence “He kicks the ball to P10” has one
player argument P10. In these cases we use the last argu-
ment selected for the previous sentence as an argument of
the event. Also, there are cases that the sentence has more
arguments than the event. In this case, we consider different

0.3	

0.4	

0.5	

0.6	

1	
 5	
 9	
 13	

Training	
 Convergence	

Label	

Accuracy	

Itera6ons	

F1	

Figure 3: Convergence of the accuracy of estimated labels
vs. number of iterations of training according to F1 measure.

pairs of argument players as arguments of the events.
After generating examples, we extract features for each

example. The length of feature vector is 250 including 16
events, 195 words, and 38 ground fluents. Initial labels are
computed using prior knowledge about events and comput-
ing edit distance of the event name and words in the sen-
tence. An example (e, w, s) gets positive label if e is fea-
sible in state s and its name has low edit distance (≤ 3) to
at least a word in the sentence. The labels are later changed
in the next iterations using the learned classifier. Using the
learned weight vector, we use the ComputeP subroutine to
compute the score of every event associated with a sentence
in the test narrative. Finally, we apply our inference subrou-
tine and find the best event sequence for the test narrative.

We first show that our iterative learning approach con-
verges and improves the accuracy of labels generated for the
training examples. Graph 3 shows the convergence of our
iterative method. It shows that the iterative step improves
initial training labels. We report the expected accuracy of
labels at each iteration in terms of F1 measure over all four
training scenarios.

Table 2 shows some examples of our right and wrong
predicated labels. It shows that our approach can distinguish
the meaning of sentence “Purple10 kicks to Purple11” by
mapping it correctly to pass rather than kick. This shows
that our approach does not disambiguate based on the sim-
ilarity of the event name and the verb name. Our wrong
predicted labels show that distinguishing between turnover
and badPass events is hard. badPass refers to the event
that the agent is trying to pass but the pass mistakenly goes
to the next team’s player. turnover refers to the event that
the player accidentally loses the ball. In addition, Table 1
shows the accuracy of the derived mapping by our approach.

Comparison to Baselines We compare our approach with
different baselines. For each sentence, these baselines select
events with specific properties that can be candidate inter-
pretations of the sentences.

Uniform: The first baseline Baseline-0 selects an event
per sentence from a uniform distribution over events. This
baseline shows how difficult the Robocup soccer commen-
tary is, and as one can see from Table 1 this random selection
performs poorly on the dataset.

Uniform+heuristics: The second group of baselines
show how performing some heuristics for event selection
helps. Baseline-1a selects uniformly among events whose

65

Correct Predicted Events
Sentence event
Purple10 makes a quick pass to Purple11 on the side. pass(purple10, purple11)
Purple11 tries to pass back but was picked off by Pink5. badPass(purple11, pink5)
Pink5 made a bad pass that was intercepted by Purple10. badPass(pink5, purple10)
Purple10 kicks to Purple11. pass(purple10, purple11)
Purple11 threads a nice pass to Purple10 near the penalty area. pass(purple11, purple10)

Wrong Predicted Events
sentence correct event our event
Pink6 steals the ball from Purple6. steal(pink6) badPass(pink6, purple6)
Pink6 tries to dribble toward the goal but turns the ball over to Purple3. turnover(pink6, purple3) badPass(pink6, purple3)
Purple10 tries to kick back to Purple11 but was intercepted by Pink2. badPass(purple10, pink2)

Table 2: top Some sentences in 2001 game and our responses that predicted the correct event. bottom Some examples in the dataset that was
wrongly predicted by our approach.

Approach 2001 2002 2003 2004 Avg.
uniform+heuristics

Baseline-1a .688 .464 .628 .437 .574
Baseline-1b .625 .570 .718 .720 .648

prior knowledge+heuristics
Baseline-2a .693 .455 .640 .454 .579
Baseline-2b .629 .575 .826 .737 .677
Baseline-3 .687 .474 .658 .478 .590

prior knowledge (no labeled data) + our method
Our ITEM .799 .681 .867 .769 .779

annotated labeled data + WGIM
WGIM .721 .664 .683 .746 .703
prior knowledge+ annotated labeled data+WGIM

WGIM-Inference .767 .721 .638 .798 .734
Table 1: (top) Accuracy of different approaches for Robocup nar-
ratives and the micro-average accuracy. Our approach ITEM with
no annotated data shows higher accuracy compared to other algo-
rithms. Baseline-0 uses uniform distribution for selecting events
and returns accuracy of 0.062. Baseline-1a and Baseline-1b use
heuristics for event selection. Heuristics include selecting similar
events or equal arity events. Baseline-2a and Baseline-2b uses prior
knowledge on top of the heuristics. Baseline-3 combines all the
possible heuristics and prior knowledge. WGIM[6] uses annotated
data to select events.WGIM-Inference augments WGIM with prior
knowledge about events. The results suggest that knowledge about
event axioms together with iterative learning replaces the need of
annotated labeled data and that prior knowledge improves learning
with annotated data.

names have a small edit distance (≤ 3) to at least one
word in the sentence. We call these events similar events.
Baseline-1b selects uniformly among events whose arity is
equal to the number of arguments in the sentence. We call
these events same-arity events. Table 1 show the results of
these baselines. If no event has these properties, we ran-
domly select among all the possible events. While the accu-
racy of these baselines is significantly lower than our ITEM
algorithm, they show significant improvement over the ran-
dom selection of Baseline-0.

Prior knowledge + Heuristics: The next baseline ex-
amines the effect of prior knowledge without learning.
Baseline-2a uses prior knowledge about events over similar
events. This baseline applies the inference subroutine (Algo-
rithm 4) with a uniform distribution over similar events in-
stead of using ComputeP. Baseline-2b applies the inference

subroutine, but with a uniform distribution over same-arity
events to the sentence. We apply prior knowledge during
the inference subroutine over two previous heuristics. Our
results suggest that prior knowledge helps, but it is impor-
tant how to incorporate prior knowledge for event selection.
Applying prior knowledge over uniform selection of arity
events improves the accuracy up to 3%, but adding prior
knowledge over uniform selection of similar events only im-
proves the accuracy by 0.3%. Notice that still our ITEM ap-
proach has significantly higher accuracy compared to these
baselines as it uses prior knowledge together with iterative
learning.

Last baseline Baseline-3 uses prior knowledge together
with both heuristics. It selects similar and same-arity events
for a sentence. If no event is selected it considers all the pos-
sible events. It then applies the inference subroutine with
a uniform distribution over selected events. Surprisingly,
the results of table 1 show that the accuracy of combining
both heuristics together with prior knowledge is lower than
the accuracy of arity selection with prior knowledge. This
shows that the naive way of incorporating prior knowledge
together with heuristics does not help.

Annotated Labeled data: We also compare our al-
gorithm with the state-of-the-art approach, WGIM (Chen,
Kim, & Mooney 2010). These results show that our iterative
learning method alleviates the need of annotated labeled data
collection.

In the next experiment, we augment WGIM approach
with knowledge about events (WGIM-Inference). We apply
inference where the transition model for every sentence is
derived from WGIM approach. At each step, we select the
event that has highest score according to WGIM and is feasi-
ble in the current state. The current state is updated accord-
ing to the prior selected events in the sequence. Accuracy of
WGIM-Inference is still lower than our ITEM approach. Be-
cause original WGIM does not learn the event scores given
the current state. However, results show that adding prior
knowledge to WGIM improves WGIM’s accuracy.

5 Discussion and Future Work
In this paper we have introduced an approach to map
Robocup-soccer narratives to sequences of events without
any annotated labeled data. In this approach we show that

66

knowledge about event models together with a careful de-
sign of representation, inference, and iterative learning alle-
viates the need of annotated label data. We show that this
iterative learning approach achieves superior accuracy com-
pared to heuristics and state-of-the-art approach that use la-
beled data.

We show that by collecting prior knowledge about events
we do not need to annotate every sentence in the domain. It
is usually very hard to scale labeled data since we need to
generate more labels to be able to understand larger texts.
However, if we collect prior knowledge for a specific con-
text, we can understand large texts in that context. Moreover,
using prior knowledge we can represent semantics (useful,
for example, for question answering). We plan to extend
our approach to understand other narratives and answering
questions about them. Specifically, we like to work with sto-
ries in Remedia corpus or Weblog stories in (M. Manshadi
& Gordon 2008). In this setting, we plan to use VerbNet
(Schuler 2005). VerbNet is a comprehensive verb lexicon
that contains semantic information such as preconditions,
effects, and arguments of about 5000 verbs. We plan to use
this information and a noise event to cover all the remaining
verbs in the domain. In this setting, we also plan to extend
our bag-of-words model with syntactic parsing of the sen-
tences.

One shortcoming of our approach is that we assume the
input narrative is in a sequential form. It is possible that
some events have been missed or the sentences are rep-
resented in partial order. We think of using probabilistic
and partial order planning approaches to infer the event se-
quences.

We also plan to use an alternative approach of multi-class
classification instead of binary classification. We cast the
problem to sequence labeling where each element of the se-
quence corresponds to an individual sentence and the label
to the predicted event. Then the goal is to learn a multi-
nomial probability distribution over different events corre-
sponding to a sentence and the state.

References
Baral, C., and Tuan, L. 2002. Reasoning about actions in
a probabilistic setting. In AAAI.
Bishop, C. 2006. Pattern Recognition and Machine Learn-
ing. Springer, 1st edition.
Branavan, S.; Chen, H.; Zettlemoyer, L.; and Barzilay, R.
2009. Reinforcement learning for mapping instructions to
actions. In ACL-IJCNLP, 82–90.
Bui, H. H. 2003. A general model for online probabilistic
plan recognition. In IJCAI, 1309–1318.
Charniak, E., and Goldman, R. P. 1993. A bayesian model
of plan recognition. Artif. Intell. 64(1):53–79.
Chen, D.; Kim, J.; and Mooney, R. 2010. Training a multi-
lingual sportscaster: Using perceptual context to learn lan-
guage. JAIR 37:397–435.
Deshpande, A.; Milch, B.; Zettlemoyer, L. S.; and Kael-
bling, L. P. 2007. Learning probabilistic relational dynam-
ics for multiple tasks. In UAI, 83–92.

Fikes, R., and Nilsson, N. 1971. Strips: a new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2:189–208.
Grosz, B., and Sidner, C. 1986. Attention, intention and
the structure of discourse. Journal of Computational Lin-
guistics 12.
Hajishirzi, H., and Amir, E. 2008. Sampling first order
logical particles. In UAI.
Hobbs, J. R.; Stickel, M. E.; Appelt, D. E.; and Martin, P.
1993. Interpretation as abduction. Artificial Intelligence
63:69–142.
Johnson-Laird, P. 1983. Mental Models. Cambridge: Cam-
bridge University Press.
Kate, R. J., and Mooney, R. J. 2007. Learning language
semantics from ambiguous supervision. In AAAI, 895–900.
Kautz, H. 1987. A formal theory of plan recognition. Ph.D.
Dissertation, Univ. of Rochester.
Liao, L.; Patterson, D. J.; Fox, D.; and Kautz, H. A. 2007.
Learning and inferring transportation routines. Artif. Intell.
171(5-6):311–331.
M. Manshadi, R. S., and Gordon, A. 2008. Learning a
probabilistic model of event sequences from internet we-
blog stroeis. In FLAIRS.
Majercik, S., and Littman, M. 1998. Maxplan: A new
approach to probabilistic planning. In Proceedings of the
5th Int’l Conf. on AI Planning and Scheduling (AIPS’98).
Rabiner, L. R. 1989. A tutorial on HMM and selected
applications in speech recognition. IEEE 77(2).
Reiter, R. 2001. Logical Foundations for Describing and
Implementing Dynamical Systems.
Riley, P., and Veloso, M. M. 2004. Advice generation
from observed execution: Abstract markov decision pro-
cess learning. In AAAI, 631–637.
Sadilek, A., and Kautz, H. 2010. Recognizing multi-agent
activities from gps data. In AAAI.
Schuler, K. K. 2005. Verbnet: a broad-coverage, compre-
hensive verb lexicon. Ph.D. Dissertation. AAI3179808.
Vogel, A., and Jurafsky, D. 2010. Learning to follow navi-
gational directions. In ACL.
Webber, B. L. 1978. A Formal Approach to Discourse
Anaphora. Ph.D. Dissertation, Harvard. publ. Garland
1979.
Zettlemoyer, L., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical forms. In
ACL-IJCNLP, 976–984.
Zettlemoyer, L. S.; Pasula, H. M.; and Kaelbling, L. P.
2005. Learning planning rules in noisy stochastic worlds.
In AAAI.

67

Cost-Based Learning for Planning

Srinivas Nedunuri and William R. Cook
Dept. of Computer Science, University of Texas at Austin

{nedunuri,wcook}@cs.utexas.edu

Douglas R. Smith
Kestrel Institute, Palo Alto

smith@kestrel.edu

Abstract

Most learning in planners to date has been focused on
speedup learning. Recently the focus has been more on learn-
ing to improve plan quality. We introduce a different dimen-
sion: learning not just from failed plans, but learning from
inefficient plans. We call thiscost-based learning(CAL).
CBL can be used to improve both plan quality and provide
speedup learning. We show how cost-based learning can also
be used to learn plan rewrite rules that can be used to rewrite
an inefficient plan to an efficient one, in the style of Planning
by Rewriting (PbR). We do this by making use of dominance
relations. Additionally, the learned rules are compact anddo
not rely on state information so they are fast to match.

1 Introduction
One way to produce good quality plans is to transform the
output of a fast but lower quality planner using plan rewrit-
ing (YFGG08; PMP+03; AKM05). Plan rewriting was
investigated quite extensively by Ambite et al. (AKM00;
AKM05). They demonstrated impressive improvements in
plan quality across a number of domains, even orders of
magnitude in one (Distributed Query Optimization). Plan
rewriting works by iteratively applying rewrite rules to an
existing plan. One drawback of Ambite et al.’s particular
approach is that some rules do nothing to improve plan qual-
ity, and can even lead to cycling (e.g. rules that do a simple
transposition of two actions), so they must be applied care-
fully. Another more significant drawback is the need for
a user to supply the rewrite rules, which is an error prone
and time consuming task. In this paper we show how such
rewrite rules can be automatically learned. Additionally,the
learned rules are guaranteed to improve plan quality. Al-
though Ambite et al. (AKM05) and others (eg. (NM10))
have looked at learning rewrite rules or plan improvement
rules, the learned rules are often dependent on context or
state in order to be applied, which makes them more expen-
sive to apply and can lead to the utility problem that plagued
early EBL approaches (Min90). Ambite et al.’s work is dis-
cussed further in the section on Related Work. The rewrite
rules we learn do not depend on state or context so they
are fast to match and apply. In order to do this we intro-
duce a novel form of learning calledcost-based learning
(CBL) applied to search. CBL works by learning not just
from planning failures (or successes) as conventional learn-

ing does but by learning from inefficient plans. We do this
by applyingdominance relationsto the planning problem.
A dominance relation is typically characterized by a pred-
icate over pairs of partial plans. If a pair of partial plans
p andp′ satisfy the predicate thenp′ is guaranteed to lead
to a worse solution thanp, and can therefore be discarded
from the search. We show how to learn suchdominance
pairs, and then show that under some fairly relaxed con-
ditions it is possible to remove the common prefix of both
partial plans, leaving a pair(q, q′) which can immediately
be turned into a plan-improving rewrite ruleq′ ⇒ q, useable
in anyplanning problem in the same domain. Using this ap-
proach we are able to automatically learn most of the (hand
written) rewrite rules of Ambite et al, as well as some addi-
tional ones that were missed by them. The dominance pairs
can also be used as they are learned to speed up the current
search. Unlike similar approaches using EBL (Min90), our
stored knowledge does not depend on current state, compli-
cating the matching. Our patterns are simple sequences of
operators that can be efficiently matched.

2 Background
2.1 Problem Specification
The starting point is a statement of the problem to be solved.
Formally, aproblem specificationis a 4-tuple〈D, R, o, c〉,
whereD is the domain of input values,R is the range of
result values,o : D × R → Boolean is anoutputor post
conditioncharacterizing the relationship between valid in-
puts and valid outputs, andc : D × R → Nat is a cost
functionthat is being optimized. The operatorso andc take
the input as an argument because they need information sup-
plied with the input. The intent is that a functionf : D → R
that solves the problem will take an inputx : D (a problem
instance) and return asolutionz : R that satisfieso (making
it a feasiblesolution) and minimizesc.
Example 1. Problem specification for sorting

D 7→ [Nat]

R 7→ [Nat]

o 7→ λ(x : D, z : R) . asBag(x) = asBag(z)

∧∀i < ‖z‖ − 1. zi ≤ zi+1

c 7→ λ(x : D, z : R) . 1

In Eg. 1 the domainD and the rangeR are instantiated to
be the type of lists of natural numbers. The symbol7→ is

68

D 7→ {ops : OpTbl, type : TypeTbl, init : State, goal : State}
TypeTbl = Id 7−→ Type

OpTbl = OpId 7−→ OpInfo

OpInfo = {params : [Id], pre : State, post : State}
State = [Id 7−→StateV al]

StateV al = Boolean | Nat | Id

R 7→ [Action]

Action = {opId : OpId, args : [Id]}
o 7→ λ(x, z) . σ(x.init, z) ⊇ x.goal

σ(s, p++[a]) = let acc = σ(s, p)

aPre = (x.ops(a.opId).pre)θa

in if acc ⊇ aPre then τ(acc, a) else∅
σ(s, []) = s

τ(s, a) = let aPost = (x.ops(a.opId).post)θa

in s ≪ aPost

θa = x.ops(a.opId).params 7−→ a.args

c 7→ λ(x, z) . ‖z‖

Figure 2.1: Specification for Planning

to be read as “translates to” and the “[,]” as “list of”. The
output conditiono is a predicate, written as a lambda expres-
sion, that requires that the two argumentsx of typeD andz
of typeR when viewed as bags contain the same elements,
and furthermore that every element ofz except the last be
smaller than its successor. This is not an optimization prob-
lem so the cost functionc is constant. Any algorithm for
sorting that meets this specification (such as quicksort, in-
sertion sort, etc.) is considered correct.

Specification of (Classical) Planning Fig. 2.1 gives a
problem specification for planning problems1. The reason
for this particular specification format is that the develop-
ment environment we use, called Specware (S), can check
the specification for errors and also provide a customizable
search program to implement the specification, as described
in Section 2.2. The explanation of it (including notation) is
as follows: The domain (type of the input to a planner) is
collection of operators, a types table, an initial state, and a
goal state, each of which has a type, analogous to a type in
language like Java. For this reason, it is written as a record
type{ops : Ops, type : TypeT bl, init : State, goal :
State}, wheref : t means fieldf has typet. TheTypeTbl
is another structured type, in this case afinite map(written
Id 7−→ Type) which returns the PDDL type of an id (e.g.
for Blocksworld,type(Block-1)would returnBlock). Simi-
larly, OpTbl is another finite map, in this case returning the
information (OpInfo) pertaining to a given operator id (such
as Stk or UnStk). OpInfo is a record type that gives the
parameter list and pre and post conditions for each operator.
Sinceparamsis a list of Id, its type is denoted[Id] . We use
the state variable representation (GNT04) in which state is
a list of state components (one for each property of interest),
each of which is a finite map. Each entry in the map cor-
responds to a state variable (e.g. ifon is a map thenon(A),
on(B), etc. are state variables). The output type (R) of the

1Translating from a standard format such as PDDL to this form
is straightforward.

Op.
Name

Params Precond Postcond

stk a, t, c
{clr?(a),
clr?(c)}
{on(a) = t}

{¬clr?(c)}
{on(a) = c}

ust a, b, t
{clr?(a),
¬clr?(b)}
{on(a) = b}

{clr?(b)}
{on(a) = t}

tr a, b, c
{clr?(a),
clr?(c)}
{on(a) = b}

{¬clr?(c)}
{clr(b)}
{on(a) = c}

Table 1: Specification of the operators in Blocks World

planner is a sequence of actions. Each action is specified
by an operator id and a list of arguments (meaning the cor-
responding operator is instantiated with those arguments).
The output condition,o, is a boolean function (aλ term) re-
quiring that the final state of the system (determined by the
state functionσ) is a superset of the goal state. The recursive
call in σ determines the state just before the final action (if
there is one) in a sequence of actions and checks that this
state contains the precondition of the final action (ie. the fi-
nal action is enabled) and if so, applies the state transition
function τ to determine the next state. The≪ operator in
τ updates the states with the postcondition of the action,
leaving alone any terms that are not changed by the action
postcondition (this ensures the frame axioms are satisfied).
Evaluation of bothσ andτ uses the substitutionθ binding
operation parameters to arguments. Finally, the cost of a
plan is simply the length of the plan (but could in general be
any compositional cost function). At this point, we have a
specification of Planningin general. A particular planning
domain is then aninstanceof this specification, as the next
example demonstrates.

Example 2. Blocks World (BW)
To create a planner to solve Blocks World, theops field

of the inputx contains the operator map shown in Table
1, containing three operators:stk, which stacks a block
from the table onto another block,ust, which unstacks a
block onto the table, andtr, which transfers a block from
one supporting block to another. State is represented with
the two finite maps,clr? : Id 7−→ Boolean and on :
Id 7−→ Id. An empty map means that particular state
component is unspecified. Thetypestable gives the types
of all the domain objects as well as the parameters to the
operations. For BW,a, b, c have the typeBlk, t has the
typeTbl Finally, we specify a particular BW instance. For
example, an initial state of three blocksA, B, C (all with
type Blk) all on the tableT (of type Tbl) is represented
by x.init = {{clr?(A), clr?(B), clr?(C)}, {on(A) =
T, on(B) = T, on(C) = T }} and a goal ofA onB onC is
written x.goal = {on(A) = B, on(B) = C, on(C) = T }.
Notice that the inputx combines both the BW domain de-
scription as well as a particular instance of the BW problem.
Another way of viewing it is as a two stage process: instan-
tiate theops field in the input to get a planning domain, and
then instantiate theinit andgoal to get a planning instance.

69

Algorithm 1 Program Schema for Global Search
def start(x:D):[R]×DomR = search(x,[],initSpace(x))

def search(x:D, best so far:[R], y:bR):[R]×DomR =

if not (filter(x,y) then (best so far,[])

else let dom pair=testForDominance(x,best so far,y) in

if dom pair /= null pair

then (best so far,[dom pair])

else let

soln = extract(y)

best now = opt(best so far ++ soln)

(childrens best,dom reln) =

searchCh x best now y (subspaces(x,y))

new best = opt(best now ++ childrens best)

in (new best,dom reln)

def subspaces(x:D,y:bR) = [y′: split(x,y,y’)]

def searchCh(x:D,best so far:[R],chldrn:[bR]):[R]×DomR =

//foldl is a higher order function that ‘‘updates’’

//the initial pair (best so far,[]) with result of

//searching each y∈ys using (seeIfTheresBettrSoln x)

foldl (seeIfTheresBettrSoln x)(best so far,[]) chldrn

def seeIfTheresBettrSoln:D -> (accum:(R×DomR)):R×DomR =

let (best so far,dom reln)= accum

(p’s best,p’s dom reln)= search(x,best so far,p)

in (opt(best so far++p’s best), dom reln++p’s dom reln)

One valid output or planz would be the list of actions
[stk(B, T, C), stk(A, T, B)]. It is straightforward to verify
that this constitutes a valid plan by confirming it satisfies
the definition ofo after expanding the function definitions.
The cost of this plan is2. Another valid plan, with a cost of
3, is [stk(B, T, A),tr(B, A, C),stk(A, T, B)]. The search
program for constructing these plans is described next.

2.2 Global Search
Global Search(GS) (Smi88) (also calledAbstract Search
or Refinement Search(GNT04)) provides one approach to
computing a solution to a problem specification by recur-
sive decomposition of asearch space, using the operations
of branching, pruning, and solution extraction. Since spaces
can be quite large, even infinite, they are not represented ex-
tensionally but intensionally, through a descriptor of some
sort. However to avoid being pedantic, the term space is
used instead of space descriptor.

A schema(akin to a template function in Java) for GS
is shown in Alg. 1, written in the executable subset of
MetaSlang, a specification language in theSpecwarede-
velopment environment (S). The executable sublanguage
is a pure higher order functional language in the style of
Haskell2. That is, all functions are defined in terms of other
functions, including recursive calls to the function beingde-
fined. There are no side-effecting assignment statements as
there are in a language like Java. A backend code gener-
ator generates code in one of a number of different target
languages, including Lisp, Java, and Haskell. However, no

2Unlike Haskell, MetaSlang is strict.

familiarity with MetaSlang is assumed and English language
descriptions of all code are provided, which we now do.

The declaration ofsearchsays that it takes an argumentx
of typeD, the best solution so far (represented as a list), and
the current space to search,y, of typeR̂ and returns a pair,
consisting of a list of solutions, of type[R] , and a dominance
relation of typeDomR(explained later). Search first passes
the space through afilter . A filter is a predicate which is
some relaxed form of the output condition,o, that is easy
to evaluate . If the space passes the filter, then if thetest-
ForDominancepasses (explained in Section 3.2), the search
attempts toextract a solution, and determines whether the
best solution so far or the extracted solution is the better one.
The better one along with the list of subspaces of the current
space are passed on tosearchChwhich recursively searches
each child, returning the best solution it finds. Finally, that
is compared with the better one, and the best returned. The
search is initiated by the functionstart which because it has
no solutions yet simply passes an empty list and a descrip-
tor returned by theinitSpacefunction, corresponding to the
space of all possible solutions. Because solutions are ex-
tracted from spaces, a space is also called apartial solution
or sometimes anodein a search tree. To use the schema, the
typeR̂ and the operatorsinitSpace, extract, filter, andsplit
need to be instantiated.

Type and Operator instantiation for Planning Partial
plans have just the same structure as complete plans, namely
a list of actions, so the typêR is the same asR. For this
reason, when there is no confusion, references to plans also
apply to partial plans. TheinitSpaceoperator just returns an
empty list. Thesplit operator appends some action (chosen
from all the possible actions, that is all possible instantia-
tions of operators by assignment of type-compatible domain
objects to parameters) to the partial plan.Filter ensures that
the appended action is enabled by the preceding partial plan.
Extract can extract a complete plan at any time (it may of
course be infeasible). Specware automatically composes the
program schema with the instantiations to produce an exe-
cutable program.

2.3 Dominance Relations
If a pair of spaces is in a dominance relation, the first will al-
ways lead to at least as “good” an optimal solution as the sec-
ond, where “goodness” is measured by some cost function
on solutions. The first one is said todominatethe second,
which can be eliminated from the search. Dominance rela-
tions have a long history in search (Iba77). Here though we
follow the approach of Nedunuri and Cook (NC09) which
is briefly summarized below. For readability, ternary rela-
tions that take the input (x) as one of their arguments are
shown in subscripted infix form and implicitly quantified
over (eg. ∀x. ⊲ (x, a, b) is written a ⊲x b). ⊕ denotes
a left-associative domain specific operator used toextend
a partial solution. That isy ⊕ e, obtained by extending
the partial solutiony with e (called anextension), denotes
a new partial solution that is more defined thany (ie. if
a solution can be derived fromy ⊕ e then it can be de-
rived fromy). Its definition depends on̂R and the type of

70

e (e.g. if R̂ is a list type ande is a list, then⊕ might be
list concatenation,++). A cost functionc is compositional
if c(x, u ⊕ v) = c(x, u) + c(x, v).

Definition 1. Semi-Congruenceis a relation x⊆ D × R̂2

such that

∀e, y, y′ . y x y′ ⇒ o(x, y′ ⊕ e) ⇒ o(x, y ⊕ e)
That is, semi-congruence ensures that any feasible exten-

sion ofy′ is also a feasible extension ofy.

Definition 2. SC-Dominanceis a relation⊲̂x ⊆ D × R̂2

such that

∀e, y, y′ . y⊲̂xy′ ⇒
o(x, y ⊕ e) ∧ o(x, y′ ⊕ e) ⇒ c(x, y ⊕ e) < c(x, y′ ⊕ e)

That is, sc-dominance ensures that one feasible comple-
tion of a partial solution is less expensive3 than the same
feasible completion of another partial solution. The follow-
ing theorem and proposition show how the two concepts are
combined.
Theorem 1. If x is a semi-congruence relation, and̂⊲x

is a sc-dominance relation, andc∗ : R̂ → Nat denotes the
least cost solution in a space, then

∀y, y′ . y⊲̂xy′ ∧ y x y′ ⇒ c∗(y) < c∗(y′)
Wheny⊲̂xy′ ∧ y x y′ we sayy dominatesy′, written

y ⊲x y′. The collection of pairs(y, y′) such thaty domi-
natesy′ forms theextensionof the dominance relation.

The following proposition shows how to get a straightfor-
ward sc-dominance condition. Note that we have lifted the
cost function to partial solutions.
Proposition 1. If c is compositional thenc(x, y) < c(x, y′)
is a sc-dominance relation

For Planning, the⊕ operator is simply list concatenation,
denoted++.

3 Learning Rewrite Rules
We now describe the contribution of this paper which is two-
fold. First we define a domain-independent dominance re-
lation which is applicable to all planning problems. Given
such a definition, and the instantiated program schema of
Alg. 1, any two nodesp, p′ in the search tree can be tested
at run-time to see if one dominates the other. In general,
performing this test on all pairs of nodes in a search tree
is computationally infeasible, but we only need small exam-
ples to discover useful dominance pairs, so its cost is accept-
able. The second part of our contribution is to show how to
generalize such pairs and then extract a pair of context-free
plan segmentsq, q′. The pair(q, q′) forms a rewrite rule
which can now be applied to any plan in the domain to get
an improved plan, for example one generated by a custom
planner. Furthermore, the rewrite rules can be applied to
the dominance pairs themselves to simplify them relative to
each other. In this way, the large number of learned domi-
nance pairs often reduces to a handful of small useful rules.

3More generally, it is sufficient ifc(x, bz⊕e) ≤ c(x, bz′⊕e) but
we are looking for a guaranteed improvement, so we use the strict
inequality

3.1 A Dominance Relation for Planning
First we derive a semi-congruence condition, which (Def. 1)
ensures that if one partial planp′ can be feasibly extended
with an extension, then so can another planp with the same
extension. That is, we seek a condition betweenp andp′

that ensures∀e. o(x, p′ ⊕ e) ⇒ o(x, p⊕ e). We find this by
backwards calculation from the conclusion. Before doing
so, we need the following proposition which provides a way
of calculating the stateσ after extending a partial plan with
a given extension

Proposition 2. ∀s, p, e . σ(s, p++e) = σ(σ(s, p), e)
The calculation of the required condition is:

o(x, p⊕ e)
= {defn ofo}

σ(x.init, p++e) ⊇ x.goal
= {Prop. 2}

σ(σ(x.init, p), e) ⊇ x.goal
⇐ {o(p′) ie. σ(σ(x.init, p′), e) ⊇ x.goal}

σ(x.init, p) ⊇ σ(x.init, p′)

That is,p is semi-congruent withp′ if the state after exe-
cuting partial planp from an initial state is a superstate of the
state of partial planp′ executed from the same initial state.
Combining this with Thm 1 we conclude thatp dominates
p′ if σ(x.init, p) ⊇ σ(x.init, p′) ∧ c(x, p) ≤ c(x, p′).

3.2 Learning Ground Dominance Pairs
To learn a dominance pair, suppose the search has previ-
ously explored one path, finding a solutionz. Now suppose
the search reaches a current partial solutionp′. If some an-
cestorp of z dominatesp′ thenp′ need not be searched any
further and the pair (p, p′) is added to the extension of the
dominance relation. This idea is implemented in thetest-
ForDominanceprocedure in Alg. 1 which returns the pair
(p, p′) if p dominatesp′ and the null pair otherwise. The
termdomreln contains the current set of such pairs, which
is returned to the top level when the search completes.

Example 3. Blocks World
Consider the BW input in Ex.3. Suppose

the search has already discovered the solution
z = [stk(B, T, C),stk(A, T, D), stk(A, D, B)] and is
currently at the partial solutiony′′1 = [stk(B, T, A)]. No
ancestor ofz is semi-congruent with this partial solu-
tion. The same holds fory′′2 . The search continues to
y′′3 = [stk(B, T, A), ust(B, A, T), stk(B, T, C)] with
which the ancestory1 of z is (the highest ancestor which is)
semi-congruent.y1 is also cheaper thany′′3 and so no plan
that follows fromy′′3 will be better thanz. Therefore the
pair (y1, y

′′
3) can be added to the dominance relation.

3.3 Generalization to First Order Dominance
Pairs

The resulting set of dominance pairs could be considered
the ground extension of a domain-specific dominance re-
lation. The first step is to parameterize it to a first order
(but still extensional) relation. This can be done using ei-
ther the EGGS generalization mechanism of Mooney and

71

Y2

s(A,T,D)

y1

y0

s(B,T,C)

z'

s(A,T,B)

z

s(A,D,B)

y1"

s(B,T,A)

y2"

u(B,A,T)

y3"

s(B,T,C)

s(A,T,B) ...
s(M.T,N)

Figure 3.1: Dominance example for Blocks World (only the
relevant portion of the search tree is shown)

Bennett (MB86) or the mechanism of Kambhampati et al
(KKQ96). Kambhampati’s approach is the more straight-
forward one: it allows for the replacement of any constants
by variables provided the domain theory does not refer to
any object constants by name (for example if the specifi-
cation of thestk operator referred to the tableT in either
the pre or post condition, it would not be a name insensi-
tive theory4. For example, generalization of the dominance
pair in Eg. 3 is∀a, b, c : Blk, t : Tbl. [stk(b, t, c)]) ⊲x

[stk(b, t, a), ust(b, a, t), stk(b, t, c)]. This dominance pair
can be used elsewhere in the search to prune off unpromising
spaces by skipping branches that match the second element
of the dominance pair.

3.4 Generalization to Rewrite Rules
The second step is to try to generalize a dominance pair
in the relation to one applicable to any blocks world prob-
lem instance. This requires identifying those pairs of plan
segments that do not depend on the initial state. For ex-
ample,[ust(b, c, t), stk(b, t, c)] is a useless series of steps
no matter what the common prefix is and can always
be replaced with the empty sequence[]. That is [] ⊲x

[ust(b, c, t), stk(b, t, c)].
Under what circumstances can the common prefix be

stripped off a dominance pair? Intuitively, it is when the
dominated branch relies on what is established by the prefix
(to achieve its current state) at least as much as the domi-
nating branch does. This can be determined byregressinga
state (in the manner described in (KKQ96)) back up the tree.
Regressing a state over a series of branches simply amounts
to computing the weakest precondition of the given series of
branches. It determines what state must hold before the se-
ries of branches in order to ensure the given state at the end.
Its formal definition is as follows:

Definition 3. The regressionof a states over an extension
e denotedσ−1(s, e), is defined as:

σ−1(s, e⊕ b) = σ−1(σ−1
p (s, b), e)

σ−1(s, ε) = s

4However, it is easy to turn it into one: just replace the constant
T in the pre/post conditions with a variablet, define a typeTbl (or
equivalently a predicate such astbl?) and assert thatt’s type isTbl.
The problem input would specify thatT is a table by asserting its
type isTbl. This is what we have done.

whereb is the branch to the partial solution from its parent,
ie.split(x, e, e⊕ b). σ−1

p (s, b) is a primitive regression step
whose definition in the case of planning isσ−1

p (s, a) = (s−
a.post) ∪ a.pre.

Definition 4. Thesmallest prestateof a non-empty plane⊕b
denotedσ−1(e⊕ b) is defined asσ−1(b.pre, e) .

The smallest prestate (sp) of a plan gives the smallest state
that must hold at the start of the plan to ensure the final ac-
tion in the plan is successfully executed. Finally, letW (p)
be set of state variables whose values are modified by plan
p (that is, their values at the end of executingp are different
from the their values at the start ofp). The following theo-
rem defines when it is safe to strip off the common prefix:

Theorem 2. Given a compositional cost function, for all
x, q, q′ :

(∃p. p⊕q ⊲x p⊕q′)∧σ−1(q) ⊆ σ−1(q′)∧W (q) = W (q′)

⇒ ∀p′ : R̂. p′ ⊕ q ⊲x p′ ⊕ q′

Intuitively, the theorem says that if some partial planp⊕q
dominates another partial planp ⊕ q′ and thesp of q is no
bigger than that ofq′, and bothq andq′ modify the same
state variables, then foranyp′, p⊕q dominatesp⊕q. Finally,
the following theorem states that it is profitable to carry out
such a rewrite on any feasible planπ

Theorem 3. ∀q, q′. o(x, π) ∧ (∀p′. p′ ⊕ q ⊲x p′ ⊕ q′) ⇒
c(x, π[q′ := q]) < c(x, π)

Example 4. Blocks World. Returning to Fig. 3.1, suppose
the (generalized) solutionz′ = [stk(b, t, c), stk(a, t, b)]
is discovered first and then the (generalized) solution
z = [stk(b, t, c), stk(a, t, d), tr(a, d, b)]. The exten-
sion of z′ from the lowest common ancestor ofz′ and
z, namely y1, is [stk(a, t, b)]. The smallest prestate
σ−1([stk(a, t, b)]) is σ−1({clr?(a), clr?(b), on(a) =
t}, []) = {clr?(a), clr?(b), on(a) = t}. For z, its ex-
tension from the ancestory1 is [stk(a, t, d), tr(a, d, b)]
and its smallest prestate calculated in a similar manner
is giving {clr?(a), clr?(b), clr?(d), on(a) = t}, which
is a superset of{clr?(a), clr?(b), on(a) = t}. Finally,
W ([stk(a, t, b)]) = W ([stk(a, t, d), tr(a, d, b)]) =
{on(a), clr?(b)}. Therefore the sequence
[stk(a, t, d), stk(a, d, b)] can be replaced with[stk(a, t, b)]
in anyBW plan.

3.5 Efficiency Considerations
For efficiency reasons, we do not attempt to match a partial
solution with every previously discovered partial solution,
but only with the current best solution. Also, the regression
is done incrementally as the search tree is unwound, and is
cached for the currently best known solution.

4 Experiments
We ran our learning algorithm on a number of domains taken
from (AKM05) as well as the one from the 3rd International
Planning Competition (IPC). Some sample results are de-
scribed below.

72

4.1 Blocks World
Given a simple input of 3 blocks, the learning system learnt
both the (manually written) rules in (AKM05) shown below

[stk(a, t, c), ust(a, c, t)] ⇒ []
[ust(a, b, t), stk(a, t, c)] ⇒ [stk(a, b, c)]

Using these rules, Ambite et al. were able to achieve
an average reduction in plan length over a naive plan of
about 20%. The naive plan was generated by a custom
planner that first unstacked all the blocks to the table, and
then stacked them. This avoids having to ever having
to move a block directly from one block to another. In
addition, our learning system learned an additional rule,
[stk(a, t, b), tr(a, b, c)] ⇒ [stk(a, t, c)] but the left hand

side does not occur in the naive plan so it is not used.

4.2 Logistics
The Logistics problem consists of delivering each of a num-
ber of packages from its current location to the desired loca-
tion using a truck. The operators in the domain arel(oad),
u(nload),andd(rive). Given a simple input of 2 packages
and 2 locations, the planner learns theLoop rule of Ambite
([d(t, a, b), d(t, b, a)] ⇒ []) as well as a rule not mentioned
by them: ([u(p, t, a), l(p, t, a)] ⇒ []). Given an input with 3
packages and 3 locations, the planner learns theirTriangle
Inequalityrule: ([d(t, a, b), d(t, b, c)] ⇒ [d(t, a, c)]). They
also have another rule (Load Earlier) which their rule
learning algorithm is unable to learn.Load Earliersuggests
loading a package at the earliest opportunity to save having
to potentially make a specific trip later to pick up that
package. The extra trip can occur any number of steps later.
Because we learn specific sequences, our learning system is
unable to learn the most general form of this rule, but learns
instead the specific cases where the extra trip occurs 1,2,3...
steps later. For example, the 1 step form of the rule it learns
is [d(t, a, b), l(p, t, b), d(t, b, a), l(q, t, a), d(t, a, b)] ⇒
[l(q, t, a), d(t, a, b), l(p, t, b)]. Using the Loop, Triangle
Inequality, andLoad Earlier/Unload Laterrules, Ambite et
al. were able to achieve an average reduction in plan length
from a naive plan of over 40%.

4.3 ZenoTravel (3rd IPC)
The domain definition translated from the Strips PDDL
description is shown in Table 2. State is represented with
three finite maps,at, giving the location of a person or
airplane,fl, giving the current fuel level of the airplane,
and dec, which is a table of consecutively decreasing
fuel levels (dec ensures that there is enough fuel for the
flight) Given a simple input with 2 people, and 2 cities,
and 1 plane, the learning system learns several hundred
dominance pairs (rules). After using smaller rules to
simplify larger rules, they reduce down to a handful of
rules, of which some of the interesting left-hand sides are:
(all rewrite to the empty list[]) [em(p, a, c), dem(p, a, c)],
[ref (a, f, l, m),fly(f, t, m, l),fly(t, f, l, k), ref (a, f, k, l)],
and[ref (a, f, k, l),fly(f, t, l, k), ref (a, t , k , l),fly(t, f, l, k)].
Given 3 cities, it also learns
[ref (a, c, k, l),fly(f, d, l, k), ref (a, d , k , l),fly(d, e, l, k)] ⇒

Op.Name Params Precond. Postcond.

em p, a, c

{at(p) = c,

at(a) = c}
{}
{}

{at(p) = a}
{}
{}

dem p, a, c

{at(p) = a,

at(a) = c}
{}
{}

{at(p) = c}
{}
{}

fly a, f, t, l, k

{at(a) = f}
{fl(a) = l}
{dec(l) = k}

{at(a) = t}
{fl(a) = k}
{}

zoom a, f, t, l, k, j

{at(a) = f}
{fl(a) = l}
{dec(l) = k,

dec(k) = j}

{at(a) = t}
{fl(a) = j}
{}

ref a, f, k, l

{at(a) = f}
{fl(a) = k}
{dec(l) = k}

{}
{fl(a) = l}
{}

Table 2: Specification of the operators for Zeno Travel

Input

Size

(n)

Naive

Plan

Length

Rewritten

Plan

Length

FF Plan

Length

FF Time

Taken

10 76 54 36 0s

20 179 127 80 0s

40 290 218 138 1s

80 588 448 308 41s

160 1220 920 - >30 m

Table 3: Comparison of Plan Length and Times with FF

[ref (a, c, k, l),fly(c, e, l, k)]. Applying these rules to naive
plans resulted in an average plan length reduction of around
25%. The naive planner visits each city in turn, picking
up all the passengers, and taking each one in turn to their
destination.

Table 3 compares the output of our naive planner along
with with the rewritten plan obtained by applying the learned
rewrite rules to the naive plan with the results of running
FF (HN01), a state of the art planner, on the same inputs.
For simplicity we considern passengers inn cities and1
plane. In all cases, the total time taken by our naive plan-
ner plus the rewrite engine was under a second.In contrast,
the time taken by FF appears to grow exponentially. Al-
though the resulting plan length was about 50% longer than
what was produced by FF5, our system scales much better as
Tbl 3 shows. We also tried the more recent Fast Downward
planner (Hel06) with a variety of heuristics (landmark-cut,
merge-and-shrink, and blind) but the planning times were
longer than they were for FF.

5 Summary and Further Work
Currently a custom hand-written planner is used to produce
an initial plan. More work is needed to integrate learned in-

5We are currently working on synthesizing domain-specific
planners which will reduce this difference considerably

73

formation into state-of-the-art domain independent heuristic
planners such as FF (HN01) and FD (Hel06). As an alterna-
tive, we are working onsynthesizingdomain specific satis-
ficing planners, continuing the early work of Srivastava and
Khambampati (SK98). Such planners are synthesized by the
use ofdomain-specificdominance relations, with the intent
of reducing the branching in the search space, sometimes at
the cost of extra plan length. The rewrite rules are then ap-
plied the same way as they are now to the output of such
planners to produce a near-optimal plan.

We also do not currently handle constraints or temporal
planning. We expect to address both limitations in future
work.

6 Related Work
Dominance relations appear not to have been used much in
planning. A rare exception is Mills-tettey et al (MtSD06)
who incorporate a form of dominance into a regression path
planner with good results. Yu and Wa (YW88) study how
to inductively learn intentional definitions of dominance re-
lations. They demonstrate their approach on a variety of
knapsack problems and show good results. However, their
learned rules are not logically sound.

Ambite et. al (AKM05) have investigated learning plan
rewrite rules in great detail. They do this by comparing an
initial inefficient plan with a plan generated by some other
approach (e.g. local search). By doing a graph comparison
they extract the rewrite rules. We will refer to their approach
as Learning by Graph Matching (LGM). Our learning ap-
proach has the following advantages over LGM:

• LGM requires 2 complete plans to compare. Moreover,
one of the plans has to be an optimal plan. We do not
require complete or optimal plans (although in the inter-
est of efficiency we often delay dominance testing until a
complete plan has been found).

• LGM is a separate phase from planning. In our case,
the learning mechanism could potentially be incorporated
into the planner to speed up its current search.

• LGM relies on an approximation to testing for subgraph
isomorphism. As such it misses some rewrites (such as
the “Load Earlier” rule mentioned previously) that we
are able to find (although our learned rule suffers from
a different shortcoming, described earlier). The learned
rules in LGM are also context-dependent, complicating
the subsequent rewrite phase.

• LGM learns rules which do not by themselves improve
plan quality (for example, simple interchanges of actions).
Our learned rules are guaranteed to improve plan quality
(for the given cost functionc).

Our rewriting engine is also much simpler than theirs. We
only need to match context-free sequences of actions, not
context-dependent subgraphs. On the other other hand their
use of partial order planning allows them to match subplans
in which an action can precede another by an arbitrary num-
ber of actions. We cannot do that.

Using an earlier version of the Specware framework
(KIDS), Srivastava and Khambampati (SK98) were able to

successfully synthesize efficient domain-specific planners
for several domains. However, they limited their attentionto
satisficing planners and did not attempt learning or consider
dominance relations. We are able to automatically learn
some of their pruning rules, eg. the “Limit Useless Moves”
rule in BlocksWorld that avoids two consecutive moves of
a block, and their rule in Logisitics that says planes should
not make consecutive flights without loading or unloading a
package.

EBL also generalizes explanations of failure, but early at-
tempts ran into the Utility problem (Min90) on account of
the large amount of learned information as well as the costs
associated with matching. Although our current rewrite en-
gine is extremely naive, it ought to be possible to make
it much more efficient by a compact representation of the
patterns coupled with efficient pattern matching algorithms
such as Aho-Corasick or Rabin-Karp (CLRS01) along the
lines of what is done in spell-checkers for large documents.

References
J.L. Ambite, C.A. Knoblock, and S. Minton. Learning plan
rewriting rules. InArtificial Intelligence Planning Systems
(AIPS), 2000.
J.L. Ambite, C.A. Knoblock, and S. Minton. Plan optimiza-
tion by plan rewriting. InIntelligent Techniques for Plan-
ning. 2005.
T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduc-
tion to Algorithms. MIT Press, 2nd edition, 2001.
M. Ghallab, D. Nau, and P. Traverso.Automated Planning:
Theory and Practice. Morgan Kaufmann, 2004.
M. Helmert. The fast downward planning system.J. of AI
Research, 26:191–246, 2006.
J. Hoffmann and B. Nebel. The ff planning system: Fast
plan generation through heuristic search.J. of AI Research,
14, 2001.
T. Ibaraki. The power of dominance relations in branch-and-
bound algorithms.J. ACM, 24(2):264–279, 1977.
S. Kambhampati, S. Katukam, and Y. Qu. Failure driven
dynamic search control for partial order planners: An expla-
nation based approach.Artificial Intelligence, 88:253–315,
1996.
R. Mooney and S.W. Bennett. A domain independent
explanation-based generalizer. InAAAI-86, 1986.
S. Minton. Quantitative results concerning the utility of
explanation-based learning.Artif. Intell., 42, March 1990.
G. A. Mills-tettey, A. Stentz, and M. B. Dias. Dd* lite: Effi-
cient incremental search with state dominance. 2006.
S. Nedunuri and W.R. Cook. Synthesis of fast programs for
maximum segment sum problems. InIntl. Conf. on Gener-
ative Programming and Component Engineering (GPCE),
Oct. 2009.
H. Nakhost and M. Müller. Action elimination and plan
neighborhood graph search: Two algorithms for plan im-
provement. InICAPS, pages 121–128, 2010.
J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and
S. Thrun. Towards robotic assistants in nursing homes:

74

Challenges and results.Robotics and Autonomous Systems,
42, 2003.
Specware. http://www.specware.org.
B. Srivastava and S. Kambhampati. Synthesizing cus-
tomized planners from specifications.J. of AI Research,
8:61–75, 1998.
D. R. Smith. Structure and design of global search algo-
rithms. Tech. Rep. Kes.U.87.12, Kestrel Institute, 1988.
S. Yoon, A. Fern, R. Givan, and C. Guestrin. Learning con-
trol knowledge for forward search planning.J. of Mach.
Learn. Research, 9, 2008.
C-F. Yu and B. W. Wah. Learning dominance relations
in combined search problems.IEEE Trans. Softw. Eng.,
14:1155–1175, August 1988.

7 Appendix: Proofs of Theorems
Proposition 2. ∀s, p, e . σ(s, p++e) = σ(σ(s, p), e)

Proof. By induction. (In all cases where the definition of
σ is expanded, we assume the non-empty branch, ie. the
subsequent action is enabled. The empty branch is easy to
demonstrate)

Base Case:e = [a]

σ(s, p++[a])
= {unfold defn ofσ ande}

τ(σ(s, p), a)
= {let p = fp++[lp], p = [] case is trivial}

τ(τ(σ(s, fp), lp), a)
= {intro σ by folding base case ofσ}

τ(σ(τ(σ(s, fp), lp), []), a)
= {fold inductive case in defn ofσ}

(σ(τ(σ(s, fp), lp), [a])
= {replaceτ by foldingσ}

σ(σ(s, fp++[lp]), [a])
= {fold p = fp++[lp], e = [a]}

σ(σ(s, p), e)

Inductive Case: Assume result holds fore, considere++[a].

σ(s, p++(e++[a]))
= {assoc. of++, defn ofσ}

τ(σ(s, p++e), a)
= {IH}

τ(σ(σ(s, p), e), a)
= {fold defn ofσ}

σ(σ(s, p), e++[a])

Theorem 2. Given a compositional cost function, for all
x, q, q′ :

(∃p. p⊕q ⊲x p⊕q′)∧σ−1(q) ⊆ σ−1(q′)∧W (q) = W (q′)

⇒ ∀p′ : R̂. p′ ⊕ q ⊲x p′ ⊕ q′

Proof. Let s and s′ denote σ(x.init, p′ ⊕ q) and
σ(x.init, p′ ⊕ q′) resp. To demonstrate dominance we need
to show thats ⊇ s′ ∧ c(x, p′ ⊕ q) ≤ c(x, p′ ⊕ q′). Be-
cause the cost function is compositional, the SC-dominance

condition follows by Prop. 1 so we focus on demonstrating
semi-congruence,s ⊇ s′. Now given an assignmentv = a
in s′, there are two cases to consider: eitherv /∈ W (q′) or
v ∈ W (q′).

Casev /∈ W (q′): Since it was not modified byq′, the
state variablev had the valuea at the start ofq′. (This
follows from the definition ofσ). By Proposition 2s =
σ(σ(x.init, p′), q) ands′ = σ(σ(x.init, p′), q′). Therefore
any state assignment is present at the start ofq iff it is also
present at the start ofq′. Assumeσ(x.init, p) ⊇ σ−1(q′),
otherwiseq′ will not lead to a feasible plan. Now by the as-
sumptionσ−1(q) ⊆ σ−1(q′), and Lemma 1, any assignment
at the start ofq is present at the end ofq unless overwritten .
From the assumptionW (q) = W (q′), v is also not inW (q),
ie. it is not modified byq. Thereforev = a must also be
present inσ(x.init, p′ ⊕ q).

Casev ∈ W (q′): If, on the other hand,v ∈ W (q′) then
again from the assumptionW (q) = W (q′), it must be in
W (q). Supposeq last assignsb to v, ie. v = b is present
in σ. Thenb must equala otherwise we would not have
σ(x.init, p ⊕ q) ⊇ σ(x.init, p ⊕ q′) as implied by the as-
sumptionp⊕ q ⊲x p⊕ q′.

Lemma 1. s ⊇ σ−1(p) ⇒ ∀(v = e) ∈ s. v /∈ W (p) ⇒
(v = e) ∈ σ(s, p)

Proof. By induction. For a single action planp = [a], given
the antecedent and the definition ofσ, the state is at least
aPre, so by the definition ofτ , the post state isσ(s, [a]) ≪
aPost but sincea does not writev, (v = e) ∈ σ(s, [a]) as
required. Assume now the result holds for a planp and con-
siderp++[a]. If v /∈ W (p++[a]) then alsov /∈ W (p) and
by the IH,(v = e) ∈ σ(s, p). Sinces ⊇ σ−1(p++[a]), the
required stateaPre is exceeded, so again from the definition
of τ , the post state isσ(s, p) ≪ aPost but sincea does not
write v, (v = e) ∈ σ(s, p++[a]) as required.

Theorem3. ∀q, q′. o(x, π) ∧ (∀p′. p′ ⊕ q ⊲x p′ ⊕ q′) ⇒
c(x, π[q′ := q]) < c(x, π)

Proof. Sincep′ ⊕ q ⊲x p′ ⊕ q′ for anyp′, it follows that
p ⊕ q ⊲x p ⊕ q, and from the definition of dominance that
p⊕ q⊲̂xp⊕ q . Thereforec(x, p⊕ q⊕ r) < c(x, p⊕ q′⊕ r)
as required.

75

Learning and Application of High-Level Concepts with
Conceptual Spaces and PDDL

Richard Cubek and Wolfgang Ertel
Ravensburg-Weingarten University of Applied Sciences

88250 Weingarten, Germany
{richard.cubek,ertel}@hs-weingarten.de

Abstract

Robots should be able to learn skills from humans not only
through kinesthetic teaching, but also by recognizing in-
tentions and abstract concepts in human behavior. This
work presents a method that enables robots to learn human-
demonstrated concepts on an abstract, first-order logic based
representational layer, while addressing the problems of
keyframe extraction, concept learning, symbolic grounding
and representation in PDDL.

1 INTRODUCTION
1.1 Robot Architectures and Control
Modelling of robot behavior and underlying software archi-
tectures emerged into several directions. Behavior-based
systems are a network of interconnected units, that directly
couple sensors to actuators. Each unit implements a specific
behavior and depending on the situation specific behaviors
can override others. Some behaviors use representations to
a certain degree (Brooks 1985; Arkin 1998).

A counter example to behavior-based control is the early
sense-plan-act paradigm, where based on its perception, the
robot builds an abstract model of the world, generates a sym-
bolic plan according to a long-range goal and then applies
the plan (Nilsson 1984).

While behavior-based systems are well suited for rapidly
changing environments of high stochasticity, they lack in
their ability to achieve long range goals. Purely delibera-
tive systems again are not able to deal with dynamic en-
vironments. The logical consequence was the appearance
of hybrid control systems (three-layer architectures), inte-
grating deliberation and reactivity at different layers (Firby
1989; Bonasso 1991). The reactive lower layer corresponds
to behavior-based systems, where representations are de-
scribed in a subsymbolic form (i.e. meters). The deliber-
ative layer at the top relies on a symbolic formalism, often
based on first-order predicate logic. The sequencing layer in
the middle connects the deliberative and reactive parts while
being responsible for tasks like invoking planning or trans-
lating high-level plans to low-level actions (Firby 1989).

Our framework is based on a three-layer paradigm. Ba-
sic operations are implemented on the lower layer in a
hardware-specific way. Such basic operations are composed
to so called high-level actions like pick-object, place-object

or move-to, which again have a corresponding symbol on the
deliberative layer. The underlying architecture now allows
to represent goal-oriented plans as sequences of high-level
actions since reactivity is covered at a lower layer. The rep-
resentational gap between the layers, the symbol grounding
problem (Harnad 1990) is a central question of this work.

1.2 Learning from Demonstration
Learning from demonstration (LfD) aims at robots learning
skills being trained by humans. Most often it is based on the
recognition of similarities among demonstrations. LfD can
be classified into two approaches which are related to the
earlier described levels of abstraction (Section 1.1): trajec-
tory encoding for low-level representations of generic mo-
tions and symbolic encoding for high-level representations
e.g. of sequences of predefined actions (Billard et al. 2008).

Trajectory encoding allows to describe arbitrary motor
primitives and during training often requires direct motion of
the robot’s actuators by a human trainer (kinesthetic teach-
ing). High-level learning requires a predefined set of func-
tional low-level skills and often further prior knowledge.
This allows the description of more abstract skills and goal
oriented tasks. The presented framework belongs to this cat-
egory of LfD.

1.3 Motivation
LfD-learned skills are evaluated by their generalization ca-
pabilities. To be more precise, the focus lies on their appli-
cability to situations that differ from those during demon-
stration. The underlying idea now is to create a framework,
that provides a robot with the ability to learn the goal be-
hind a human-demonstrated task, to formalize this goal in a
symbolic language and to apply a symbolic planner in order
to reproduce the task in new situations. Thus, the approach
fully complies to the generalization aspect. This basic idea
was formulated in (Ekvall and Kragic 2008), which beside
other related work will be compared to the presented frame-
work in the next section.

2 RELATED WORK
In (Chella et al. 2004), a model from cognitive science,
namely conceptual spaces, is proposed as a method to bridge
the gap between symbolic and subsymbolic representations

76

in robotics. In this work, a formalized approach of connect-
ing sensor data to symbols is shown. A similar grounding
technique is used in a LfD framework in (Chella, Dindo,
and Infantino 2006). Regarding observation, the focus lies
on actions and their effects on objects and not on particular
properties of motions. Observations are represented in two
conceptual spaces, one to discover the type of objects and
one to discover spatial relations between them. Learning of
similarities among demonstrations is done by clustering in
the conceptual spaces. Observed tasks are then encoded as
sequences of actions on involved objects. There is no goal
abstraction and a planner is not used. The similarity of a
new situation and those from demonstrations is used to de-
termine, which action sequence to execute.

The work in (Ekvall and Kragic 2008) was already men-
tioned in Section 1.3. It learns an abstract task goal from
demonstration and describes it in a first-order based logical
language. In new situations a symbolic planner is used to
generate a plan that reproduces the task goal. The learn-
ing process is described as the detection of spatio-temporal
constraints. Spatial constraints are learned by finding co-
variances in the position distances of different objects.

The framework presented in this paper is a combination of
ideas based on (Chella, Dindo, and Infantino 2006) and (Ek-
vall and Kragic 2008). In contrast to the first, we define only
one conceptual space where we then apply projections, con-
texts and conceptual prototypes (introduced in Section 3.2).
We aim at creating a more general and formalized approach
of learning different concepts from demonstration. Further-
more, we formalize recognized concepts to be applicable for
planners. The difference to (Ekvall and Kragic 2008) is the
use of conceptual spaces and the integration of object prop-
erties in recognized concepts. Furthermore, we do not learn
temporal constraints, but rather let the planner take care of
action orders based on its world model. Different to both
works is the overall approach aiming to reach a concept ab-
straction as used in natural language, which is in terms of
objects, their properties and relations among them.

A very sophisticated further LfD framework is presented
in (Knoop, Pardowitz, and Dillmann 2007). Here, primitive
movement types are recognized, extracted and abstracted
during demonstration. Their pre- and postconditions and el-
ementary operators are described in symbolic form, while
symbolic planners can be used to generate sequential tasks.
The abstract task knowledge has to be mapped to a target
system. The described framework is supported by a whole
range of sophisticated sensors. We simulate one vision sys-
tem only and we concentrate less on action characteristics,
but more on special events in key frames. Furthermore we
dedicate more attention to the symbol grounding problem.

3 BACKGROUND
3.1 Symbolic Planner
The first planner designed for the purpose of robotics was
STRIPS (Fikes and Nilsson 1971) where world-models, ini-
tial states, goals and actions with preconditions and effects
can be defined. STRIPS is based on first-order logic. It
was extended to the Action Description Language (ADL)

(Pednault 1989), supporting conditional effects and quanti-
fied variables. Meanwhile, there is a whole research com-
munity dealing with the problem of planning. Therefore,
a unique modelling language based on STRIPS and ADL
has been introduced, the Planning Domain Definition Lan-
guage (PDDL). We use the recent version PDDL2.1 because
it supports ADL and the integration of fluents. Further-
more, a plan optimization metric can be defined. The ref-
erence specification of PDDL2.1 is (Fox and Long 2003).
As symbolic planner, the presented framework uses Metric-
FF (Hoffmann 2003), a top performing competitor from the
International Planning Competition.

3.2 Conceptual Spaces
Representing Concepts: Conceptual spaces have been in-
troduced by Gärdenfors as a mean for knowledge represen-
tation (Gärdenfors 2000). A conceptual space is built up
from a set of quality dimensions within a geometric struc-
ture. A concept in a conceptual space is a convex region
in that space, while a point in it (vector of quality dimen-
sion values or simply knoxel) is an instance of a concept.
Using the euclidean distance as a metric in this space, con-
ceptual spaces reduce the question of semantic similarity to
the question of the euclidean distance between two points.

A knoxel can also define a prototype of a concept. This al-
lows to decide about the membership of an arbitrary knoxel
to a specific concept by the distance between that knoxel
and the concept prototype. Or, the concept membership of
a knoxel can be defined by the nearest concept prototype.
The former defines a concept in a geometric form of a hy-
persphere, the latter causes a voronoi tesselation of concepts
over the whole space.

Different contexts can be applied by assigning weights to
dimensions. Let Q be a set of quality dimensions in a con-
ceptual space, then the distance between two points p1 and
p2 in a context k is:

dist(p1, p2, k) =

√√√√
n∑

i=1

w
(i)
k (p(i)

1 − p
(i)
2)2 (1)

where n = |Q|, while wk denotes the weight vector for the
context k (Adams and Raubal 2009).

The most simple example of a conceptual space in
(Gärdenfors 2000) is an one-dimensional space of time.
Here, the point now divides the space into the concepts past
and future. A further example is the color space of hue, sat-
uration and value where the focal colors like red or green
could be treated as certain color concepts, represented as
convex regions in space. A domain is described as a a sub-
space of a conceptual space.

Symbolic grounding: Gärdenfors proposes the use of
conceptual spaces also as an intermediate level between
symbolic and subsymbolic representations. Concrete nu-
meric values can be represented in single dimensions, while
regions in the n-dimensional space can be bound to symbols.
An example is the grounding of the term red used in natural
language to a concrete vector of hue, saturation and value.

77

In fact, Gärdenfors treats the ability to recognize conceptual
similarities as an important property of cognitive skills.

4 PROPOSED METHOD
This section explains the process of learning abstract con-
cepts from demonstration and the transfer to a PDDL-based
higher abstraction level.

4.1 Approach
As shown in (Ekvall and Kragic 2008), LfD on a symbolic
abstraction layer enables the robot to learn task goals and
to achieve them in new situations using a symbolic plan-
ner (provided that low-level skills are implemented). In our
approach, a further objective is to achieve an abstraction
of world and goal descriptions based on natural language,
which is in terms of objects, their properties and relations
between objects. The reason behind is that first, this en-
ables the robot to learn and execute complex tasks as they
are instructed among humans. Second, the effort to equip a
robot with a priori knowledge or innate skills decreases with
higher levels of abstraction.

4.2 High-Level Representation
World Model: The used world model is defined as a
PDDL domain. It describes a simulated environment which
is explained in detail in Section 4.4. It consists of sev-
eral workdesks, while various objects are located at each of
them. Every workdesk is very similar to a blocks world,
an often used environment in high-level learning and plan-
ning experiments. The robots can move in the environment
to approach the workdesks and they can pick objects and
place them at arbitrary positions. Such skills (as pick-object
or move-to) are represented as high-level skills. High-level
skills refer to a set of low-level operations, implemented
at lower layers. Their preconditions and effects can eas-
ily be defined manually. Moving between two workdesks
produces higher costs than a pick or place operation. This
causes the planner to generate optimal plans.

Object properties are formalized in the form of p(x, c),
p denoting the property predicate (e.g. color), x an object
variable and c a concrete property constant (e.g. red). All
kinds of spatial relations between objects are defined as cer-
tain bivalent predicates.

Learned concepts will be defined as PDDL goals. When
applying to new situations, the initial PDDL state depends
on the robot’s perception. PDDL problem files are dynami-
cally generated based on facts and goals.

4.3 Observations
The aim is to recognize and learn abstract concepts from
demonstration. Since it is not possible to determine sym-
bolic data directly from the vision system, the corresponding
(subsymbolic) raw data has to be obtained first.

Relevant Parts of a Demonstration: The robot should
recognize what was done instead of how it was done. There-
fore, effects of actions are important (instead of kinematic
properties of motions). We assume, that important effects
occur at the end of an action.

Figure 1: The virtual robot world.

Extraction of Relevant Data: The approach now is to
recognize object manipulation units (OMUs), a series of vi-
sion frames, where the demonstrator manipulates a certain
object. To analyze the effect of such a manipulation, the
state at the first frame after an OMU is extracted. Such a
frame is denoted as key frame. The states at the key frames
are then used for further investigation.

Concentrating on spatial manipulations, we assume that
an object is manipulated when it is moved. An object’s mo-
tion is determined by the change of its position between two
vision frames, which means by its velocity.

4.4 Simulated Environment
Experiments are realized within a virtual environment, cre-
ated in OpenRAVE, a planning and simulation environment
for robotics (Diankov 2010) (planning hereby means trajec-
tory planning, not high-level planning as in PDDL). The vir-
tual environment contains several workdesks, where again
several objects are located on each of them. The robots can
manipulate objects and move among the workdesks. There
is a demonstrating and a learning robot, both consisting of
a Puma robot arm, installed on a mobile platform (Figure
1). Several low-level skills are implemented on each robot,
dealing with inverse kinematics, collision-free trajectories
etc. The high-level behavior of the first robot is completely
programmed manually, while the high-level behavior of the
second is entirely learned by observing the first in demon-
strations. Demonstrations are performed by manipulating
objects at a workdesk.

The simulated robot vision is recognizing objects and
their positions, delivering noisy position data in each of the
dimensions x, y and z. The used error model is defined by

ε
(i)
j ∼ N (0, σ2) (2)

where i ∈ {1, 2, 3} and j ∈ {1, 2, ..., n} for n processed
frames, i and j denoting the indices of the dimensions
and frames, respectively. The used standard deviation is
σ = 0.0033 m, resulting in 99% of the object positions
oscillating ±1cm in each dimension. That should lead to
noisier data than delivered by most stable visions.

4.5 Keyframe Extraction
The setup of a demonstration is shown in Figure 2. The
demonstrating robot is stacking the cuboid building blocks

78

Figure 2: Setup at a certain workdesk in the environment
with the demonstrating robot.

Figure 3: Velocity of the red cube over time (red) and locally
weighted regression (blue). The framerates are 30 (top), 10
(middle) and 5 frames per second (bottom).

according to traffic lights: the yellow one on the green and
the red one on the yellow. The positions of all blocks are
recorded during the whole demonstration. Their velocities
are calculated afterwards. Figure 3 shows the velocity of the
red cube over time during demonstration. Due to the vision
error model, it is very noisy. In order to smooth the data,
the framerate can be decreased by skipping frames. Alter-
natively, locally weighted regression (LWR) can be applied
(Atkeson, Moore, and Schaal 1996). Both is shown in Figure
3. In the experiments, the framerate is reduced to 5 frames
per second. LWR is used additionally.

The noise floor causes the average velocity being > 0. A
threshold of 0.07 m/s is defined as a maximum value for
noise floor (red areas in Figure 4), while all above is treated
as object motion. Detected motion data is now clustered
over time, resulting in clusters representing OMUs (green
areas in Figure 4), wheras the first frame after an OMU is a
key frame. For each key frame, the positions of all objects
are stored in the observation data. The object positions are
averaged over an adjustable amount of n frames, following
a key frame.

Figure 4: Velocities of the stacked objects over time. The
red area is not considered, green areas show found clusters
of motions (OMUs). Red arrows mark key frames.

4.6 Representing the Observation
The key frame data is treated as describing the action effects
and thus the key events of the demonstration, which will be
used to learn the underlying concept.

Event Representation in Conceptual Spaces: The learn-
ing part in the presented framework is based on the recog-
nition of similarities among demonstrations. They will be
determined by investigating the detected key events, con-
sidering the described level of abstraction in Section 4.1.
Thus, a proper representational structure for the key events
is needed. Conceptual spaces as intermediate level between
symbolic and subsymbolic representations offer a suitable
mean. Abstract concepts can be represented as regions in
space, detecting conceptual similarities can be achieved by
clustering knoxels in space. The dimensions in the concep-
tual space and the represenational aspect of a knoxel in it are
yet to be explained.

4.7 Learning of Abstract Concepts
Regarding a key frame, we call the manipulated object the
source object and the remaining objects the target objects.
In Section 4.5, it was mentioned that at each key frame,
positions of all objects are extracted, not only the position
of the manipulated one. The reason behind is that the key
frames are the moments where relations between objects are
formed. Therefore, the detected key events from key frames
are events between the manipulated object and the remaining
objects. Such a key event will now be represented by a single
knoxel in the conceptual space. Thus, a knoxel refers to an
event between a source and a target object. This is illustrated
in Figure 5. Assuming a scene at a workdesk with n objects,
where one object is moved to another position (at the same
workdesk). Here, the corresponding key frame from the end
of the spatial manipulation generates n− 1 key events. One

79

Figure 5: A key frame at the end of an object manipulation
unit. The manipulated object (red cube) is the source object,
the others are target objects. Each blue arrow is a key event,
referring to a knoxel in conceptual space.

for each potential relation between the manipulated object
and each remaining object on that workdesk.

We now define a conceptual space oriented on the kind of
the described key events between a source and a target ob-
ject. If the robotic system is able to deliver n properties for
each observed object, then 2n+3 dimensions are defined for
the conceptual space. One for each source object property
and one for each target object property (2n). Furthermore,
one for the spatial relation in each dimension (+3) which
means the relative position of the source to the target ob-
ject. This will be the basis to learn in terms of objects, their
properties and relations between objects.

If in a demonstration a red cube is put on a green cylinder
twice, a cluster of two knoxels will occur. Each knoxel of
this cluster will describe the key event between a red cube
and a green cylinder. If in another demonstration a red ob-
ject is put on a green object twice (both objects of different
shapes), then a cluster can be found again, if we apply a
specific projection on the conceptual space. This is the core
idea of the presented work. If all detected key events be-
tween source and target objects within a demonstration are
represented in the described conceptual space, then under a
certain projection, conceptual similarities among key events
will always build a cluster. Furthermore, every abstract con-
cept class can be represented with a single projection matrix.

In the search for clusters, various projections have to
be tried. Each projection combines only specific source
and target object property dimensions. Hereby, the projec-
tions change from concrete to more general concepts. That
means, that with the first search, the data is projected by
an identity projection matrix. At each search step, rows in
the projection matrix referring to object property dimensions
are changed or removed until one or more clusters are found
under a certain projection. All source/target object property
combinations can be tried systematically. If n object prop-
erties are provided, 22n projections have to be tried. Thus,
having m knoxels in the conceptual space using hierarchi-
cal clustering, the computational complexity is O(22nm3),
which seems very high. In practice, the amount of provided
object properties usually is low. Furthermore, in a demon-
stration of n objects and m OMUs, only (n − 1)m knoxels
are produced. However, dimensionality reduction methods

should be applied, if learning complex concepts on objects
of many properties.

If the origin of a workdesk is treated as a virtual target
object, absolute positions can be learned, too. This can be
useful e.g. to teach a robot how to load objects on certain
positions on a machine. For further processings of found
clusters, their average knoxel is used, which is called cluster
knoxel.

4.8 Relation Prototypes
We assume a demonstration where a green, yellow and red
object are stacked, and a second demonstration repeating the
first. This will generate three clusters. One of them repre-
sents the spatial relation between the red object at the top and
the green one at the bottom, but we do not want this clus-
ter to be considered for a concept. Furthermore, there can
be different types of spatial relations, and the robot should
distinguish between them. Therefore, conceptual prototypes
(introduced in Section 3.2) can be used.

In the presented framework, a spatial relation is treated as
a concept. Thus, it has its own representation in the con-
ceptual space. In the simulated environment, object extents
are known. Therefore, a further dimension is added to the
perceptual space, describing the distance between the near-
est points of source and target objects in z. This enables the
definition of the relational prototype on. An object is on an-
other object if their relational positions in x and y and further
their distance in z all are about 0. This applies to the simu-
lated world where all objects which the robot can manipulate
have primitive shapes and similar sizes. In a more complex
world this might not apply, but this does not affect the for-
malized method. In a more complex world, more detailed
object descriptions, further dimensions and more complex
prototypes might be required. Another possibility to be more
precise in the definition of relation prototypes is to consider
more object properties, for example the functional type of
an object (e.g building block, container or food).

Since a prototype only considers a subspace, a domain
can be defined for it. A domain has its own projection and
further an own context (weight vector). For the prototype
on, the dimensions for the relations in x and y might be
weighted less then the one for the distance in z. Such a
resulting prototype has the form of a hyper-ellipsoid.

In the example, each of the three found cluster knoxels is
now checked regarding its membership to the prototype on
in the corresponding domain. If a cluster knoxel is a mem-
ber of the prototype (under the corresponding projection and
weights), then it is considered for further processing. This
will filter the detected relation between the red and the green
object at the top and the bottom. On the other hand, a de-
tected relation between an object and the workdesk origin
should always be considered as concept.

4.9 Symbol Grounding
The PDDL world model is defined in advance, but we face
the symbol grounding problem when recognized concepts
(clusters) have to be formulated as PDDL goals. Further-
more, when an initial PDDL state has to be defined in a cer-
tain situation. Both have to be derived from sensor data. In

80

general, three grounding types are used. They are explained
in the following.

Direct Mapping (Hash Table): Some object properties
are known in advance. Often, they are already discrete and
can directly be mapped to symbols in PDDL. This kind of
grounding is used to define certain object property constants
as the functional type. For example, the properties build-
ing block or container are simply mapped to PDDL con-
stants of the same name, which can then be used in the pred-
icate functional type.

Prototype Membership in Conceptual Space: This was
explained in Section 4.8. In the framework, it is used to de-
termine if a knoxel describes a specific spatial relation (be-
tween the source and the target object) in a relation domain
(subspace). If so, the prototype name is directly mapped to a
corresponding predicate. Such a relation concept has a natu-
ral form of a hyper-sphere (or a hyper-ellipsoid if the dimen-
sions are weighted differently). A grounding with an if-else
cascade over the same dimensions would have an unnatu-
ral, cuboid form. That would not be problematic for simple
concepts, but it might be for more complex ones.

Nearest Prototype in Conceptual Space: This is similar
to the prototype membership, but here, the membership of
a knoxel to a concpt is defined by the nearest concept pro-
totype. In the framework, it is used to define focal colors
of objects from sensor data. The prototype name is directly
mapped to a corresponding constant. For example, several
variations of red all result in a single PDDL constant red.

4.10 Transfer to PDDL
Each found cluster of knoxels refers to a certain concept.
Since the aim was to detect similarity clusters in terms of ob-
jects, their properties and relations between them, these con-
cepts now have a certain structure. Concretely, each cluster
refers to a certain bivalent relation between objects of cer-
tain properties, which can now be formalized. Let x and y
be variables for source and target objects, Ps and Pt each a
conjunction of predicates describing source object and tar-
get object properties, and R a bivalent spatial relation, then
a realized concept can be described as a fact of the form:

∀x ∃y Ps(x)⇒ Pt(y) ∧R(x, y) (3)

whereas Ps(x) and Pt(y) are defined as

Ps(x) = p1(x, cs1) ∧ p2(x, cs2) ∧ ... ∧ pn(x, csn)
Pt(y) = p1(y, ct1) ∧ p2(y, ct2) ∧ ... ∧ pn(y, ctn)

p1...pn denoting object property predicates (e.g. color),
whereas {cs1...csn} and {ct1...ctn} refer to property con-
stants (e.g. red) of source or target objects, respectively.
Every found cluster in the conceptual space refers to such a
concept. During the transfer of a knoxel cluster to PDDL,
the projection matrix P , under which the cluster was found
is needed again. Each 1 from the elements ofP , which refers
to a source or target object property dimension, activates a
certain property predicate in Ps(x) or Pt(y), respectively.

Activation means, that this property predicate will be present
in the term derived from Formula 3. As an example, we con-
sider stacking objects in a traffic lights color order, which
results in two recognized concepts (which then have to be
translated to PDDL goals):

∀x ∃y color(x, yellow) ∧ color(y, green) ⇒ on(x, y)
∀x ∃y color(x, red) ∧ color(y, yellow) ⇒ on(x, y)

The corresponding generated PDDL code would be:

(FORALL (?X) (EXISTS (?Y)
(IMPLY (COLOR ?X YELLOW)
(AND (COLOR ?Y GREEN) (ON ?X ?Y)))))

(FORALL (?X) (EXISTS (?Y)
(IMPLY (COLOR ?X RED)
(AND (COLOR ?Y YELLOW) (ON ?X ?Y)))))

Often, concepts are demonstrated concerning concrete ob-
jects, not objects of certain properties. In such cases, con-
cepts can be learned over a property instance of , which
describes an object of a specific, unique object class. Apart
from that, quantifying over all target objects which fulfill
Pt(y) is not possible. Not every source object can form a
spatial relation with every target object. If there is more than
one target object, there would be no solution, therefore the
existential quantifier.

In general, the presented method allows to learn concepts,
as they usually are instructed in natural language, e.g. ”put
cuboid objects into box A and cylindric objects into box B”.

Special Cases: However, Formula 3 does still not cover
all constellations. Each target object usually has a capacity
regarding its possible amount of relations with source ob-
jects. If there are more source objects than the sum of target
objects capacities, there is no solution. For example, assum-
ing a scene with ten red objects and two green pallets, each
taking four objects. If the robot should put red objects into
green pallets, using Formula 3 the robot will not find a so-
lution. But a human would expect the robot to put at least
eight objects into the pallets. Simply exchanging the quan-
tifiers of x and y will cause the robot to put only one red
object into each green pallet. In fact, the solution has to
deal with target object capacities. We invent the functions
capacity(x) and amount(x), capacity(x) returns the num-
ber of relations a target object x can form with source ob-
jects. The number of relations a target object x already has
formed with source objects in a current state is returned by
amount(x). PDDL2.1 allows the definition of such func-
tions. In a PDDL problem file, a capacity can be set in the
initial state. In preconditions of actions, which cause the
forming of a relation the relations amount of the target ob-
ject has to be smaller than its capacity. In the action effects,
the relations amount has to be increased. A further predicate
equals(x, y) is used, it returns true, if x = y. Now, the
problem concerning the pallets example can be solved. Us-
ing the terms from Formula 3 again, the alternative concept
description is:

81

Figure 6: Demonstration: objects of arbitrary shapes are
stacked as traffic lights.

∀x ∀y Pt(y)⇒ [equals(capacity(y), amount(y)) (4)
∧ (R(x, y)⇒ Ps(x))]

The Formula is explained with regard to the pallets example:
If a pallet is green then its capacity must be exhausted, and
if there is an object that is in the pallet, it must be red. That
will cause the robot to put eight red objects into the two
green pallets. The overall concept formalization can now be
defined as a disjunction of the formulas 3 and 4. This can be
set as overall goal in the PDDL problem file.

Experiments with Metric-FF show that often this takes
very long to find a plan. Probably, the planner remains
searching in one of the two branches of the disjunction. This
practical problem can be solved, if it is first determined,
which formula has to be applied to find a plan.

A last special case is, when Ps and Pt are not distin-
guishable. In such a case, Formula 3 has to be extended
by R(x, y)⇔ R(y, x).

5 EXPERIMENTS
5.1 Experiment 1
Demonstration: In the first experiment, the demonstrat-
ing robot is doing a demonstration of stacking objects ac-
cording to traffic lights. It starts from the setup shown in
Figure 2. The objects are stacked independent to their shape,
only the color is considered. The last step of the demonstra-
tion is shown in Figure 6.

Learning and Reproduction: Regarding colors, the
framework provides an own conceptual HSV color space of
the three dimensions hue, saturation and value (brightness).
Color symbols (color constants in PDDL) of observed ob-
jects are defined by the nearest color prototype in the color
space. In this space only red, green, blue and yellow are
defined as prototypes so far. That is why the rather orange
cylinder from the demonstration is treated as red. The fact,
that humans refer to colors more by the hue value than by
saturation and brightness is considered in the weight vector
of [1, 0.2, 0.2]. In the main conceptual space, source and
target objects each have one discrete color dimension de-
scribing discretized colors obtained in the HSV color space.
The properties shape and instance of are stored before-
hand for each known object. While searching for concepts,

Figure 7: The learning robot applies the concept of stacking
by colors on arbitrary objects.

Figure 8: Demonstration: cubes are put into the bright pallet,
cylinders into the dark.

under a projection which considers only source and target
object colors (and of course relative positions) three clusters
were found. Two of them fitted to the concept prototype of
the relation on. Two ones from the projection matrix acti-
vated the predicate color for the source and the target ob-
ject. The corresponding color constants where obtained as
already explained. From each knoxel cluster, one of the fol-
lowing concepts was derived:

∀x ∃y color(x, yellow) ∧ color(y, green) ⇒ on(x, y)
∀x ∃y color(x, red) ∧ color(y, yellow) ⇒ on(x, y)

The corresponding concept from Formula 4 is also consid-
ered. Applied in the virtual environment with new objects
of prismatic shapes, the learning robot stacks them accord-
ing to the learned concept (Figure 7).

5.2 Experiment 2
Demonstration: For the second experiment, two objects a
and b being instances of the object classes bright pallet and
dark pallet, each with a capacity of four relations are added
to the environment. Since we know object extents, three fur-
ther spatial relation dimensions are added to the conceptual
space, describing the spatial intersection of source and target
object in each dimension. This data can simply be derived
from the relative positions and the extents. A new relational
concept prototype in is defined using the intersections. The
last step of the demonstration is shown in Figure 8.

82

Figure 9: The learning robot applies the concept of sorting
objects in specific pallets by shapes. Hereby, the robot also
gets objects from other workdesks.

Learning and Reproduction: Under a projection, which
considers the shape of the source object, the instance of the
target object and the spatial intersections, two clusters were
found. The clusters fit to the relational concept in. From
each knoxel cluster, one of the following concepts was de-
rived:

∀x ∃y shape(x, cube)
∧ is instance(y, bright pallet) ⇒ in(x, y)

∀x ∃y shape(x, cylinder)
∧ is instance(y, dark pallet) ⇒ in(x, y)

Again, the corresponding concept from Formula 4 is also
considered. Applying the concepts to new situations, the
robot fills the specific pallets with cubes and cylinders cor-
rectly. Hereby, the robot also gets objects from other
workdesks, if necessary (Figure 9).

6 CONCLUSIONS
The presented work reflects upon three insights. First, con-
ceptual spaces are a proper mean for representing and learn-
ing abstract concepts. Furthermore, they are a proper so-
lution to the symbolic grounding problem. Second, skills
can be learned from demonstration at an abstraction level,
that is similar to concepts as being described in natural lan-
guage. This is in terms of objects, their properties and re-
lations among them. Third, PDDL is a proper language to
represent abstract concepts, while corresponding performant
planners can be used to plan at the symbolic level.

7 ACKNOWLEDGMENTS
This work was supported by the Collaborative Center of Ap-
plied Research on Service Robotics (ZAFH Servicerobotik,
http://www.zafh-servicerobotik.de).

References
Adams, B., and Raubal, M. 2009. A metric conceptual space
algebra. In Proceedings of the 9th international conference
on Spatial information theory, COSIT’09, 51–68. Berlin,
Heidelberg: Springer-Verlag.
Arkin, R. C. 1998. Behavior-Based Robotics. MIT Press.

Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1996. Locally
weighted learning. Artificial Intelligence Review submitted.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Siciliano, B., and
Khatib, O., eds., Handbook of Robotics. Springer. In press.
Bonasso, R. P. 1991. Integrating reaction plans and layered
competences through synchronous control. In Proceedings
of the 12th international joint conference on Artificial intel-
ligence - Volume 2, 1225–1231. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Brooks, R. A. 1985. A robust layered control system for a
mobile robot. Technical report, Cambridge, MA, USA.
Chella, A.; Coradeschi, S.; Frixione, M.; and Saffiotti, A.
2004. Perceptual anchoring via conceptual spaces. In Pro-
ceedings of the AAAI-04 Workshop on Anchoring Symbols
to Sensor Data, AAAI. AAAI Press.
Chella, A.; Dindo, H.; and Infantino, I. 2006. Learning
high-level tasks through imitation. In 2006 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), October 9-15, 2006, Beijing, China, 3648–3654.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Ekvall, S., and Kragic, D. 2008. Robot learning from
demonstration: A task-level planning approach. Interna-
tional Journal on Advanced Robotics Systems 5(3):223–234.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Firby, R. J. 1989. Adaptive execution in complex dy-
namic worlds. Ph.D. Dissertation, New Haven, CT, USA.
AAI9010653.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gärdenfors, P. 2000. Conceptual Spaces: The Geometry of
Thought. Cambridge, MA, USA: MIT Press.
Harnad, S. 1990. The symbol grounding problem. Physica
D: Nonlinear Phenomena 42:335–346.
Hoffmann, J. 2003. The metric-ff planning system: translat-
ing ’ignoring delete lists’ to numeric state variables. Journal
of Artificial Intelligence Research (JAIR) 20:291–341.
Knoop, S.; Pardowitz, M.; and Dillmann, R. 2007. Auto-
matic robot programming from learned abstract task knowl-
edge. In Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oc-
tober 29 - November 2, 1651–1657. IEEE.
Nilsson, N. J. 1984. Shakey the robot. Technical Report
323, AI Center, SRI International, 333 Ravenswood Ave.,
Menlo Park, CA 94025.
Pednault, E. P. D. 1989. ADL: exploring the middle ground
between strips and the situation calculus. In Proceedings of
the first international conference on Principles of knowledge
representation and reasoning, 324–332. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

83

