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Preface 
 

Application domains that entail planning and scheduling (P&S) problems present a set of compelling 

challenges to the AI planning and scheduling community, from modeling to technological to institutional 

issues. New real-world domains and problems are becoming more and more frequently affordable 

challenges for AI. The international Scheduling and Planning Applications woRKshop (SPARK) was 

established to foster the practical application of advances made in the AI P&S community.  

Building on antecedent events, SPARK'11 is the fifth edition of a workshop series designed to provide a 

stable, long-term forum where researchers and practitioners can discuss the applications of planning and 

scheduling techniques to real-world problems. The series webpage is at http://decsai.ugr.es/~lcv/SPARK/ 

In the attempt to cover the whole spectrum of the efforts in P&S Application-oriented Research, this year’s 

SPARK edition will categorize all contributions in three main areas, namely P&S Under Uncertainty and 

Execution, Novel Domains for P&S, and Emerging Applications for P&S. We are once more very pleased 

to continue the tradition of representing more applied aspects of the planning and scheduling community 

and to perhaps present a pipeline that will enable increased representation of applied papers in the main 

ICAPS conference.  

We thank the Programme Committee and the auxiliary reviewers for their commitment in reviewing. We 

thank the ICAPS'11 workshop and publication chairs for their support. Finally, we thank the commentators 

who agreed to lead discussion during the workshop.  
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Minh Do, Palo Alto Research Center, USA 

Riccardo Rasconi, ISTC-CNR, Italy 

Neil Yorke-Smith, American University of Beirut, Lebanon, and SRI International, USA 
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Scheduling a Dynamic Aircraft Repair Shop

Maliheh Aramon Bajestani and J. Christopher Beck
Department of Mechanical & Industrial Engineering

University of Toronto
Toronto, Ontario M5S 3G8, Canada
{maramon, jcb}@mie.utoronto.ca

Abstract

We study a dynamic repair shop scheduling problem in the
context of military aircraft fleet management. A number of
flights, each with a requirement for a specific number and
type of aircraft, are already scheduled over a long horizon.
The overall scheduling horizon is considered to be composed
of multiple time periods. The goal is to maintain a full com-
plement of aircraft. We need to assign aircraft to flights and
schedule repair activities while considering the repair capac-
ity limit and aircraft failures. The number of aircraft awaiting
repair dynamically changes over time because of aircraft fail-
ures. We designed three re-scheduling policies using different
optimization and heuristic techniques to solve the dynamic
problem over successive time periods. Experimental results
demonstrate that the wave coverage is higher if the optimiza-
tion technique, logic-based Benders decomposition, is used to
solve the problem over longer time periods more frequently.

Introduction
In industries using expensive machinery, it is common to re-
pair rather than replace a machine when it breaks down. For
example, it is far too expensive for a railroad or airline com-
pany to keep stock on-hand to replace failed machines. The
need for repair, however, generates a set of new decisions:
“How many repair resources (e.g., repairpersons) should be
allocated?”, “Where should repairs take place?”, and “When
should they be done and using which resources?”. In this
paper, we study an aircraft repair shop. When aircraft fail,
the management process must dynamically react to failures
by scheduling and re-scheduling repair activities to maxi-
mize aircraft availability. A high-quality schedule capable of
dealing with uncertainty and adjusting to unexpected events
leads to an efficient repair operation.

Motivated by the case study in Safaei et al. (Safaei, Ban-
jevic, and Jardine 2010), we address the problem of aircraft
fleet management where a number of flights are planned
over a long horizon consisting of several time periods. Every
flight, called “wave”, has a requirement for a specific num-
ber of aircraft of different types. Aircraft flow over a long
horizon is illustrated in Figure 1.

The goal is to construct a repair schedule that will max-
imize wave coverage while allowing for aircraft failures in
systematic pre- and post-flight checks. Each aircraft fail-
ure requires a set of repair activities with known processing

  No 

Yes 

Go to Wave Major Fault Pre-Flight Check 

 

Start of Wave 

 

Major Fault 

Yes 

 No 

Repair Shop 

 

Post-Flight Check 

 

Figure 1: A flow chart representing aircraft flow among
waves, checks, and the repair shop over a long horizon.

times and resource requirements to be scheduled using re-
sources with a limited capacity.

Simply stated, we view the dynamic problem as succes-
sive scheduling problems over time periods. We use three
scheduling techniques including logic-based Benders de-
composition (LBBD), mixed-integer programming (MIP),
and a dispatching heuristic developed in our previous work
(Aramon Bajestani and Beck 2011) to solve the scheduling
problem in each time period. To revise the schedule, we
design three different policies based on when and how the
re-scheduling is done.

Empirical studies indicate that solving the scheduling
problems more frequently over longer time periods using
LBBD results in the best performance and that solving the
scheduling problems more frequently is more important than
solving them over longer time periods.

The main contributions of our paper are:

• generalizing an offline scheduling problem studied in
(Aramon Bajestani and Beck 2011) to its dynamic coun-
terpart;

• demonstrating how to adapt existing solution techniques
to a dynamic problem;

• empirically analyzing the impact of applying different re-
scheduling strategies to determine when and how to re-
spond to real-time events.

The following section defines our problem, reviews the
scheduling algorithms used for each time period and dis-
cusses the literature on scheduling a repair system. We go
on to describe the proposed re-scheduling strategies, present
our experiments and results, suggest possible directions for
future work, and provide a conclusion.
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Background
In this section, we present the formal definition of the prob-
lem, review the solution approaches for scheduling the re-
pair shop, and discuss the literature on scheduling a repair
system.

Problem Definition
The problem at time 0 is shown schematically in Figure 2.
The circles represent aircraft. It is assumed that the total
number of aircraft is constant over a long horizon. In our
example, at the beginning, three aircraft are ready for the
pre-flight check; others are in the repair shop awaiting repair
before they can proceed to the pre-flight check. A number
of waves (five are shown) and their corresponding pre- and
post-flight checks are already scheduled over a long horizon.

Repair Shop

...
Wave-5

st5 et5
Wave-1

Wave-2 Wave-3

st1 et1 st2 st3
et2 et3

Wave-4

st4 et4

0
...

Checks

Figure 2: Snapshot of the problem at time 0 over a long
horizon.

At the beginning, we schedule the repair activities over
a time period, for example the interval containing the first
three waves. The schedule may not be executed as is. We
dynamically react to actual aircraft failures by re-scheduling
the repair activities after, for example, each wave.

The goal in each time period is to assign aircraft to waves
to maximize coverage while respecting constraints on main-
tenance capacity. The coverage is the extent to which the
aircraft requirements of the waves are met. The scheduling
problem is under the constraints that the repair shop has lim-
ited capacity and the aircraft are subject to breakdown which
can be detected in pre- or post-flight checks. We assume that
once an aircraft fails, it goes to the repair shop and waits un-
til its repair operations are performed.

We use the following notation to represent the problem.

• N is the set of aircraft. λn is the failure rate of the aircraft
n ∈ N .

• K is the set of aircraft types. For each aircraft type k ∈
K, there are Ak aircraft ready (i.e., not in the repair shop)
at the beginning of the first time period. λ̄k is the mean
failure rate over all aircraft of type k.

• R is the set of repair resources (called “trades”). The max-
imum capacity of trade r ∈ R is Cr.

• W is the set of waves and D is an ordered set of due dates
in the time period. D consists of the wave start-times plus
a big value, B sorted in ascending order. Each wave, w ∈
W has a start-time, stw ∈ D, and an end-time etw. Each
wave requires akw aircraft of type k.

• J is the set of jobs in the time period. Each job is asso-
ciated with a specific aircraft, and Ik denotes the set of
repair jobs for aircraft type k. Mr is the set of jobs requir-
ing trade r. Each job might require more than one trade
to be completed. The processing time of job j on trade r
is pjr and cjr is the capacity of trade r required by job j.

To understand how the dynamic problem over the long
horizon can be viewed as scheduling problems over succes-
sive time periods, assume that we start repairing the failed
aircraft and assigning them to the waves based on the com-
puted schedule at time 0. A wave might start while a repair
is under way in the repair shop. If some aircraft fails the
pre-flight check, it goes to the repair shop. Each failed air-
craft requires a set of repair activities with known processing
times and resource requirements. At the repair shop, some
of the previously failed aircraft might be already repaired,
some might be under repair, and others might be awaiting
repair. Once the failed aircraft enter the repair shop, we
have a new repair scheduling problem with a new set of
jobs, including the recently failed aircraft and the previously
failed aircraft whose repairs are still under way or are not yet
started. The new problem has an added constraint, namely
that the repairs currently under way cannot be disrupted.

Scheduling for a Time Period
This section reviews the details of mixed-integer program-
ming, logic-based Benders decomposition, and the dispatch-
ing heuristic presented in (Aramon Bajestani and Beck
2011).

Mixed Integer Programming The variables are defined
in Table 1 and the model is shown in Figure 3.

Var. Definition
Zkw The number of aircraft of type k assigned to fly in wave w
xij xij = 1 if the ith due date is assigned to job j
stjr The start-time of job j on trade r
Ukw The number of aircraft of type k whose repair due date is stw
Ekw The expected number of available aircraft type k for wave w
etjr The end-time of job j on trade r

Table 1: The decision variables (top) and inferred variables
(bottom) for the MIP model.

The objective function (1) maximizes the number of air-
craft assigned to a wave subject to a limit on the number of
aircraft required and the expected number available (Con-
straint (5)). Equation (2) calculates the number of aircraft of
type k whose repair due date is stw. Equation (3) calculates
the expected number of available aircraft for the first wave.
Equation (4) calculates the expectation of availability for the
other waves. The first term includes those aircraft available
but not used for the previous wave and those newly arrived
from the repair shop. The second term includes all aircraft
that are available because they have completed waves since
the previous wave started. ξprek and ξpostk denote the prob-
ability of failure associated with aircraft type k in pre- and
post-flight checks, respectively: ξprek = (1 − e−αλ̄k) and
ξpostk = (1 − e−βλ̄k), where α < β to reflect deterioration
of the aircraft through use. As tracking the history of the
aircraft is prohibitive to find the actual probability of fail-
ure for each, they are distinguished based on their type and
the failure rate of each aircraft type λ̄k is used to estimate
the probability of failure. Constraint (6) ensures that exactly
one due date is assigned to each job. Equation (7) calculates
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max.
W∑
w=1

K∑
k=1

Zkw (1)

s.t. Ukw =
∑
j∈Ik

xij , if di = stw (2)

Ek1 = (Ak + Uk1)(1− ξprek ), ∀k (3)

Ekw = (Ek(w−1) − Zk(w−1) + Ukw)(1− ξprek ) +

w−1∑
v=1

Zkv(1− ξpostk )(1− ξprek ),

if stw−1 < etv ≤ stw,∀w 6= 1, k (4)
Zkw ≤ min(Ekw, akw), ∀k,w (5)
|D|∑
i=1

xij = 1, ∀j (6)

stjr + pjr = etjr,∀j, r (7)

etjr ≤
|D|∑
i=1

xijdi, ∀j, r (8)∑
j∈Mr

cjr ≤ Cr, if stjr ≤ t < etjr, ∀t, r (9)

xij ∈ {0, 1}, ∀i, j (10)
0 ≤ Ekw ≤ |N |, ∀k,w (11)

stjr, etjr ∈ Z+ ∪ {0}, ∀j, r (12)

Zkw ∈ Z+ ∪ {0}, Zkw ≤ |N |, ∀k,w (13)

Figure 3: The global MIP model for one time period.

the end-time of the jobs. The end-time of each job is guar-
anteed to be less than or equal to the assigned due date by
constraint (8). Constraint (9) enforces the capacity limit of
each trade, where t denotes the discrete time during which
job j is under way.

Logic-based Benders Decomposition A logic-based
Benders decomposition (LBBD) method can be formulated
where the master problem assigns aircraft to waves to max-
imize wave coverage over the current time period and the
sub-problems create the maintenance schedules given the
due dates assigned by the master problem solution. The
master problem is solved using MIP, while constraint pro-
gramming (CP) is used for the scheduling sub-problems.

The Due-Date Assignment Master Problem (DAMP):
MIP Model To formulate the master problem as a MIP
model, we use a binary variable xij for each j ∈ J and
i ∈ D with the same meaning as in the global MIP model.
A MIP formulation of DAMP is as follows:

max. Objective (1)
s.t. Constraints (2) to (6), (10), (11), (13)∑

j∈Mr,
∑|D|

i=1 xijdi≤stw

cjrpjr ≤ stwCr, ∀r, w

(14)
MIP cuts (15)

The master problem incorporates a number of the con-
straints in the global MIP model. It does not represent the
start-times of jobs nor does it fully represent the capacity
of the trades. As is common in Benders decomposition, the
master problem includes a relaxation of the sub-problems
(Constraints (14)) and Benders cuts (Constraints (15)).
The Sub-problem Relaxation Constraint (14) is the relax-
ation of the capacity of a trade, expressing a limit on the
area of jobs that can be executed. The limit is defined us-
ing the area bounded by the capacity of the trade and the
time intervals [0, stw] for each wave w, plus [0, B] where B
is the maximum due date assigned to the jobs on the trade.
The area of each interval must be greater than or equal to
the sum of the areas of the jobs that finish by the end of the
interval.
The Benders Cuts We demonstrate the intuition with an ex-
ample before defining the cut. Assume that for a given trade
with five jobs and a due date set, D = {14, 17, 20, 100},
the current master solution is: x21 = 1, x12 = 1, x43 =
1, x14 = 1, and x15 = 1. Job 1 is assigned to the second
due date, 17, Job 2 has the first due date, 14, and so on. If
the current solution is infeasible due to the resource capacity
of the trade, then we know that at least one of the jobs must
have a later due date. We can, therefore, constrain the sum
of the consecutive xij up to and including the ones assigned
to 1 to be one less than the number of jobs. In our example,
the cut would be:

(x11 + x21) + (x12)+

(x13 + x23 + x33 + x43) + (x14) + (x15) ≤ 5− 1

Formally, assume that in iteration h, the solution of the
DAMP assigns a set, Q, of due dates to the jobs on trade r.
Assume further that there is no feasible solution on trade r
with the assignments in Q.

The cut after iteration h is:∑
j∈Mr

∑
i∈Irjh

xij ≤ |Mr| − 1, ∀r (16)

where Irjh = {i′|i′ ≤ i, and xhij = 1} is the set of due dates
indices less than or equal to the due date index assigned to
job j and |Mr| is the number of jobs on trade r.

Job Scheduling Sub-problem Given a set of due dates as-
signed to the jobs on a trade, the goal of the job scheduling
sub-problem (JSSP) is to assign start-times to the jobs to sat-
isfy the due dates and the trade capacity. The JSSP for each
trade can be modeled using cumulative constraints (Hooker
2005). We use a CP formulation:
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Cumulative([tj |dhj ], [pjr|dhj ], [cjr|dhj ], Cr), ∀r
0 ≤ tj ≤ dhj − pjr, ∀j, r (17)

where t is an array of variables such that tj is the start-time
of job j, d is an array of values such that dhj is the due date
assigned to job j in master problem in iteration h. The vari-
ables pjr, cjr, Cr are as defined above. Constraint (17) en-
forces the time windows: the job cannot be started later than
dhj − pjr.
A Dispatching Heuristic The dispatching heuristic, in-
spired by the Apparent Tardiness Cost (ATC) heuristic
(Pinedo 2005), is a list-scheduling heuristic. It prioritizes
repair activities based on how early the corresponding air-
craft type is needed, the processing time of each job, and
the relative type demand. The ranking index we use is as
follows:

Ij = ST (kj) exp(−FNj
FCj

), ∀j

If we let kj denote the type of aircraft j, then ST (kj) is the
start-time of the first wave that requires an aircraft of type
kj . FNj is the fraction of the total number of aircraft of
type kj required by the first wave that requires kj , and FCj
is the maximum proportion of the capacity needed by job j
over all its required trades, as follows.

FCj = max
r

(
pjrcjr

ST (kj)Cr
), ∀r

The heuristic sorts the jobs in ascending order of the index
and then iterates through the jobs, scheduling each job at its
earliest available time.

Literature Review
Queuing theory is often used to model repair systems [(Ira-
vani, Krishnamurthy, and Chao 2007) and the references
therein]. Queuing theory has a long-term definition of op-
timality resulting in some sort of repair policy commonly
assuming that the repair resources are unary capacity (i.e.,
one repair is carried out at a time). A repair policy deter-
mines the order under which the repair activities should be
carried out.

Queuing theory does not model the combinatorics of the
scheduling problem. In our problem, the optimization of
scheduling performance at discrete time points (i.e., before
each flight) is of interest, and the repair resources have a dis-
crete capacity. Therefore, we believe that better performance
can be achieved by dealing directly with the combinatorics
and explicitly scheduling the repair shop to meet the waves.

Dynamic scheduling is well-suited to handle the uncer-
tain and combinatorial structure of the scheduling problem.
Dynamic scheduling concerns the allocation of resources to
activities over time when the real-time events occur during
the execution of previously determined schedule (Aytug et
al. 2005).

The real-time event studied in this paper is a job-related
event (Vieira, Hermann, and Lin 2003) because of the uncer-
tainty involved in the systematic pre- and post-flight checks.

Some of the repaired aircraft cannot accomplish their as-
signed flight: they are diagnosed as failed and must return
to the repair shop.

When and how to respond to the real-time events are two
independent variables in dynamic scheduling problems ad-
dressed in (Vieira, Hermann, and Lin 2003; Aytug et al.
2005; Bidot et al. 2009). In our problem, the length of each
time period, and the frequency of re-scheduling determine
how and when we react to the aircraft failures, respectively.

Re-scheduling Strategies
Our strategies have three main parts: scheduling the repair
activities, observing the aircraft failures while executing the
computed schedule, and responding to dynamic events by
re-scheduling the repair activities. They start by schedul-
ing the repair activities over one time period at time 0. The
length of time period defines the scheduling horizon over
which the repair activities are scheduled. The re-scheduling
strategies start executing the repair schedule while observing
the aircraft failures. The frequency of re-scheduling deter-
mines when our strategies dynamically respond to the air-
craft failures.

We use the techniques reviewed in the Background sec-
tion to schedule the repair activities over one time period.
Three different policies denoted as Pij are designed in which
i and j define the length of scheduling horizon and the fre-
quency of re-scheduling in number of waves, respectively.

The three policies discussed here are:

• P11: This policy has a scheduling horizon with a length
of one wave and re-schedules after every wave. In Figure
4, we show that P11 schedules one wave at a time (i = 1)
and re-schedules after each wave (j = 1).

• P31: This policy has a scheduling horizon with a length of
three waves and re-schedules after every wave. In contrast
to P11, for P31 (Figure 5), the scheduling horizon is three
waves but re-scheduling is still done after each wave.

• P33: This policy has a scheduling horizon with a length of
three waves and re-schedules after every third wave (Fig-
ure 6).

Wave-1
Wave-2

Wave-3

st1 et1
st2

st3

et2

et3

Wave-4

st4 et4

0

Scheduling Horizon 

...

Scheduling Horizon Scheduling Horizon 
Scheduling Horizon 

Figure 4: The P11 policy.

Wave-1
Wave-2

Wave-3

st1 et1
st2

st3

et2

et3

Wave-4

st4 et4

0

Scheduling Horizon 
...

Scheduling Horizon 

Scheduling Horizon 

Figure 5: The P31 policy.

To model the dynamic events, we simulate the aircraft
failures in pre- and post-flight checks. Every aircraft ei-
ther passes or fails each check. If the aircraft fails, a new
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Wave-1
Wave-2

Wave-3

st1 et1
st2

st3

et2

et3

Wave-4

st4 et4

0

Scheduling Horizon 
...

Scheduling Horizon 

Figure 6: The P33 policy.

set of repair activities with known processing times and re-
source requirements is added to the repair shop. If the air-
craft passes, it flies the wave. To model the aircraft deterio-
ration, we increase the failure rate of the aircraft by γ percent
each time it flies a wave. For example, consider that λn is
the initial failure rate of the aircraft n ∈ N . Its failure rate
after flying t waves will be equal to λn(1 + γ)t.

The observed wave coverage for each wave is the number
of aircraft flying the wave divided by the number required.

Experimental Results
The next sub-section describes the problem instances and
the experimental details. We then compare the impact of us-
ing different scheduling techniques and re-scheduling poli-
cies on the observed wave coverage.

Experimental Setup
For our problem instances, the number of aircraft, the num-
ber of trades, and the total number of waves are set to
{10, 15, 20, 25, 30}, {4}, and {30} respectively. Each com-
bination has 5 instances for a total of 25 instances. Each
instance is simulated 10 times.
Aircraft The number of aircraft types is equal to |N |5 , where
|N | is the number of aircraft. The aircraft are randomly as-
signed to different types, and the initial failure rate for each
aircraft is randomly chosen from the uniform distribution
of [0, 0.5]. The failure rate of an aircraft is increased by
γ = 5% each time it is used. The values of α and β are
1 and 3, respectively (see the Mixed Integer Programming
section).
Trades The capacity limit for each trade is Cr = 10.
Repair Jobs The repair jobs at time 0 each require half the
trades, on average. Subsequent repair jobs require all trades.
This difference was done to have enough repair jobs for the
successive scheduling problems. The capacity of trade r
used by job j, cjr, is drawn from [1, 10] while the processing
time, pjr, is drawn from [r, 10r]. At time 0, having 80% of
the aircraft in the repair shop results in |J | = 0.8|N | repair
jobs.
Waves The plane requirement for each wave is randomly
generated from the integer uniform distribution [1, ak] where
ak denotes the number of aircraft of type k. The length of
each wave is drawn with uniform probability from [3, 5]. To
find an appropriate start time for the first wave (not too early
or too late) and subsequent waves, T = 1.2×LB is defined
where LB = maxr(Sr). The sum of the processing areas of
the jobs in each trade, r, divided by the trade capacity is de-
noted by Sr. The processing areas in each trade are summed
over the jobs in the repair shop at time zero. The start time
of each wave is generated as st1 = rand[T3 ,

T
2 ] for the first

wave, and stw = etw−1 + rand(0, 40) for 1 < w ≤ 30. As
mentioned earlier the total number of waves is 30.
Dynamic events To simulate an aircraft failure, we generate
a random value from the uniform distribution [0, 1] for each
aircraft at each check. If the random value is less than the
aircraft’s probability of failure, the aircraft fails; otherwise,
it passes. The aircraft’s probability of failure in pre- and
post-flight checks are calculated using (1−e−αλn) and (1−
e−βλn), respectively. As mentioned earlier, λn is the failure
rate of aircraft n ∈ N which increases by γ = 5% each
time the aircraft flies a wave. Note that, passing the pre-
flight check of a wave does not necessarily mean that the
aircraft flies the wave. If the number of available aircraft are
more than the requirements, the aircraft that fly are randomly
selected to meet the requirements.

The time-limit to schedule the repair activities in each
scheduling horizon is 600 seconds. We execute the best fea-
sible schedule found before the time-limit if MIP times out.
In the case that LBBD times out, the schedule created by the
dispatching heuristic is executed as LBBD cannot create a
feasible schedule when it times-out.

The scheduling uses IBM CPLEX 12.1 and IBM ILOG
Solver/Scheduler 6.7, and the simulation is coded in C++.

Computational Results
In this section, we discuss our results to answer a number of
different questions.

Question 1 What is the impact of using a complete tech-
nique vs. the dispatching heuristic on the mean observed
wave coverage?

We expect a complete technique to achieve higher wave
coverage because it incorporates known information on un-
certainty into scheduling the repair activities, while the dis-
patching heuristic does not have this property.

Figure 7 shows the mean observed coverage up to wave
w ∈ {1, 2, ..., 25} for different scheduling techniques over
all three policies. The mean observed coverage up to wave
w is Ow =

∑w
i=1 νi
w , where νi denotes the coverage of wave

i. As illustrated, LBBD achieves about a 40% higher mean
coverage over all waves than either MIP or the dispatching
heuristic. The MIP algorithm also takes the probabilistic in-
formation into account creating a repair schedule but it times
out on 72% of scheduling problems without finding a feasi-
ble solution. The dispatching heuristic then is used to create
the repair schedule. Therefore, using MIP and the dispatch-
ing heuristic results in waves with almost the same coverage
as the dispatching heuristic alone.

Table 2 presents further data for all scheduling techniques:
the mean observed coverage, the percentage of waves with
less than or equal to 0.3 coverage, and the percentage of
waves with more than or equal to 0.7 coverage. The data
indicate the clear superiority of LBBD over the dispatching
heuristic.

Question 2 DoesP31 policy provide the waves with higher
coverage than P33 and P11 policies using the optimization
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Figure 7: Mean observed coverage for different scheduling
techniques.

Scheduling Mean Observed % Waves with a % Waves with a
Technique Coverage Coverage ≤ 0.3 Coverage ≥ 0.7
LBBD 0.71 6.07 55.80
MIP 0.49 27.31 21.40
Heuristic 0.51 26.39 26.43

Table 2: The mean observed coverage, the percentage of
waves with less than or equal to 0.3 coverage, and the per-
centage of waves with more than or equal to 0.7 coverage up
to wave 25 over all the policies.

technique LBBD?
We expect that P31 with LBBD will produce better cov-

erage because it schedules over a longer horizon and adjusts
the schedule as soon as aircraft failures occur. Although P31

with the dispatching heuristic also responds quickly to the
aircraft failures, it does not incorporate the length of the
scheduling horizon into the ranking index for repair activ-
ities and always repair the aircrafts for the earliest future.

Figure 8 shows the mean observed coverage for different
policies using LBBD up to wave w ∈ {1, 2, .., 25}. The P31

policy leads to consistently higher coverage.
Figure 9 displays the cumulative percentage of the waves

with a coverage less than or equal to ω for LBBD and the
dispatching heuristic, where ω denotes the values on the x-
axis. The best performing approach will have a fewer waves
with a low coverage and more waves with a high coverage.
Therefore, its curve will be closer to the lower right-hand
corner. As illustrated, in LBBD, P31 performs better than
the two other policies. In contrast, in the dispatching heuris-
tic, P31 results in waves with the same coverage as P11.

Question 3 Does P11 have more waves with very low cov-
erage than P33 using LBBD?

We expect that P33 will result in fewer waves with very
low coverage beacuse it takes the possibility of a more dis-
tant future into account when creating the repair schedule,
while P11 policy repairs the aircraft at the earliest possible
time.

Figure 10 demonstrates that our intuitions are correct that
the P33 policy has fewer waves with very low coverage than
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Figure 8: Mean observed coverage for different policies us-
ing LBBD.
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Figure 9: The percentage of waves with a coverage less than
or equal to ω, where ω denotes the values on the x-axis.

the P11 policy using LBBD.

Question 4 Is a quicker reaction to the dynamic events
more important than scheduling over a longer horizon?

The P31 policy changes the repair schedule after each
wave and trades-off the coverage among three consecutive
waves by scheduling over a longer horizon. In contrast,
the P11 policy schedules for one wave and reacts after each
wave while the P33 policy reasons over a longer term with-
out a quick response to the dynamic events.

As already shown in Figure 8, the P31 policy results in
a higher mean coverage. The superiority of policy P31 in-
dicates that both features of quick response to the dynamic
events and long-term reasoning contribute to the overall per-
formance, but the question is which one contributes more.

To answer the question, the waves are partitioned into
buckets of size 3. We expected that P33 would achieve a
higher mean coverage over each bucket than P11 because
it reasons about the trade-off among the three waves. How-
ever, Figure 11 demonstrates that both policies achieve equal
performance until wave 15 and the policy P11 then does bet-
ter. This observation indicates that quick reaction to the air-
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equal to 0.3 using LBBD.
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Figure 11: Mean observed coverage over each wave bucket
using LBBD.

craft failures has more significant impact on the observed
coverage than long-term reasoning.

To obtain more insight, the mean observed coverage for
the first, second, and third waves in each bucket is shown
in Figures 12, 13 and 14, respectively. As illustrated, P11

results in a higher coverage than P33 for the waves sched-
uled later in each bucket. The mean difference between two
policies (P11 − P33) is equal to -5, 2, and 10 percent for the
first, second, and third waves in buckets, respectively. In-
tuitively, we expect that P11 provides the earlier waves in
buckets with a higher coverage than P33 because the later
policy trades off between three waves when assigning the
aircraft to the waves. However, the observation contradicts
our expectation and is an evidence that the quick reaction is
more important than scheduling over longer horizon.

Summary The following conclusions are supported by
empirical observations:

• LBBD provides the waves with a higher coverage than the
dispatching heuristic.

• The P31 policy results in waves with a higher coverage
than P11 policy using LBBD and with the same coverage
using the dispatching heuristic.

• The P33 policy is shown to result in fewer waves with
very low coverage than P11 policy using LBBD.

• Scheduling over a longer horizon and quickly adjusting
the schedule based on the real events are the features con-
tributing to the increase in the observed coverage. Fur-
thermore, it is shown that the quick reaction to the dy-
namic events is more important than the long scheduling
horizon.

Future Work
Although the experiments show that scheduling over a
longer horizon and responding quickly to disruptions using
optimization techniques in a dynamic and uncertain envi-
ronment yield better performance, the generality of this ob-
servation remains in question. One promising direction in
future work would be to establish a formal framework to
determine how long the scheduling horizon should be and
how quickly we should respond to real events. Bidot (Bidot
2005) presented the first steps toward a generic theoretical
framework in his PhD thesis.

In this paper, to measure system performance, we have
focused on the value of mean observed coverage, not tak-
ing into account the computational cost of applying different
policies. Although P33 is shown to be the dominant policy,
it has a greater computational cost and potentially increases
the unnecessary changes in the schedule (Aytug et al. 2005).
Optimizing over a longer scheduling horizon and reschedul-
ing repair activities once failed aircraft enter the repair shop
explain the high computational cost and the increased un-
necessary changes, respectively. How to quantify costs in
order to evaluate different policies is another interesting di-
rection for future work.

Conclusion
In this paper, we address a dynamic aircraft scheduling prob-
lem in a repair system. The goal is to meet the aircraft
requirements for each wave by assigning the failed aircraft
to the flights considering the maintenance capacity and the
aircraft failures. The number of failed aircraft dynamically
changes because of aircraft breakdowns. Our proposed so-
lution approaches solves the dynamic problem as successive
scheduling problems over multiple time periods. We use
three different scheduling techniques developed in our pre-
vious work and three re-scheduling policies to schedule the
repair activities on-line with dynamic reaction to the aircraft
failures. The length of the scheduling horizon and the fre-
quency of re-scheduling are the features defining our three
policies.

The computational results show that an optimization ap-
proach using logic-based Benders decomposition, schedul-
ing over a longer horizon, incorporating the known informa-
tion on aircraft failures, and adjusting the repair schedule as
soon as new jobs enter the repair shop yield higher mean
coverage. The results also provide evidence that quick reac-
tion to the aircraft failures is more important than schedul-
ing over a longer horizon as the policy with a higher fre-
quency of re-scheduling does better than the policy with
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Figure 12: Mean observed coverage for the first waves in
buckets.
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Figure 13: Mean observed coverage for the second waves in
buckets.
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Figure 14: Mean observed coverage for the third waves in
buckets.

longer scheduling horizon on the waves scheduled later in
each time period.
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Abstract

This paper introduces a novel use of timeline-based planning
as the core element within a dynamic training environment
designed for crisis managers. Training for crisis decision
makers at the strategic level poses a number of challenges that
range from the necessity to foster creative decision making to
the need for the creation of engaging and realistic scenarios
in support of experiential learning. This article describes our
efforts to build an end-to-end system, called the PANDORA-
BOX, that helps the trainer to populate and deliver a contin-
uous 4-5 hours training session encompassing exercises that
encourage a group of decision makers to achieve joint deci-
sions. Specifically the emphasis is given to (a) the timeline-
based representation as the core component for creating train-
ing sessions and unifying different concepts of the PANDORA
domain; (b) the combination of planning and execution func-
tionalities required to maintain and dynamically adapt a “les-
son plan” on the basis of both trainee-trainer interaction and
individual behaviors and performance; (c) the importance of
keeping the trainer in close control of the activity loop.

Introduction
When a major incident or catastrophic event occurs, it is of-
ten human behavior alone that determines the speed and ef-
ficacy of the crisis response management arrangements. In-
deed, all too often, shortcomings in the response to the emer-
gency do not stem from ignorance of procedures but from
difficulties inherent within the challenge presented when op-
erating in traumatic circumstances, particularly when addi-
tional unexpected consequences arise. Effective crisis man-
agement is a key requirement to prevent an emergency from
becoming a disaster. In recent years, poor management in
response to an emergency has often resulted in critical situa-
tions becoming far worse. Furthermore, crisis events appear
to occur more and more frequently and public expectation
for an effective and immediate response grows at a similar
pace. Thus managers, especially senior managers, have to
cope almost routinely with crisis decision situations, given
that we are now leaving in a “risk society” (Beck 1992).
In these critical circumstances, there is a tremendous ne-
cessity to have effective leadership in place. Nevertheless,
the ambiguity, urgency and high risk associated with cri-
sis situations posits some constraint on the leadership ca-
pabilities. For example, given the need for an almost im-
mediate and of course effective response to a crisis, there

is little time to acquire and process effectively all the in-
formation that decision makers would wish to have avail-
able to them. As a consequence, they are required to assess
information and make critical decisions under tremendous
psychological stress and physical demands (Klann 2003;
Leonard 2004), often caused by the difficulty of operating
in a context where losses, including both human lives and
critical resources, continue to rise until such time as the re-
sponse can get ahead of the developing crisis.

Within this context training plays a crucial role in prepar-
ing crisis managers. Specifically, training for strategic deci-
sion making has to foster the leaders’ ability to anticipate
the possible consequences of poor decisions and to con-
struct creative solutions to problems. In this light, experi-
ential learning plays a crucial role. A great amount of in-
vestment is being devoted to the development of training
procedures to increase the capability of crisis managers to
deal with emergency situations. Two main modalities are
mainly used: (a) the table top exercise (a group discussion
guided by a simulated disaster); (b) a real world simulation
exercise (field tests replicating emergency situations). Table
top exercises are generally low cost and can be easily and
frequently organized, but they cannot recreate the real atmo-
sphere, in terms of stress, confusion and pressure. On the
other hand, crisis managers trained through simulation exer-
cises in the field can be very effective and can gain valuable
skills, but such simulations are very expensive in both time
and resources and cannot be easily and quickly organized.

The PANDORA project1 aims to bridge the gap between
tabletop exercises and real world simulation exercises by
providing a near-real training environment at affordable
costs. PANDORA’s goal is to simulate all the dynamic el-
ements contained within an entire disaster scenario within
a training room setting that emulates an engaging, true-life
environment. The system will be capable of presenting dif-
ferent evolving crisis scenarios, customized to meet specific
and specified training needs according to the knowledge and
experience levels among the participating students. A key
aspect in PANDORA is the ability to create realistic con-
sequence responses to the decisions taken by trainees thus
reproducing realistic situations and facilitating the develop-
ment of a comprehensive range of decision making skills.
Additionally, the idea underpinning PANDORA is to take ac-

1http://www.pandoraproject.eu/
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count of human behaviors and individual personalities in or-
der to plan training sessions that recognize individual traits
and training needs.

We have produced a first version of the whole system
architecture, called the PANDORA-BOX, that fully demon-
strates the feasibility of our approach. Central to the PAN-
DORA system is an original use of the timeline-based plan-
ning (Muscettola 1994) to model a rich and unconventional
domain. Specifically, planning is used (1) to compute diver-
sified crisis scenarios corresponding to alternative training
paths to foster creative decision-making, (2) to model and
maintain trainees’ behavioral patterns according to which
training can be personalized, (3) to support mixed-initiative
interaction between the trainer and the automated learning
environment relying on a high level of abstraction for the
internal representation.

The remainder of this paper covers: presentation of the
main challenge surrounding the training of decision mak-
ers at the strategic level; the general building blocks of the
learning environment and the issues arising from the cre-
ation of an immersive training experience. A software ar-
chitecture for the PANDORA-BOX is introduced and the role
of a timeline-based representation as the core component for
creating training sessions is underscored. Finally, a combi-
nation of planning and execution functionalities that allows
for the maintenance and adaptation of a “lesson plan” to en-
able trainer-trainee interaction is described.

Training for crisis decision makers
When referring to planning connected to crisis management
during emergency situations, we have in mind the interven-
tion plans for those people that go directly to the operational
level of response, see (Wilkins et al. 2008). In reality there
are distinctly different levels of decision making all of which
are relevant in any crisis situation. The success of crisis
management often depends not only on the ability to apply
well established procedures, but also on the effectiveness of
high-level strategic choices. The ability of decision makers
to anticipate the possible consequences of their actions (de-
cisions) by means of flexible and forward-looking reasoning
is also crucial to an effective response to a crisis. Figure 1
summarizes the three different levels corresponding to dif-
ferent roles of crisis decision makers:

Figure 1: Different decision makers in crisis management.

– At the operational level we have the operational or
bronze level commanders, people operating within the

detailed area of a crisis situation that perform practical
activities and actions, the results of which are monitored
and communicated to higher levels;

– At the tactical or silver level decision makers that are lo-
cated close to but not within affected areas of the crisis are
responsible for translating high level strategic decisions
into actions by allocating tasks and resources down to the
bronze level. At this level the anticipated results from the
various allocated tasks are monitored and assessed for ef-
fectiveness.

– The strategic or gold level commanders identify the key
issues of a critical situation and prioritize required activity
from a detached and sufficiently high level of abstraction.
Strategies for resolving the crisis are also decided and are
then communicated to the lower levels for their detailed
specification and implementation.

The choices at the strategic level are particularly important
and critical for the success of the overall crisis response
and specifically for devising strategies to contain and correct
the developing situation by anticipating future consequences
with decisions that try to avoid escalating of the crisis situa-
tion.

Also depicted in Figure 1 are the different roles of cri-
sis managers corresponding to the different decision-making
levels. Specifically, at the strategic level, decision making
is mainly unstructured and not describable in terms of pro-
grammed or fixed procedures, being mainly related to the
novelty and unpredictability of a catastrophic event. Taken
in this view, it is therefore assessed to be non-programmed
decision making effort unlike the silver and bronze levels
that will respond to higher level tasking and direction in a
disciplined and procedural manner.

Most of the state-of-the-art training support systems and
simulators are aimed at the operational or tactical levels.
PANDORA however is specifically targeted towards strategic
level decision makers thus presenting difficult challenges at
both modeling and computational levels. Additional chal-
lenges arise from the need to foster quick decision making
in stressful conditions and the need to encourage creative
thinking to devise workable strategies to deal with uncom-
mon situations.

Among the main objectives for gold commanders during
a crisis are: protection of human life and, as far as possible,
property; alleviation of suffering; support for the continuity
of everyday activity; the restoration of disrupted services at
the earliest opportunity; upholding the rule of law and the
democratic process. The speed with which recovery strate-
gies are identified to contain and resolve the crisis also has a
great influence on the scale of loss of whatever nature. For
this reason the strategic decision maker has to develop an
ability to quickly react and decide to promote the overall
goal of obtaining a rapid return to normality.

In this light, training plays a fundamental role. At the
strategic level, training aims to teach decision-makers to fo-
cus on the possible consequences of their actions. It also
teaches the value of integrating and testing the compatibility
of plans and the need to work in collaboration with other or-
ganizations and between different nations, to promote conti-
nuity of efforts and to have a well-defined focus.
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One approach to decision making promotes the need for
a creative decision making process to identify and construct
potential courses of action in response to an identified de-
veloping situation. These possibilities are then filtered and
reduced to a set of feasible options. The process is gradually
refined until alternatives are decided between and a specific
(best or least worse) course of action is to be chosen that will
be adopted to achieve the identified strategic aim.

As mentioned earlier, two different delivery methods are
currently used for training, the table top exercise and the
real world simulation exercise. The PANDORA concept is
to replicate the benefits of both of these methods by devel-
oping a system capable of guaranteeing the realism of the
real world simulation and the practicality and affordability
of table top exercises.

The PANDORA approach. Goal of the PANDORA
project is to build an intelligent training environment able
to deploy a spectrum of realistic simulations of crisis sce-
narios that: (1) reproduce the stressful factors of the real
world crisis; (2) personalize the planned stimuli according
to the assessed abilities of different trainees and (3) supports
the dynamic adaptation of “lesson plans” during the training
time-horizon.

The system design has followed a user-centered approach,
based on a close cooperation with the training experts
who have profoundly influenced the shaping of the system.
Specifically, the Cabinet Office Emergency Planning Col-
lege (EPC) has synthesized their experience, gained from
training a wide range of senior decision makers combined
with their pre-eminent expertise in emergency planning and
crisis management. As the end user representative in the
PANDORA consortium, EPC has contributed to identify the
main requirements specification of the innovative training
environment, and is influencing the design and implementa-
tion choices.

A number of general constraints have emerged during a
first phase of user requirement analysis:

– Support cooperative decision making: it has become clear
immediately how important it is to train gold commanders
to take key decisions jointly in collaborative working con-
ditions.

– Training personalization: the role of personalized teach-
ing has been underscored even within a group decision
making context.

– Mixed-initiative interaction: The need to have a tool that
would empower the trainer to adapt and adjust the train-
ing session in real time run became apparent rather than
relying upon a video-game type of immersive experience,
hence the need to create a mixed-initiative environment in
which the trainer is fully integrated in the “lesson loop”.

Figure 2 shows the main architectural idea pursued within
the project to obtain a system called the PANDORA-BOX
whose current complete version was officially demonstrated
in March 2011. The system comprises three environments:
(a) a Trainer Support Framework allows the trainer to keep
control of the training session and dynamically adjust the
stimuli based on his/her experience; (b) distributed Trainee

Figure 2: The PANDORA-BOX general architecture

Clients can access the PANDORA-BOX and receive both col-
lective and individual stimuli during a lesson; (c) a PAN-
DORA kernel which is the main engine that generates the
“lesson plan”, animates it in an engaging way and adjusts
it on a continuous basis to keep pace with both the evolu-
tion of the specific group of people under training and their
individual performance.

Specifically, a group of trainees, representative of the dif-
ferent agencies that would be involved in the resolution of a
crisis (e.g., Civil Protection, Local Authorities, Health, Fire
Rescue, Police, Transportation Agencies and so on) have ac-
cess to the training system through their work station. If
some of the representative authorities are not present they
would be simulated by the PANDORA system through a Non
Player Character (NPC), in which case, features and deci-
sions are synthesized by the trainer via the system.

The various participants in the training session are char-
acterized by different aspects, both in relation to the com-
ponents closely linked to their role and responsibility, and
for the particular “affective states” they may exhibit during
the training experience in response to the presented stim-
uli. Therefore, each trainee, by interacting with the system,
feeds personal data to the PANDORA-BOX, which gathers
this information to build a user model (Behavioral Model
shown at Figure 2). Based on this model, the system syn-
thesizes a personalized training path that meets the specific
needs and status of each trainee (Behavioral Planner). The
output of this process is passed to a second module (the Cri-
sis Planner), which on the basis of the Behavioral Module’s
indications, as well as the knowledge of the chosen guid-
ing training scenario, synthesizes a sequence of stimuli ap-
propriate for both the group (information shared among all
trainees) and the individual trainees (information tailored to
induce the “right level of stress” for different individuals).

The plan synthesized by the crisis planner is then given
as input to the module called the Environment and Emotion
Synthesizer which is responsible for an effective rendering
of the training temporal plan. In practice this module adds an
additional level of “realism” to the stimuli, by customizing
the appropriate presentation mode (e.g., introducing back-
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ground noise or other distraction during a phone call report)
in order to achieve a high level of realism, stress and pres-
sure. The use of advanced 3D scenario reproduction is also
included and assessed in the project.

Overall the PANDORA-BOX supports the loop trainer →
training environment → trainee, encouraging the customiza-
tion and adaptation based on the users feedback as well as
the inclusion of training goals and other inputs by the trainer.

We now turn to timeline-based planning technology
within the PANDORA-BOX and describe how the planning
technology has become the unifying element of the overall
system.

The planning problem
The basic goal for the training environment is to create and
dynamically adapt content for a four hour continuous train-
ing session. The pursued idea is to represent a session’s
content as a plan composed of different “messages” to be
sent to trainees which have temporal features and causal re-
lations among them. In PANDORA a lesson master plan is
first synthesized starting from an abstract specification given
by the Trainer. It is then, animated, expanded and updated
during its execution, in response to new information gath-
ered from the trainees and the decisions that they may make.
Specifically, the lesson master plan contains time-tagged ac-
tivities that trigger multimedia events presented presented to
the trainees. A key aspect will be the reaction of trainees
to lesson stimuli (e.g., the answer to a request to produce a
joint decision on a specific critical point). “User reactions”
internally represented in the plan trigger different evolutions
of the current plan thus supporting dynamic adaptation.

The use of AI planning is quite natural for creating such
a master plan. Previous work exists on the use of constraint
reasoning for synthesizing multi-media presentations (e.g.,
(Jourdan, Layaida, and Roisin 1998)), and on the use of
planning in story-telling (e.g., (Young 1999)), etc. The main
“technological idea” we have pursued in PANDORA is to use
timeline-based technology to represent and organize in time
heterogeneous information, a choice that naturally matches
some of the manipulations that were specifically required by
the master plan representation within the project. In particu-
lar two aspects offered an interesting challenge for timeline
based technology: (a) the idea of doing planning, execu-
tion, re-planning in a continuous cycle; (b) the possibility
for modeling a completely different type of information with
respect to the “usual” applicative domains in which timeline-
based planning has been used (e.g., (Muscettola 1994;
Jonsson et al. 2000; Cesta et al. 2011)).

A timeline-based problem representation. Figure 3 ex-
emplifies the basic modeling features and introduces some
terminology for the PANDORA domain modeling. The main
data structure is the timeline which, in generic terms, is a
function of time over a finite domain. For the purpose of
this description we call “events” the values for a timeline.
Events are represented with a predicate holding over a time
interval and characterized by start and end time 2.

2Events here are equivalent to “tokens” in other timeline-based
approaches (Muscettola 1994). The reason for re-naming them is to

Events can be linked to each other through relations in
order to reduce allowed values for their constituting param-
eters and thus decreasing allowed system behaviors. In gen-
eral, relations can represent any logical combination of lin-
ear constraints among event parameters. According to the
number of involved events, relations can be divided into
unary, binary, and n-ary. For example, unary relations are
used in the PANDORA-BOX to fix initial scenario event pa-
rameters by placing them in time. Given an event e, an ex-
ample of unary relation can be start-at (e, 15, 20) forcing
the starting time of the event e to be constrained inside sim-
ulation time interval [15, 20]. Given two events e0 and e1, an
example of binary relation can be after (e0, e1, 100, 120),
forcing the starting time of event e1 constrained to be a mini-
mum 100 and maximum 120 time units after ending the time
of event e0.

Figure 3: The timeline-based plan data structure

An “Event Network” is a hyper-graph having events as
nodes and relations as hyper-edges. Through the concept of
an Event Network, the whole timeline-based planning pro-
cedure can be reduced to the process of reaching a target
Event Network, that meets the desired goal conditions, start-
ing from an initial Event Network. In our case, goal condi-
tions are characterized by high level scenario events repre-
senting the abstract blueprint for the master plan while the
initial Event Network is, trivially, an empty Event Network.

In the example of Figure 3 we see an Event Net-
work distributed over 5 timelines (three representing dif-
ferent media for giving “active” information about a
situation (tv news, radio news, email msg), and
two more special to purpose, seeking trainee input
and gathering such input (request to trainees,
decisions from trainees) 3.

A further basic ingredient in timeline modeling are the

focus attention on the PANDORA main task, namely the generation
of timeline values to be “rendered” as a specific multi-media event
when presented to trainees. Even if the use of timelines in PAN-
DORA is wider with respect to the pure generation of multi-media
events, the name survived to facilitate communication internal to
the project.

3As usually done in timeline-based planning, the sketchy Event
Network shown in the figure is defined on top of a Temporal Con-
straint Network and included between a start-time and end-time of
a temporal horizon.
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so-called “Causal Patterns” (see an example in Figure 3).
These are a way to express planning domain/causal rules in
the current internal representation. Any given Event Net-
work should be consistent with respect to the set of such
specified causal patterns 4.

Patterns are defined through a logic implication
reference → requirement where reference is the
event value that demands pattern application while
requirement is the “consequence” of the presence of the
reference value in the Event Network. Making use of a
recursive definition, a requirement can be a target event
value, representing a new value on the same or another
timeline and a relationship between reference value and
target values, a conjunction of requirements or a disjunction
of requirements. Being relations, in the most general case,
linear constraints, causal patterns allow great expressiveness
that allows a PANDORA modeler to represent quite complex
behaviors.

A planning domain is generically defined by creating a
set of timelines and a set of Domain Causal Patterns. From
this basic domain representation, receiving a set of goals a
planner generates an event network to be executed.

Opening the PANDORA ... BOX
Having introduced the basic modeling features we now de-
scribe the use of reasoners that support PANDORA func-
tionalities. Figure 4 shows the different modules that work
around the Timeline-based Plan Representation which is the
central data structure as always in this type of planning ap-
plications.

Trainer abstract plan. The initial driving role is given
to the Trainer. Through his Support Framework the trainer
can loads a specific “Scenario”, an abstract plan sketch that
works as a sequence of “lesson goals” and as a skeleton plan
for the ground planner. The scenario is contained in a partic-
ular timeline that generates sub-goaling by interacting with
the set of domain causal patterns. Scenarios have the double
role of enabling the Trainer to reason on a high level of ab-
straction thus avoiding the details of the planning technology
and to continuously influence the event network that actually
implements the detailed lesson at ground level. Furthermore
the Trainer is endowed with commands to introduce single
steps in a scenario hence triggering dynamic plan adapta-
tion. It is worth highlighting how the overall system aims
to empower the trainer with a more effective means to train
people. Indeed the suggested crisis stimuli as well as the
behavioral analysis is offered to the trainer who can influ-
ence at any moment the training session in perfect line with
a mixed-initiative style.

The Planner in Figure 4 works on the ground timeline rep-
resentation to create the training storyboards, e.g., the set of
connected “events” that are communicated to the trainees
(e.g., a video news from the crisis setting, a phone call or

4Causal Patters are defined within a domain description lan-
guage, similar to compatibilities (Muscettola 1994) or synchro-
nizations (Fratini, Pecora, and Cesta 2008), that allow to specify
a pattern of mixed time/causal value relations involving PANDORA
events.

Figure 4: A blow-up of the PANDORA-BOX

e-mail from a field manager, and a set of temporal distances
among events). Once the planner has achieved a fix-point
given the abstract scenario goals from the Trainer and the
Domain Causal Patterns, the responsibility is left to the Plan
Dispatcher that step-by-step executes the plan by sending
events to the Rendering Environment according to their pro-
gressive start times. Some of the events are requests for
trainees to make decisions (see Figure 3), the result of which
are fed back to the timeline representation as additional in-
formation for plan adaptation. In fact the Planner is able to
reacts to trainees’ strategic decisions, triggering consequent
events to continue the training session.

A further path on the dynamic adaptation of the lesson
plan is given by the personalization for each trainee which
is fostered by the block named Trainees Behavior Modeler
and Reasoner. Through this module psycho-physiological
trainee features are modeled and updated during training
and internally represented as timelines. Specifically a set
of “relevant user variables” has been selected among those
that influence human behavior under crisis and used to build
a trainee model. The timeline-based approach also supports
the dynamic update of the user model during the training
session. Based on this model, the Behavioral Reasoner, syn-
thesizes specific result timelines that are used as goals by the
general planner, thus introducing a continuous loop of adap-
tation aimed at tailoring the intensity of stimuli to individual
trainees.

Planning a lesson. Starting from scenario goal events and
from the set of domain causal patterns, the planning pro-
cess generates a target Event Network that is consistent with
the given goals, ordering events in time through schedul-
ing features and producing proper event consequences. Ad-
ditionally, as described in previous section, new goals can
be added during crisis simulation to represent (a) decisions
taken by trainees, (b) inferences made by the behavioral rea-
soner, (c) new scenario steps added by the Trainer. The PAN-
DORA planner is therefore able to replan in order to make its
current Event Network to remain consistent with respect to
the new dynamic input and with its consequences, namely,
changing the current course of the simulated crisis.
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In general, target event values are added to current Event
Network producing new goals that require pattern applica-
tion in order for them to be causally justified. It is worth
noticing that disjunctions of requirements produce branches
on the search tree guaranteeing varieties of presented sce-
narios. In particular, it may happen that some rule cannot
be applied since it imposes too strict constraints resulting
in an inconsistent Event Network. In such cases, a back-
jumping procedure allows to go back to the highest safe de-
cision level. When the planning process succeeds, an Event
Network consistent with given goals replaces current plan-
ner state. At present we are using a planner which is inspired
by (Fratini, Pecora, and Cesta 2008) but is specifically tai-
lored to PANDORA needs.

It is worth noting that because not all courses of action in
a crisis can be predicted at scenario design time we have also
endowed the Trainer with a service that allows to incremen-
tally modify the ongoing scenario in order to adapt the sim-
ulation to unpredicted trainees’ decisions. Alternatively, the
trainer can manipulate ongoing crisis to bring back execu-
tion to a desired behavior having already predicted courses.
This kind of scenario modifications are stored in a knowl-
edge base providing capacity to expand and evolve the sys-
tem training capabilities during its use.

The role of trainees modeling and personalization. The
trainee’s profile are built by considering relevant variables
known to have an influence in decision making under stress
(Cortellessa et al. 2011). An initial assessment is made
through standardized psychological tests and physiological
measurements made off-line, immediately before the train-
ing session begins and updated during the training session.
We choose to model trainees variables, similarly to the les-
son storyboard, hence using timelines, in order to maintain a
unique representation system. Therefore, with a little over-
head of terminology, we will call event any of the values on
timelines.

We demonstrate how lessons personalization is planned
for through a simple example. Two trainee features that are
relevant during training (Cortellessa et al. 2011) are:

– the background experience, the crisis leader’ past ex-
perience in managing crisis situation. A short ques-
tionnaire assesses leaders socio-demographic informa-
tion, their previous experiences with leading public health
and safety crises and their level of success in doing it.
This variable can be used also for tuning the right level
of difficulty during the training exercise. We represent
background experience through predicates of the form
background-experience (x) where x is an integer as-
suming values 0 for low experience, 1 for medium ex-
perience and 2 for high experience;

– the self efficacy defined by (Bandura 1986) as the peo-
ple belief in their capabilities to perform a certain task
successfully. It has been shown that this variable has
influence on different aspects like the ability to manage
stressful situations, performance as well as the probabil-
ity to receive benefits from training programs. We rep-
resent the self efficacy through predicates of the form

self -efficacy (x) with x being an integer ranging from
0 to 10.

In order to explain how trainees are assigned to profiles dur-
ing training, let us suppose that a trainee x answers to a self-
efficacy question and that, consequently, an event represent-
ing its updated level of self-efficacy is added to his (or her)
self-efficacy timeline. The causal patterns that is applied by
the planner have a structure similar to the following:

x.self -efficacy →
{
pro : x.profile

during (this, pro, [0,+∞] , [0,+∞])

This patterns assures that every time we have a self-efficacy
update, an event, named pro locally to the rule, is added
to profile timeline of trainee x, new self-efficacy value
must appear “during” pro (triggering event’s starting point is
constrained to be [0,+∞] before pro’s starting point while
pro’s ending point is constrained to be [0,+∞] before trig-
gering event’s ending point). Once the event pro is added to
current Event Network the solving procedure is called and
requires itself a pattern application.

Let’s assume now that the following requirements, repre-
senting trainee association to different profiles, are defined
inside the Behavioral Modeler:

r0 : (se.value = 0 ∧ be.value = 0 ∧ is.value = 0)

r1 : (se.value = 1 ∧ be.value = 0 ∧ is.value = 1)

. . .

These requirements basically state: if self-efficacy value is
equal to 0 and background-experience is equal to 0 than
induced-stress’ value parameter must be equal to 0; if self-
efficacy value is equal to 1 and background-experience is
equal to 0 than induced-stress’ value parameter must be
equal to 1; etc.. Enacting such requirements the association
of trainees to profiles can change. Profile information is than
passed on to the Crisis Planner that updates values of other
timelines associated to trainee x, for example, changing the
amount of induced stress for the trainee x, using a pattern
like:

x.profile →



se : (?)x.self -efficacy
be : (?)x.backgroung-experience
is : x.induced-stress
contains (this, se, [0,+∞] , [0,+∞])

contains (this, be, [0,+∞] , [0,+∞])

equals (this, is)

r0 ∨ r1 ∨ . . .

where the (?) symbol forces target values se and be to
“unify” with an already solved event in order to close the
loop and interrupt the pattern application process for the
event. Finally, induced stress pattern selects proper events
from Crisis Knowledge Base and propose them to the trainee
in order to generate an adequate stress level with the aim of
maximizing the learning process.

Executing the lesson plan. Another important function-
ality of the PANDORA system, the more relevant for un-
derstanding the use of plans, is represented by the lesson
plan execution. Simulation time t is maintained by execu-
tion module and increased of execution speed dt at each ex-
ecution step. Each timeline transition that appears inside
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Figure 5: Screenshots of the current Trainer and Trainee Interfaces

interval [t, t+ dt] is then dispatched to PANDORA rendering
modules for creating the best effect for the target trainees.
By maintaining information about current simulation time,
the executor module is responsible for placing in time events
that represent trainees’ actions, adding proper relations, thus
fostering re-planning features, or plan adaptation, in order
to integrate actions’ consequences inside current Event Net-
work.

Additionally, the training process requires utilities for
temporal navigation through the storyboard allowing execu-
tion speed adjustments as well as features for rewind and
rerun. When going back in time, two different behaviors are
provided by PANDORA-BOX:
– default roll-back, intended for debriefing purposes, that

simply updates current simulation time t to desired target
value keeping untouched actions taken by trainees;

– heavy roll-back, intended to revert to a crucial decision
point at time t, removing each event representing trainees’
choices at time t′ > t, along with their consequences, in
order to allow a different simulation course.

A further feature worth noting is that at the end of a train-
ing session the resulting completed plan contains all the in-
formation given to the class, as well as well as the trainee
decisions to required questions, the simulated consequences
of such decision and also the trainee’s psycho-physiological
state evolution. In general this is an annotated plan that can
be used by the trainer during a debriefing phase to explain
pros and cons of the trainees behavior during the lesson. The
different roll-back functions could contribute to this phase to
re-run stretch of the lesson for explanation purposes.

Current status
A first prototype of the complete system has been produced
in early December 2010 while a first robust version of the
PANDORA-BOX has been officially demoed on March 2011
to the EU project officers during the for mid-term project re-
view. To give the reader an idea of the system at work this

section describes first some aspect of the interactive environ-
ment that connects Trainer and Trainees and then presents a
simple experimental table to show the time needed to the
planner to synthesize event networks of different size.

The interactive environment. Figure 5 depicts some of
the interaction features that have been implemented in the
demonstrator. Specifically, we can distinguish between two
types of interaction:

– trainer-system interaction, indicated as Trainer View,
which is related to the functionalities available to the
trainer to create a training session, monitor, edit it and
interact dynamically with the class;

– trainee-system interaction, indicated as Trainee View,
which is the interface through which the trainee can con-
nect to the PANDORA-BOX, receive stimuli and make de-
cisions about the critical situation.

Trainer View. After creating a class, the trainer can
load a Scenario, and see it in tabular form with a series of
important information such as the execution time of each
goal event and who is the main recipient of information. It
is worth highlighting how this representation reproduces the
current way of working of the trainers and has been instru-
mental in establishing a dialogue with them, before propos-
ing any kind of completely new solutions. Along with the
scenario, the interface also contains information about avail-
able resources to resolve the crisis and the consequences of
trainees’ decisions, both represented through resource time-
lines and dynamically updated during the training. In paral-
lel with the traditional tabular view, the trainer can inspect
a more advanced view of the PANDORA module, that is the
internal representation of both the Crisis and the Behavioral
Framework (Expert View). As already said, all type of infor-
mation within PANDORA is represented as a timeline and
continually updated (see different colors for timelines re-
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lated to the crisis and the user model in the Expert View). At
this point, through the Execute button, the trainer can start
the session. A series of additional commands also allows the
trainer to dynamically add new stimuli, in perfect line with
the mixed initiative interaction style.

Trainee View5. The Trainee interface contains three
main blocks, in addition to a number of features related
to communication of each trainee with the rest of the class
and the trainer. The main building blocks are the following:
Background Documents, which represents a set of informa-
tion delivered off-line to the class in the form of maps, doc-
uments, reports, in order to create awareness about the up-
coming exercise; Dynamic information that represents the
information dynamically scheduled and sent to the trainee
in the form of videos, maps, decision points etc.; Main
Communication Window, which is devoted to display stimuli
(possibly customized) to individual trainees or to the class.

The interaction environment has been critical in our di-
alogue with the end users and will be further refined on
the one hand to satisfy user requirements on interaction, on
the other to make the advanced features more useful for the
trainer eventually filling the gap between the internal repre-
sentation and users’ expectation, with the aim of promoting
their active involvement in the management of training.

Table 1: Average problem solving times in proportion to ini-
tial goal number.

goal # avg. t (ms) ev. # var. # constr. #
26 36 46 459 42
32 54 64 1459 92
76 296 186 2459 142
101 455 256 3459 192
126 979 326 4459 242
151 1511 396 5459 292
176 1903 466 6459 342
201 2864 536 7459 392
226 3793 606 8459 442
276 6241 746 10459 542

The planning time constants. In order to give an idea of
the performance of the timeline-based internal engine we re-
port here an initial scaling test. In particular we have gener-
ated a fixed training class of a single trainee plus four NPC
players, leading to a total number of 84 timelines, and at-
tempted to load several crisis scenarios of increasing com-
plexity. Table 1 summarizes average scenario loading times
showing initial imposed goals, planner solving times ex-
pressed in milliseconds, and events number resulting after
planning process. Finally, last two columns show the num-
ber of involved variables and constraints among them in or-
der to give an idea of underlying problem complexity.

Ongoing work is aimed at finding a smarter way to re-
move elements from an Event Network, at increasing over-
all performances through some preprocessing steps and at
facilitating scenario editing in order to allow non-technical
people to easy modify simulated crisis.

5The current Trainee interaction features have been imple-
mented by our colleagues from XLAB.

Conclusions
This paper has described the year one demonstrator of the
PANDORA project. Main goal of the paper is to give the
reader a comprehensive idea of the use of planning technol-
ogy in the PANDORA-BOX. We have seen how the represen-
tation with timelines is the core component of the crisis sim-
ulation, and that a continuous loop of planning, execution,
plan adaptation is created to support personalized training
with Trainer in the loop.
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Abstract

We describe SHOGUN, a fully automated system for con-
trolling tactical agents, developed for integration within
simulation-based command and control training centers pro-
duced by Elbit Systems Ltd. In particular, we focus on
describing the action planning module of SHOGUN: while
controlling tactical agents in military-style domains involves
dealing with uncertainty and partial information in adversar-
ial settings, the planning module of SHOGUN is based on clas-
sical, deterministic planning only, and employs a general-
purpose classical planner. We describe our embedding of
classical planners within the commercial command and con-
trol training center, and report on a recent evaluation of
SHOGUN in operational scenarios, confronting subject mat-
ter experts as trainees.

Introduction
Comprehensive training of forces responsible to react in
complex adversarial situations is critical for military high
and low intensity conflicts as well as for homeland secu-
rity scenarios of border control and smart city environments.
Such a training should put together teams of trainees at var-
ious levels of command, and train them in realistic setups
to improve their command and control (C2) capabilities. A
vastly dominating portion of C2 training is delegated these
days to software simulation systems in which commands
of both role-playing trainees and adversary-playing instruc-
tors are accomplished by the respective computer gener-
ated forces (CGF). Following the paradigm of “train as you
fight”, the trainees are connected to the virtual battlefield
through their operational C2 systems and combat-net radio,
coupled by the overall training system to the simulation.

These days, commercial simulations for C2 training al-
ready achieve a sufficiently high level of realism in terms
of modeling the physical properties of both the environ-
ment and forces. The outcome of the training, of course,
depends a lot on the effectiveness of the instructors play-
ing the role of the adversary, and this turns out to be an is-
sue. Putting together a team of skilled and coordinated role-
players needed for a large-scale simulated exercise requires
months of costly preparations, availability of instructors for

∗The work was partly funded by a Magneton Grant. The au-
thors would like to thank Yoav Manor and Gilad Mandel from Elbit
Systems for their devoted work on the project.

a long period of time, and a suitable venue. These limi-
tations of relying on human instructors in simulation-based
training suggest at least partly replacing them with artificial
adversary-players implementing this or another action plan-
ning technology. Here we describe SHOGUN, a fully auto-
mated system for controlling tactical agents within a com-
mercial military training simulation. SHOGUN has been de-
veloped in a joint effort of Elbit Systems Ltd. and the Tech-
nion for subsequent integration within the line of large-scale
simulation-based training centers produced by Elbit. This
system has been recently deployed to Elbit, and successfully
passed a detailed performance evaluation.

An interesting property of SHOGUN is that the planner
it embeds is not just inspired by the artifacts of academic
AI research, but actually is such a direct artifact. More-
over, while in general controlling tactical agents in rele-
vant domains involves decision making under uncertainty
and partial information in adversarial settings, our experi-
ence provides yet more evidence that successful reasoning
about real-world systems of active entities does not neces-
sarily have to take explicitly into account all that complexity
when choosing between alternative courses of action. While
classical planning, capturing single-agent problems with de-
terministic actions and effectively full knowledge, has been
repeatedly criticized for being unrealistic and thus irrelevant
to real-world problems, here we demonstrate that this crit-
icism should be taken with lots of caution: The decision
making module of SHOGUN is based on classical, PDDL-
based planning only, and employs a general-purpose (and
thus fully replaceable) classical planner.

In what follows we describe our embedding of classical
planners within the commercial C2 training system, as well
as the way in which we divide-and-conquer the details of
the physical system between the planning and the simulation
modules. We then describe the aforementioned evaluation of
SHOGUN in operational scenarios, confronting professional
military personnel as trainees.

SHOGUN Architecture and Design Decisions
In this section we describe the overall architecture of
SHOGUN, focusing on the adopted planning and execution
formalism and its support within the system. At high level,
SHOGUN comprises a standard architecture of iterative plan-
ning, depicted in Figure 1a. It consists of three major mod-
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input: planning task stub Π = 〈V,A,G〉
local: partial-order plan ρ
ρ = 〈·〉
forever:

receive from EM the current state of knowledge σ and
plan status {ρdone, ρexe, ρnext}

s = TRANSLATE(σ,Π)
s′ = PROGRESSION(s, ρexe)
if VERIFY-PLAN(s′, ρnext) fails then
ρ = MAKE-PLAN(〈V,A, s′, G〉)
send ρ to EM

(a) (b)
Figure 1: High-level (a) structure of the system, and (b) flow of the planner interacting with the KE abstraction mapping.

ules: (i) a planning module, (ii) a plan execution monitor,
and (iii) a real-time high fidelity 3D tactical computer gen-
erated forces (CGF) simulation in which the actions selected
by both trainees and instructors are actually simulated.

Planning, Execution simulation, and Monitoring
The CGF simulation maintains the entire battlefield arena,
and supports an arbitrary number of force types (such as
tanks, artillery, reconnaissance, etc.), as long as the simula-
tion is provided with their respective physical models. The
simulation runs a full 3D virtual environment of the terrain
and physical models of sensors (such as line of sight and
detection) and actuators (such as ballistics, path planning,
and movement). The battlefield comprises two adversarial
forces, blue force and red force, each comprising a, possibly
heterogeneous, set of acting units. The trainees fully control
the blue force troops and interact with the virtual arena via
a training station using a high-level language of command.
The planning module replacing the instructors fully controls
the red force, and communicates with the simulation via ef-
fectively the same language of command. The control of the
red force is achieved via a planning and execution loop that
takes place during the entire training session. The overall
loop is described below and the perspective of the planning
module on that loop is pseudo-coded in Figure 1b.
• The execution monitor pulls from the CGF simulation all

the data σ required to provide the planner with the cur-
rent state of the red units (their locations, heading, am-
munition, etc.), as well as with those parts of the state of
the blue units that are considered by the simulation to be
observable by the red units. Status of the blue units not
detected by any red unit is not provided to the planner.
Likewise, the execution monitor pulls from the CGF sim-
ulation a status of the currently executed plan ρ of the red
force. Since the execution is continuous, at the moment
of the query some of the actions of ρ have been already
accomplished, some have started and are still executing,
and some are yet to be started. Note that “accomplished”
can stand here for both “successfully accomplished” and
“failed”. In any case, both the collected state of knowl-
edge σ and the plan status {ρdone, ρexe, ρnext} are passed to
the planning module.

• The CGF simulation is the core of the virtual arena of
Elbit’s strategic and tactical training centers, designed to

communicate with the training stations of human opera-
tors. Hence, the information σ about the current state of
the (observable) world takes the form of a raw data. This
raw data is then translated to a state of the world descrip-
tion s, corresponding to the abstraction of σ in terms of
the planning problem operated by the planner. This trans-
lation is based on a knowledge engineering layer that is
devoted to bridge between the physical view of the simu-
lation and the symbolic view of the planner.

• Given state s and plan status {ρdone, ρexe, ρnext}, the plan-
ning module estimates whether the current plan ρ of the
red force is still valid. In case the goal of reds turns out
to be unachievable from s along the still unaccomplished
part of ρ, a new plan is generated from the new initial state
s, and passed to the execution monitor.

Classical planner: Why and How.
The heart of SHOGUN is its planning system. The first deci-
sion we had to make is whether to develop a special-purpose
planner, or to adopt a generic, model-oriented planning sys-
tem. The second, and in a sense, tangential decision we had
to make was what details of the problem the planner should
take into account and what details it could ignore without
sacrificing the quality of the training.

While in principle special-purpose solutions can be more
efficient and effective than generic ones, their development
requires the enterprise to establish a development team in
the respective area of expertise. Along with the fact that the
development basically starts ”from scratch”, that adds nu-
merous risks to the project. Generic planners obviously do
not exhibit these risks by the virtue of being generic, having
potential to be reused between various verticals. Of course,
model-oriented generic planners come with their own risks
such as capability of the respective model to capture the de-
sired domain, the computational efficiency of the planner on
the domain of interest, etc. However, in contrast to the risks
associated with developing a brand new special-purpose sys-
tem, these risks can be verified in very short time at the be-
ginning of the project using an off-the-shelf planner.

Considering now the choice of the planning formal-
ism, decision making in C2 environments of our interest
always involves action non-determinism, partial informa-
tion, and adversarial settings (Wilkins and Desimone 1992;
Tate et al. 2000; Kott et al. 2005). A priori, this sug-
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gests that our planning tasks should be specified in terms
of much more complicated action models than that of clas-
sical planning because the latter assumes deterministic ac-
tions, effectively full knowledge, and single-agent setting.
Adopting complex planning formalisms, however, comes
with a price: the performance of planning for such for-
malisms currently does not meet the requirements of large-
scale C2 training. On the other hand, the performance of
classical planners has been dramatically improved over the
last two decades, and today these are capable of generat-
ing in seconds plans of hundreds of steps in state models
of more than 21000 states. In addition, it is of growing un-
derstanding that successful reasoning about real-world sys-
tems of active entities does not necessarily have to explic-
itly take into account all the complexity of the reality while
choosing between alternative courses of action. This prop-
erty of many real-world domains has been exploited in the
past both in experiments (Yoon, Fern, and Givan 2007;
Yoon et al. 2008), as well as in ambitious applications of
AI reasoning (Muscettola et al. 1998).

Departing from this matter of business, we have decided
to start with a fully off-the-shelf satisficing classical planner,
adapting it only when really needed and only via external
wrappers. Specifically, in the experiments described later
on, SHOGUN was using the very popular these days Fast
Downward planner (Helmert 2006), using its greedy best
first and WA? search engines, and the seminal FF heuris-
tic (Hoffmann and Nebel 2001). The actual planning tasks
have been encoded using the PDDL language of the In-
ternational Planning Competitions (IPC) 1. PDDL allows
representing planning tasks concisely using first-order lit-
erals and logical connectives. Fast Downward compiles
PDDL input into a ground representation with variables of
arbitrary finite range (Helmert 2006). The representation
used in Fast Downward is based on the SAS+ action lan-
guage (Bäckström and Nebel 1995), and extends it with con-
ditional effects and derived predicates. A SAS+ planning
task2 is given by a quadruple Π = 〈V,A, s0, G〉, where:

• V = {v1, . . . , vn} is a set of state variables, each associ-
ated with a finite domain dom(vi).

• the initial state s0 is a complete assignment, and the goal
G is a partial assignment to V .

• A = {a1, . . . , aN} is a finite set of actions, where each
action a is a pair 〈pre(a), eff(a)〉 of partial assignments
to V called preconditions and effects, respectively. Each
action a ∈ A is associated with a non-negative real-valued
cost C(a).

An action a is applicable in a state s ∈ dom(V ) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified. Applying
a changes the value of v to eff(a)[v] if eff(a)[v] is speci-
fied. A sequence ρ of actions applicable in the respective
states starting from s0 is a plan for Π if the resulting state s
satisfies G.

1
http://ipc.icaps-conference.org/

2For ease of presentation, we present here only the core
SAS+ language; for details of the extension we refer the reader
to (Helmert 2006).

Formulating planning tasks in SAS+ comes to provide us
with a high-level abstraction of the underlying system dy-
namics: capturing world states at the level of physical simu-
lation would require huge sets of state variables and actions,
some state variables are not necessarily observable at any
given moment, simulated actions are very much not deter-
ministic, the adversarial blue forces controlled by trainees
affect the environment, etc. However, planning at the level
of SAS+ has the advantage of fast problem solving, having
the potential for compensating for the abstraction coarseness
via rapid monitor-and-replan iterations. In what comes next
we describe our abstraction mapping of planning tasks from
the level of simulation to SAS+.

• Symbolic abstraction of the physical world. The function
TRANSLATE used by the planning module in Figure 1b to
map a physical state σ to a SAS+ state s is implemented
via a knowledge engineering sub-module (KE). The latter
comes to bridge between the general-purpose planner and
the specifics of the simulated domain; as such, it is used
twofold. First, KE allows a user to define various layers of
information over the map of the training area. These lay-
ers describe strategic points, passable areas, ballistically
dominating areas, etc., and for most, they can be derived
automatically from the digital map used by the simula-
tion. This processing can be performed once per map,
and thus completely offline not only to a specific train-
ing session, but to the training in general. In addition,
the subject matter expert (SME) in charge of the training
session can use KE to further enrich this information by
specifying, e.g., regions that he prefers not to be used for
movements/positions of specific units. Based on the now
defined information layers of the map, KE maps status
messages received from the execution monitor to proper
values of the respective SAS+ variables. The abstraction
of the geographic data such as unit locations and headings
is archived via a, possibly non-uniform, grid overlaid on
the map.

• Non-determinism of actions. While basically all actions
of the units are simulated to have stochastic effects, the
entropy of the underlying probability distributions is usu-
ally low, and typically they have single peaks that take
most of the probability mass. A natural abstraction of
such actions to fully deterministic SAS+ actions simply
ignores all but the most likely outcome of each action.
SHOGUN uses precisely that simple abstraction, corre-
sponding to a degenerate form of hindsight optimization,
an “online anticipatory strategy” for control problems
that has previously been successfully applied to prob-
lems of online scheduling (Wu, Chong, and Givan 2002)
and probabilistic planning (Yoon, Fern, and Givan 2007;
Yoon et al. 2008).

• Partial observability. Partial observability in the domain
of battlefield training stems from the true modeling of re-
ality in which the information that is available to the plan-
ner is only what the red force “sees”: blue units which
are not detected by any red units are not reported to the
planner. We use ”optimistic sensing” to get rid of this
partial observability as follows: when a red unit performs
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a sensing action (that is, looks in some direction, trying
to find blue units) the expected effects of that action are
that no blue forces will be detected. If there are indeed no
blue forces - the plan can proceed normally. If there are
blue forces there, then the current plan is most likely no
longer valid, and therefore re-planning is performed, this
time accounting for the “new” blue forces.

• Optimization objectives. In most battlefield scenarios, the
mission is to achieve some objective, while trying to min-
imize friendly losses. Since we use single-agent planning,
we do not directly account for enemy actions, and specifi-
cally, we do not plan for friendly units to be destroyed.
Therefore, we do not directly try to minimize friendly
losses, but rather try to minimize risk. We associate a
risk level with each action, by assigning higher costs to
riskier actions. For example, maneuvering in a flat area at
the base of an enemy-occupied hill is riskier than maneu-
vering on top of a hill, and is therefore more expensive.
Although the planner we use is not an optimal planner, it
does try to find a low-cost plan, which directly translates
to a low-risk plan.

Domain Formulation
In formulating the domain schema, we made several choices
that affect the entire system. First, as stated before, we di-
vide the map into locations, which are arranged on a grid,
where each location can hold multiple friendly units, and
multiple enemy units. Each grid location is represented by
an object in the planning problem, and thus locations are
used as parameters for operators and predicates. The trans-
lation of world knowledge to a planning state involves map-
ping units at specific coordinates to the corresponding grid
locations.

Second, entities in operational domains often act in line
with some standard operating procedures (SOP), and thus,
in particular, act in formations. In maneuvering, for in-
stance, a formation could be either a single entity moving
by itself, 2 entities moving side-by-side, 3 entities moving
in a single column, or any other arrangement. Types of for-
mations are defined by the overall set of SOPs, and can be
provided by a subject matter expert. We chose to formulate
our domain so that all actions are performed by some for-
mations of entities. For example, moving from one location
on the grid to a neighboring location is done by using the
Move action on a formation, which describes the entities to
be moved, and their internal arrangement (side-by-side, col-
umn, etc.). Two special types of action, Set-Formation and
Break-Formation , allow entities to rearrange themselves in
different (possibly larger or smaller) formations. Note that
this is similar in spirit to the well-known Logistics planning
benchmark from IPC-1998 and IPC-2000, where a forma-
tion can be thought of as a truck, and an entity can be thought
of as a package loaded into the truck (aka joining formation).
This engineering methodology appears to be quite useful in
general; for instance a very similar technique has been used
by Balla and Fern (2009) in their recent work on action se-
lection for tactical assault, evaluated by the authors on War-
gus computer games.

Third, we had to deal with enemy units on the battlefield,
and their partial observability. We model enemy presence
by creating a state variable for the number of enemy units
at each grid location. The possible values for this range are
either a number (between 0 and some bound) or unknown -
a special value indicating that we have no knowledge about
enemy presence in that grid location. Thus, the (expected)
effect of performing a sensing action on a given grid location
is that if the number of enemy units in that location was
unknown, it becomes 0, and otherwise, there is no effect.
This formulation also allows us to ignore the identities of
enemy units, which are not part of the knowledge provided
to the planner anyway.

Load Balancing and Parallelization
One addition to the standard classical planning setting that
we found essential was load balancing between the red units.
At high level, the load balancer in SHOGUN pre-assigns each
sub-goal to a subset of units, decomposes the overall plan-
ning task into several smaller tasks that are planned for inde-
pendently, and then combines their solutions into a plan for
the overall task. This procedure is important for balancing
the workload between different role-players, causing forces
to act in a more “coordinated matter”, and reduces the size
of the individual planning tasks solved by the planner.

Similarly to all other system components, the load bal-
ancer in SHOGUN is completely domain independent. It
starts by assigning to each goal a subset of units that can
achieve it as cheaply as possible in the (easy to solve) delete-
relaxed version of the planning task. Then, the rest of the
units are assigned in proportion to the cost of the relaxed
plan for each of the goals, so that goals that are riskier
to achieve are assigned more units. Finally, the goals are
grouped based on the transitive closure of the forces as-
signed to them, and each such group of goals is planned for
using only the forces assigned to it. In the domain consid-
ered here, plan combination is trivial, since no two plans can
interfere with each other.

One thing to note is that, although the load balancer might
assign several units to a single goal, the planner might still
not utilize all of these units (the plan found could involve
just a single unit). In order to force SHOGUN to act more
realistically, we artificially increase the cost of action rep-
etitions. This puts a heavy bias toward using more than a
single unit in each plan, resulting in plans allocating forces
to goals in ad hoc proportion to the size of the goal.

Finally, though the quality metric for our plans is risk
reduction, and thus we employ a cost-oriented, sequential
planning, the actions of different units often can (and if so,
should) be applied concurrently. While we do not plan for
this second objective directly, we do convert our sequen-
tial plans into partial order plans allowing concurrent ac-
tion execution. If our domain had been formulated in plain
STRIPS, then simple Partial Order Causal Link (POCL)
backward analysis of the plan would have given us a de-
sired partial order. However, our domain formulation uses
conditional effects, and this requires slight extension of the
standard POCL analysis. To establish hypothetical causal
relations between the actions, we first simulate sequential
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execution of the initial plan, determine which conditional
effects of which action instances along the plan have been
fired, compile the fired conditional effects into now uncon-
ditional effects of the respective actions, and then perform
the standard POCL backward analysis of the plan. The re-
sulting parallelization is sound and complete, and results in
realistic schedule of plans for our multi-unit forces. Over-
all, the simultaneous acting effect, achieved in SHOGUN
via the mixture of load balancing and plan parallelization,
achieves the effect of a standard military C2 methodology
called “mission-oriented C2”, allowing for solving large-
scale problems by wisely delegating its sub-parts to different
planners.

Usage Practice and Performance Evaluation
One of the critical requirements to “AI driven” systems fac-
ing users is that the amount of exposition of the users to
the technical details of the system will be as little as possi-
ble. In that sense, SHOGUN seems to achieve an extremely
high level of transparency. The overall usage of SHOGUN
comprises three steps: (i) domain, or action schema, mod-
eling, (ii) training scenario specification, and (iii) the ac-
tual training session. The action schema is modeled offline,
once for each type of units such as tank/modelX, border-
patrol/modelY, etc. This step does require a subject matter
expert to be familiar with the SAS+ action description lan-
guage, either directly or via a dedicated GUI. However, since
it is performed once for all subsequent trainings, it is fully
realistic to provide this skill to a small group of SMEs.

Next, possibly at a distant point in time, the properties of
a specific training session are specified by an instructor in
charge of the training content, e.g., a battalion intelligence
officer. This step consists of annotating the map with in-
formation relevant to the training (such as markup of areas
passable by different types of vehicles, dominating areas,
etc.), defining the initial positions of the forces, defining the
goal of the training scenario, etc. All these specifications are
made through our knowledge engineering tool (already dis-
cussed in the previous sections), and requires no knowledge
of planning technology whatsoever. Finally, the trainees also
need to know neither what SHOGUN is about, nor even the
fact that they are trained not by human instructors, but by a
fully automated system.

In what follows, we describe the evaluation of SHOGUN
that has recently been accomplished by Elbit Systems Ltd.
In each training session, an SME controlled the entire blue
force, SHOGUN controlled the entire red force, and both
operated in a realistic modeling of the situation awareness
fog of war. The context of all training sessions was the
same 4×4 kilometers area featuring jagged, hilly, terrain,
and having several spots dominating large areas and thus
having high tactical value. Several regions of the map were
marked at the stage of training scenario specification as non-
passable, disallowing movement through these regions. Fig-
ure 2 depicts a starting position of the forces in CGF simula-
tion. The blue force, controlled by the trainee, comprised an
extended armored company of 13 tanks, located initially at
a defensive position in the northern part of the map, which

Figure 2: Full (top) and role-player’s (bottom) views of a
starting position in the Elbit’s CGF simulation. Blue/red
forces are located in the north/south, respectively. Non-
passable areas are highlighted in red.

is the high ground in the training area. The red force, con-
trolled by SHOGUN, comprised an armored battalion of 27
tanks in 9 platoons, supported by 2 reconnaissance units and
limited artillery. The mission of the trainee was to defend the
blue force’s starting region, while SHOGUN’s mission was to
neutralize all blue units in a predefined region of the map,
either by destroying them or causing them to retreat. This
magnitude of forces is typical for a mission to neutralize an
area of this size, and according to the military best practices,
the defending blue force a priori has an advantage in this
scenario.

The evaluation consisted of ten training sessions with
varying starting positions of the red force, and were done
(as detailed in Table 1) by three SMEs: two company com-
manders in reserve duty (trainees 1 and 2), and one battalion
XO in reserve duty (trainee 3). As Table 1 shows, SHOGUN
won in 6 out of 10 training sessions, winning all the first
training sessions by the individual SMEs, and sometimes
losing later on to the same SME, after action review and
elaboration of lessons learnt for employing defense battle
techniques. From the loss/win pattern followed by the eval-
uation of the SMEs, SHOGUN provides a realistic adversary
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1/R
1. Blue organizes for defense.
2. Red sends first attack with a single company and suffers heavy losses (2 platoons are de-

stroyed, 1 falls back).
3. Red sends full scale attack in 3 different areas, and breaches the blue defense in the east.
4. Red destroys the rest of the blue entities in the area.
1/R
1. Red sends 2 platoons to flank from the east, and one platoon to the attack zone in the west.
2. The red platoon destroys the 4 blue tanks on the hill controling the west zone.
3. The red force takes advantage of the situation and sends a massive attack through the opened

west zone (in parallel to units which move through the east zone)
4. Blue tries to organize his defense in order to cover the the west zone, but the red attack

progresses too fast and all reinforcement blue forces are destroyed.
5. The remaining blue forces try to avoid further contact but eventually are caught and destroyed

by the red force.
1/B
1. Red force sends a preemptive attack. Blue force puts two lines of defense.
2. Red force does not concentrate the attack, and blue force takes advantage of that by destroys

the red platoons one by one.
3. The balance of power shifts towards blue force, and the attack fails.
1/B
1. Blue organize in defensive positions which have absolute control on anticipated red attack:

moves west passage force to higher ground, and 2 tanks to high control road.
2. Red send 3 platoons to the center and east passages, and 2 platoons to the west passage.
3. Long range sight of the red platoons enables blue forces a safe defense. Red suffer heavy

losses in the initial attack, and the remaining force is outmatched in position and fire power.

1/R
1. Red organizes for attack, sends 2 companies with a platoon
2. Red artillery destroys a blue tank controlling the center, yet no reinforcement is sent there by

the blue force.
3. Red takes advantage of this: sends a company to the center zone and 2 platoons to the east.
4. Blue is able to hold center attack with eastern defense, shifting its attention on the center.
5. 2 red platoons in the east reach the blue tank and destroy it. This enables the center force to

breach in the center area into the blue zone.
6. The blue force defense is breached, eventually loses all troops.
1/B
1. Blue organizes in defense.
2. Red force sends 4 platoons: 2 in the east, 1 in the center, 1 in the west.
3. Blue force moves to higher positions and destroys 2 out of the 4 platoons.
4. 1 of the 2 red platoons left is able to destroy the blue defense in the east zone.
5. Blue tries to defend in the east, but suffers more losses during the defense reinforcement.
6. 1 red tank breaches the blue area in the west, stops and waits for reinforcement.
7. Red organizes for an additional massive attack in the east? but this gives the blue force time

to establish there a solid defense.
8. The new positions of the blue force create 2 zones of its full dominance in the west and

center, which the red force falls into.

Table 1: Summary of system evaluation training sessions.
Each table entry marked with X/Y corresponds to a train-
ing session by trainee X, ended with the win of Y force.
Per trainee, the sessions are listed chronologically. Dou-
ble line separates indicates a change of either the initial
conditions or the trainee.

2/R
1. Red sends 4 platoons to the east and center passage.
2. Blue relocates the 4 tanks controlling the west zone.
3. The 4 blue tanks cause damage to the red progress in the east, but are spotted and destroyed.
4. Red artillery weakens the blue defense in the center zone, while the red force destroys the

blue defense in the east passage.
5. Blue force tries to reorganize the defense.
6. Red sends a full scale attack.
7. Blue force sends 3 tanks through the eastern passage to counter attack the red forces, but they

are neutralized with only minor losses to reds.
8. The single remaining blue tank is surrounded.

2/R
1. Red sends 4 platoons: 3 from the east and 1 through the center passage.
2. Blue relocates the 4 tanks controlling the west zone in a safe passage, trying to occupy safer

positions (“learning from experience”).
3. The red platoon at the center passage is destroyed by the blue defense.
4. Red starts moving platoons in the west zone.
5. Red company at the east passage destroys the blue defense there, and falls back.
6. One of the red platoons at the west zone encounters the 4 blue tanks, and destroys them with

only minor losses to itself. The west area is now totally opened.
7. Red platoon advances in the eastern passage and destroys blue second line of defense.
8. Red starts a full scale attack with artillery support on all 3 passages.
9. Blue destroys a platoon in the east, but the blue area is totally overrun by the red force on all

3 fronts, and eventually the blue force is all destroyed.
2/B
1. Blue organizes differently for defense (”experience from last two loses”): west area tanks

move around north hill in a safe route and occupy a high position which controls a huge
portion of the terrain. A platoon moves towards a control route in the north part of the
terrain.

2. Red sends 2 platoons to the east passage and 1 platoon to the center passage.
3. Blue high position destroys red forces moving in east and center passage in mid way.
4. Red moves to full scale attack including a company in the west.
5. Blue dominant positions disallow the red forces to progress into the blue territory.
6. More than half of the red battalion is destroyed with no losses to the blue force.
7. The entire red company in the west area is destroyed.
8. Red starts artillery fire, and dstroyes the first blue tank.
9. The remaining 5 red tanks fall back and wander around the southeast part of the terrain.

10. Blue moves into offense and starts to progress towards the red forces.
11. Red force artillery destroys one more blue tank.
12. The blue force intercepts, destroys the remaining red tanks and wins.

3/R
1. Blue sends 2 tanks for patrol over high area road which controls most of the terrain.
2. Red sends 3 platoons: 1 in the center, 2 in the east.
3. Red center platoon is destroyed by the 2 tanks patrolling the higher route, but east platoons

destroy blue force defense.
4. 2 blue tanks in the high route destroy another red platoon.
5. Red sends a full scale attack accompanied with artillery (2 platoons in the center and 3

platoons in the east).
6. Blue centers his forces in the north west corner of the terrain.
7. The blue force succeeds to hold off 3 red platoons from the east zone while suffering minor

losses.
8. Red breaches the blue area in the center zone and destroys all blue troops not located in the

northwest corner.
9. Red organizes his troops for final assault on the remaining blue forces and eventually destroys

the last blue tank in the area.

in a military high intensity conflict. The gradual improve-
ment of the trainees is inline with the objectives of training,
and this improvement was indicated not only by the binary
outcome of the training sessions, but also by the quality of
actions the trainees learned to select from session to session.

References
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Abstract

In this paper, we present the problem of planning off-
line on the ground all the activities of a constellation of
next-generation agile Earth-observing satellites and the
specific algorithm that was developed to solve it. Then,
we present the replanning problem that arises when ur-
gent observation requests are received during plan ex-
ecution. We show how the planning algorithm can be
used in this replanning setting, with some modifications
that limit computing time and favour plan stability and
optimality.

Introduction
The context of the work we present in this paper is the Eu-
ropean defence MUSIS project (Multinational Space-based
Imaging System for Surveillance, Reconnaissance, and Ob-
servation) and more precisely the management of the MU-
SIS agile satellites that are equipped with high-resolution
optical observation instruments.

As usual, such satellites are managed from the ground by
a mission planning system which receives user observation
requests, builds regularly satellite activity plans over a lim-
ited horizon ahead (typically one day), and receives plan ex-
ecution reports. These plans must meet all the physical con-
straints and satisfy as well as possible the user requests.

However, such a management system is not very reactive.
Any observation request, arriving at any time during the day,
must wait for the next day to be taken into account. This led
project managers to consider a more reactive management
system that would take full advantage of the presence of sev-
eral ground control stations and of the numerous associated
satellite visibility windows that allow updated activity plans
to be uploaded.

In such a setting, replanning may be called before any
satellite visibility window. Replanning problem data is, on
the one hand, a current activity plan involving hundreds of
observations and, on the other hand, some urgent obser-
vation requests (at most some tens). The goal is to build
quickly (efficiency) a new plan over the rest of the day that
is of an as high as possible quality (optimality) and is as
close as possible to the previous one (stability).

In this paper, we present the physical system we have to
manage, the physical constraints we must meet, the user re-
quests we must satisfy as well as possible, and the organi-

zation of the management system we assume. Then, we de-
scribe the chronological forward search algorithm we devel-
oped to solve the planning problem. After that, we describe
the replanning problem and how the planning algorithm can
be adapted to a replanning setting. Experimental results on
real-size scenarios show the right behavior of the chosen ap-
proach.

Satellite constellation
The constellation we consider is made up of two identical
satellites1 moving on the same orbit (circular, low altitude,
quasi-polar, and heliosynchronous) with a phase shift of 180
degrees between the two satellites (see Figure 1).
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Figure 1: Two-satellite constellation.

Each satellite (see Figure 2) is equipped with thrusters
which allow orbital manoeuvres to be performed in case of
a too important drift with regard to the reference orbit and
with gyroscopic actuators which allow very quick attitude
movements (agility) useful to perform observations and tran-
sitions between observations.

1The planning algorithm we propose is able to manage any
number of satellites, possibly not identical: not the same param-
eter values.
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Figure 2: Artist view of a satellite.

A telescope, with two focal planes, allows observations
to be performed in the visible and infra-red spectra, with
two images (visible and infra-red) within day periods (on
the ground) and only one image (infra-red) within night peri-
ods. A mass memory allows observation data to be recorded
and a high-rate large-aperture antenna allows it to be down-
loaded towards ground reception stations. Solar panels al-
low batteries to be recharged when the satellite is not in
eclipse. For the sake of agility, all these equipments are
body-mounted on the satellite.

Physical constraints
The physical constraints that must be met can be classified
into six classes : attitude trajectory, observation, download,
memory, instruments, and energy.

Attitude trajectory Thanks to gyroscopic actuators, the
satellite is permanently moving around its gravity centre
along the three axes (roll, pitch, and yaw). These attitude
movements allow observations of areas on the ground to
be performed by scanning them. They also allow transi-
tions from the end of an observation to the beginning of the
following to be performed relatively quickly. These move-
ments are limited in terms of angular speed and acceleration,
resulting in minimum times for moving from an attitude to
another. However, the attitude that is required to observe
a given area on the ground depends on the orbital position
of the satellite and thus on the time at which the observa-
tion is performed. The result is a minimum time between
the end of an observation and the beginning of the following
that depends on the time at which the first ends (see Figure 3
for a schematic 2D illustration). Moreover, computing this
minimum time requires solving a complex continuous opti-
mization problem (see (Beaumet, Verfaillie, and Charmeau
2007)). For solving it efficiently inside planning algorithms,
dedicated approximate algorithms were developed at ON-
ERA, assuming three-phase movements (constant accelera-

tion, constant speed, and constant deceleration) performed
concurrently along each axis (roll, pitch, and yaw).

o1 o1o2 o2

Figure 3: How the angular distance and thus the minimum
transition time between observations depends on the time at
which the first ends.

Observation Due to maximum observation angles, the ob-
servation of a given area on the ground must be performed
within one of its visibility windows. Its duration is fixed,
because it only depends on the required scanning speed on
the ground. The satellite attitude trajectory to be followed
during observation depends on the time at which it starts.

Download The same way, due to maximum communica-
tion angles, a data download must be performed within one
of the visibility windows of one of the ground reception sta-
tions. However, this does not suffice because the satellite
attitude must be compatible with download (the target sta-
tion must remain within the satellite antenna communication
cone). The result is a set of effective communication win-
dows that depends on the satellite attitude trajectory. Obser-
vation and download can be performed concurrently. Two
images (visible and infra-red) resulting from the same ob-
servation (within a day period) must be downloaded towards
the same station and during the same station overflight.

Memory The amount of memory available on board for
observation data recording must be never exceeded.

Instruments Concerning the three instruments (high-rate
antenna, visible and infra-red focal planes) a minimum pre-
heating time must be met before use, as well as a maximum
total ON time and a maximum number of ON/OFF cycles
over the planning horizon, for the sake of reliability. Tem-
perature of the infra-red focal plane is automatically reg-
ulated by a cryothermic system, but temperatures of both
the visible focal plane and the antenna must remain below
a given level. Moreover, it must be checked that, at every
point on the satellite attitude trajectory, the focal planes are
not dazzled and thus not damaged by the sunlight (minimum
angle between the satellite axis and the Sun direction).

Energy On-board energy cannot exceed a maximum level
due to battery limitations. For the sake of safety, it must
remain above a given level, particularly when the satellite
is in eclipse and solar panels produce nothing. When the
satellite is not in eclipse, the production of energy via the
solar panels depends on the satellite attitude trajectory. On
the other hand, energy consumption depends on instrument
activations.

User requests
With each user request, are associated a polygon which is
split into strips, a priority level, a weight, and a deadline.
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Typically, three priority levels are available, from 3 (the
highest) to 1 (the lowest). It is assumed that any request
of priority p is preferred to any set of requests of priority
strictly less than p. Weights allow to express preferences be-
tween requests of the same priority level and are assumed to
be additive. In general, user requests exceed the constella-
tion capacity and choices must be made using request prior-
ities and weights.

It is assumed that any strip can be observed using only one
strip overflight. With each strip, are associated a geograph-
ical definition, observation durations (day or night), image
sizes (visible, day or night infra-red), a maximum observa-
tion angle, and a set of triples 〈satellite, visibility window,
weather forecast〉.

Management system
User requests may arrive at any time and, each day, at a given
time, a plan is built for the next day from all the requests
that are not out of date and not fully satisfied yet. This plan
is built on the ground and then uploaded to the satellites for
execution. Typically, up to ten minutes of computing are
available for planning. After plan execution, observation
data that has been downloaded to the ground is analyzed,
taking into account the actual cloud cover, and satisfied re-
quests are removed.

In addition to these normal user requests, urgent ones may
arrive at any time too. The latter must be taken into account
as soon as possible. To do that, before any visibility window
between a ground control station and a constellation satel-
lite, an updated plan is built for the rest of the day from all
the requests, either normal or urgent. Replanning is guided
by two objectives: on the one hand, to produce a new plan
of highest quality, as in planning, and, on the other hand,
to maintain in the new plan the highest number of observa-
tions present in the previous one, because a plan is a kind
of commitment facing users. In order to be able, to take
into account urgent requests until the last minutes, we con-
sider that half of the computing time available for planning
is available for replanning, that is up to five minutes.

Differently from other studies that considered on-board
planning and replanning (Chien et al. 2004; Beaumet, Ver-
faillie, and Charmeau 2011), planning and replanning are
here performed on the ground. This choice is justified by the
fact that the information used by planning and replanning
(normal and urgent user requests) comes from the ground
and not from board. In such a setting, there would be no ad-
vantage to plan on board. Limited computing resources on
board would even make it disadvantageous.

Planning problem modeling
The planning problem can be modeled using for each satel-
lite the following state variables:

• the current time and thus the orbital position;
• the attitude position and speed along the three axes;
• the available memory and energy;
• for each instrument, its status (ON or OFF), the remaining

ON time, and the remaining number of ON/OFF cycles;

• for the antenna and the visible focal plane, its temperature.

Six types of action are available for each satellite:

1. orbital manoeuvres which are mandatory and character-
ized by starting and ending times and attitudes and by an
energy production (function of the attitude trajectory dur-
ing the manoeuvre);

2. observations which are characterized by a strip, a visibil-
ity window, and a starting time;

3. data downloads which are characterized by an image, a
reception station, a communication window, and a starting
time;

4. heliocentric pointings (solar panels directed towards the
Sun in order to recharge batteries as fast as possible)
which are characterized by starting and ending times;

5. geocentric pointings (satellite axis directed towards the
Earth centre; default action when there is nothing else to
do) which are characterized by starting and ending times
too;

6. instrument switchings which are characterized by an in-
strument and a time.

It must be observed that actions of all the types, but the
third and sixth (data downloads and instrument switchings),
constrain the satellite attitude and are thus mutually exclu-
sive. They must be performed in sequence. Only data down-
loads and instrument switchings can be performed in paral-
lel, at any time for instrument switchings, but only within
effective communication windows for data downloads. As a
consequence, a plan has the form of a sequence of actions
of any type, except the third and sixth, with attitude move-
ments between consecutive actions and with data downloads
and instrument switchings in parallel.

Any plan must satisfy all the constraints described above
in Section Physical constraints.

We define the criterion to be optimized as a vector of util-
ities vp, one for each priority level p. Two vectors resulting
from two plans are lexicographically compared. For each
priority level p, let Rp be the set of requests of priority p.
For each request r, let wr be the utility associated with r
defined as the weight of r weighted by four factors whose
value is between 0 and 1 and which represent (1) the per-
centage of realization (observation and data download), (2)
the mean percentage of cloud cover, (3) the mean observa-
tion angle, and (4) the mean data delivering delay, over all
the strips of the polygon associated with r. At each priority
level p, we assume that utility is additive: vp =

∑
r∈Rp

wr.
The result is a global hierarchical (lexicographic) criterion
and a local additive criterion at each priority level.

Planning algorithm
To solve this planning problem, we developed a specific
chronological forward search algorithm with dedicated deci-
sion heuristics, constraint checking, limited lookahead, and
backtrack in case of constraint violation, which guarantees
the production of a plan that may be not optimal, but is really
executable by the satellites.
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Decreasing priorities First, the algorithm we developed
works by decreasing priority levels from 3 (the highest) to
1 (the lowest). At each priority level p, the starting point
is the plan Pl produced at the previous level p + 1, which
includes orbital manoeuvres, observations (of priority p+ 1
or more), pointings (geo or heliocentric), data downloads,
and instrument switchings. However, what is kept from Pl
is only the sequence Seq of orbital manoeuvres and obser-
vations present in Pl , without their starting times. Other
actions present in Pl , such as pointings, data downloads, or
instrument switchings are disregarded. At level p, observa-
tions of priority p will be inserted into Seq by moving start-
ing times when necessary. Other actions, such as pointings,
data downloads, or instrument switchings will be added to
build a consistent plan. At priority level 3, the starting point
is the set of orbital manoeuvres which are imposed on the
mission planning system by the satellite control system and
can be classed as observations of priority 4.

Such an approach is justified by the fact that any request
of priority strictly greater than p is preferred to any set of
requests of priority p. This leads us to consider the sequence
of observations present in the plan produced at level p+1 as
being mandatory when building a plan at level p.

A forward chronological algorithm At each priority
level p, the algorithm builds a plan in a forward chrono-
logical way, from the beginning Ts of the planning horizon
to the end Te . With any step of the algorithm, are asso-
ciated the current time t, the next observation o of priority
p+1 or more to be included in the plan because it belongs to
Seq , and the set Os of observations of priority p that can be
scheduled after t and before o. At the first step, t = Ts and
o is the first observation in Seq . The algorithm chooses an
observation o′ in Os as the next observation to be included
in the plan and a starting time t′ for o′. If Os = ∅, then
o′ = o (observation o is chosen and then a starting time for
it). At the next step of the algorithm, t is replaced by the
ending time t′′ of o′ and, if o′ = o, then o is replaced by
the observation that follows it in Seq (empty when o is the
last observation in Seq). Figure 4 illustrates two successive
steps of the algorithm. The algorithm stops when o and Os
are both empty (no other observation to be included in the
plan).

o

o

o′

t

t t′ t′′

Figure 4: Two successive steps of the forward chronological
algorithm.

Decision levels This is the first decision level (1) of the
algorithm (choice of the next observation to be included).
Once this choice is made, the algorithm makes other choices
over the temporal horizon from t to t′′ at other decision lev-
els: (2) possible insertion of geo or heliocentric pointings,
(3) possible data downloads, and (4) instrument activations.

At the second decision level, geo or heliocentric point-
ings are inserted between t and t′ when possible. Once in-
sertions are decided, the satellite attitude trajectory is com-
pletely fixed from t to t′′. Hence, the production of energy
and the effective communication windows can be computed
and the absence of focal plane dazzle can be checked by
simulating trajectories.

At the third decision level, data downloads are inserted
within the effective communication windows from t to t′′
and memory constraints can be checked. This means that
observations (first decision level) have priority over down-
loads (third level). This choice is justified by mission and
algorithm considerations: on the one hand, observation is
the main system bottleneck and, on the other hand, it is nec-
essary to know the effective communication windows and
thus observations and pointings before planning downloads.

At the fourth decision level, instrument activations are in-
serted in order to satisfy the requirements in terms of ob-
servation (visible and infra-red focal planes) and download
(high-rate antenna). Energy and instrument constraints can
be checked.

Figure 5 shows an example of decisions at the four levels:
at level 1, observation o′, starting at t′, is chosen; at level
2, a geocentric pointing followed by a heliocentric one are
inserted before t′; at level 3, data downloads d1 and d2, fol-
lowed by d3 and d4, are inserted between t and t′′; at level
4, the following decisions are made concerning instrument
activations: at time t, the visible focal plane was OFF and
it is decided to switch it ON only before o′; on the contrary,
the infra-red focal plane was ON and it is decided to main-
tain it ON between t and t′′; at time t, the antenna was OFF,
and it is decided to switch it ON before downloading d1 and
to maintain it ON until the end of d4’s download.

observations

pointings

visible focal plane

infra−red focal plane

antenna

downloads

t t′ t′′

d1 d2 d3 d4

geo helio

ON

ON

ON

o′

Figure 5: Example of decisions at the four levels: (1) obser-
vations, (2) pointings, (3) downloads, and (4) instruments.

Once decisions are made at the four levels, a consistent
plan is available from t to t′′, extending the plan that already
exists from Ts to t, and the planning process can continue
from t′′, starting from a completely known satellite state.

This incremental process, which built incrementally a
complex system trajectory, is the main justification for us-
ing a forward chronological search.

For the sake of simplicity, we present the algorithm by as-
suming only one satellite. However the planning process is
in fact interleaved on the two satellites and the next planning
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step is the earliest one over the two satellites.

Backtracks At any decision level, in case of constraint vi-
olation, other choices are made. If no other choice is avail-
able, a hierarchical backtrack at the relevant decision level
is triggered (see Figure 6).
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Pointings

Downloads

Instruments

Observation

Figure 6: Hierarchical backtracks between decision levels.

At the first level, if Os = ∅ and thus o is chosen, but in-
sertion of o is impossible, a chronological backtrack is trig-
gered to the previous insertion of an observation of priority
p. However, in order to avoid as much as possible such sit-
uations, the latest observation ending times are propagated
from the end to the beginning of Seq before planning.

Heuristics At all the decision levels, heuristics are nec-
essary to make choices. These heuristics are crucial to the
production of good quality plans because, for the sake of ef-
ficiency, the algorithm backtracks only in case of constraint
violation and never to try and improve on the current plan. It
may be important to stress the difference between the global
optimization criterion defined in Section Problem modeling
and the local heuristics described below which only aim at
guiding the search towards good quality solutions.

The following heuristics were implemented at the various
decision levels:

1. at the first level, as in the knapsack problem, one chooses
an observation o′ that maximizes the ratio between the in-
crease in the criterion resulting from the insertion of o′
(gain) and the time consumed by this insertion (t′′ − t,
considering the earliest starting time for o′; cost); once an

observation o′ is chosen, one chooses for it a starting time
t′ that maximizes the increase in the criterion resulting
from the insertion of o′ at time t′ (function of the obser-
vation angle; gain) minus the sum of the decreases in the
criterion resulting from this insertion (other observations
that would become impossible and whose quality would
degrade because of too large observation angles; cost);

2. at the second level, an expert rule aims at making eas-
ier energy production and data download; it systemati-
cally chooses a geocentric pointing when the satellite is
in eclipse; when it is not in eclipse, it gives priority to
a heliocentric pointing in order to recharge batteries, ex-
cept in case of visibility of a ground reception station, be-
cause a geocentric pointing always allows data download,
whereas a heliocentric one may prevent it;

3. at the third level, as in the knapsack problem, one chooses
an image of maximum priority that maximizes the ratio
between the increase in the criterion resulting from its
download (gain) and the duration of this download (cost);

4. at the fourth level, the choice is, for each instrument, at the
end of each mandatory activity period, between switching
it OFF and maintaining it ON; these choices have an im-
pact on four “resources”: energy, temperature, total ON
time, and number of ON/OFF cycles; the result is a kind
of multi-criteria decision problem; for each resource and
for each alternative a, it is possible to compute a ratio
between remaining and maximum quantity, if a is cho-
sen; finally, as usual in multi-criteria decision making,
one chooses the alternative that maximizes the minimum
ratio over the four resources.

The main difference between this algorithm and the one
presented in (Beaumet, Verfaillie, and Charmeau 2011)
is the use of backtrack mechanisms in case of con-
straint violation and of more sophisticated choice heuristics.
In (Beaumet, Verfaillie, and Charmeau 2011), no backtrack
was allowed and heuristics were limited to randomized de-
cision rules.

Replanning problem modeling
When replanning, the main question in terms of modeling
is how to manage the possibly contradictory two objectives:
(1) the intrinsic quality of the new plan which can be mea-
sured using the same criterion as the one used when plan-
ning and (2) the plan stability which can be measured by the
difference between the new and the previous plan.

The resulting two questions are: (1) how to define the dif-
ference between two plans? and (2) how to combine quality
and stability objectives? These questions were discussed in
planning (Fox et al. 2006; Cushing, Benton, and Kambham-
pati 2008), in scheduling (Sakkout, Richards, and Wallace
1998), and in constraint satisfaction (Verfaillie and Jussien
2005).

Our experience led us to consider that there is no generic
answer to these questions. Answers depend on the problem
at hand. In our problem, the quality of a plan is measured
by a vector of utilities vp, one for each priority level p. We
maintain this global hierarchical view when replanning. For
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each priority level p, let Rp be the set of requests of priority
p. For each request r, let wr be the utility associated with r.
We have: vp =

∑
r∈Rp

wr. Let Ip ⊆ Rp be the set of re-
quests r of priority p that are negatively impacted by replan-
ning (at least one strip of the polygon associated with r was
present in the previous plan, but does not appear in the new
one). We define the stability as the sum over the impacted
requests of the loss in utility: sp =

∑
r∈Ip

(w′
r − wr) with

w′
r (resp. wr) the previous (resp. new) utility associated

with r. sp is positive or null. The lower sp, the more stable
the plan. Then, we define the criterion to be optimized when
replanning as a weighted combination of quality and stabil-
ity: vsp = vp − α · sp, with α a positive parameter to be set
by system users according to the importance they attach to
stability with regard to intrinsic quality.

To take an example, let us consider two requests A and
B of the same priority and of weights wA and wB , both
reduced to one strip and thus to one observation. Let us
assume that A was previously planned, that B is a new ur-
gent request, but that A and B are in conflict (it is impos-
sible to satisfy both). The value of a new plan involving A
(no change) is wA, but the value of a new plan involving B
(change) is wB − α · wA. The second one is preferred only
if wB − α · wA > wA, that is wB > wA · (1 + α).

The data of a replanning problem is very similar to the one
of a planning one: same requests, state variables, actions,
and constraints. The main difference is in the definition of
the criterion to be optimized. Specific data is however:

• the previous plan;

• a set of urgent requests to be taken into account;

• for each constellation satellite s, a replanning horizon
from the first time t at which a new plan can be received
for execution by s to the end of the current day: before t,
the previous plan cannot be modified by replanning.

Replanning algorithm
When replanning, temporal pressure is generally higher than
when planning. This pressure takes generally the form of
a deadline for plan production. In our problem, this dead-
line is the beginning of the next visibility window between
a ground control station and a constellation satellite.

Local search methods (Aarts and Lenstra 1997) are known
to be able to produce quickly good quality solutions on hard
combinatorial optimization problems. One of their strengths
is that they can be used the same way, with the same local
change operations, in a static setting (to solve a problem)
and in a dynamic one (to solve a slightly modified problem,
using a previously computed solution). This is why they
are intensively used in a context of planning and replan-
ning (Zweden et al. 1994; Chien, Knight, and Rabiddeau
2000).

To solve our problem, we did not choose to use local
search methods, mainly because of the high potential cost of
a local change: adding or removing an action in the middle
of a plan requires the complex system trajectory to be com-
puted and checked again from the adding/removing point to
the end of the planning horizon.

We chose to develop a chronological forward search algo-
rithm. On this basis, the idea is to use the same algorithm
for replanning with slightly different data.

Let P be the set of observations that were considered
when planning, let S ⊆ P be the set of observations that
were selected by planning (present in the previous plan), and
let U be the set of observations associated with urgent re-
quests.

We consider four possible modes of replanning.

1. in the first mode, the set of candidate observations is
S ∪ U ; however, we favour stability and consider that
all the observations in S are mandatory; for that, it suf-
fices to consider them as observations of priority 4; in this
mode, we try and insert the urgent observations in the pre-
vious plan without removing anything; however, starting
times of observations in S can be moved; the same way,
pointing, download, and instrument activation plans can
be modified;

2. in the second mode, the set of candidate observations is
the same: S ∪ U ; however, at each priority level, we con-
sider that observations in S have priority over observa-
tions in U ; for that, it suffices to add 0.5 to the priority
level of each observation in S; as a result, the number of
priority levels is multiplied by 2; in this mode, an observa-
tion in U of priority level 3 cannot remove an observation
in S of the same priority level, but can remove an obser-
vation in S of lower priority level (2 or 1);

3. in the third mode, the set of candidate observations re-
mains the same: S ∪ U ; at each priority level, there is no
priority between observations in S and U ; all of them are
equally considered in terms of priority level;

4. finally, in the fourth mode, the set of candidate observa-
tions is P ∪U (all observations); as in the previous mode,
at each priority level, there is no priority between obser-
vations in P and U ; all of them are equally considered in
terms of priority level.

Roughly speaking, the search is less and less restrictive
from the first to the fourth mode: less and less constraints
imposing previously planned observations, more and more
observations taken into account. It would be possible to run
these modes sequentially or concurrently and to get the best
result obtained by the deadline.

Modes 1 and 2 naturally favour stability. Modes 3 and 4
do not so. To favour stability in the latter modes, it is sensi-
ble to modify the heuristics used at the first level (choice of
the next observation to perform and of its starting date) by
multiplying by (1+α) the weight of a request r if one of its
observations owas present in the previous plan (o ∈ S). The
idea is to give these requests more importance when making
observation choices (see the example in the previous section
for an intuitive justification).

Scenarios and experimental results
Planning and replanning algorithms were implemented in
a tool, called PLANET for PLanner for Agile observatioN
satElliTes, which was developed for this mission, on the ba-
sis of a previous tool (Beaumet, Verfaillie, and Charmeau
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first (easy) instance

mode 1 mode 2 mode 3 mode 4

CPU time (s) 130 275 225 232

# obs. removed

prio 3 0 0 1 0

prio 2 0 0 0 0

prio 1 0 1 5 4

# urgent obs. added 10 10 8 8

criterion

prio 3 103.7 102.4 101.5 101.7

prio 2 115.2 114.8 114.8 114.8

prio 1 96.9 95.4 93.7 94.3

second (medium) instance

mode 1 mode 2 mode 3 mode 4

CPU time (s) 133 270 221 231

# obs. removed

prio 3 0 0 1 0

prio 2 0 4 1 1

prio 1 0 4 4 7

# urgent obs. added 2 10 9 9

criterion

prio 3 101.9 104.6 103.1 103.3

prio 2 115.3 111.6 113.6 115.2

prio 1 96.9 93.4 93.0 92.7

third (hard) instance

mode 1 mode 2 mode 3 mode 4

CPU time (s) 129 263 217 225

# obs. removed

prio 3 0 0 3 2

prio 2 0 2 2 2

prio 1 0 5 6 13

# urgent obs. added 0 7 8 8

criterion

prio 3 100.8 103.0 102.7 103.2

prio 2 115.3 112.3 113.2 114.0

prio 1 97.0 93.4 93.1 93.2

Table 1: Results on the three instances using the four replan-
ning modes

2011). Algorithms were experimented on a real-size real-
istic instance, built by CNES (French Space Agency) and
whose characteristics are the following ones:

• a one-day planning horizon;
• 8 ground reception stations;
• 3 priority levels;
• 1166 observation requests, all of them with polygons lim-

ited to one strip and all of them of the same weight (1);
among them, 377 of priority 3 (the highest), 419 of prior-
ity 2, and 370 of priority 1 (the smallest);

• meteorological forecast built from climatological data.

On this instance, planning takes 236 seconds (about 4
minutes), using a 3Ghz Intel processor with 2.5Go of RAM,
running under Linux. In the resulting plan, 906 (78%) ob-
servations are performed and downloaded, 16 (1%) are per-
formed, but not downloaded, and 244 (21%) not performed
at all. Among the observations of priority 3, 280 (74%) are
performed. Results are 367 (88%) for priority 2 and 275
(74%) for priority 1. The fact that relatively more observa-
tions of priority 2 are performed than observations of prior-
ity 3 can be explained by the fact that, in this instance, ob-

servations of priority 3 are more geographically conflicting
with each other.

In order to evaluate the four replanning modes, we con-
sidered a scenario where 10 urgent requests of priority 3
(the highest) arrive some minutes before uploading the daily
plan. Such a scenario is one of the most stressing for re-
planning because planning must be performed again over
the whole one-day planning horizon. For the combination
of the quality and stability objectives, we set α = 0.5. Fol-
lowing such a scenario, we built three replanning instances
of increasing difficulty:

1. in the first one, strips associated with urgent requests are
randomly generated on continents; the probability that
these strips be in overloaded areas is low;

2. in the second one, strips associated with urgent requests
are manually generated on areas where many requests of
priority 1 or 2 are present, but few of priority 3;

3. in the third one, strips associated with urgent requests are
manually generated on areas where many requests of pri-
ority 1, 2, or 3 are present.

Table 1 and Figure 7 show the results obtained by re-
planning in its four modes on these three instances: CPU
time, number of observations removed from the previous
plan at the three priority levels, number or urgent observa-
tions added in the new plan, value of the new plan at the three
priority levels, taking into account quality and stability.

On the first (easy) instance, Mode 1 is clearly the most
efficient: all the urgent requests can be added without re-
moving anything; moreover this mode is the fastest in terms
of CPU time.

On the second (medium) instance, Mode 2 produces the
best results in terms of criterion value: all the urgent requests
are added; no request of priority 3 is removed (it is anyway
forbidden in Mode 2); only requests of priority 1 and 2 are
removed (fewer of priority 2 than of priority 1); however,
this mode is the most costly in terms of CPU time.

On the third (hard) instance, things are more complex. No
urgent request can be added using Mode 1. 7 urgent requests
can be added using Mode 2. One more (8) can be added
using Modes 3 or 4. However, fewer requests of priority
3 are removed using Mode 4. Moreover, fewer requests of
priority 3 and 2 are removed than of priority 1 using this
mode. Mode 4 produces the best results in terms of criterion
value, closely followed by Mode 2.

In terms of CPU time, replanning modes 2, 3, and 4 re-
quire nearly the same time as planning does. However, this
time remains less than the maximum time specified in the
mission requirements (5 minutes). Replanning mode 1 re-
quires only half the time used for planning. Moreover, most
of the time, replanning will be faster because it will be not
performed over a one-day horizon, as in our scenario, but
only on the remaining part of the day.

Conclusion
In this paper, we showed that is it possible to use the same
chronological forward search algorithm for planning and re-
planning, only by modifying request priorities and weights,
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Figure 7: Graphical view of the replanning results; top: first
(easy) instance; middle: second (medium) instance; bottom:
third (hard) instance

as well as the set of candidate observations. We considered
four more or less restrictive replanning modes. First experi-
ments show that their efficiency in terms of quality, stability,
and computing time depends on the instance type.

Running these four replanning modes in parallel would be
an option. Another option would be to run them in sequence.
For that, the order according to which modes are called
could be determined for each replanning instance by per-
forming a quick analysis of the setting: urgent requests ei-
ther geographically spread, or concentrated on already over-
loaded areas.
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Abstract

Diagnosis of discrete event systems amounts to finding good
explanations, in the form of system trajectories consistent
with a given set of partially ordered observations. This prob-
lem is closely related to planning, and in fact can be recast as
a classical planning problem. We formulate a PDDL encod-
ing of this diagnosis problem, and use it to evaluate planners
representing a variety of planning paradigms on two realistic
case studies. Results demonstrate that certain planning tech-
niques have the potential to be very useful in diagnosis, but
on the whole, current planners are far from a practical means
of solving diagnosis problems.

Introduction
In automating the operation of complex technical systems,
automated monitoring and diagnosis are as important as au-
tomated planning and control.

Traditionally, the diagnosis task is to answer the question:
what is wrong? In model-based diagnosis, this means in-
ferring, from a system description and a set of observations,
whatmodethe system may be operating in: nominal, one of
a number of known fault modes, or an unknown fault mode
(e.g., de Kleer and Williams 1989). A typical example is the
diagnosis of an electronic circuit, where observations aretest
inputs paired with measured outputs, and a fault mode is a
subset of faulty components. In this setting, the system is
static: observations are assumed to all be generated by the
same mode, and the system imposes no order on them.

In contrast, diagnosis of dynamical systems may be posed
as the question: what has happened? That is, given a system
model and a (partially) ordered set of observations, the di-
agnosis task is to identify possible evolutions of the system
over time which would generate the given observations, in
an order consistent with that given (Cordier and Thiébaux
1994; McIlraith 1994). Crucially for our case studies, this
permits system models that are inherently non-deterministic,
even when operating correctly. In most cases, there are many
system histories consistent with observations. Thus, there is
a notion of preference over histories, and the diagnoser is
required to find one, some or all preferred explanations.

There is a close connection between diagnosis of dynam-
ical systems and planning (noted by Cordier & Thiébaux,
1994, and McIlraith, 1994), as the task of generating a (most
preferred) system event history to match given observations

can be viewed as a plan generation problem. In spite of this,
the two fields have developed quite different methods, with
much work in diagnosis exploiting off-line analysis of the
system model to enhance on-line diagnosis, e.g., by build-
ing a system-specific diagnoser (Sampath et al. 1996), iden-
tifying if sufficient conditions for using faster methods hold
(e.g., Basile et al. 2003), or decentralising the work of diag-
nosis (e.g., Pencolé and Cordier 2005). The SAT-based di-
agnoser by Grastien et al. (2007), inspired by the use of SAT
for planning and model-checking, is one of a few examples
of transfer of techniques between the two fields. To deter-
mine if methods that have been successful at solving plan-
ning problems will be so also for diagnosis of discrete event
systems, we formulate a reduction of the diagnosis problem
to planning, i.e., an encoding of the problem in PDDL. It is
of course unlikely that such a direct problem translation is
the most effective way of applying planning techniques to
diagnosis problems, but it is a very useful tool to evaluate
a spectrum of planning methods, due to the availability of
diverse domain-independent planning systems.

Comparing the effectiveness of planning techniques with
existing diagnosis methods raises further challenges. First,
there is not one single diagnosis problem. The problem we
consider can be characterised aspassive, non-exhaustivedi-
agnosis (of discrete event systems). In contrast, much work
concerns exhaustive diagnosis (i.e., finding all preferredex-
planations consistent with the facts), or active diagnosis
(where the diagnoser can take actions to control which ob-
servations are made; cf., e.g., Kuhn et al. 2008). These are
different problems, and require different solutions. Second,
the diagnosis research community does not have the same
focus on empirical evaluation over common sets of bench-
marks as in planning. Although diagnosis researchers de-
velop domain-independent methods, very few “off the shelf”
implementations of domain-independent diagnosis systems
are available, and also very few benchmark problem sets.

As a step towards remedying this situation, we formalise
two realistic diagnosis problems1, which we use to evaluate
the effectiveness of planners representing several different
paradigms. The first case study problem comes from a UAV
research project, and is a fault detection problem. The sec-

1To the extent that we are permitted, we will make these for-
malisations available.
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ond comes from the domain of electric power transmission,
where we aim to do “intelligent alarm processing”, by min-
imising the number of “unexplained” observations. In both
cases, the purpose of diagnostic reasoning is to support the
situational awareness of a human decision maker. Thus, the
diagnoser must reliably provide information that is timely
and correct. The meaning of “timely” is not precisely de-
fined, but as a rule of thumb, solutions should be available
within a few tens of seconds. Results are mixed: For the first
case, a combination of planning techniques present a viable
solution. In the second case, the SAT-based diagnosis en-
gine performs better than the best planners, but no approach
quite meets the demands of the application.

We are aware only of one similar study. Sohrabi, Baier
& McIllraith (2010) proposed an encoding of discrete event
diagnosis as a planning problem with temporally extended
goals (via the situation calculus), and tested the ability of
a heuristic search planner supporting such goals to solve
a diagnosis problem. (They also used our encoding to ap-
ply the FF planner, which performed better.) The problem
they used, however, is an artificial example (introduced by
Grastien et al. 2007), and the results they observed do not
generalise to our case study problems.

Diagnosis of Discrete Event Systems
The dynamical systems we consider are modelled as discrete
state, discrete event systems. This fits naturally with classi-
cal planning models. In principle, there is no obstacle to
applying the same reduction to diagnosis of timed or hybrid
systems – indeed, we construct both a timed and a classical
model for our second case study – but the range of planners
capable of dealing effectively with such problems is much
narrower. In this section, we present a brief review of the
discrete event system diagnosis problem. Examples, and de-
tails of the reduction to planning, will be described along
with our two case studies in the following sections.

A finite discrete event system consists of a finite collec-
tion of state variables, each with a finite domain of values,
and a finite set of transitions. Each transition has a precon-
dition and a deterministic effect on some subset of the state
variables. (Other variables keep their values.) Although
each transition is deterministic, the system model as a whole
is generally non-deterministic, in the sense that in any state,
several transitions may be applicable and there is no deter-
ministic rule that dictates which is taken. For modelling con-
venience, it is common to divide the system up into com-
ponents, each an instance of a component type which de-
fines variables and transitions in a schematic way. To model
non-trivial behaviour the components must be able to inter-
act, using some communications mechanism such as shared
variables, message queues or synchronised transitions.

Some transitions emit one or moreobservable events.
There can be several transitions emitting the same event.
Given a system model, a set of possible initial system
states, a set of observations,O, each labelled with an event
event(oi), and a partial order≺ on O, a discrete-event di-
agnosisis a sequence of transitions, applicable from some
initial state, such that the events emitted by the sequence
correpond one-to-one with the set of observations, and the

order of these events induced by the sequence of transitions
is consistent with the given partial order on the observations.
In both our case studies, observations are time stamped, but
time stamps are not precise or accurate enough to totally or-
der the observations. Therefore, we assume only a partial
order. In any case, this does not complicate the formulation
of the diagnosis task as a planning problem.

In the models we consider, transitions are divided into
“good” and “bad”, and the objective is to minimise the num-
ber of bad transitions occurring in the explanation sequence.
(The bad transitions are often referred to asfaults, but this
terminology is a bit misleading in the case of alarm pro-
cessing.) In planning terms this corresponds to the objective
of minimising total cost, where only fault transitions havea
non-zero cost. In the models we construct, the bad transi-
tions are all equally bad, and therefore all have unit cost, but
obviously varied costs could be used to express degrees of
badness. For example, if we know the probability of each
fault transition occurring, we can assign a cost proportional
to its negative logarithm to obtain a most likely explanation.
Other preference criteria are also conceivable.

We can also consider more stringent notions of diagnosis:
In planning, adisjunctive action landmarkis defined as a
set of actions at least one of which must appear in any valid
plan (Helmert and Domshlak 2009). Analogously, we may
consider a set of fault transitions at least one of which must
occur in any system history consistent with the observations.
This is more informative, since it identifies a – albeit dis-
junctive – set of faults that must have happened, rather than
a (minimum cost) set of faults that may have happened. It
also has some similarity with the notion ofconflictsin static
system diagnosis (Reiter 1987). A conflict is a set of state-
ments about the system mode that is inconsistent with the
system model and the set of observations. Thus, every di-
agnosis must include the negation of at least one statement
from each conflict set. For static systems, there is a one-to-
one correpondence between minimal diagnoses and minimal
hitting sets over the set of all minimal conflict sets. For dis-
crete event systems, however, such a correspondence does
not hold in general.

When modelling a system for diagnosis we have the free-
dom to trade off the fidelity of the model (and thus its
complexity) and its diagnostic power. Abstracting away
some aspects of the real system means only that the model
may allow more explanations of a given set of observations
(some of which may not correspond to possible system be-
haviours), and thus fewer certain conclusions. We will see
this repeatedly in modelling our case study problems.

Intelligent Alarm Processing
The availability of remote sensing and control facilities
means that today very large industrial systems, such as
power or telecommunications networks, can be overseen and
managed by a few operators in a central location. Fault con-
ditions in such large systems frequently give rise to “alarm
cascades”, where the original fault causes a range of sec-
ondary abnormalities, all of which generate multiple alarms,
thus quickly overwhelming operators’ attention. This prob-
lem has been recognised for some time (e.g., Prince, Wol-
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lenberg, and Bertagnolli 1989), and there has been a lot of
work on the use of AI techniques to aid operators by filter-
ing, prioritising and synthesising alarms. This is known as
“intelligent alarm processing”.

Two approaches to the problem can be distinguished: One
is to view it as pattern recognition, i.e., identifying “situ-
ations” or “episodes”, that are meaningful to operators, in
the alarm stream. This has been developed using meth-
ods such as neural networks and chronicles (e.g., Dousson
1996). The other is to view it as root cause analysis, i.e.,
finding a smaller set of “root cause events” that together
would cause the observed alarms. From this perspective,
there is no technical difference between alarm processing
and diagnosis: the difference lies in the model, and in how
it is interpreted. The root cause events, which we seek
to minimise, are “unexplained” but not necessarily faults.
Model validity means only that for those alarms which are
explained, the explanations are correct. It is acceptable,if
undesirable, to leave any alarm unexplained. Most work on
this approach uses a static system model (e.g., Dijk 1992;
Larsson 2009), relying onad hocmethods to divide the flow
of alarms into sets for analysis. (An exception is the method
described by Guo et al., 2010, which uses a system model
based on a temporal constraint network and computes win-
dows for analysis on the basis of the time constraints.) We
formulate it instead as discrete event diagnosis, which allows
for potentially more powerful explanatory models.

First Case Study: Detecting Missing Events
Input data for our first case study is a set of event logs
recorded on the ground during test flights of an autonomous
unmanned helicopter (UAV) in 2004 as part of the WITAS
project.2 The logs contain events issued by the UAV control
system. The high-level control system consists of dynami-
cally created instances of concurrent software components,
called “task procedures” (TPs), which perform mission tasks
(e.g., navigating the UAV to a position) by a combination of
issuing commands to the low-level (real-time) control sys-
tem, calling on-board “services” (e.g., the path planner),and
invoking other TPs to perform subtasks. Events are sent by
TPs, e.g., to signal when a task has been completed, and are
tagged with a unique identifier of the sending TP instance.
Some events also include additional data. The low-level con-
trol system sends events to signal changes in state and in
response to commands (e.g., completed or failed).

Due to occasional data overload and loss of telemetry,
logs are not complete: some events are missing. The di-
agnosis task is to detect when such gaps exist. Ideally, we
would also like to infer which events are missing, but it is in
most cases not possible to do this uniquely.

Formulation as a Planning Problem
TPs are finite state machines augmented with data variables
and bits of code executed at transitions. TPs are determinis-
tic, but because we abstract away many details, our models

2A detailed presentation of the WITAS project and the architec-
ture of the control system is provided by Dohertyet al. (2004). See
alsohttp://www.ida.liu.se/ext/witas/.

of them are non-deterministic finite automata. For example,
the sequence of events generated by theFly3D TP, which
flies the UAV along a given path, depends on the number
of waypoints in the path. By leaving the path out of the
model, the number of iterations of the TPs main loop be-
comes non-deterministic. This is an example of the trade-off
between model complexity and diagnostic power: if more
details were included we could, in some cases, detect miss-
ing events that are not detectable with the current model.

Encoding automata with predicates and actions in PDDL
is straightforward. Some transitions are synchronised, mod-
elling communication between TPs, but since synchronised
transitions involve a fixed number of automata, this can be
simply modelled by an action that conjoins the preconditions
and effects of the participating transitions. Synchronising
an unbounded number of simultaneous transitions requires
a more elaborate encoding. (An example of a PDDL en-
coding of general inter-process communication using mes-
sage queues is described by Hoffmann et al., 2006, for the
Promela domain.) The set of TP identifiers is unbounded,
but when creating a planning problem instance for a partic-
ular event log, we include only those identifiers mentioned
in the log. (In one instance, it was necessary to include an
identifier that does not appear in the log for the problem to
be solvable. While there are a number of ways that such
missing identifiers could be inferred, we have no general so-
lution to this issue.) Finally, each log begins at the start of
a mission, with the system in an idle state. Thus, we can
assume a single, fully known initial state.
Encoding Observations Some transitions emit an observ-
able event. Recall that in the discrete event diagnosis prob-
lem, we have a set of observations,O = {o1, . . . , on}, each
labelled with an eventevent(oi), and a partial order≺ on
O, and we seek a transition sequence that reproduces the
observations. This can be formulated as a planning goal as
follows: Each observationo can be in one of three states:
(future o), meaning that some observation ordered beforeo
is yet to be made;(pending o), meaning thato can be the
next observation made; and(observed o), meaning thato
has been generated. The initial state is(pending o) if o is
minimal in the order on observations and(future o) other-
wise. The goal is(observed o), for all o ∈ O. Each action
corresponding to a transition that emits an observable event
e is given an additional parameter?o; its precondition is ex-
tended with(pending ?o) andevent(?o) = e, and its effect
with (not (pending ?o)) and(observed ?o). An action corre-
sponding to several synchronised transitions that emit events
will have one such observation parameter for each event.
These parameters are required to be distinct. To ensure that
observations are made consistently with the given order, an
observationo can change state from(future o) to (pending o)
only when all observations precedingo have been made. We
encode this with an action,(advance-to o), whose precondi-
tion is (future o) and(observed o′) for all o′ ≺ o, and whose
effect is(not (future o)) and(pending o).

Proposition 1 This encoding is correct, in the sense that
any valid plan will generate each observation inO exactly
once, in an order that is consistent with the given order≺.
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Proof: For each observationo ∈ O, a valid plan must con-
tain at least one action that exchanges(pending o) for (ob-
served o), and no more than one since it is not possible
to reverse the exchange. By construction, this action cor-
responds to a transition that emitsevent(o). Suppose two
observationso′ ≺ o are generated in an inconsistent order,
i.e.,o beforeo′: Sinceo is not minimal in≺, (future o) holds
in the initial state, and the only action that may exchange(fu-
ture o) for (pending o), which is a precondition of any action
generatingo, is (advance-to o). But the precondition of this
action includes(observed o′), so it cannot be applied before
o′ has been generated. 2

A slightly simpler encoding would distinguish only between
observations made and not made, with the ordering condi-
tion part of the precondition of each action emitting an ob-
servable event. However, distinguishing future and pending
observations allows using observations as “time stamps”,
which will be useful in modelling our second case study.

Events in the flight logs are stamped with the time that
the event was generated. The order on observations is still
partial, because events separated by too small a margin (less
than1/100th of a second) cannot be reliably ordered. It is,
however, a special kind of partial order, namely, a sequence
of sets of mutually unordered elements.

Encoding Faults The faults that we wish to detect are lost
events. Thus, for every transition that emits an observable
event, the model has an identical fault transition without any
observation. In the PDDL formulation, actions correspond-
ing to fault transitions have a cost of1 while all non-fault
actions have a cost of zero, and the objective is to minimise
the cost of the plan. In particular, a zero-cost plan exists iff
the observations can be explained without missing events.

Experiments and Results
The data set comprises 8 logs, ranging in length from 41
to 273 observations. Five are complete, while three have
between 5 and 17 missing events. The number of model
components (i.e., TP instances) ranges from 3 to 26, and
the number of states per component between 20 and 129.
To obtain a larger set of problems for experimentation, we
take prefixes of these logs, of increasing length, and remove
randomly chosen events up to a desired total. This way, we
obtain 196 instances, 36 of which are complete.

Since the main task is to decide if a zero-cost plan exists, it
is natural to use planner that guarantees minimal-cost plans.
For this we use the Fast Downward implementation of A*
search with the admissible landmark-cut heuristic (Helmert
and Domshlak 2009).3 This planner finds zero-cost plans
for all 36 instances without missing events: 30 problems are
solved in less than 10 seconds, but the longest runtime for
a problem is over 150 seconds. It does not solve all 160 in-
stances with missing events. However, it does prove a lower
bound on cost greater than zero – thusdetectingthat some
event must be missing – for all but one of these problems,

3We replaced the Fast Downward translator component with a
different translator. Except where otherwise noted, experiments
were run with 30 minutes CPU time and 2Gb memory limits.

never taking more than 3 seconds to do so. (The one prob-
lem were it fails to detect missing events actually admits a
zero cost solution, so in this case the blame lies with the
model.) In fact, only applying the landmark-cut heuristic to
the initial state is sufficient to detect some event is missing
in 150 instances (including the three full-length logs).

We also use a cost-ignorant planner: greedy best-first
search using the FF heuristic (also implemented in Fast
Downward). It solves all but two problems, but generates
false positives, i.e., plans of non-zero cost, for 35 of the 36
logs without missing events. However, when run on a model
without fault transitions, and thus forced to find only zero-
fault plans, the planner solves all instances that admit such
solutions, even within a 30 second time limit. In summary,
using the combination of two one-sided tests – an admissible
heuristic for fault detection and a fast planner for “no-fault
detection” – seems to be a viable approach, though it fails to
reach a decision for a few problems.

The SAT-based diagnoser (Grastien et al. 2007) suffers
from the fact that explanation trajectories are very long,
and fails to solve any problem with more than 100 obser-
vations. The SAT-based planner that we tried (Mp, by Rin-
tanen 2010) exhibits the same behaviour, though it scales a
little further, solving one problem with 170 observations.

Second Case Study: Alarm Processing
Input data for our second case study is an alarm log from the
operations center of TransGrid, the company that owns and
operates the electricity transmission network in NSW and
the ACT, Australia. The log contains alarms generated by
automatic equipment – switch gear, voltage and power sen-
sors and regulators, etc. – located throughout the transmis-
sion network, as well as commands issued by the operators.
It covers roughly fifteen hours: the first two thirds are rou-
tine operation, then a major fault situation arises and the rest
of the log chronicles the operators’ efforts to reconfigure the
network to restore service. Figure 2 gives an indication of
how alarms are distributed over time.

Our aim is to do “intelligent” alarm processing, which be-
gins with finding a consistent system history with the fewest
“unexplained” events. What is an unexplained event can de-
pend on context. For example, an alarm indicating that a
circuit breaker has opened may be explained by the obser-
vation that it was commanded to open a short time earlier.
Four breakers isolating a line (cf. figure 1) opening almost
simultaneously may be explained by an electrical fault on
the line triggering the line protection relays, if the line was
energised. In this case, the occurrence of the line fault is it-
self an unexplained (and unobservable) event. If no reason
for the breaker opening is discernable within the model, the
alarm remains unexplained.

The log contains 2246 entries (alarms and commands) in
total. However, our model considers only a subset of alarm
types and restricted to these the total number of observations
is only 731. The model is also overly simplified in some
other respects (discussed below); to achieve a level of alarm
processing that would truly benefit end users will require a
much more detailed and comprehensive model. This, how-
ever, is not a limitation of the approach of formulating alarm
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Figure 1: Schematic of a part of the transmission network,
showing a (long-distance) line and its isolators.

processing as a diagnosis problem, or of reducing this to a
planning problem: the limitation is in our current knowledge
of the system, and in the ability of existing planners to rea-
son with a more detailed model.

Formulation as a Planning Problem

We model components of the system as non-deterministic fi-
nite state machines, and use a combination of synchronised
transitions and shared variables to model their interactions.
The dynamics of the system depend a great deal on the prop-
agation of electricity through the network. Most of this we
abstract away from the model, since to capture it would re-
quire a complex hybrid continuous/discrete model. More-
over, the electrical state of any component can depend on
network-wide topological properties, such as the existence
of a conducting path to an active generator. Such conditions
could be modelled using PDDLs derived predicates, as done
by Hoffmann et al. (2006) for the PSR domain. However,
the range of planners that support this feature is very lim-
ited, and the size of the network – especially coupled with
the incomplete initial state – mean that such a formulation
would most likely be intractable.

Therefore, the model includes only local topological in-
formation, and reasoning about electrical properties is lim-
ited to what can be inferred from this. For example, the
circuit breakers in figure 1 are all marked as being isola-
tors of the line. Any transition that changes the state of one
of these breakers to “open” flags that the isolation state of
the line may have changed. This enables the line to transi-
tion to being isolated (and having changed), if all isolators
are now open. When the line has changed to the isolated
state, we know it is not energized, and this can explain an
alarm signalling voltage on the line dropping to zero shortly
thereafter. Again, this is an example of trading reduced ex-
planatory power for a a simpler, but still valid, model. For
example, the line may also become de-energized as a result
of all generators currently feeding it switching off, but this
explanation is not discernible in our model, so in that case
the voltage drop alarm would go unexplained.

Because the model does not use global relations, such as
connectivity, the set of components that can influence any
given component is bounded. Thus, when creating a plan-
ning problem instance for a particular event log, we include
only components mentioned in the log, or directly related to
those mentioned in the log. This reduces the size of prob-
lems significantly: the whole network has over 10,000 com-

ponents in the primary electrical system alone, while the
largest problems we consider contain a few hundred.

Encoding an Incomplete Initial State In this study, we
have no knowledge of the initial state.4 However, a diagno-
sis is a consistent system history starting fromsomepossible
initial state, so we can let the planner choose the values of
initially unknown state variables (as noted by Sohrabi et al.
2010). This is done by initialising unknown variables to an
“unknown” value and including actions that allow them to
be set, once, to any value. Variables may remain unknown
as long as no action that depends on them is taken.

Encoding Time-Dependent Conditions As illustrated by
many of the examples above, time plays an important role
in the dynamics of the electricity network, and it is therefore
important to include some time constraints into the system
model. For example, if a breaker opens, causing a line to
become isolated, a voltage drop alarm may be emitted. But
if so, we expect that alarm to follow within a few seconds
of the breaker opening: a change in isolation state cannot
explain a voltage drop that takes place hours later. In other
words, the line component should remain in the “changed to
isolated” state only for a limited time, and then transitionto
a different state (although still isolated). Similarly, a fault
causing protection to trip should cause all isolation breakers
to open within a second of each other – if they don’t, protec-
tion tripping the breakers is not a plausible explanation.

We can model such time constraints using the durative
actions of PDDL2.1. However, we can also make use of the
observations as “time stamps”, that way obtaining a classical
planning model. This is advantageous because the classical
model is accessible to many more planners. We found only
one planner capable of solving the timed PDDL2.1 model,
and even that planner performs better on the classical model!

As in our first case study, observations in the event log
are time stamped (though in this case only to one seconds
precision). Thus, for any pair of observations we know the
delay,δ(oi, oj) = τ(oj) − τ(oi), between them, and order
the observations when that delay exceeds a fixed threshold:
oi ≺ oj iff δ(oi, oj) > T . (We useT = 0, i.e., we order
observations whenever there is a noticable difference in their
time stamps. A greater threshold is appropriate when time
stamps are not accurate.)

The encoding of time constraints in the classical model
is most easily explained by an example: Suppose(open-
isolator ?b ?l ?o) is the action of opening breaker?b, which
is an isolator of line?l (?o is the observation to be matched
by the event, signalling the breaker opening, emitted by the
transition). As described above, besides changing the state
of ?b to open, this action adds a proposition(iso-maybe-
chgd ?l), representing that the isolation state of?l may have
changed. Now, we want to model that this proposition will
only persist for a fixed time (say, 10 seconds). To achieve
this, we add to the predicateiso-maybe-chgd an extra pa-

4In actual application, this would likely not be the case. The
state of network devices is polled on a regular basis, and even if
that information is not used, the log of past events would indicate
the state of many components. The case of an unknown initial state
may be thought of as a “cold start” of the alarm processor.
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rameter?o, to be filled by an observation that is “current”
at the time when(iso-maybe-chgd ?l ?o) is made true. This
way, the observation acts as a time stamp for the proposition.
An observation is current if(pending ?o) is true. (Action
(open-isolator ?b ?l ?o) already has an observation argument,
which must be pending when the action takes place. To any
action that adds a transient condition and which does not
emit an observation, we must add such an observation argu-
ment.) Every occurrence ofiso-maybe-chgd in the precon-
dition of an action must now existentially quantify the extra
observation parameter. (For simple conjunctive action pre-
conditions, existential quantification is equivalent to adding
an extra action parameter.) To ensure that(iso-maybe-chgd
?l ?o) does not remain true beyond its time limit, we add to
each(advance-to o) action the effect(not (iso-maybe-chgd ?l
o′)) for eacho′ such thatδ(o′, o) exceeds the limit.

Proposition 2 This encoding is correct, in the sense that
any valid plan can be scheduled in a way that respects both
observation time stamps and the maximum time lag con-
straint, to within the thresholdT .
Proof: Transitions are instantaneous. Schedule each transi-
tion ti that generates an observationo exactly in the middle
between the earliest and latest time of all observations that
are pending whenti takes place. They cannot be more than
T apart, and henceti’s scheduled time is no more thanT/2

from τ(o). Supposeti adds a transient proposition,p(o),
with time window w (o is the observation that serves as
time stamp forp). If ti is not the transition that generates
o, schedule it at the time of the next transitiont′ that gen-
erates an observationo′. Sinceo ando′ are both pending
at this point,ti’s scheduled time is no more thanT/2 from
τ(o). Supposetj requiresp(o): the scheduled time of any
transitiont′ betweenti and tj in the sequence which gen-
erates an observationo′ is no more thanT/2 + w later than
τ(o) (as otherwise(advance-to o′) would negatep(o)). Thus
it is possible to scheduletj no later thanT + w afterti. 2

This encoding can be over-constraining, in the sense that in
some system models there could be trajectories consistent
with time constraints that do not correspond to valid plans.
However, this does not happen in our model.

The encoding has some similarity to the use of “envelope”
actions in temporal modelling, as suggested by Fox et al.
(2004). Indeed, our PDDL2.1 model uses precisely such
envelope actions to achieve the same effect.

Experiments and Results
No system that we tried was capable of finding a solution to
the problem corresponding to the complete event log. How-
ever, it may be argued that an alarm processor should only
have to consider windows of time spanning sets of causally
related observations. To obtain a set of problem instances
for evaluation, we divide the event log up in two ways: (1)
by splitting it into “chunks” separated by intervals of at least
1 minute during which no alarm is observed, and (2) by tak-
ing a 1 minute time “window” starting from each distinct
alarm time stamp. Figure 2 shows the distribution of obser-
vations over the “chunk” problems: while most have only
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Figure 2: Number of observations in each “chunk” of the
log (bar width and spacing is proportional to time). Counts
include only the subset of alarm types included in the model.

a few observations, the alarm cascade that results from the
fault incident creates a few large spikes. Those are precisely
the times when intelligent alarm processing is most needed.

For each subsection of the log, we estimate the number of
unexplained alarms that would result without processing by
counting all except commands and command acknowledge-
ments. Removing problems where the highest known lower
bound matches this estimate leaves 129 problem instances
in which there is scope for alarm processing to make a non-
trivial improvement. Table 3(a) summarises the number of
instances solved within the time limit, grouped by problem
size as measured by the number of observations. The sys-
tems we compare are:
• The cost optimal A*/LM-Cut planner.
• Gamer (cost optimal; Edelkamp and Kissmann 2008).
• LAMA (Richter and Westphal 2010).5

• Greedy best-first search using the cost-ignorant FF heuris-
tic (Fast Downward implementation). To find better plans,
we also use two variants: one continues search past the
first solution and one runs many repeated searches, ran-
domising decisions that are otherwise made arbitrarily.

• Mp (a heuristically-enhanced SAT-planner, also cost-
ignorant; cf. Rintanen, 2010).

• Crikey, a heuristic-search based temporal planner (Coles
et al. 2008), run on both the timed (PDDL2.1) and the
classical model.

• The SAT-based diagnosis engine (Grastien et al. 2007).
Figure 3(b) shows the distribution of the quality of non-
optimal solutions. LAMA, and our two GBFS/FF variants,
may find better solutions given more time. In figure 3(b),
we separate the quality of the first solution, the best found
within 30 seconds, and the best solution found at all.

Results are quite predictable: The cost-optimal planners
cannot solve large problems, while the cost-ignorant plan-

5LAMA avoids issues related to zero-cost actions in search by
uniformly adding 1 to all action costs. To better preserve the dis-
tinction between “good” (explained) and “bad” (unexplained) tran-
sitions through this transformation, we scale up the cost of bad
transitions to 10 in the input to this planner. (The plans it finds are
of course evaluated using same costs costs as for all other planners,
i.e., zero for good and one for bad transitions.) If we do not apply
scaling, LAMA is slightly more efficient, but finds worse (first and
best) solutions.
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# Observations
1-5 6-10 11-2021-3031-5051-100>100

# Problems 36 43 35 6 4 4 1

# Solved by
A*/LM-Cut 36 43 30 0 0 0 0
Gamer 36 43 31 0 0 0 0
LAMA 36 43 35 6 4 2 0
GBFS/FF 36 43 35 6 4 4 1
Mp 36 43 35 6 4 4 1
Crikey (timed) 36 40 19 6 2 1 0
Crikey (strips) 36 43 35 6 4 2 0
Diagnoser 36 43 35 6 4 4 0

# Optimal 36 43 35 1 1 0 0
0 <= 0.5 < 1.0 1.0 <=1.5 <= 2.0 > 2.0

LAMA (best)
LAMA (30 sec)
LAMA (first)
GBFS/FF (first)
Mp
Crikey (strips)
Crikey (timed)
SAT Diagnoser

Cost (scaled)
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Figure 3: (a) Number of alarm processing problems solved. Problems are grouped by the number of observations, as a measure
of size. The last line shows the number of problems for which optimal solution cost is known. (The two optimal planners solve
slightly different sets of problems. There are also some cases where a solution found by one of the other systems matches the
highest proven lower bound.) (b) Distribution of the cost ofsolutions found by non-optimal systems, scaled to the interval
between the lower bound and the cost of the trivial solution,with no alarm processing (i.e.,0 means equal to the lower bound,
1 means equal to the trivial solution).

ners, though fast, find solutions that are often as bad as using
no alarm processing at all, and sometimes even worse than
that. LAMA, and continued GBFS, strike a balance between
these extremes, finding good solutions quickly most of the
time. However, both fail to find improving solutions for
the largest instances. Repeated GBFS with randomisation
is generally worse, but is the only method to find a solution
better than the trivial one for the largest instance. The diag-
noser solves all problems but one, though somewhat slowly.
It produces minimal-cost solutions, but because it is based
on a SAT encoding, these are only optimal w.r.t. a bound
(on the number of “steps” between observations), which was
fixed in this experiment. However, no other solver finds a
better solution for any instance.

We also measure the impact of incomplete knowledge of
the initial state, by running the optimal planners on instances
with complete initial states (taken from the solutions found
by the diagnoser). In this setting, the A*/LM-Cut planner
solves an additional 13 problems and Gamer an additional
6, but still neither planner solves any problem with more
than 50 observations.

Discussion & Conclusions
We summarise our findings by discussing three questions:

Are the case study problems solved? For our first case
study, the combination of two one-sided tests, viz. using an
admissible heuristic such as the landmark-cut procedure to
detect event loss and running a fast planner on a fault-free
model to identify loss-free scenarios, seems to be a viable
approach (though it does not decide every problem).

For intelligent alarm processing, existing approaches use

either very simple system models (most not even including
any notion of time) or lack capability to choose the best
among competing explanations. In contrast, formulating it
as a discrete event diagnosis problem allows for minimisa-
tion of unexplained events over very expressive system mod-
els. On the other hand, it is clear that this problem cannot yet
be solved efficiently: Planners that deliver solutions quickly
find solutions that are often as bad as using no alarm process-
ing at all. The diagnoser produces high quality solutions, but
is still too slow to be practical. LAMA makes a valiant at-
tempt to balance fast plan generation and the quality of plans
found, and does produce fairly good solutions, even within
a 30 second time limit. However, it, and the other iterated
search methods we tried, fail to find a solution better than the
trivial for the problems with the highest number of alarms.
Since those represent precisely the situations when effective
alarm reduction is most sorely needed, we cannot call this an
acceptable performance overall. It must also be remembered
that our model is highly simplified, and covers only a subset
of alarm types. To achieve the level of alarm filtering and
synthesis that would truly benefit end users we would need
a much more sophisticated model, placing a higher compu-
tational burden on the system used to solve it.

What can planning technology contribute to discrete
event diagnosis? The question we seek to address is if
and how the techniques that have been successful in solv-
ing planning problems can be effectively brought to bear on
the problem of discrete event system diagnosis. To this end,
we devised a general reduction of this diagnosis problem to
planning, and used it to test a variety of planning approaches.

It is not so easy to identify the “state of the art” in discrete
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event diagnosis, for several reasons: what are reasonable as-
sumptions and what is a useful diagnosis differs between ap-
plications, and quantitative data on the relative performance
of different approaches is scarce. Among approaches pro-
posed in the literature for the kind of problem we consider,
many rely on expensive off-line preprocesing of the model,
making them unusable for our first case study, where the set
of components is dynamic, and severely impractical for the
second, where the complete system has some 10,000 com-
ponents. Decentralised diagnosis methods (e.g., Pencolé and
Cordier 2005) may be usable for the second case study.

Nevertheless, we have shown that there are planning tech-
niques, such as the use of an admissible heuristic to identify
necessary fault events, which have not previously been ap-
plied to diagnosis problems and which show enough promise
to merit further development. On the other hand, it is also
clear that direct reduction to planning is not a universal so-
lution to discrete event diagnosis.

What are the implications for planning research? We be-
lieve that our case study problems are interesting and chal-
lenging also for planning, since they highlight some issues
not commonly encountered in other benchmark domains.

One such issue is the essential requirement of taking into
account action costs. It has been noted (e.g., by Richter and
Westphal 2010) that in many benchmark domains, planners
that ignore action costs frequently find solutions as good as
– sometimes even better than – those found by planners that
pay attention to cost and try to minimise it, and that planners
of the former kind have an advantage in efficiency. Like-
wise, Sohrabi et al. (2010) report that cost-ignorant planners
always find near-optimal solutions for the artificial exam-
ple problem they consider. The problems we study clearly
demonstrate that this phenomenon is an artefact of those par-
ticular problem domains, not a universal rule.
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Abstract

The use of planning for computing genome edit distances was
suggested by Erdem and Tillier in 2005, but to date there
has been no study of how well domain-independent planners
are able to solve this problem. This paper reports on experi-
ments with several PDDL formulations of the problem, using
several state-of-the-art planners. The main observations are,
first, that the problem formulation that is easiest for planners
to deal with is not the obvious one, and, second, that plan
quality – in particular consistent and assured plan quality –
remains the biggest challenge.

Introduction
For several decades now, the comparative study of biological
sequence data (i.e., DNA or protein amino acid sequences)
has played an increaing role in determining the evolution-
ary history of life on Earth (e.g., Page and Holmes 1998).
While early studies examined differences in the nucleotide
sequences of individual genes, more recent work has also
examined differences in the arrangement of genes across a
whole genome (Sankoff et al. 1992; Boore and Brown 1998;
Snel, Huynen, and Dutilh 2005).

A computational problem that arises in this context is the
calculation of edit distances between sequences: that is, the
number of “mutation events” required to transform one se-
quence into another. The edit operations considered de-
pends on the type of sequence. For DNA sequences, they
are typically insertion, deletion or substitution of individ-
ual nucleotides. Minimising this edit distance is the famous
sequence alignment problem. For genome rearrangement,
the edit operations usually assumed are inversions and trans-
positions (and combined transposition and inversion, called
transversions) of subsequences within the genome, plus in-
sertion/duplication and deletion if needed to account for dif-
ferences in gene content.

Erdem and Tillier (2005) suggested that the calculation of
genome edit distance under these operations can be consid-
ered as a planning problem: The arrangement of genes is the
state, and each edit operation is an action that modifies it.
These actions may furthermore be assigned different costs,
to account for different relative frequencies with which they
are assumed to occur in the organisms studied. They devel-
oped a solution to the problem based on TLPlan, which was
later refined by Uras and Erdem (2010).

However, the system developed by Erdem and colleagues
is a plain depth-first state-space search guided by entirely
domain-specific heuristics. Although the problem is formu-
lated in a planning language, the solver makes essentially no
use of this. Consequently, there has been no comprehensive
study of how well state-of-the-art domain-independent plan-
ners are able to solve the genome edit distance problem.1

In this paper, I discuss alternative encodings of the
genome edit distance problem in PDDL, and evaluate the
ability of some current domain-independent planners to
solve the resulting formulations. My aim is not to show that
domain-independent planners are better than Erdem et al.’s
system (quite unlikely, given the extent to which it is tai-
lored to the domain), but to find out exactly how well – or
badly – such planners perform on this problem, and what
shortcommings of these planners may need to be addressed
to improve their usefulness.

Phylogenetic Reconstruction and
Genome Edit Distance

A phylogeny (evolutionary tree) is a tree where the leaf
nodes represent living taxa (species or species groups) and
interior nodes the ancestral organisms from which they have
evolved. Typically, these ancestors are long extinct. The
problem of phylogenetic reconstruction is to find the best,
i.e., most plausible, such tree, based on observed characters
of the living taxa. In a genome-based phylogenetic analysis,
these characters are the content and arrangement of genes
in the organisms genomes. What constitutes a “most plau-
sible” phylogeny depends on what criteria are assumed. A
common criterion is parismony, i.e., preferring trees with
the smallest total amount of change. Criteria such as maxi-
mum likelihood can also be used, but depend on additional
assumptions about the evolutionary process.

Finding a maximum parsimony phylogeny based on
genome rearrangement events is computationally hard.
Distance-based methods simplify the problem by divding it
into two steps: The first is to compute a matrix of pair-wise
distances between the taxa, and the second to construct a
tree with minimum total distance. Optimal tree construction

1Erdem and Tillier report that they formulated a highly simpli-
fied version of the problem in PDDL, and had little success solving
it using HSP and SATPLAN.
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Figure 1: Edit operations on a circular genome. Above:
Transposition of thex–y segment to afterz. Below: In-
version of thex1–xn segment.

is still hard, but there are widely used and seemingly good
approximate methods (e.g., Saitou and Nei 1987). Comput-
ing the entires in the distance matrix in this setting gives
rise to the genome edit distance problem. Note that the
distance-based tree construction is an approximation: even
if distances correspond to optimal rearrangement sequences,
a minimum distance tree is not necessarily a most parsimo-
nious tree.

Genome Edit Distance
A genome is a linear or circular sequence of genes. In addi-
tion to their order, each gene has an orientation (“normal”
or “inverted”, relative to the, arbitrarily chosen, direction
of the sequence). The definition of an edit distance mea-
sure requires defining the edit operations, and their relative
weights. For comparison of genomes with equal gene con-
tent, i.e., which differ only in the order and orientation of
their genes, the usual edit operations are inversion and trans-
position, and the combination of both, called transversion.
Transposition moves a segment of the genome (which may
consist of a single gene) to a different location, while in-
version reverses a segment and reverses the orientation of
each gene within it. The two operations are schematically
illustrated in figure 1. Transversion simultaneusly inverts
a segment and moves it to a new location. For comparing
genomes with unequal content, operations such as insertion,
duplication and deletion of genes must also be used. The
inversion-only distance can be computed in polynomial time
(Hannenhalli and Pevzner 1995) but no polynomial time al-
gorithm is known for the larger set of edit operations. The
problem is conjectured to be NP-hard.

That edit operations are not equally frequent is reflected
by giving them different weight in the distance calculation.
The relative frequency of apparent occurrence of transpo-
sition and inversion is not known precisely, and varies be-
tween different species groups. Blanchette et al. (1996)
suggest a relative weight of2–2.5 for transpositions and
transversions to1 for inversions. This weight range is where
the number of operations in an approximately minimum
weight transformation between one pair of mitochondrial
genomes (human and aDrosophila) diverges from the num-
ber between random sequences.
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Figure 2: Comparison between compressed genome size and
(weighted) edit distance. Note that this is the smallest known
edit distance, and does not necessarily reflect the true mini-
mum.

Although differences that can be ascribed to inversions
and transpositions can be observed in the genomes of re-
lated organisms, the mechanisms that cause these changes
are not well understood. Some studies have suggested that
the apparent transpositions and inversions are in fact the re-
sult of duplications followed by gene loss (Lavrov, Boore,
and Brown 2002). Thus, there are reasons to experiment
with different sets of edit operations, and different weight-
ing schemes. The generality of domain-independent plan-
ning can offer an advantage in that.

Problem Simplification

Uras and Erdem (2010) describe two simplifications that
they apply to problem instances before attempting to solve
them. The first is only relevant when comparing genomes
with unequal content, and is to remove from both genomes
being compared any gene that appears only in one of them,
and adding the number of such deletions to the edit cost.
(Each such gene must obviously be inserted/deleted, which
can be done at the beginning/end of the plan.)

The second is to “compress” both genomes by replacing
common substrings with (new) atomic symbols, since there
is no reason to apply any edit operation that breaks up such
a substring. Note that common substrings may appear in-
verted in one of the genomes. Compression is done pair-
wise, per problem, so the substrings need not be common
to all genomes in the data set. This simplification turns out
to be very important for performance, since it can drasti-
cally reduce the size of the problem. Genomes in the sec-
ond data set (cloroplast genomes of 13 plants from theCam-
panulaceaefamily) contain 105 genes each, but after com-
pression no pair has more than 26 elements (genes or sub-
strings). Size after compression also turns out to be a fairly
good predictor of the edit distance: figure 2 shows a com-
parison. (This was also noted by Nadeau & Taylor 1984.) In
data set #1 (mitochondrial genomes of 11 animal species),
which generally has a much higher degree of rearrangement
between genome pairs, the effect of compression is much
less dramatic.
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Formulation in PDDL
In Erdem and Tillier’s formulation, the arrangement of genes
is described by a binary predicate,(cw ?x ?y), with the mean-
ing that?y is the next gene from?x in clockwise order. I will
call this the “relational” encoding. The alternative is a “po-
sitional” encoding, i.e., to specify the position of each gene
w.r.t. a fixed frame of reference, for example by a predicate
(at ?x ?p) meaning gene?x is at position?p. The orientation
of each individual gene is additionally specified by one of
the predicates(normal ?x) and(inverted ?x) being true. Both
encodings have their advantages and disadvantages.

As noted above, correct and precise relative weights for
transpositions and inversions are not known. What is impor-
tant when formulating edit distance computation as a plan-
ning problem is allowing for the possibility of specifying
different weights, and generating plans that minimise the
weighted distance.

Formulations Based on the Relational Encoding

It is easy to think of each edit operation as an action, but
these actions are not so easy to formulate in PDDL, because
they have complex preconditions and/or effects. Consider,
for example, inversion: the segment to be inverted can be
defined by the two genes at its ends, but the operation will
have an effect also on every gene between them. The pre-
condition of transposition must enforce that the new location
(genez in figure 1) does not lie within the segment that is
moved (i.e., not betweenx andy). Since the relational en-
coding specifies only the “neighbours” in the genome, this
“betweeness” is a transitive closure property. There are (at
least) three ways to formulate the operations:
1. Use PDDL2.2’s derived predicates and axioms to define
thebetween andnot-between properties, and use quantified
conditional effects to encode the effect of inversion. Thisis,
essentially, the formulation used in Erdem et al.’s TLPlan-
based system. Note that the recursive derived predicates
used in this formulation cannot be expressed in ADL, which
allows only first-order pre- and effect conditions.2

2. Break each operation up into a sequence of actions, each
of which affects only a fixed-size genome part (e.g., only
two neighbouring genes). This requires additional predi-
cates to control the sequencing of these actions so that they
actually correspond to complete and correct edit operations.
3. Use a separate action for each size of segment operated
on, with a matching number of arguments (for example, an
action(invert-3 ?x-pre ?x ?y ?z ?z-post) for inverting the seg-
ment?x–?y–?z of length 3).
The third option is used in Erdem & Tillier’s simplified
PDDL formulation, which permits only operations on seg-
ments of limited size. For the general problem, it becomes
infeasible because of the very large number of action pa-
rameters, which make grounding impossible. (Grounding,
which is used by nearly all modern domain-independent

2Because TLPlan, which uses no domain-independent reason-
ing, uses action descriptions only to generate successor states in a
“black box” maner, it has a very expressive input language which
includes, for example, procedurally defined (recursive) functions.

planners, is a significant obstacle for some other formula-
tions as well, as discussed below.)
Single-Step Formulation In the single-step formulation,
each edit operation is performed by one action, using de-
rived predicates and quantified conditional effects to specify
actions’ preconditions and effects. Formulating axioms for
between is straightforward. For example,
(:derived (between ?x ?y ?z) (= ?z ?x))
(:derived (between ?x ?y ?z) (= ?z ?y))
(:derived (between ?x ?y ?z)

(exists (?w) (and (cw ?x ?w) (not (= ?y ?w))
(between ?w ?y ?z)))))

i.e.,?z is between?x and?y, inclusive, iff?z equals either?x
or ?y, or the next gene?w clockwise from?x is not equal to
?y and?z is between?w and?y. (A similar definition can be
written fornot-between, so it is not necessary to use negation
over thebetween predicate.) The effect of reversing thecw
relation in the segment between?x and?y (an effect of the
inversion operation) can then be written as:
(forall (?v ?w)

(when (and (between ?x ?y ?v) (between ?x ?y ?w)
(cw ?v ?w))

(and (not (cw ?v ?w)) (cw ?w ?v))))

Most modern domain-independent planners work (inter-
nally) on a grounded representation, and this is a major ob-
stacle to using this formulation. The transposition operation
involves six distinct genes whose neighbour relations will
change, and thus thetranspose action has six arguments.
Apart from a few disequalities (e.g.,z 6= x′; cf. figure 1), all
possible instantiations lead to potentially applicable actions,
which makes the number of ground actions huge. No prob-
lem with genomes containing more than 7 elements could be
grounded. Note that the issue here is not the (in-)efficiency
of the grounding process, but the size of the grounded prob-
lem. Thus, advanced grounding techniques, such as com-
bined grounding and relaxed reachability analysis (Helmert
2009), will not help.

However, since there are at most binary predicates, the
effect of an operation can be divided into a series of steps
each of which can be performed by an action with only two
parameters (e.g., for transposition: breakx′–x; breaky–y′;
connectx′–y′; etc). Part of the inversion operation must still
be written using quantified conditional effects, but there are
only a quadratic number of instances, each with an at most
quadratic number of conditional effects after grounding the
quantifiers. In this formulation, all problems (up to size 26)
can be grounded effectively.
Multi-Step Formulation The use of derived predicates and
conditional effects can be avoided by “simulating” their ef-
fects through sequences of actions.3 This can be done in
several ways: the following is just one alternative.

The edit operations can all be viewed as first cutting out
a segment of the genome and then re-inserting it somewhere
else (transposition), or inserting it reversed in the same place

3This idea is also used in compilations that remove these fea-
tures (cf. Nebel 2000, and Thiebaux, Hoffmann, and Nebel 2003).
Note that these compilations do not preserve plan length, which
is why zero-cost actions become necessary to model the relative
weight of edit operations in this formulation.
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x a b c y

(begin-cut x a b):

x
cut-1

as-first s-last

b
cut-2

c y

(continue-cut a b c):

x
cut-1

as-first s-next
b s-last

c
cut-2

y

(continue-cut b c y):

x
cut-1

as-first s-next
b

s-next c s-last

y
cut-2

(end-cut x y):

x
last-cut

as-first s-next
b

s-next c s-last

y

Figure 3: Cutting segmenta–b–c. The unlabelled arrows
represent thecw relation.

(inversion) or elsewhere (transversion). Cutting, inserting
and inserting-in-reverse a segment can all be done in a gene-
by-gene fashion. Figure 3 illustrates how a segment of
length 3 is cut out. Sequencing of the step actions is con-
trolled by auxiliary predicates: for example, the precondi-
tion of action(continue-cut ?x ?y ?z) requires that(s-last ?x),
(cut-2 ?y) and(cw ?y ?z) hold. At the end of the operation,
the end points and sequence of the cut segment are identified
by these auxiliary predicates, so that this information canbe
used to control insertion. Also marked is the point in the
genome where the cut was made: this permits to distinguish
inversion, which is a reversed insertion at that point, from
transversion, and thus to assign them different weights.

Expressed in a “natural” way, this formulation has actions
with three parameters, which is still enough to make ground-
ing large problems difficult. Through further splitting of the
steps it can be brought down to two parameters, allowing all
problems (up to size 26) to be grounded effectively.

In this formulation, the number of actions in a single edit
operation varies with the length of the transposed or inverted
segment (this is in contrast to the split version of the single-
step formulation described above). Thus, to accurately en-
code relative weights (not dependent on segment length) it
is necessary to assign some actions zero cost.

Formulations Based on the Positional Encoding
In the positional encoding, all complex relations are over
positions. For example, transposing the segment at positions
1–2 to after the gene at position3 (assuming the segment
inbetween slides counter-clockwise) results in a permutation
moving the gene at position1 to position2, the gene at2 to
3, and the gene at3 to position1:

0
1

2 3
4

5

This permutation is the same regardless of which genes oc-
cupy the affected positions. Thus, for a given genome size,
the permutations caused by edit operations can be computed
in advance and provided to the planner through static pred-
icates. For example, the effects of transposing the segment
?x–?y to ?z can be written

(forall (?g - gene ?v ?w - pos)
(when (and (transpose-shift ?x ?y ?z ?v ?w) (at ?g ?v))

(and (not (at ?g ?v)) (at ?g ?w))))

where(transpose-shift ?x ?y ?z ?v ?w) is the static predi-
cate that specifies the permutation, i.e., that the transposi-
tion moves the gene at position?v to position?w. In the
above example, we would have(transpose-shift p1 p2 p3 p1
p2), (transpose-shift p1 p2 p3 p2 p3), and (transpose-shift
p1 p2 p3 p3 p1). (The predicate is false for all positions
not involved in the move.) This allows a single-action-per-
edit-operation domain to be written without derived pred-
icates, and using actions with no more than three param-
eters. Grounding this formulation is still challenging, but
here the size of the grounded problem is moderate (although
the number of ground actions is roughly cubic, most do not
affect a large part of the genome and so have a relatively
modest number of conditional effects). Thus more efficient
grounding techniques may make it practical.

It is also worth noting that the formulation could be made
more compact by making use of the recent addition of “ob-
ject fluents” to PDDL (Helmert, Do, and Refanidis 2008),
which model multi-valued state variables. For example, the
effect of the transposition above could be written

(forall (?v ?w - pos)
(when (transpose-shift ?x ?y ?z ?v ?w)

(assign (gene-at ?w) (gene-at ?v)))

i.e., without quantifying over the possible content of eachre-
assigned position. This would reduce the number of condi-
tional effects to linear. However, there is, to my knowledge,
no planner that natively supports effects of this kind. (Fast
Downward, and planners derived from it, such as LAMA, in-
ternally use a format based on grounded multi-valued state
variables, but allow only constants on the left-hand side of
assignements.)

The positional encoding has another significant drawback
when applied to circular genomes, in that it introduces an
arbitrary fixed reference point. Thus, the fact that two circu-
lar arrangements may be equal but placed differently w.r.t.
this reference point must be taken into account. This can
be done by introducing a “rotate” action, which shifts the
whole genome relative to the reference point without chang-
ing the arrangement. Applications of this action do not count
towards the edit distance, i.e., it must have zero cost.

Genome Data Sets
Experiments were done on two data sets.4. The same data
sets were used by Erdem and Tillier (2005).

Data set #1 comprises the mitochondrial genomes of 11
species of the animal kingdom. They are a diverse collec-
tion, with one to three exemplars from each of six major

4Obtained from http://grimm.ucsd.edu/MGR/
examples.html
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Formulation Max # Grnd # Sol
Arity

LAMA
Relational

Single-step (R1) 6 18 (7) 18 (7)
Single-step, partly split (R1′) 4 34 (12) 28 (11)
Single-step, fully split (R1′′) 2 156 (26) 38 (15)
Multi-step (Rm) 3 156 (26) 156 (26)
Multi-step, split (Rm′) 2 156 (26) 156 (26)

Positional
Single-step (P1) 3 122 (19) 40 (15)

Mp
Relational

Multi-step (Rm) 3 156 (26) 36 (14)
Multi-step, split (Rm′) 2 156 (26) 45 (14)

Positional
Single-step (P1) 3 34 (12) 25 (11)

Table 1: Comparison of problem formulations on data set
#2. “Max Arity” is the largest number of action param-
eters. “# Grnd” is the number of instances (out of 156)
that could be grounded (and translated to SAS+) within 2Gb
memory. In parenthesis, the largest problem size that could
be grounded. “# Sol” is the number of instances solved,
within a 30 minute time and 2Gb memory limit. In paren-
thesis, the largest problem size that was solved. Mp was run
with a higher memory limit, 3Gb, but a 30 minute time limit
for grounding and solving combined. However, the time for
grounding and preprocessing is negligeable; when ground-
ing fails it is by exhausting memory.

groups: chordates, echinoderms, arthropods, mollusks, an-
nelids and nematodes. (Each of these groups is believed to
be monophyletic.) Blanchette et al. (1999) used this data to
investigate gene order evidence for different theories about
the evolutionary relationship between these groups. Most
mitochondiral genomes have 37 genes, without duplicates.
However, one gene is missing from all nematodes, so only
the arrangement of the remaining 36 genes is compared.
Genomes of species from different groups generally show
a high degree of rearrangement, and thus compress poorly,
while within some groups the genomes are very similar, re-
sulting in small problems after compression. Thus, in this
set there is an uneven spread of problem sizes (cf. figure 2).

Data set #2 comprises the chloroplast genomes of 13
plants from theCampanulaceaefamily. It was used by Cos-
ner et al. (2000) to compare different phylogenetic analysis
methods. The genomes contain 105 different genes, some
duplicated. Cosner et al. removed duplicate genes, so that
each genome has a length of 105. There are large segments
common to all genomes in the set, and therefore compres-
sion of common substrings reduces the size of problems sig-
nificantly, to an even spread between 3 and 26.

Experiments
The experiments aim to determine which of the different for-
mulations planners find easiest to deal with, and generally

evaluate the ability of some domain-independent planners to
compute genome edit distances. Note that this means abil-
ity to generate solutions of consistent quality. The purpose
of computing edit distances is tocomparethem (i.e, organ-
ism A is assumed to be more closely related to organism B
than to C if the edit distance between the genomes of A and
B is smaller than the distance between A and C.) This does
not mean it is necessary to find optimal plans: as long as
the relative differences between the distances computed for
different pairs is the same as between the minimal edit dis-
tances between the same pairs, any information contained
in the true edit distances is not lost. If, however, the cost
of the plans produced by a planner can differ significantly
and unpredictably from the optimal cost, to the extent that
this “random” difference overshadows any relation between
distances between different pairs, the results are of no use.
Comparison of FormulationsTable 1 summarises the com-
parison of problem formulations. This was done on data set
#2, because it shows a fairly even spread of problem sizes.
To the extent of my knowledge, the only planner capable
of handling all formulations, and trying to minimise plan
cost, is LAMA (Richter and Westphal 2010). Thus, the diffi-
culty of solving each formulation is estimated by how many,
and how large, problems this planner solves. As mentioned,
grounding is major obstactle for problem formulations that
use actions with a large number of parameters. It is, how-
ever, clearly not the only source of difficulty: in all non-
STRIPS formulations, except relational single-step, some
problems that could be grounded were not solved. To get
some idea of how much these results are specific to LAMA,
I also ran the Mp planner (a heuristically enhanced SAT-
based planner; cf. Rintanen 2011). Mp ignores plan quality,
and thus is not really suited to calculating the weighted edit
distance, but its ability to find any solution can still be used
as a measure of problem difficulty. As it does not support
derived predicates, Mp could only be tested on three formu-
lations, but on these it mostly agrees with LAMA.
Comparison of Edit DistancesFigure 4 shows a compar-
ison of the edit distances computed by different planners,
as well the inversion-only distance computed by a domain-
specific system, GRIMM.5 The planners are LAMA, Mp
and several variants of greedy best-first search with the FF
heuristic (Fast Downward implementation). The first two
variants use a cost-sensitive version of the heuristic, i.e., one
that estimates the true cost of the relaxed plan, and the stan-
dard unit-cost version, which estimates the size of the re-
laxed plan, in a standard, single GBFS search. The third
(“cGBFS/FF”) uses the unit-cost heuristic, but continues to
search after the first solution has been found, for a plan of
lower real cost. In the final variant (“GBFS/FF+RR”), some
decisions that are normally made arbitrarily (order of suc-
cessors and the choice of minimum-cost supporting action
in the heuristic) are randomised, and the search repeated as
many times as possible within the time limit, keeping the
best plan found.

The smallest known distance is found by combining the
results of all planners, exploiting the symmetry of the edit

5http://grimm.ucsd.edu/GRIMM/
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Data Set #1
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GBFS/FF (first)
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Figure 4: Comparison of edit distances found by differ-
ent planners on the relational multi-step split formulation
(Rm′). Problems are sorted by the minimum (known) dis-
tance (shown as a dashed line); this includes the inversion-
only distance obtained from GRIMM. The solid line shows
the highest lower bound proven by A*/LM-Cut. For data
set #2, the lower graph shows a close up of the region below
distance 50, for better vertical resolution. This graph also in-
cludes the distances computed by Erdem & Tillier’s (2005)
system (· · · ). Note, however, that those were computed with
transversion weighted at1, instead of2; the corresponding
distance under the weighting used here may be anywhere in
[1, 2] times that shown in the graph.

distance (the minimum cost of transforming genomeg into
g′ is the same as of transformingg′ into g; both problems
are solved), and the inversion-only distance computed by
GRIMM. (Since a weight of1 for inversions in used in the
planning formulation, the unweighted inversion-only dis-
tance is a valid upper bound on optimal plan cost.) For most
problems, the latter is clearly smaller, but there are a few in-
stances in which a planner finds a lower-cost plan. For data
set #2 the comparison also includes the distances computed
by Erdem & Tillier’s TLPlan-based system. These dis-
tances, however, were computed with transversion weighted
at 1, and thus are not directly comparable. (Note that this
distance is sometimes below the lower bound!) The cor-
responding distance under the weighting used here may be
anywhere in[1, 2] times that shown in the graph. For data
set #1, the weights used by Erdem & Tillier differ too much
from those used here to allow for any meaningful compari-
son. Finally, the highestf -value proven by A* search using
the LM-Cut heuristic is provided as a lower bound.

Three important observations can be made: First, the cost-
ignorant planners exhibit a very large spread in plan costs,
relative to the smallest known. This makes them unusable
for computing edit distances, since the noise that is created
by the planners is clearly enough to drown out any signal
present in the true minimum distances. Second, using the

Data Set #2
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Figure 4 (continued).

cost-sensitive FF heuristic results in plans of much better
quality, but is much less effective; it solves only30% of in-
stances overall (whereas with the unit-cost FF heuristic the
planner solves all but one problem). LAMA, and the two
iterated variants of GBFS with the unit-cost FF heuristic,
achieve more consistent quality, while still solving most in-
stances (90% for LAMA). Even so, the difference between
the lowest cost plan found by any of these planners and the
smallest known edit distance is of the same magnitude as
the edit distance itself, which is clearly too much. Finally,
there is an enourmous gap between the smallest known edit
distance and the lower bound. This is a significant problem,
since it means there is no way to tell how close to the true
minimum these distances are. In other words, we cannot
know for sure if the smallest known edit distances equal the
true minimum, or if they are just noise.

Conclusions
Computing minimum, or at least consistent, genome edit
edistances is clearly a challenging problem for current
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domain-independent planners. The “obvious” formulation
(relational single-step) of the problem requires advanced
features of PDDL (e.g., conditional effects with derived
predicates in effect conditions), which are not dealt with ef-
fectively even by the very few planners that support them.
Furthermore, all but very small instances this formulation
cannot be grounded, which rules out all modern domain-
independent planners. However, these problems can be
overcome by formulating the problem in a way that, while
perhaps appearing “unnatural”, is better suited to the plan-
ners. This formulation needs only STRIPS with action costs.

Finding plans of consistent (high) quality, while scaling
up to large problem instances, remains a challenge. It is in-
teresting to note that the time taken by GBFS with the unit-
cost FF heuristic to solve even the largest problems is no
more than around 15 minutes. How to make use of that ef-
ficiency to find high-quality plans is an important question
for future planning research, not only for its application to
the genome edit distance problem. (The simple “randomise
and repeat” scheme tried here is not a good enough answer.)
Most important, however, is the lack of a sufficiently strong
lower bound. As long as the gap between the lower bound
and the smallest known distance is as large as the distance
itself, we cannot be confident that edit distances computed
by planners reflect the truth.

Finally, with these results in hand, we may ask: would
biologists, interested in computing genome edit distances,
want to use domain-independent planners? The promise of
domain-independent planning in this application is its gener-
ality, providing a means to explore different sets of edit oper-
ations without the need to develop new, customised heuris-
tics or special-purpose algorithms for each set. However,
there are clearly hurdles to be overcome before this promise
can be realised. Formulating the problem such that cur-
rent planners can effectively solve it requires insight into the
workings of the planners, and may even be more difficult for
a non-specialist than developing a problem-specific search
heuristic. Better methods of finding high-quality plans, and
of finding lower bounds to provide assurance of the quality
of those plans, are also needed.
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Abstract

Workflows have been successfully applied to model collabo-
rations with a well-defined structure, which has a common re-
striction that the network settings are stable. Recently, a new
challenging domain, collaborations among groups of hosts
in an ad hoc mobile network, attracts many interests. Some
key features of this application domain, such as ad hoc in-
teractions among hosts and high levels of mobility, introduce
many challenges for designing a workflow management sys-
tem. The main difficulty is to design an efficient planning al-
gorithm that automatically schedules not only workflow allo-
cation but also the actions (movement and communication) of
hosts. Existing works only consider workflow allocation but
do not specify how the hosts should act to achieve the plan in
a mobile environment.
In this paper, we propose a framework that co-designs the
host schedule and workflow allocation in a unified way. We
transform the collaboration problem into a temporal planning
model and then solve it using automated planners that can
also minimize the total makespan of the plan in an anytime
fashion. We integrate this framework into a workflow man-
agement system CiAN. The experimental results show that
our approach significantly broadens the scope of previous
works by removing the requirements of knowing host sched-
ule. Our approach is also very efficient in finding high-quality
solution plans with short makespans.

Introduction
Workflows have been successfully applied to model collab-
orations that have a well-defined structure, which has a com-
mon restriction that the network settings are stable. (Sen et
al. 2007) presents an initial investigation into the possibility
of using workflows in a challenging new domain - that of
supporting arbitrary collaborations among groups of hosts
in a mobile ad hoc network (MANET). This application do-
main shares several key features: ad hoc interactions among
people, high levels of mobility, the need to respond to unex-
pected developments, the use of locally available resources,
prescribed rules of operation, and specialized knowhow. Ef-
forts toward using workflow in ad hoc wireless environments
are relatively new. Workow allocation in MANETs has wide

∗This work is supported by China Scholarship Council, NSF
grants IIS-0713109, CNS 1017701, and Microsoft Research New
Faculty Fellowship.

applications such as geological monitoring, emergence co-
ordination, and robot communities.

Designing a workflow management system (WfMS) for
this domain faces many challenges, as hosts may move, and
service availability may depend upon which hosts are within
communication range. These challenges make most existing
workflow management algorithms inadequate since they do
not consider the mobility and communication constraints in
ad hoc settings.

A few research efforts toward this new domain have been
carried out. (Sen et al. 2007) introduces a simple heuristic
allocation algorithm which gives the tasks that are harder to
satisfy higher priorities to be allocated and divides the al-
location of the workflows into sub-problems recursively. A
workflow management system for MANETs, CiAN, is in-
troduced in (Sen, Roman, and Gill 2008) based on this allo-
cation algorithm. (Haitjema et al. 2010) solves this workflow
allocation problem by transforming it to a numeric temporal
planning problem and calling SGPlan (Chen, Wah, and Hsu
2006) to find a feasible allocation.

All the above works have a major limitation. They all
assume knowing the activity schedule of each host before
using an allocation algorithm to assign each task to a suit-
able host. However, such an assumption is very restrictive
since they fix the host schedule during allocation and hence
limit the decision space of the workflow allocation algo-
rithms. The scheduling of hosts has significant impacts to
the feasibility and quality of workflow allocation, since it
is a main source of freedom for coping with the commu-
nication, dependency, and geometrical constraints. In an ad
hoc mobile environment, two hosts usually have a commu-
nication range (e.g. the bluetooth range), and they cannot ex-
change data unless they are within the communication range.
Since the tasks have dependencies that require notification
of completion and exchange of results, such communication
limits greatly complicate the workflow allocation and make
the problem much harder. Existing works separate the host
scheduling problem from workflow allocation. They only
solve the allocation problem and do not address how to pre-
compute a feasible host schedule. In fact, we observe that it
is necessary to consider the host schedule and workflow al-
location simultaneously in a co-design approach, in order to
design a complete algorithm that can always find a feasible
solution if there exists one.
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Figure 1: The construction site safety report problem.

In order to address these challenges for collaboration
in MANETs, we propose an approach to co-design host
scheduling and workflow allocation in a unified framework.
Our approach automatically translates the collaboration-in-
MANETs problem to a temporal planning problem, and calls
a temporal planner to find suitable host schedule and work-
flow allocation for WfMS. Our model can handle dynamic
initial and goal states to support online insertion of new
tasks. Moreover, it provides the ability to optimize the to-
tal makespan in an anytime fashion by leveraging on the ad-
vance of AI planning research.

System Model: CiAN on MANETs
We develop our planning approach on the CiAN architec-
ture (Sen, Roman, and Gill 2008), although in principle our
approach can be generalized to other workflow systems for
ad hoc mobile environments. A workflow engine provides
the build time environment for process modeling (definition,
design, and evolution) and the runtime environment for ac-
tivating, managing, and executing workflow processes (My-
ers and Berry 1999). Process modeling will build a library of
process templates which usually integrate information flow
requirements, activity decomposition, and communication
constraints. In the runtime environment, it usually contains
three phases:

• Process Selection: The engine will respond to some new
requests by selecting and instantiating suitable process
templates from the library.

• Task Allocation: Once the processes are instantiated, the
engine will assign tasks to suitable processing entities ac-
cording to some predefined rules or algorithms. This task
allocation can be viewed as a scheduling problem, which
can also be solved by automated planners.

• Enactment Control, Execution Monitoring, and Failure
Recovery: The engine will maintain all the knowledge and
internal control data to identify the state of each activity,
transition conditions, connections among processes, and
performance metrics.

In most of the existing workflow engines, they take a
centralized role in coordinating the operation of process-
ing entities, as the hosts report to the central host during
execution and wait for instructions. However, designing a
workflow management system targeted to MANETs faces
a new challenge: coordination among the various partici-
pants becomes more complex due to the dynamic topology
of the MANET which often allows only transient connectiv-
ity among hosts. To bring workflows to this dynamic type
of mobile networks, CiAN is designed as a lightweight and
choregraphed engine that facilitates the workflow execution
in MANETs (Sen, Roman, and Gill 2008). Specifically, it
uses a publish-subscribe-like protocol that takes results from
a task and delivers them to the host responsible for execut-
ing the immediately succeeding tasks without going through
a central coordinating entity. Note that CiAN allows decen-
tralized information exchange during execution, but still re-
quires centralized workflow allocation before execution.

Task Allocation Problems in CiAN
We use an example on construction site coordination to
help describe the task allocation problem in CiAN. Our
planning-based approach is general for workflow allocation
in MANETs and not limited to this example.

Example 1 Consider a group of construction workers mov-
ing around a large construction site like the one shown in
Figure 1. All the workers are equipped with mobile devices
(e.g. PDAs and smart phones) and are moving around the
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Figure 2: The workflow of the construction site safety report
problem.

site working according to their individual schedules, which
may be known to the management.

Now imagine that the management wants to perform a
safety inspection check ad hoc and demands that a safety
inspection report to be compiled. The various steps in creat-
ing the report are shown as a workflow in Figure 2.

In an ad hoc mobile environment, tasks that make up the
workflow can only be done in specific locations and may re-
quire certain qualifications in order to be performed. For ex-
ample, only a structural engineer working near the scaffold-
ing can perform the inspect scaffolding task. A further com-
plication is that after a task is executed, the results will need
to be communicated to the person(s) executing the subse-
quent task(s) in the workflow. This transfer of results is nor-
mally done over a network. But, since the construction site
is large, there may be no network infrastructure and we as-
sume two people can only communicate when their mobile
devices are within the communication range of one another.
This means that even if a worker can execute a task, we must
consider whether or not the worker will be able to pass the
result onto the person we have chosen to perform the subse-
quent task. All of these constraints can make the process of
choosing a worker for a given task a non-trivial problem. In
fact, deciding whether or not there is an allocation of tasks
to workers such that the workflow could possibly complete
in this manner is NP-hard (Haitjema et al. 2010).

In the CiAN model, each task is associated with the fol-
lowing features:

• Locations: the locations where the task can be performed.
Specified as a coordinate pair (x,y). Note that a task can
be performed at one or more locations.

• Duration: the time required to execute the task.

• Hosts: the hosts who can perform the task. Note that a task
can be performed by one or more hosts.

• Qualifications: a list of the qualifications necessary to per-
form the task. It also includes the task dependencies, a list
of the tasks in the workflow that must be completed be-
fore the task to be executed. A host must know that all
dependent tasks have been finished before executing the
task.

• Status: whether the task has been performed.

We also have a set of workers which we will call hosts.
CiAN requires to know the exact schedule of each hosts be-

fore performing task allocation, specified by the following
features:
• Location: the location where the host is at for a certain

time.
• Move speed: the speed of the host moving from one loca-

tion to another.
The goal of the problem is to determine if there is a feasi-

ble allocation. A feasible allocation is a mapping of tasks to
hosts such that each host can execute all its assigned tasks.
In order for a host to execute a task t, the host must have the
qualifications required by t, be in the location for the dura-
tion specified by t, and must be able to receive the results
from the host(s) executing the dependencies of t. Note that
the requirement that a host receives results for all the depen-
dencies before executing its task ensures that the workflow is
completed in the order specified by the workflows ordering
constraints.

Limitations
CiAN requires to know the schedule of each host before
performing task allocation (Sen, Roman, and Gill 2008;
Haitjema et al. 2010). Each schedule entry contains a start
time, location at the start time, end time, and location at
the end time, which indicates when a host will be at cer-
tain location. In ad hoc mobile networks, locations of hosts
may dynamically change and two hosts must meet up within
a range before exchanging data when one host requires re-
sults from the other. Fixing the schedules of all hosts, CiAN
can pre-compute the exact locations of moving hosts and the
availability of communication between hosts for any given
time. Such a strong assumption greatly simplifies the plan-
ning problem.

However, in real-world applications, a host may arrange
its schedule according to the tasks it will execute. Thus,
the schedules of hosts are usually unknown when per-
forming task allocation in WfMS. Moreover, considering
the host schedule and workflow allocation together gives a
larger decision space which may leads to more preferable
(e.g. shorter) plans. The co-design of both host schedule
and workflow allocation, while considering the dependency,
communication, and temporal constraints, is beyond the ca-
pability of the allocation algorithm in CiAN, or any other
existing workflow algorithms we know of.

Temporal Planning for Co-Design
To overcome the limitations of the existing allocation algo-
rithms, we formulate the host/workflow co-design problem
into a temporal planning problem in PDDL and use state-
of-the-art temporal planners to solve it. In our approach, we
discard the assumption of knowing the host schedule a pri-
ori and aim at finding task allocation and host schedule at
the same time.

Using the Planning Domain Definition Language (PDDL)
2.2 (Edelkamp and Hoffmann 2003), we define the temporal
problem for the co-design problem as follows.
Objects. We define four objects: host, task, location, and
token. Each host can execute certain tasks at certain loca-
tions. Each token is associated with a task to indicate that
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the task is finished. A token is consequently also an edge be-
tween two tasks representing the dependency. A host must
have all the relevant tokens for a task (one for each depen-
dency) before executing it.
Predicates. Based on the definition of objects, we define
four kinds of predicates representing the status of hosts and
tasks.

• at ?h - host ?l - location: a host h is at location l.

• free ?h - host: a host h is free, which means it can exe-
cute a task, move to other locations, or communicate with
another host.

• done ?t - task: a task t is finished.

• has-token ?h - host ?t - token: a host h has token t,
which means the host t knows that task t has been exe-
cuted. Note that we use the same name for task t and the
token associated with t.

Durative Actions. We consider three kinds of durative ac-
tions: an execute action of a host to execute a task at a
given location by a given host, a move action of a host be-
tween two locations, and a communicate action between
two hosts. These three kinds of durative actions are defined
as follows.

• execute ?h - host ?l - location ?t - task: 1) Duration: a
positive rational number indicating the executing time of
task t. 2) Preconditions: (at start (at h l)), (at start (free
h)), (over all (at h l)), and (at start (has-token h t′)) for
all dependent tasks t′ of the task t. Since PDDL2.2 is able
to describe numeric resources, we also can describe some
other qualifications, such as resource requirements. 3) Ef-
fects: (at start (not (free h))), (at end (free h)), (at end
(done t)), and (at end (has-token h t)). The last two ef-
fects represent that task t is finished and host h has token
t.

• move ?h - host ?l1 ?l2 - location: 1) Duration: a positive
rational number indicating the time for host h to move
from l1 to l2. It equals to the distance between l1 and l2
divided by the speed of the host. Note that all the move
actions together encode the map information of the envi-
ronment. 2) Precondition: (at start (at h l1)). 3) Effects:
(at start (not at h l1)) and (at end (at h l2)).

• communicate ?h1 h2 - host ?l1 ?l2 - location ?t - task:
1) Duration: a positive rational number indicating the time
for transferring a message (token t). 2) Preconditions: (at
start (at h1 l1)), (at start (at h2 l2)), (at start (free h1)),
(at start (free h2)), (at start (has-token h1 t)), (over all (at
h1 l1)), and (over all (at h2 l2)). 3) Effects: (at start (not
(free h1))), (at start (not (free h2))), (at end (free h1)),
(at end (free h2)), and (at end (has-token h2 t)). The last
predicate represents that the host h2 has the token t after
communicating with h1.

The precondition (over all (at h l)) indicates that the the
host h cannot move to other locations when executing a task
or communicating with another host. The precondition (at
start (free h)) and effect (at start (not (free h))) guarantee
that the host h cannot perform two actions at the same time.

Note that since dependent tasks are different in different ex-
ecute actions, we cannot define all execute actions in an un-
grounded way. Therefore, all actions are grounded in the do-
main definition of PDDL.
Initial State. The initial state of the problem includes predi-
cates: 1) (free ?h - host) and (at ?h -host ?l - location) which
indicate that host h is free now and at location l. 2) (at n
(free ?h - host)) and (at ?h - host ?l - location) which in-
dicate that host h will be free at time n (a positive rational
number) and at location l then. This timed initial literals, (at
n (free ?h - host)), is a feature of PDDL2.2 (Edelkamp and
Hoffmann 2003) which represents facts that become true or
false at certain time points.

Note that we use this feature to support dynamic plan-
ning. During the execution of a plan, when a set of new task
requirements come in, a host may be executing some tasks
currently and will be free in the future time n. If the host is
required for a task, we need to add the host as an object in the
planning problem. Thus we use the timed initial predicates
to represent the initial status of such hosts. By exploiting the
timed initial literals in PDDL2.2 planning, our approach can
support dynamic planning in response to new tasks during
execution.
Goal State. The goal state includes predicates (done ?t -
task) for all required tasks t. Again, our approach can sup-
port dynamic planning. When new tasks are added during
execution, we generate a new planning problem with the dy-
namic initial state discussed above and goal state using these
new tasks, and then call a planner to solve it.

Based on the above PDDL model, any solution plan found
by a temporal planner will give a co-design solution, which
specifies the workflow allocation as well as a schedule of
movement and communication for each host.

The resulting temporal problem is temporally simple
without required concurrency (Cushing et al. 2007). A tem-
poral problem has required concurrency (called temporally
expressive) when, in any solution, there exist two actions a1
and a2 such that: 1) a1 has two effects (at start f ) and (at
end (not f )) (which means f is an interval add-effect), and
2) a2 has a precondition (at start f ). These two conditions
require a1 and a2 to be executed concurrently. Clearly, in
our PDDL2.2 model, no two actions satisfy these two con-
ditions. Note that temporally simple problems are typically
more tractable than temporally expressive ones. Hence, our
formulation can be efficiently solved using existing tempo-
rally simple planners.

Note that although the problem is temporally simple, it
is essential to exploit the durative natures and concurrency
of actions in our model in order to generate efficient plans
with short makespans. In real-world applications, the tem-
poral feature is very important because users usually want
to finish all tasks as soon as possible. In our implementa-
tion, we use an anytime temporal planner, TFD (Eyerich,
Mattmüller, and Röger 2009), to optimize the makespan.

We show three grounded actions of Example 1 in Figure 3.
The optimal solution found by Temporal Fast-

Downward (TFD) (Eyerich, Mattmüller, and Röger 2009) is
shown as follows. The first column is the scheduled time of
each action and the last column is the action duration. The
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(execute Foreman-0 crane-zone compile-report
:duration (= ?duration 30)
:condition (and
(at start (at Foreman-0 crane-zone))
(at start (free Foreman-0))
(at start (has-token Foreman-0 inspect-firefighting-equipment))
(at start (has-token Foreman-0 perform-crane-safety-check))
(at start (has-token Foreman-0 inspect-scaffolding))
(over all (at Foreman-0 crane-zone))

)
:effect (and
(at start (not (free Foreman-0)))
(at end (has-token Foreman-0 compile-report))
(at end (done compile-report))
(at end (free Foreman-0))

)
)

(communicate Foreman-0 crane-zone Site-Manager crane-zone compile-report
:duration (= ?duration 1)
:condition (and
(at start (at Foreman-0 crane-zone))
(at start (at Site-Manager crane-zone))
(at start (free Foreman-0))
(at start (free Site-Manager))
(at start (has-token Foreman-0 compile-report))
(over all (at Foreman-0 crane-zone))
(over all (at Site-Manager crane-zone))

)
:effect (and
(at start (not (free Foreman-0)))
(at start (not (free Site-Manager)))
(at end (free Foreman-0))
(at end (free Site-Manager))
(at end (has-token Site-Manager compile-report))

)
)

(move Foreman-0 crane-zone firefighting-zone
:duration (= ?duration 2)
:condition (at start (at Foreman-0 crane-zone))
:effect (and
(at start (not (at Foreman-0 crane-zone)))
(at end (at Foreman-0 firefighting-zone))

)
)

Figure 3: Three grounded actions of Example 1.
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total time (makespan) of the solution is 120.18 seconds.

– 0.01 (move site-manager init-loc crane-zone ) [2]

– 0.02 (move foreman-1 init-loc crane-zone ) [2]

– 0.03 (move construction-worker-4 init-loc firefighting-
zone ) [3]

– 0.04 (move engineer init-loc scaffloding-zone ) [3]

– 0.05 (move mechanic init-loc crane-zone ) [2]

– 2.06 (execute foreman-1 crane-zone create-safety-report-
document ) [20]

– 22.07 (communicate foreman-1 crane-zone mechanic
crane-zone create-safety-report-document ) [1]

– 23.08 (execute mechanic crane-zone perform-crane-
safety-check ) [60]

– 23.09 (communicate foreman-1 crane-zone construction-
worker-4 firefighting-zone create-safety-report-document
) [1]

– 24.10 (execute construction-worker-4 firefighting-zone
inspect-firefighting-equipment ) [30]

– 24.11 (communicate foreman-1 crane-zone engineer
scaffloding-zone create-safety-report-document ) [1]

– 25.12 (execute engineer scaffloding-zone inspect-
scaffolding ) [45]

– 54.13 (communicate construction-worker-4 firefighting-
zone foreman-1 crane-zone inspect-firefighting-
equipment ) [1]

– 70.14 (communicate engineer scaffloding-zone foreman-
1 crane-zone inspect-scaffolding ) [1]

– 83.15 (communicate mechanic crane-zone foreman-1
crane-zone perform-crane-safety-check ) [1]

– 84.16 (execute foreman-1 crane-zone compile-report )
[30]

– 114.17 (communicate foreman-1 crane-zone site-
manager crane-zone compile-report ) [1]

– 115.18 (execute site-manager crane-zone sign-report ) [5]

Task execution
Once the planning process is completed, the execution of
the workflow begins. When an agent is assigned an action, it
adds an entry to its schedule that contains all the necessary
information to execute the appropriate service as directed by
the manager. The agent is free to roam, but is responsible for
completing assigned tasks, including moving to certain loca-
tions, executing tasks, and exchanging task execution infor-
mation. The execution phase of this workflow is in a decen-
tralized and distributed manner.

The flexibility of such a dynamic domain is much higher
than normal workflow problems, due to the high variability
of agent speeds and task completion probability. The change
of speed may cause an agent not able to arrive at a required
location in time for executing tasks or communicating with
another agent. A failed execution of a task may break the de-
pendencies of other tasks and cause the whole plan to crash.

Thus, the ability to handle these execution exceptions is very
important for the workflow management system.

In our system model, we can handle these exceptions
since our planning algorithm, as we discussed in this pa-
per before, can support dynamic planning by exploiting the
timed initial literals. During the execution of a plan, when
an agent fails to execute an action, it will first try to re-do
it if there is enough time before the start time of the next
action in its schedule. The replanning process will be trig-
gered if the re-do fails. We first collect the current state of
free agents and timed future state of working agents if nec-
essary to generate the new initial state, and the unfinished
goal tasks to generate the new goal state. Then we generate
a new planning problem with the dynamic timed initial state
and goal state, and then call a planner to solve it. As we will
show in our experimental results, we can solve the planning
problem efficiently (under 10 seconds for the largest prob-
lem with 30 hosts). Hence, it is feasible to plan dynamically
during execution.

Related Work
AI Techniques for Workflow Management
An overview of early uses of AI techniques in workflow
engines is presented in (Myers and Berry 1999). The pa-
per overviews three major areas: 1) reactive control systems
providing adaptive process management, 2) AI scheduling
providing adaptive resource allocation, and 3) AI planning
providing process synthesis and repair (with a focus on re-
planning).

There are several other work on applying AI planning
techniques to WfMS. (Moreno and Kearney 2002) describes
an integration of AI planning techniques with an existing
workflow management system. It uses AI planning to au-
tomatically generate a sequence of instantiated activities.
(Schuschel and Weske 2003) outlines a framework for an
integrated planning and coordination system, which uses
AI planning to support business processes. (Shi, Yang, and
Sun 2011) presents a workflow management system with
dynamic goal tasks, using AI planning to solve these goal
driven workflow planning problems. However, none of these
works considers ad hoc mobile environments and the plan-
ning of host activities as this paper does.

WfMS with Temporal Constraints
Modeling temporal constraints in WfMS is first proposed
in (Marjanovic and Orlowska 1999; Eder, Panagos, and Ra-
binovich 1999). (Marjanovic and Orlowska 1999) proposes
a framework for time modeling in production workflows.
Relevant temporal constraints are presented, and rules for
their verification are defined. Furthermore, to enable visual-
ization of some temporal constraints, a concept of “duration
space” is introduced. (Eder, Panagos, and Rabinovich 1999)
proposes modeling primitives for expressing temporal con-
straints between activities and binding activity executions to
certain fixed dates. It presents techniques for checking sat-
isfiability of temporal constraints, and enforcing these con-
straints at run-time. The techniques for temporal constraint
management are based on the timed activity graph.
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(Son and Kim 2001) proposes a scheme to maximize the
number of workflow instances satisfying given deadlines.
It develops a method to determine the minimum number
of servers (MNS) for any critical activities, an activity that
should be finished without delay for a given input arrival
rate. (De Maria, Montanari, and Zantoni 2005) proposes to
use the finite timed automata as a tool to specify timed work-
flow schemas and to check their consistency. Temporal con-
straints are often set when complex e-science processes are
modeled as scientific workflow specifications. (Chen and
Yang 2010) systematically investigates how to localize a
group of fine-grained temporal constraints so that temporal
violations can be identified locally for better cost effective-
ness. Most of these works are designed to derive or check
certain properties of a temporally constrained system. How-
ever, they cannot be directly used to solve workflow allo-
cation problems, nor the more complex co-design problem.
An interesting future work is to incorporate these analysis as
heuristic guidance and pruning conditions to further improve
our planning approach.

Experimental Results
We evaluate our method by designing a simulator. In our
implementation, we use two state-of-the-art temporal plan-
ners, SGPlan (Chen, Wah, and Hsu 2006) and TFD (Eyerich,
Mattmüller, and Röger 2009), to solve the compiled tempo-
ral planning problem in PDDL2.2. We generate a series of
random problems and measure the time taken to find a solu-
tion plan and the temporal makespan. The main parameters
of generated problems include:

– n h: the number of hosts.

– n t: the number of tasks.

– n c: the number of dependencies for each task.

– max x,max y: location range (0 ≤ x ≤ max x, 0 ≤
y ≤ max y) that hosts may work at. We set max x =
max y = 400m.

– s: the moving speed of hosts. We set it to 1.7 m/s which
is close to human walking speed.

– d: the duration of actions. The duration of execute is
randomly chosen from [60, 300] seconds, the duration of
communicate is set to 1 second, and the duration of move
is set to the distance of two locations divided by speed
(dis(l1, l2)/s).

n h, n t, and n c are the main parameters deciding the
complexity of the generated problems. In (Sen et al. 2007),
the largest problem’s parameters are n h = 12, n t =
2∗n h, and the probability for each task to be assigned a task
dependency equals to 0.3. Since the host schedule in (Sen
et al. 2007)’s testing problem is randomly generated and a
large number of task dependencies may lead to a low chance
of finding a feasible task allocation, it sets a low probability
of having task dependencies. In our evaluation, we generate
a series of problem with n h ∈ [1, 30], n t = 2 ∗ n h, and
n c is randomly chosen from [0,3]. The dependencies be-
tween tasks are randomly generated with the guarantee that
no cycle exists. We set this higher dependency probability

than (Sen et al. 2007) because real-world applications usu-
ally require a large number of task dependencies as shown
in Example 1.

All experiments are conducted on a workstation with
2.8GHz CPU and 2GB memory. The running time limit for
each problem instance is set to 30 seconds. We set this rela-
tively low time limit in order to ensure the practicability of
our approach in real-world applications, where users prefer
short planning time.

From experiments, we see that our approach can solve the
co-design problems efficiently. Specifically, it requires no
more than 2 seconds to find a solution on any problems with
up to 30 hosts and 60 tasks, a problem size much larger than
the largest problem previous work considered (12 hosts and
24 tasks) (Sen et al. 2007). The running time and makespans
are shown in Figure 4.

Since the allocation algorithms in (Sen et al. 2007; Hait-
jema et al. 2010) and our approach are based on different
assumptions, we cannot compare them directly using our
testing problems. However, some quantitative comparisons
can be made here. Comparing our approach against the al-
location algorithm in (Sen et al. 2007), we found that our
approach is still very efficient even though it is solving a
much harder problem (which considers host scheduling un-
der a higher degree of task dependencies). For example, for a
problem with n h = 12 and n t = 24, the mean time to per-
form CiAN’s allocation algorithm is about 1.2 seconds (Sen
et al. 2007) while the solution time of our method is 0.25
second.

(Haitjema et al. 2010) usually cannot find a feasible al-
location on our problems where n h ≥ 8 as the randomly
generated host schedule. This clearly shows the limitation
of that approach and the need for co-design. Also, it spends
more time to solve allocatable problems than our approach.
For a problem with n h = 4 and n t = 8, using the same
planner SGPlan, it takes 3.74 seconds to find an allocation
while our approach takes only 0.03 second.

Another advantage of our method is that we can minimize
the temporal makespan (the total time of finishing all tasks)
by using TFD, an anytime planner which can optimize the
makespan. Figure 4 shows the solution time and makespan
of a feasible solution found by SGPlan and of the best so-
lution found by TFD under 30 seconds. Obviously, SGPlan
is faster and solves more problems than TFD under 30 sec-
onds. On the other side, TFD usually finds better plans (with
hundreds of seconds shorter makespans) at the cost of more
planning time. For example, on the problem with n h = 10,
TFD finds a plan with a makespan 2313s in 1.96 seconds
while SGPlan found a solution with a makespan 4384s in
0.08 second. Considering the large saving of execution time,
users are likely willing to spend a little more time on plan-
ning.

Conclusions and Future Work
Workflows have been extensively studied and applied to
model collaboration in well-defined and stable networks. In
this paper, we consider a new challenging environment of
ad hoc mobile networks for workflow allocation. Existing
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Figure 4: The running time and solution quality (in terms of makespan) of SGPlan and TFD. Note that n t = 2 ∗ n h.

workflow engines for this domain can find a workflow allo-
cation based on the restrictive assumption of knowing and
fixing schedules of all hosts a priori. In this paper, we have
presented a framework that co-designs the host schedule and
workflow allocation in a unified way. We transform the col-
laboration problem into a temporal planning model and use
automated planners to solve it efficiently. Our experimental
results show that it is practical to use temporal planners to
find feasible and even optimized schedule that coordinates
hosts and workflows together under complex temporal, com-
munication, and dependency constraints.

A practical workflow allocation algorithm on MANETs
has many applications. Responding to catastrophes such as
chemical spills, conducting geological surveys of remote ar-
eas, and even managing a community of robots exploring
hazardous areas are only a few examples of the many activ-
ities that would potentially benefit from this approach. We
plan to explore such real applications in our future work.
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Abstract

In previous work, we described an Emergency Landing Plan-
ner (ELP) designed to assist pilots in choosing the best emer-
gency landing site when damage or failures occur in an air-
craft. In this paper, we briefly describe the system, but focus
on the integration of this system into the cockpit of a 6 DOF
full-motion simulator and a study designed to evaluate the
ELP. We discuss the results of this study, the lessons learned,
and some of the issues involved in advancing this work fur-
ther.

In a previous paper (Meuleau et al. 2009b), we described
an Emergency Landing Planner (ELP) designed to assist pi-
lots in choosing the best emergency landing site when dam-
age occurs to an aircraft. In 2010, we integrated our planning
software into the cockpit of a 6 DOF full-motion simula-
tor for 757/767 category transport aircraft, and performed
experiments to evaluate the software using crews of pro-
fessional airline pilots. In this paper we briefly review the
Emergency Landing Planner (ELP), but focus on three top-
ics:

• Integration of the software into the aircraft avionics

• Design and results of an experiment to evaluate the system

• Challenges to further advancing and fielding the technol-
ogy

1. The Emergency Landing Planner
Figure 1 illustrates the type of scenario that the ELP ad-
dresses. When damage or failures occur in an aircraft an
adaptive controller takes over to help stabilize and control
the aircraft. The ELP then provides the pilot with a ranked
set of possible emergency landing sites. Fundamentally, the
ELP is solving a 3D path planning problem with dynam-
ics. It does this by constructing a probabilistic roadmap of
points and edges that includes the current position of the air-
craft and an approach point to every possible runway within
a viable range. (This may cover hundreds of airports for an
aircraft at high altitude.) A sophisticated model of risk is
used to assess the probability of success for each edge in the
roadmap. This model of risk takes into account:

∗Stinger Ghaffarian Technologies
†Mission Critical Technologies

Figure 1: Basic Scenario

• Control capabilities of the (damaged) aircraft
• Weather conditions in the area (e.g. thunderstorms, turbu-

lence, icing)
• Ceiling, visibility and winds at each possible landing site
• Instrument approaches available at the site (if any)
• Characteristics of the landing site (runway length, width,

condition)
• Emergency facilities at the site (fire, medical)
• Danger to population along the approach path

A∗ search is used to search the roadmap to find the best
options. The heuristic used to guide A∗ is a combination of
the risk associated with flying the remaining (Euclidean) dis-
tance to each runway, and the risk associated with approach
and landing at that runway.

Currently, the ELP only considers officially recognized
airports and runways (large and small). However, there is no
fundamental reason that additional sites could not be con-
sidered, including fields, highways, and waterways. Such
sites should probably not be considered unless the airport
options are exhausted or are too risky. The ELP makes two
additional assumptions:

1. Real time weather information is available to the aircraft
2. The flight envelope for the (damaged) aircraft is known1.

1For our purposes, the flight envelope of an aircraft is the four
dimensional space of airspeeds, bank angles, vertical speeds, and
altitudes in which the aircraft can operate.
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Figure 2: An example roadmap for an ELP scenario. The
vertical polygons are areas of thunderstorm or other weather
activity. Terrain obstacles (lower) are not shown.

The first of these assumptions is quite reasonable, given the
availability of satellite weather services and internet connec-
tivity for large aircraft. The second assumption is more op-
timistic. We will discuss this more in Section 5.. The flight
envelope does play a key role in the assessment of risk for
various options. For example, if a damaged aircraft must
maintain a higher airspeed than normal, additional runway
length is needed, and finding a runway with a strong head-
wind is important to lowering ground speed at touchdown.
Similarly, if the aircraft has limited ability to bank to the
right, a right crosswind or gusty conditions will be problem-
atic, as will paths that require sharp turns to the right.

The performance of the ELP is largely a function of the
number of points and edges in the roadmap. Currently, we
generate 1000 points and connect them to their 100 near-
est neighbors, which results in a roadmap with 100,000
edges. The A∗ search typically expands about 20 percent
of those edges for the scenarios we considered. With this
sized roadmap, the ELP produces an ordered list of options
for the pilot in under 6 seconds. This list can therefore be
refreshed and updated as often as desired, to account for the
aircraft movement, weather updates, or additional failures.

Our experience has been that paths generated from prob-
abilistic roadmaps of this density can be far from optimal,
and just don’t look very good when displayed. This prob-
lem can be addressed by dramatically increasing the density
of points and edges, but this approach also significantly in-
creases search time. The more practical solution is to use
local search to shorten and smooth paths. We do this local
search by constructing a second roadmap consisting only of
points along the path just found, creating a dense network
of edges among those points, and re-running A∗ on this re-
duced graph. The resulting paths are shorter, smoother, and
seem more natural when displayed.

More details about the risk model, the path planning, and
the local search can be found in (Meuleau et al. 2009b;
2009a; 2011)

Figure 3: The Advanced Concepts Flight Simulator (ACFS).

Figure 4: The cockpit of the ACFS.

2. Integration
Figures 3 and 4 show the Advanced Concepts Flight Simula-
tor (ACFS) at NASA Ames Research Center. The simulator
is representative of modern glass cockpit twin engine com-
mercial transport aircraft such as the Boeing 757, 767, and
Airbus A320. Unlike most large commercial flight simula-
tors, the code of this simulator has been “exposed” to allow
for experimentation with adaptive control software, damage
models, and experimental pilot aids and displays.

In normal operations, pilots view, enter, and modify des-
tination, route and approach information using a pair of key-
pads and displays (CDUs) located just above, and on either
side of the throttles (Figure 5). Information entered on a
CDU is communicated to the aircraft’s Flight Management
System (FMS), which interfaces with the autopilot and with
the various displays in the cockpit. When route information
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is entered on a CDU, the route shows up as a dashed white
line on the pilot and co-pilots Navigation Displays (Figure
6). Once executed, the previous route disappears, and the
route becomes solid magenta.

Figure 5: A CDU showing the Departures/Arrivals page for
Denver (KDEN) airport. The emergency prompt appears
next to button 6R at the lower right.

To integrate the ELP into the aircraft cockpit, we needed
to make it accessible through the CDUs and make it commu-
nicate route information to the FMS, so that the emergency
routes would appear on the Navigation Displays. Further-
more, we wanted the pilots to be able to edit or change an
emergency route just as they can with any other route. As
a result, the ELP had to be fully integrated with the CDUs
and the FMS. In addition, we wanted to make the style of
the interface reasonably intuitive and consistent with exist-
ing CDU pages.

The ELP is accessed using button 6R from the Depar-
ture/Arrivals page (Figure 5). After a brief splash screen,
a set of ”Emergency Pages” is displayed, showing the op-
tions ordered from lowest to highest risk. Figure 7 shows
the first of four emergency pages for a scenario. Each entry
shows an airport, runway, runway length, distance, and di-
rection (magnetic bearing). The smaller symbols below each
entry indicate the principle risks associated with that option;
for example, RL indicates runway length is an issue, and CE
indicates that the cloud ceiling is close to the minimums for
the best approach to that runway. To select an entry, the but-
ton to the left of the entry is pressed. In this case, the first
entry has been selected by pressing button 1L, which causes
the route for that option to show up as a dashed white line on
the Navigation Displays, as shown in Figure 6. Pressing the
EXEC key would cause the route to become the current route
(solid magenta). The pilots can page through the options
using the NEXT PAGE and PREV PAGE buttons as desired.
To see more information about a particular option, the pilots

Figure 6: The Navigation Display showing both the current
route (magenta) and the new route being considered (dashed
white). Green, yellow, and orange areas indicate rain and
thunderstorm activity.

can press the button to the right of the option, which brings
up an airport information page showing runway information
and the current weather at the airport (Figure 8).

The screen size and lack of color on the CDUs limited
the amount of information we could convey for each option.
With greater screen real estate, we could display winds, ceil-
ing, and visibility information for each option. With color,
we could show the severity of the principal risks. It seems
likely that the displays and interfaces of future aircraft will
not be quite so limited.

In a previous study comparing different adaptive con-
trollers, Campbell et al 2010b; 2010a found that because
of the assistance of the adaptive controller, pilots were un-
aware of when they were approaching the boundaries of the
flight envelope. For example, pilots would slow the aircraft
too much on final approach, not recognizing that in doing so
they were nearing saturation of one or more control surfaces.
On reaching saturation, the nose of the aircraft would sud-
denly drop, or the aircraft would roll inverted, causing them
to lose control and crash. Since we were using an adaptive
controller in this experiment, we therefore felt that it was
essential to give the pilots some additional guidance on the
limitations of the flight envelope. To do this, we added color
bands to the primary flight display to indicate safe airspeeds,
bank angles, and vertical speeds as shown in Figure 9. If the
airspeed, bank angle and vertical speed remain in the green
regions the aircraft can be readily controlled. However, as
airspeed decays down into the yellow (not yet visible in the
figure), the green regions for bank and climb rate shrink,
ultimately to nothing. The size of the regions is dictated by
the 4-dimensional model of the flight envelope, which varies
depending on the damage or failure. The green regions for
bank can be asymmetric, as is the case when there is damage
to a wing or aileron.
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Figure 7: The first of four emergency pages for a scenario.
Each page can show up to five options.

3. The Experiment
To evaluate the ELP, we developed a set of scenarios in-
volving different locations, different flight plans, different
weather conditions and different damage models. There
were three different locations, two flight plans for each lo-
cation, two different weather severities, and three different
damage models, for a total of 36 possibilities. The dam-
age models were previously developed at NASA Langley
through a combination of vortex lattice code and wind tun-
nel testing. The number of scenarios we could consider was
necessarily limited by: the number of damage models avail-
able in the simulator; the number of realistic weather models
we could develop; and the time required to test all the pos-
sible emergency flight plans and approaches that might be
produced for each location.

In addition to the scenarios, we needed a baseline with
which to compare the ELP. We therefore developed a simple
aid for the pilots that just listed the nearby airports grouped
by runway length. We also developed an intermediate aid
that evaluated runways using our risk model, but did not
consider en route weather, an did not generate a path for
the pilots. The matrix of testing possibilities is summarized
in Table 10.

To carry out the experiments, we employed 5 teams of
professional pilots for two days each. All of these pi-
lots were either current or recently retired airline pilots
with experience in glass cockpit aircraft of the appropriate
type. Each pilot team was briefed on the functioning of the
ELP and baseline aids, and conducted several short training
flights to ensure they were comfortable with the systems and
handling of the simulator. The team was then subjected to
16 of the possible scenario/aid combinations. Each run be-
gan in cruise flight. Damage was introduced after 1-3 min-

Figure 8: An Airport Information page showing runways
and current weather for KCAO.

utes, resulting in a master caution alarm in the cockpit, and
indications of the failures on a display of the control sur-
faces shown in Figure 11. The pilots would then utilize the
aid provided, chose an emergency landing site, and fly the
aircraft until touchdown or loss of control. In some cases
we also terminated the run after a decision was reached, be-
cause of time limitations. A typical run lasted about 35-40
minutes. At the end of the run, the pilots were asked to
fill out a brief questionnaire about their decisions and about
their assessment of the aid provided by the software. At
the end of the two day period, the pilots were asked to fill
out a longer questionnaire giving their overall impressions,
criticisms, and suggestions for the emergency aids and inter-
faces.

During the runs, we observed the pilot performance from
a control room with video screens of all major cockpit in-
struments (Figure 12). We collected multiple data streams
including: video and audio from the cockpit; aircraft state
at 30 Hz (location, altitude, airspeed, pitch, bank, control
settings, etc.); keystrokes and display from the CDUs; and
video of the Primary Flight Display (PFD) and Navigation
Display (ND).

From the outset, we were aware that there were some se-
rious limitations with the study:

1. The number of possible runs was limited because of both
time and cost.

2. The number of different scenarios was limited because of
the amount of data required and the difficulty of construct-
ing the scenarios. As a result, the pilots could become
familiar with scenarios and damage models as the study
progressed.

3. The pilots could become fatigued, particularly later in the
day.
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Figure 9: The Primary Flight Display (PFD) showing bank
angle, pitch, airspeed, vertical speed, altitude and heading.

Pilot Aid Damage Weather Location

Nearest
Airports

Vertical
Stabilizer

Mild:
Overcast

Arizona:
LAS→ STL
ABQ→ SEA

Ranked
Airports

Horizontal
Stabilizer

Idaho:
GEG→ DEN
GTF→ SFO

ELP Left Wing
Severe:
Thunderstorms
Low Ceilings

New Mexico:
COS→ SAT
ABQ→MSP

Figure 10: Experiment test matrix.

The first of these limitations makes it difficult to draw sta-
tistically significant conclusions. In any study dealing with
human subjects, there is a great deal of variability and ran-
domness, so large sample sizes are needed. The cost of the
simulator and pilots makes this impractical.

The second limitation, the limited number of scenarios,
meant that the pilots became increasingly “contaminated” as
the study progressed. We tried to minimize this by mixing
up the different damage models, weather conditions, loca-
tions, and flight plans. However, the pilots clearly became
more familiar with the terrain and airports in each region,
and their skill with the different damage models improved
over time. To attempt to average out these effects, we or-
dered the scenarios differently for the different crews.

The third limitation, pilot fatigue, seemed to show up pri-
marily during the afternoon of the second day of testing. We
noticed it because there were some cases where the pilots
lost control of the aircraft and crashed during easier scenar-
ios.

The combination of these limitations means that many of
our results are anecdotal, are based on small sample sizes,
or are the results of subjective feedback from the pilots.

Figure 11: Surface position display showing status and de-
flection of control surfaces. In this case, the left wing is
damaged and the left aileron has failed (red). As a result, the
adaptive controller is using right up aileron (blue) and right
spoilers (blue) to keep the aircraft from rolling left. When a
control surface is saturated (at its limits) it turns yellow.

4. Results
Figure 13 is a trajectory plot showing the options considered
by the pilots for one particular run. The red dot indicates the
position of the aircraft at the time damage occurs. The black
line is the aircraft’s actual trajectory. Yellow lines indicate
other options considered by the pilots, and the green line in-
dicates the route provided by the ELP at the time they finally
made a decision. As can be seen from the plot, the pilots
made a tighter turn to the left (back towards the airport) than
the ELP recommended. They also chose to intercept and get
established on the final approach course further from the air-
port. In this run, damage was to the left wing and aileron,
making it more difficult to turn right. In addition the weather
was challenging, with larger airports in the area having low
ceilings, poor visibility, or difficult crosswinds. In this case,
KCAO runway 02 was the highest ranked option provided
by the ELP, and it proved to be one of few choices for which
pilots had any success in getting the aircraft on the ground.
The blue path shows the route that would have been recom-
mended if the pilots had made their decision instantly after
the damage occurred. By the time the decision was made, it
was no longer practical to make a right turn towards the cho-
sen runway, given the control characteristics of the aircraft.

Figure 14 shows a run for a different scenario in the same
general area. In this run, damage was to the horizontal sta-
bilizer and elevator so turning was not difficult, but a higher
airspeed had to be maintained to preserve enough airflow
over the remaining elevator. In this case, pilots were tempted
by long runways at lower ranked Colorado Springs (KCOS)
and Cannon Air Force Base (KCVS), but winds and weather
did not favor the available runways. They ended up choosing
a more highly ranked option with a shorter runway (KCVN
04), because of the strong headwind straight down the run-
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Figure 12: The ACFS control room.

Figure 13: A trajectory plot for a left wing damage scenario.

way. In this case, KCAO 02 would have also been a good
choice for the same reason.

In analyzing the data, we considered the time required to
make a decision, and the pilots success rate as a function of
the damage model, weather conditions, and location for each
different emergency aid. Our initial hypothesis was that that
the ELP would prove helpful to the pilots in cases where ei-
ther the damage or weather was severe, but that the pilots
would do just fine with the baseline emergency aid when the
weather and damage were both benign. This hypothesis is
only partially correct; weather severity was a factor, damage
severity was not. For the scenarios involving mild weather
conditions, the ELP does not seem to offer any objective im-
provement in pilot performance over the two simpler emer-
gency aids. However, when the weather was poor, the ELP
generally led to quicker decisions. The reason for this is that
when the weather was mild, one of the nearby large airports
with a long runway was usually the best choice. Pilots could

Figure 14: A second trajectory plot for a scenario with ele-
vator damage.

find this choice easily enough using only the simpler emer-
gency aid, and could choose the most appropriate runway
by looking at the airport information page for that airport.
In contrast, when the weather was poor the pilots would be
forced to look at many different options before finding one
with acceptable weather conditions. In a few particularly
difficult cases, pilots took more than 20 minutes to reach a
decision using the baseline emergency aid. With the ELP,
decisions for these same scenarios were made in 4-5 min-
utes.

From the objective data, the paths constructed by the ELP
did not seem to offer a significant advantage to the pilots
either in terms of decision making time, or in terms of de-
cision quality. When intervening weather was not an issue,
a direct route to a point about 10 miles out on the final ap-
proach course was appropriate and was relatively easy for
them to construct. Even when the weather was more severe,
the pilots were able to construct their own paths, although
it took them longer to do so. For this reason, pilots sub-
jectively reported that it was a lot easier to have the assis-
tance of the ELP in all cases, both because of the ranking
of options, and because the route was constructed automati-
cally and guaranteed terrain clearance. Thus, even for mild
weather conditions, pilots preferred the ELP, and felt that it
reduced workload.

In contrast to our hypothesis, the severity of the damage
does not seem to be correlated with whether or not the ELP
provides an advantage. For mild weather, but severe dam-
age, there is no objective evidence that the ELP provides an
advantage over the baseline emergency aid. Likewise, for
severe weather, the advantage of the ELP over the baseline
aid does not become any more pronounced if the damage is
severe. We speculate that this is largely due to the adaptive
controller – it does such a good job of stabilizing the aircraft
that the pilots have time to investigate options and construct
routes manually. Without the adaptive controller the work-
load is much higher since it is much more of a struggle to
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maintain control of the aircraft. In this case the pilots would
likely not have time to consider multiple options, or con-
struct routes manually.

Overall, we were both surprised and thrilled with the en-
thusiastic response we received from the pilots, as illustrated
by this quote:

As a Captain for the past twenty some years I’ve trained
for emergencies frequently and the most difficult part is
selecting and getting the aircraft on the ground when
a immediate landing is called for. Your software pro-
gram alleviates the uncertainty about finding a suitable
landing site and also reduces workload so the Crew can
concentrate on “flying” the aircraft.

Although the technology was designed for next generation
aircraft, several pilots indicated that they wanted to see
this capability in their existing aircraft and suggested that
it would be particularly valuable in time critical situations
like cargo fires, loss of engine power, fuel or hydraulic fluid
loss, or medical emergencies. Ironically, during our study
a brand new UPS 747 crashed in Dubai as the result of a
cargo fire. The pilots chose to return to the takeoff airport,
although closer options were available. This proved to be a
fatal mistake, as the smoke became so thick that the captain
could no longer see his instruments.

Finally, we have several observations relevant to pilot
training. The first is that there were significant differences
in pilot performance. Two of the three damage scenarios re-
quired approach and landing at considerably higher speeds
than the pilots were accustomed to. Those pilots with ex-
perience in high speed military aircraft did much better at
this than those without that experience. Although rare, sev-
eral actual damage incidents have had this characteristic, so
regular simulator training in high speed landings would po-
tentially be valuable.

A second observation is that many pilots preferred long
runways with poor weather and wind conditions to shorter
runways with better weather and winds. For example, sev-
eral teams were seduced by the 13,000 ft runway at Colorado
Springs, even though it was ranked low because the visibil-
ity was 1 mile in blowing snow, with a strong 70 degree
crosswind. This proved fatal in almost every case, as the
pilots were unable to maintain control during the approach
and landing. In contrast the top ranked option only had a
7000 ft runway, but had good visibility and a strong head-
wind straight down the runway. The crews that chose this
option were generally successful. This lends some credence
to our risk model, and suggests that pilots should be trained
to favor better wind and weather conditions over longer run-
ways in emergency situations.

A third observation is that pilots did not seem to consider
the possibility that handling characteristics might further de-
teriorate, or that there might be subsequent failures. As a re-
sult, they were content to fly relatively long distances with a
severely damaged aircraft. In several recent accidents, dete-
rioration of handling conditions, and/or subsequent failures
have proven fatal. It therefore seems that pilots often under-
estimate the urgency of getting the airplane on the ground
quickly.

5. Challenges and Regrets
As we expected, the experiment made us aware of many
ways in which the ELP could be improved. Some of these
are concerned with the robustness of the communication in-
terface between the ELP and the cockpit CDUs and FMS,
some are improvements to the user interface and informa-
tion layout on the CDUs. The most important involves im-
provements to the risk model and to the path planner. For
the risk model, we recognized that we need to increase the
risk for crosswinds and gusts in cases where the aircraft has
limited yaw control (rudder damage). We also recognized
that ground speed at touchdown should be weighted more
heavily due to the likelihood of tires blowing at high speeds.
Finally, we did not consider the terrain roughness along and
in the vicinity of the approach path – this was clearly a fac-
tor that the pilots considered when choosing options, partic-
ularly when controllability was limited.

For the path planner, we found that the pilots tended to
prefer a gentler turn to intercept the final approach course
and a longer final approach course, as illustrated by Figure
13. This was particularly true when controllability was poor.
While these are all relatively simple improvements, they il-
lustrate the need for further testing and refinement of the
models. They also indicate that the path planning needs to
incorporate more “knowledge” about flying; when close to
the ground, more precision is required, causing the pilots to
prefer gentler turns, and gentle course intercepts.

If we had it to do over again, we would split the experi-
ment into two phases: in the first phase, we would remove
the decision making aspect and have pilots fly approaches
to many different airports with various damage models and
weather conditions. We could then use this information to
improve the risk model and path planning. In a second phase
we would then evaluate the role of the ELP in helping the pi-
lots to make quicker and better decisions.

Unfortunately, getting software like the ELP into the
cockpit of commercial transport aircraft is a difficult pro-
cess. The certification process for commercial avionics is
both time consuming and costly. It’s also not clear how to
verify that the ELP will give the best recommendations in
all cases, which opens up the manufacturers to additional li-
ability concerns. Although we are beginning to talk to avion-
ics manufacturers, there are other possible ways of fielding
some of this technology that may prove much easier. An
increasing number of general aviation pilots are now us-
ing handheld devices in the cockpit for maps, charts, and
GPS navigation. Such devices range from specially de-
signed units like the Garmin GPSMAP 695/696 to Avia-
tion apps like Foreflight HD for the Apple iPad. Much of
the ELP’s capability could be incorporated into such a unit,
with the advantage that certification is not required. The
disadvantage is that tight integration with the aircraft avion-
ics and autopilot are not possible with this solution. A sec-
ond possibility is to work with an airline or freight carrier to
make the technology available through the ACARS system.
ACARS is a datalink system that allows communication of
data between dispatching centers and aircraft cockpits. The
information is accessed through special pages on the cockpit
CDU. Using this approach, the ELP could be based on the
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ground, and recommendations would be sent to the CDU
through ACARS. This also has the advantage that certifica-
tion is unnecessary, and that the dispatching center would be
aware of and could assist with the emergency. We are just
beginning to explore these possible avenues for fielding this
technology, but hope to forge a partnership with one or more
of these players.

The biggest assumption behind this work is that the flight
envelope for the damaged aircraft is completely known. For
certain categories of failures such as engine failures and con-
trol surface failures, the flight envelope can be computed
and tested in advance and stored in a library. However,
the effects of arbitrary damage are more difficult to pre-
dict and it therefore seems unreasonable to suppose that
complete models for these conditions are available in a li-
brary. In stabilizing the aircraft, the adaptive controller ex-
plores portions of the flight envelope, and learns how deflec-
tions of the control surfaces affect the aircraft. As a result,
the adaptive controller can provide a partial model of the
flight envelope as well as some knowledge about areas of
the envelope that are likely to exceed control limits. How-
ever, there may still be areas of the flight envelope that are
only partially known. The most conservative approach is to
only consider solutions that remain within the known por-
tion of the flight envelope. However, further exploration
of the envelope might result in the ability to produce bet-
ter solutions (for example, slowing the aircraft could allow
a shorter runway to be used). Of course, exploration of
the flight envelope involves risk, which must be balanced
by any potential gains. In general, this problem becomes
a POMDP since we have beliefs about the flight envelope,
and we can refine those beliefs through actions that explore
the flight envelope. But those actions could also throw us
into an undesirable and unrecoverable state. Fortunately,
flight envelopes do not appear to be this ill-behaved as a
rule. As one moves into a particular state in the control
envelope, one gains knowledge of the surrounding states,
by virtue of how close the control surfaces are to satura-
tion. It is therefore possible to explore the boundaries of
the known control envelope and learn what additional states
can be explored without undue risk. We have developed a
prototype planner that can generate conditional plans that
explore portions of the flight envelope and select different
landing options based on the outcome of those exploration
actions. Surprisingly, this planner is proving to be much
more efficient than we expected and we now believe it may
be possible to do this in practice. A more detailed descrip-
tion of this work can be found in (Meuleau and Smith 2011;
Meuleau et al. 2010). This approach does raise a difficult
user interface issue: how does one depict conditional plans
of this sort for pilots? Perhaps the best approach is to only
display the most probable path and landing site with some
indication that there are decision points along the way.

A second assumption we have made is that the flight en-
velope remains constant once damage has occurred. It is
always possible that additional failures may occur, causing
the flight envelope to change again. Unless these subse-
quent failures are predictable, the best that can be done is
to run the ELP again when the failure occurs. A more dif-

ficult situation is when the flight envelope changes continu-
ously over time. As an example consider the situation where
the left wing is damaged and fuel is leaking out at a rapid
rate. Initially, there is loss of lift on the left wing and the
aircraft has a tendency to roll to the left. As fuel contin-
ues to leak out, the left wing becomes lighter counteracting
the loss of lift. As more fuel leaks out, the right wing be-
comes heavy and the aircraft develops a tendency to roll to
the right. Whether or not one prefers a left or a right cross-
wind on landing therefore depends on how long it will take
to get to the runway. To our knowledge, the problem of path
planning with continuously changing dynamics has not been
addressed in the literature. We think that our approach of
doing A∗ search over a probabilistic roadmap should still be
effective, but the heuristic must take into account the esti-
mate of the time that will be required to reach the runway,
so that the landing risk can be evaluated using a reasonably
accurate estimate of what the flight envelope will be at the
time.
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Abstract

In this paper we describe REVAMP, a mixed-initiative tool
for real-time management of paratransit vehicle schedules.
Like many applications, paratransit scheduling is a dynamic,
execution-driven process, where unexpected events (e.g.,
traffic, breakdowns, new requests, cancelations) continually
force changes to precomputed schedules. The design of RE-
VAMP aims at support for this dynamic, real-time scheduling
process. Real-time information on the status and location of
vehicles and pending trips is used by REVAMP to maintain a
“live” schedule and provide the coordinating Dispatcher with
early visibility of potential delays. In response to detected
problems or opportunities, REVAMP can be used to generate
options for rearranging vehicle schedules to achieve better
quality of service. REVAMP is being developed to support
daily operations at ACCESS transportation systems, which
provides an advance reservation, shared ride paratransit ser-
vice for the greater Pittsburgh area in southwestern Pennsyl-
vania. We are currently integrating REVAMP into the existing
technology base used to support daily operations by one of
ACCESS’s service providers for an initial pilot test. We de-
scribe the principal components of REVAMP and the current
state of our solution to the ACCESS scheduling problem.

1 Overview
Paratransit transportation is one of the primary means for
people with disadvantages to get around in their daily lives.
Typically, this door-to-door service is booked in advance and
is publicly subsidized. As the demand for paratransit ser-
vices increases and availability of public funding decreases,
there is a constant balancing act between maintaining a high
quality of service while keeping the operations financially
feasible. One of the key activities in striking this balance
is efficient allocation of vehicles to service trips, especially
over the myriad of events that make it difficult to anticipate
how a schedule is going to have to evolve throughout its ex-
ecution during the day. The effectiveness and efficiency of
paratransit operations depends heavily on the ability to dy-
namically manage vehicle schedules in response to execu-
tion dynamics.

To augment the ability of Dispatchers to manage their ve-
hicles over execution events, we have developed REVAMP
(REal-time Vehicle Allocation application for increased Mo-
bility in Paratransit operations), a mixed-initiative, dynamic
scheduling system. REVAMP receives real-time status and

location information from the vehicles in the field and main-
tains a “live” schedule that is constantly updated to reflect
what actually happens during execution. This active model
provides Dispatchers with better situational awareness of the
states of current and future trips and a basis for early detec-
tion of trips that are in jeopardy of having poor quality of
service. For these problematic trips, REVAMP generates op-
tions to present to Dispatchers for rerouting the trips in order
to improve their service.

The immediate target of REVAMP is to address the daily
operations problem faced by service providers of ACCESS
Transportation Systems, the largest paratransit organization
in the Southwestern Pennsylvania Region. ACCESS over-
sees seven individual service operations that are apportioned
geographically to the region. These service providers make
about 6000 trips daily throughout Allegheny County. Of
these about forty percent are subscription service (regularly
scheduled) and sixty percent are day-ahead reservations.
Over the past twelve months, ACCESS has provided ser-
vice to around 26,000 unique customers. We are currently
developing a system that integrates REVAMP into ACCESS’s
existing technology base, for the purpose of carrying out an
initial pilot test with one of their larger service providers.
Our overall goals are to improve customer quality of service,
while simultaneously decreasing provider costs and provid-
ing the opportunity to offer expanded same-day request ser-
vice.

2 Paratransit Management Problem
The Paratranist management problem is an instance of the
Dial-a-Ride Problem (DARP) (Cordeau and Laporte 2003).
The objective in a DARP is to design vehicle schedules to
satisfy requests for travel between pick-up and drop-off lo-
cations at specified times. Typically, as input, DARPs spec-
ify a set of requests, a set of available vehicles, and a set
of constraints ensuring the quality of the service, e.g., time
windows within which pick-ups must be made or maximum
allowable ride time for a passenger. DARPs may be over-
subscribed, i.e., not all requests can be serviced within their
constraints, in which case the constraints may be relaxed in
order to help accommodate the extra requests. There often
are optimizing objectives for DARPs, such as minimizing
cost by minimizing the number of vehicles used while al-
lowing some level of constraint relaxation, or maximizing
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service quality by determining the minimal number of vehi-
cles to satisfy the requests without relaxing constraints. For-
mally, there are two classes of DARPs, static and dynamic.
In a static DARP, all the requests and the available vehicle
are known up front. In a dynamic DARP, the requests are
serviced as they arrive and the available vehicles can be in-
creased. Most real-world DARPs are hybrids, with a major-
ity of the requests but not all being known up front and there
mostly being a static number of available vehicles but extra
ones are available at a cost.

We will focus on the version of DARP as it is instantiated
in ACCESS. Currently, ACCESS does not support day-of
requests, so the requests are known in advance. The one
exception to this advance knowledge is “will call” requests,
where passengers do not know the exact time of a return trip,
e.g., for a doctor’s appointment. These requests are handled
dynamically as soon as the call is received to pick up the
passenger.

The number of available vehicles is also known in ad-
vance. There are different types of vehicles available, each
providing capacity to carry a specified number of passen-
gers. Some types of vehicles provide wheelchair capacity,
while the others have strictly ambulatory capacity. In the
former case, wheelchair capacity can be converted to am-
bulatory capacity, so the overall carrying capacity will vary
depending on how the wheelchair capacity is used.

The service quality constraints for ACCESS are the fol-
lowing:

• Pick-Up-Window Constraint - The constraint on the win-
dow of time it is permissible to pick up a passenger is rel-
ative to time that ACCESS negotiates with the passenger
for his or her pick-up. Specifically, a pick-up should not
occur any earlier than ten minutes before the negotiated
time or any later than twenty minutes after the negotiated
time. For “will-calls”, the pick-up should occur no later
than forty-five minutes after receiving the call.

• Ride-Time Constraint - the ride time for a passenger
should be no longer than the maximum of twenty minutes
and the minimum of two hours and twice the estimated
time to go directly from the pick-up to the drop-off (i.e.,
max(20min,min(2hrs, 2 ∗ direct-tranisit-time))).

The providers are allowed to relax these constraints, but,
overall performance, is based on meeting them. If these
constraints are violated too often or by large magnitudes,
the provider risks having its service area reduced or loos-
ing its contract. The goal for the provider is to meet these
constraints while minimizing the resources it needs to use.

In preparation for the next day, providers generate a so-
lution , i.e., a set of vehicle schedules, to the DARP for the
following day’s requests. The solution is generated by us-
ing an offline scheduler based on (Jaw 1984) to create the
base schedules and then hand tweaking them. Complicating
this process is that, on average, there is a 15% request can-
cellation rate that occurs during the day of service. The hu-
man schedulers actually over allocate the vehicle timelines
in anticipation of these cancellations. That is, the start-of-
day schedules would require frequent relaxations of the con-
straints if they were to execute as scheduled, so the sched-

ules start with a number of trips that are already in jeopardy
of missing their service constraints. It is left to the Dispatch-
ers to resolve these problematic trips as cancellations arrive.

Although an advance reservation policy enables the ad-
vance development of a daily operations schedule, unex-
pected events that occur as execution proceeds (e.g., vehicle
breakdowns, traffic accidents, “will call” requests, trip can-
cellations) quickly force changes and degrade the quality of
originally planned vehicle itineraries. In current practice,
the Dispatchers responsible for coordinating the movements
of a service providers vehicles respond to these events in
a fire fighting fashion. Since the start-of-day schedule be-
comes an increasingly distant reference point as the day pro-
gresses, they often become aware of problems (e.g., poten-
tial late pickups) late, restricting their ability to effectively
respond. Although they have visibility of the real-time loca-
tion of vehicles, Dispatchers must often make decisions to
redirect vehicles without good understanding of the down-
stream consequences to subsequent trips scheduled for var-
ious vehicles. During peak request periods, the Dispatcher
can often become overwhelmed due to time pressure and
decision complexity. Ultimately, the quality of decisions de-
pends heavily on the Dispatchers expertise, and it is difficult
to find and retain experienced personnel in this position. As
a result, the decisions that are made are often suboptimal
with respect to maximizing customer quality of service, and
this has a cascading effect through the day. This situation is
typical of operations in other paratransit service contexts.

3 REVAMP
REVAMP is designed to address the problems identified
above and provide a basis for improving the real-time
decision-making of service provider Dispatchers. Most ba-
sically, it is designed to incrementally accept real-time up-
dates of vehicle status, and provide the Dispatcher with a
live schedule that continually reflects the current execution
state. Since this schedule encodes all relevant constraints
and requirements (e.g., expected travel durations, negotiated
pick-up times, maximum transit time limits), one immediate
benefit is the early detection and alerting of emerging prob-
lems (e.g., given the customer pick-up that was just reported,
the next scheduled pick-up after this current trip is projected
to be beyond its acceptable window). This capability alone
affords the Dispatcher with more time to take corrective ac-
tion, and in the worst case, enables the Dispatcher to inform
customers in advance of unavoidable delays (a service that
ACCESS has expressed an interest in providing). To sup-
port Dispatcher response to detected problems, REVAMP is
designed to generate options for rearranging trips across ve-
hicles to minimize the impact on customer quality of service.
This same options generation mechanism can also be used
as a basis for improving the efficiency of vehicle itineraries
when opportunities arise (e.g., trip cancelations) and for ac-
commodating new requests that arrive dynamically through
the day (e.g., “will call” return trips).

REVAMP consists of a suite of components whose un-
derlying object-model maps client requests and their cor-
responding pick-up and drop-off tasks to a Simple Tempo-
ral Network (STN) (Dechter, Meiri, and Pearl 1991). In-
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cluded in that object model are vehicles and their timelines
(schedules) populated with the request and travel tasks. RE-
VAMP components include a schedule loader for installing
the start-of-day schedule, a schedule updater for integrating
real-time start and finish time information as well as can-
cellations into the schedule and for identifying problematic
trips and opportunities for improving existing schedule qual-
ity, and a gap finder for generating high-quality options for
inserting a request’s constituent tasks on vehicle timelines.

3.1 Object Model
The top-level objects in the model for REVAMP are vehicles,
requests, and tasks. There are three types of vehicles that dif-
fer in capacity and whether or not they are wheelchair acces-
sible. Each vehicle has a corresponding timeline (schedule),
which consists of an ordered set of tasks. A request repre-
sents the information provided when a client books a trip and
has attributes for the negotiated time (preferred pick-up time
or the time when a “will call” is received), the latitudes and
longitudes of the pick-up and drop-off locations, the number
of wheelchair passengers, the number of ambulatory passen-
gers, and whether or not it is a “will call” trip. A request also
indicates the provider to which the request has been assigned
by ACCESS and a unique identifying number for the request
known as a trip id.

When a request is created, both pick-up and drop-off tasks
are generated and mapped to the underlying STN. The STN
is a graph of time points connected by binary constraints
that determine the permitted intervals, i.e., lower and upper
bounds, for any given time point. An absolute constraint
emanates from the special, anchored calendar zero (cz) time
point and sets the lower and upper bounds of the target time
point to absolute times. A relative constraint sets the lower
and upper bounds of the target time point as offsets from the
source time point’s bounds. A task is represented in the STN
as a start time point and an end time point connected by a
duration constraint whose lower and upper bound values are
the time it takes to complete the task. As shown in Figure 1,
the pick-up-window constraint in ACCESS is represented as
an absolute constraint on the start time point of the pick-up
task. The ride time constraint is represented as a relative
constraint from the start time point of the pick-up task to the
start time point of the drop-off task.

In addition to the pick-up and drop-off tasks, there are
travel tasks, which are dynamically generated when insert-
ing the request tasks onto a vehicle timeline. The computa-
tion for determining the duration of a travel task depends on
the origin and destination of the travel and the time of day
when the travel occurs. The travel duration is calculated by,
first, using a great-circle computation to determine the dis-
tance between the origin and destination. Then, a speed is
selected based on whether or not the travel will occur during
rush hour. The final duration is the distance divided by the
speed. The non-rush-hour speed is used if there is enough
time within the bounds of the travel task to complete the
travel without having to travel during rush hour. Otherwise,
the rush-hour speed is used.

One of the complications of this duration model is that,
as travel tasks move in time, i.e., become earlier or later due
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Figure 1: Request Tasks STN Mapping.

to changes in the schedule, their durations may change as
a result of moving in or out of rush-hour periods. To en-
sure proper travel durations, REVAMP adjusts the travel du-
rations of constituent tasks where necessary after any change
is made to a vehicle timeline. This process is elaborated be-
low in the descriptions of the components.

3.2 Schedule Loader
The schedule loader converts the provider’s start-of-day
schedule into the underlying object model. Complicating
this procedure is that the start-of-day schedules, in anticipa-
tion of the 15% cancellation rate, are oversubscribed and can
have many requests scheduled that will violate either or both
pick-up-window and ride-time constraints. For example, in
the start-of-day schedules of a particular service provider for
a 1 week period, approximately 2/3 of the scheduled re-
quests had constraint violations. A start-of-day schedule of
request tasks (i.e., pick-ups and drop-offs) for a given vehi-
cle is loaded into REVAMP by processing each task in order
from earliest to latest. Constraint violations are handled by
a constraint relaxation process (described below).

A given task is appended to a vehicle timeline by first
checking to see if the task is at a different location than that
of the previous task. In the case where the timeline is empty,
the vehicle is assumed to be at the location of the garage
of the provider. If the new task is at a different location,
then a travel task is created with the appropriate duration for
getting from the location of the previous task to the location
of the new task sometime between the earliest finish time of
the previous task and the latest start time of the new task.
If the travel task is created, it is inserted on the timeline by
adding a sequencing constraint between the end time point
of the previous task and the start time point of the new travel
task. A sequencing constraint dictates that the source time
point must occur before (or simultaneously with) the target
time point. Finally, the task being processed is added to the
timeline by inserting a sequencing constraint between the
last task on the timeline and it.

Since the start-of-day schedule can be overloaded, it may
not be possible to assert the sequencing constraint to the
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new task without violating its upper bound constraint (either
the pick-up-window-constraint on a pick-up task or the ride-
time constraint on a drop-off task). If it cannot be added,
then the upper-bound constraint is relaxed by remembering
its original upper bound value and setting the upper bound
on the constraint to∞, i.e., unbounded. Then, once the se-
quencing constraint is asserted, the upper bound on the up-
per bound constraint is anchored to ensure that the current
tardy time does not slip any later.

The end result of the schedule loader is a complete start-
of-day schedule modeled with all necessary relaxations and
in a form that can continue to be modified to reflect the im-
pact of execution-time events on the schedule.

3.3 Schedule Updater
The schedule updater is responsible for keeping the inter-
nal model of the schedule in sync with how the sched-
ule is actually executing. It incorporates into the model
execution-time updates on the actual start and finish times of
request tasks and on cancellations. In each case, constraints
on downstream tasks are relaxed or tightened when neces-
sary/possible. The schedule updater also detects impending
requests that are in jeopardy of missing service quality con-
straints, and, in the case of cancellations, triggers the gener-
ation of options for the most imperiled requests in order to
improve overall schedule quality.

Actual start and finish times for request tasks are reported
by the vehicles as they make their stops. When the actual
start time for a task is received, the start time point of the
task is fixed at the reported time by adding an absolute con-
straint with the lower and upper bounds set to the reported
time. In the straightforward case where schedule updates on
the start and finish times of tasks are received in the order
specified by the schedule, the updater relaxes any constraint
that it must in order to achieve consistency with actual times.
If a task finishes later than expected, then the duration con-
straint on that task is lengthened. If there is a violation when
attempting to assert the new duration length, the STN re-
turns the set of constraints that are inconsistent with the new
constraint and the amount that the new constraint violates
the existing constraints. The returned constraints are used to
relax the downstream constraints in order to make it possi-
ble to assert the new duration constraint. First, the returned
set of constraints are searched for the first upper bound con-
straint found. Then, that constraint is relaxed by the mag-
nitude of the violation. Next, the new duration constraint is
attempted once more. If it fails, then the relaxation process
is invoked again with the new set of returned constraints.
This iteration continues until the duration constraint can be
asserted.

In the case where a task finishes early, the duration con-
straint is shortened, all subsequent relaxed tasks on the time-
line are tightened when possible. If a pick-up task starts
earlier than its pick-up-window constraint allows, that con-
straint is relaxed to accommodate the actual start time. After
any changes are made to the timeline, the scheduled tasks are
mapped over to ensure that relaxed constraints are as tight as
possible and travel tasks have their appropriate durations. A
possible side-effect of these modifications is that the upper-

bound constraints on downstream tasks may have to be tight-
ened or relaxed, depending on whether or not the new travel
durations are shorter or longer. Note that previously relaxed
constraints are never tightened beyond their original values.

Drivers are not required to pick up passengers in the or-
der of the schedule and, therefore, can report starting a task
that is not the next task expected to execute on the schedule.
In this case, the schedule updater moves the reported task
up in the schedule to follow the last completed task, insert-
ing travel tasks where needed to get from the last completed
task to the reported task and from the reported task to the
task that was scheduled to execute next. This insertion may
require relaxation of some of the upper-bound constraints
on pending tasks that were expected to execute earlier. Af-
ter the insertion, the durations of the travel tasks among the
subsequent tasks are corrected when necessary.

As the actual start and finish times are reported, the sched-
ule updater keeps a running list of all tasks that have had one
or more of their constraints relaxed. This list is used to deter-
mine if REVAMP should alert the human dispatcher of trips
that are likely to violate the service constraints. The current
policy alerts the dispatcher of trips in jeopardy that are to
be serviced within the next two hours. However, if desired
the dispatcher can also request to view all endangered trips,
along with the expected magnitude of delay in each case.

The schedule updater also updates the schedules of vehi-
cles when requests are cancelled. When a request is can-
celled, its pick-up and drop-off tasks are removed from the
timeline as well as their corresponding travel tasks. Then,
when necessary, new travel tasks are inserted to bridge the
distance between tasks on either side of the removed tasks.
As with all timeline modifications, the travel tasks on the
timeline are checked to ensure that they have the correct du-
rations. There is a restricted cancellation that occurs when
a driver arrives at a pick-up task and discovers that no one
is there. In this “no-show” case, the drop-off task for the
request is removed from the timeline. A cancellation po-
tentially represents an opportunity for remedying an endan-
gered trip by moving it to the timeline with the cancellation
that now has more slack on it. The schedule updater will
trigger the gap finder on cancellations to present reschedul-
ing options to the dispatcher for rerouting problematic trips.

3.4 Gap Finder
The gap finder generates scheduling options for servicing
a given request. It is triggered either automatically by the
schedule updater in the case of cancellations or deliberately
by the Dispatcher via the list of problematic or unscheduled
requests. In the latter case, if the request is already sched-
uled, it is temporarily unscheduled before searching for op-
tions. The general strategy of the gap finder is to search
all vehicle timelines for feasible slots between scheduled re-
quest tasks for the request’s pick-up and drop-off tasks. A
slot is feasible for a task if a) the time window of the slot can
accommodate the constraints of the task plus any additional
travel required, and b) the current available ambulatory and
wheelchair capacity is sufficient to accommodate the pas-
senger demands on the request
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All pairs of feasible slots for a request on a given vehi-
cle timeline are found by traversing the timeline and trying
the eligible slots for the pick-up task on the request. For
each slot within the pick-up window, the pick-up task is in-
serted and required travel tasks are inserted and adjusted as
required. If no violation occurs, the slot is feasible. Then,
with the pick-up task temporarily inserted, the downstream
slots on the timeline are checked to see if they are feasible
slots for the drop-off task. The valid slots for the drop-off
task are found by searching the remaining slots on the time-
line that have time bounds within the constraints of the drop-
off task and hypothetically inserting the drop-off task and as-
sociated travel into each of these slots. Any time a drop-off
task is successfully added, the travel tasks of other surround-
ing tasks are adjusted to ensure that they have the correct du-
rations. If those durations cannot be enforced without a vio-
lation, the drop-off slot is not feasible. For each pair of fea-
sible slots found, a candidate is generated and saved. Then,
the drop-off task is unscheduled and the subsequent slots are
checked to see if they are valid for the drop-off task. Once
there are no more slots to search for the drop-off task, the
pick-up task is unscheduled and the subsequent slots on the
timeline are examined to see if they are valid slots for the
pick-up task. This process continues until all feasible candi-
dates for that request on that timeline have been generated.
All possible candidates are generated by searching all the
vehicles’ timelines.

For each candidate option generated, the following per-
formance measures are computed and associated as the can-
didate is generated:

• Pick-Up Tardiness - the maximum of zero or the amount
of time by which the earliest start time of the pick-up task
exceeds the negotiated time.

• Drop-Off Tardiness - the amount of time by which the ear-
liest start time of the drop-off task exceeds the earliest
possible start time of drop-off task (assuming direct travel
from pick-up location to drop-off location).

• Additional Travel Duration - the amount of travel time
that had to be added to the vehicle timeline to accommo-
date the candidate.

• Additional Total Tardiness - the sum of the pick-up tar-
diness and any tardiness introduced to other tasks on
the timeline due to the shifting required to accommodate
scheduling the candidate.

These metrics are used to prioritize the candidates. Which
metrics are optimized depends on what is most valued in
the organization. For ACCESS, the most important quality
is to service all the requests without violating their service
constraints. To match this priority, the gap finder prioritizes
candidates to minimize Additional Travel Duration, which
minimizes the amount of overall time that has to be allocated
to service a request and, thus, leave more available capacity
to meet future requests. A subset of the top candidates are
presented to the Dispatcher as possible options, since the
Dispatcher may have additional knowledge about the exe-
cuting environment that might give preference to a lesser
ranked candidate. In automated mode, REVAMP would sim-

ple select the top-ranked choice and add this commitment to
the schedule.

When the timelines are tight, it is possible that no candi-
date can be found for a request. In this case, the upper bound
constraints on the pick-up and drop-off tasks of the request
are iteratively relaxed by set amounts until candidates can be
found for the request. Before a candidate is generated, the
upper bound constraints are tightened to their original (sat-
isfied) values, the feasible relaxation values determined for
these upper bound constraints by this search are stored with
the candidate. As before, the candidates are prioritized. But,
for relaxation, we chose to minimize the sum of the pick-
up and drop-off tardiness, since in this case this alternative
metric tends to better minimize worst case tardiness. When a
relaxed candidate is scheduled, the upper bound constraints
on the pick-up and the drop-off tasks are first relaxed to their
stored values on the candidate.

4 Current State
The individual components of REVAMP are implemented
and have been tested on the types of events present in histor-
ical data provided by ACCESS. These events include start-
of-day requests and routes, actual start and finishes time,
cancellations, no-shows, and vehicle downtimes. We are
currently integrating REVAMP into the existing technology
base provided by ACCESS to its providers, in preparation
for an initial pilot test of developed capabilities with a par-
ticular ACCESS provider. This effort involves developing
an API for the base system to convey to REVAMP the initial
schedule, real-time tracking information, and the changes
made to the schedule by Dispatchers, and for REVAMP to
inform the base system of changes in the schedule during
execution, of updates to the list of requests that are currently
expected to violate service constraints, and of options for re-
assigning requests to vehicles to improve overall schedule
quality. Where appropriate, we will use the base system’s
user interface to minimize user training, but we are also
exploring use of other graphical display formats that bet-
ter convey real-time schedule status and dynamic scheduling
options.

We are currently running experiments to evaluate the po-
tential improvement REVAMP can provide to Dispatchers.
We have from ACCESS the start-of-day information, includ-
ing all requests, initial schedules, and vehicles used, and the
corresponding end-of-day information, including the actual
times for the stops on the routes, the cancellations (including
no-shows), and the information on the “will call” requests.
We are using this data to simulate the use of REVAMP in
fully autonomous mode to manage the schedule over the
events of those days and compare its performance to the
actual performance of the Dispatchers on those days. The
metrics we use for comparing performances are the num-
ber of relaxed requests, the number of relaxed pick-ups, the
mean/median/maximum relaxation for pick-ups, the average
relaxation for pick-up over all pick-ups, the number of re-
laxed drop-offs, the mean/median/maximum relaxation for
drop-offs, and the average relaxation for drop-offs over all
drop-offs. This comparison is obviously an approximation,
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since the moment REVAMP diverges from the actual sched-
ule, actual travel times are no longer available nor are the
effects of drivers servicing stops in a different order than the
schedule. To make the experiments more realistic, we have
formed models based on the year’s worth of data that we cur-
rently have. These models vary the duration appropriately
on the new trips and report stops out of order in appropriate
contexts with representative frequency.

As a preliminary result to demonstrate that there is room
for improvement, we took start-of-day schedules, loaded
them, and collected the comparison metrics. Then, we used
the gap-finder (in automated mode) to schedule all requests
in the start-of-day schedules using the same configuration
of vehicles. We ran this experiment on a week’s worth of
data from one of the providers. Table 1 shows the sched-
ule comparison for one day, which is representative of the
other days’ results. As can be seen by the far fewer relax-

provider REVAMP
total-requests 902 902
total-relaxed-requests 577 17
total-relaxed-pickups 386 17
avg-relaxed-pickup-overall 25m 25.84s 44.80s
avg-relaxed-pickup 59m 25.57s 39m 37.29s
median-relaxed-pickup 31m 9s 42m 29s
max-relaxed-pickup 5h 1m 17s 1h 15m 17s
total-relaxed-dropoffs 327 9
avg-relaxed-dropoff-overall 7m 59.65s 13.63s
avg-relaxed-dropoff 22m 3.07s 22m 46s
median-relaxed-dropoff 13m 14s 16m 5s
max-relaxed-dropoff 4h 10m 11s 50m

Table 1: Start-of-Day Schedule Comparison

ations, reduced maximum relaxations, and mostly reduced
averaged relaxations, there appears to be substantial room
for improvement. A caveat to this result is that the human
schedulers at the provider may be considering other con-
straints, such as stability of subscription routes, driver famil-
iarity with particular areas, etc., that REVAMP does not cur-
rently model. And, as noted earlier, the start-of-day sched-
ule is formed with the expectation of a 15% cancellation
rate. Nevertheless, the difference is so dramatic that it ap-
pears that substantial improvement is likely. In particular,
just having the start-of-day schedule that is better aligned
within customer service constraints reduces the initial de-
mand on the Dispatcher to pay attention and manage those
trips that are already in jeopardy of being delayed.

5 Future Work
Our short-term focus is on refining and hardening REVAMP
in its integration with ACCESS’s existing technology base
to ensure its performance and reliability in the pilot and in
wider deployment in ACCESS. A large part of that effort
will be focused on developing the user interface that will al-
low the Dispatchers to grasp the situational awareness and
options provided by REVAMP, evaluate the alternatives, and
take quick effective actions. If the pilot is successful and RE-
VAMP is able to quickly offer good scheduling solutions to

unscheduled requests, we would like to work with ACCESS
to offer a limited same-day service.

We are also investigating incorporation of more sophisti-
cated option generation capabilities within REVAMP. First,
the current method for relaxing a request that cannot be fea-
sibly scheduled has a limited degree of freedom in that the
only constraints relaxed are those of the tasks constituting
the unscheduled request. It may be possible to find better
solutions by adjusting multiple trips on timelines to accom-
modate a given unscheduled request. One approach we are
exploring is a variant of task swapping (Kramer and Smith
2004), where other temporally overlapping requests are tem-
porarily unscheduled to create space for a target request and
then reinserted in a feasible manner.

Second, we would like to expand REVAMP to include
backward search from the drop-off time, i.e., given when
a person needs to be at a destination, schedule backward to
establish the pick-up time. In this case, the drop-off time
would be treated as a hard, upper-bound constraint. In ad-
dition to better servicing appointment constraints of passen-
gers, it also could be used to improve multi-modal travel-
ing where paratransit transportation is used to connect with
other fixed route services. In general, REVAMP should pro-
vide a basis for better coordination of multi-modal trips in-
volving ACCESS transport to a public transit gateway (or
other fixed route service) and vice versa. By incorporating
external schedules and capitalizing on real time information
of the locations and status of ACCESS vehicles (and, in the
future, potentially the real-time location of public transit ve-
hicles), we believe that better synchronization of multi-leg
trips can be achieved, resulting in less customer wait time
and shorter overall travel times. To facilitate this type of
planning by passengers, we envision use of on-line browser-
based and mobile-based applications for planning and book-
ing both basic paratransit trips and multi-modal trips.
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Abstract 

The Universität der Bundeswehr München is conducting re-
search in the field of single-operator multi-aircraft guidance. 
This article describes the Mixed-initiative Mission Planner 
(MMP) as far as requirements, concept, design and imple-
mentation are concerned. The MMP is applied to a time-
constrained multi-aircraft in-flight mission planning prob-
lem. It works in conjunction with a cognitive assistant sys-
tem for an Uninhabited Aerial Vehicle (UAV) operator, 
who generates and modifies multi-aircraft mission plans in-
crementally. The assistant system is able to evaluate, com-
plete, and generate such plans with the aid of the MMP and 
to communicate with the operator, which results in a mixed-
initiative planning approach. Mixed-initiative planning sys-
tems need to be able to evaluate the partial or complete hu-
man plans as well as the problem itself. For this reason there 
are two instances of the MMP in our system design. One is 
configured as a slave to the human input to assume what the 
human is planning and the other as a free planner that gen-
erates reference plans. The assumed human plan includes 
temporal information about already planned and future 
tasks, and it can be compared to the reference plan by the 
assistant system, allowing it to decide whether and when to 
take initiative. The MMP prototype implementation consists 
of a Planning Process Manager that dynamically generates 
problem descriptions, a freely available PDDL 2.2 compati-
ble planner, and multiple domain descriptions. 

 Introduction  

Uninhabited Aerial Vehicles (UAVs) in use today are typi-

cally performing preprogrammed missions that can be 

manually altered in-flight by a crew of at least two human 

operators. With the advent of multi-UAV scenarios and 

Manned-Unmanned Teaming (MUM-T), which stands for 

the joint operation of manned and unmanned assets, the 

operator-to-vehicle ratio shall be inverted in future applica-

tions. For this reason the Institute of Flight Systems at the 

Universität der Bundeswehr München is conducting re-

search on artificial cognitive systems that aid the UAV 

operator in coping with high work demands caused by 

multi-vehicle guidance and mission management. On the 

one hand, these systems can be deployed onboard of the 

UAVs to let them become semi-autonomous, cooperative, 

and guidable on a task-based level, which is more abstract 

than programming waypoints (Uhrmann, Strenzke, and 

Schulte 2010). On the other hand, the operator shall be 

supported in mission planning and UAV tasking by a cog-

nitive assistant system (Donath, Rauschert, and Schulte 

2010). In this article we describe the mission planning 

module, which enables interactive online multi-vehicle 

mission planning, in which both the human (UAV opera-

tor) and the machine (assistant system) can take initiative. 

Hence, we call it Mixed-initiative Mission Planner (MMP).  

 Of the many mixed-initiative planning systems that we 

examined, to our knowledge only (Funk et al. 2005) ex-

plicitly deals with online planning, i.e. dynamic changes of 

the situation or the goals during the human problem-

solving process and the associated re-planning under time 

pressure. Their approach allows the user to delegate tasks 

on different levels of a task hierarchy, which leaves the 

planning of details unspecified by the user to the automa-

tion. This human-automation integration approach is called 

supervisory control (Miller et al. 2005). In contrast to this, 

we implemented cooperative control with real automation-

initiative, i.e. the assistant system can initiate dialogs with 

the user, which is a step into the direction that (Ferguson 

and Allen 1998) have chosen. But our approach differs by 

following the Cooperative Automation and assistant sys-

tem paradigms of (Onken and Schulte 2010), who proclaim 

a rather passive and invisible assistant, that only interacts 

with the human operator on its own initiative and does this 

solely in case he/she shows suboptimal behavior. The as-

sistant system is otherwise invisible and silent, thereby 

leaving mission responsibility to the human and keeping 

him/her in the control and decision loop. 
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 First, this article describes the requirements posed by the 

MUM-T application problem and our assistant system 

approach. Then, the concept of the MMP is derived from 

these requirements. After that, we explain its design and 

give an overview of the implementation. Also, evaluation 

approaches and first results are presented, and current 

problems as well as future work are outlined. 

Requirements for the MMP 

The UAV operator’s workplace is located inside a helicop-

ter cockpit, which is part of a large-scale Manned-

Unmanned Teaming simulation (Uhrmann, Strenzke, and 

Schulte 2010). The MMP shall enable the helicopter crew 

to accomplish experimental MUM-T missions with man-

ageable workload. In this section, we describe the MUM-T 

application scenario and the assistant system with respect 

to the requirements they generate for the MMP. 

Helicopter and UAV Mission Application Scenario 

In our MUM-T scenario, a manned transport helicopter is 

supposed to carry troops from a pickup zone to an opera-

tion area with two possible drop zones nearby (cf. figure 

1). In order to get there, the helicopter has to cross the 

forward line of own troops (FLOT) by the use of defined 

corridors within specified time windows. In total, there are 

about 25 mission-relevant locations in the scenario. Three 

UAVs are taking over the preceding reconnaissance of the 

helicopter routes and of the drop zone. The more UAVs 

perform the reconnaissance of a route, the broader is their 

sensor footprint, thereby increasing safety for the manned 

high value asset. Prior to the start of the mission, a mission 

order is provided, which includes certain constraints, e.g. 

the preferred drop zone, the preferred ingress and egress 

corridors, the mandatory pickup zone, the permitted times 

to land at the pickup and drop zones, the corridor opening 

times, the takeoff clearance time (earliest mission start), as 

well as the final destinations of all aircraft and troops. 

Hence, the automated planning of such a mission makes 

concurrent actions and temporal planning necessary. 

 During execution of the mission the operator enters a 

mission plan into the system stepwise by allocating a series 

of individual tasks to each of the UAVs via a task-based 

guidance graphical user interface (GUI) (Strenzke et al. 

2011). The generated tasks are chronologically ordered, 

but do not contain any time tags. The following task types 

can be given to the UAVs: take off, land, transit, cross 

FLOT, recce route, recce area, and object surveillance. The 

semi-autonomous UAVs possess restricted planning capa-

bilities that allow them to insert mandatory tasks that the 

operator left out. In the course of the mission, ground ob-

jects are spotted by the UAVs. These events can lead to the 

necessity of re-planning the mission (e.g. primary landing 

site or corridor are threatened, cf. figure 1). Also, after the 

first mission is accomplished, a second troop transport 

order is given to the helicopter crew, making re-planning 

of the egress phase necessary.  

Figure 1: Manned-Unmanned Teaming Mission Scenario 

 In this simulated scenario we do not regard the move-

ment of any dynamic objects which are not under control 

of the human (e.g. ground vehicles). The helicopter is also 

under his/her control (constraint-based guidance, e.g. 

which corridor and landing site to use) because in our 

MUM-T scenario the UAV operator and the helicopter 

commander is the same person. Hence, the mission plan-

ning problem is deterministic. 

 In the helicopter domain, time plays an important role. A 

mission plan always has to be complete, i.e. including 

landing in safe territory before fuel runs out. In addition to 

that, timely coordination is necessary (e.g. site has to be 

reconnoitered before landing). Therefore, all agents have to 

be included in the plan. This makes the problem complex. 

The solution process and end state are not well-defined 

(i.e. there are multiple possible ways of solving the prob-

lem and these are not known in advance). Hence, we need 

optimality criteria, merged together in a cost function. This 

function shall represent the minimization of risk to human 

life (i.e. the helicopter crew), risk to equipment (i.e. risk to 

the manned and unmanned aircraft), violation of the mis-

sion order, as well as financial costs (i.e. short flight paths).  

Manned-Unmanned Teaming Assistant System 

The MUM-T assistant system is realized as a knowledge-

based system that supports the UAV operator upon detec-

tion or anticipation of suboptimal behavior. It mainly holds 

knowledge about the modes of interaction with the human 

operator (Donath, Rauschert, and Schulte 2010). In the 

mentioned cases, the assistant system has three options to 

aid the operator. It can provide a warning, suggest an ac-

tion proposal, or initiate an action (e.g. reconfiguration of 

some system). To communicate with the operator, the 

assistant system instantiates a dialog or makes an an-

nouncement via speech synthesis and the displaying of a 

message box in the task-based UAV guidance GUI. When-

ever appropriate, this message box includes a few buttons 
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that allow the operator to invoke further aid by the assis-

tance system or to either accept or reject its proposals. E.g. 

• Assistant takes initiative: “UAV1 needs follow-up task”  

• Operator presses “proposal” button 

• Assistant proposes: “Add task transit HB PZ for UAV1” 

• Operator presses “accept” button 

• Assistant affirms: “Added task for UAV1” 

 These dialogs can either refer to a single task to be allo-

cated to or executed by a UAV, or to a complete plan to 

cover the remaining mission goals. Following the Coopera-

tive Automation and assistant system paradigms of (Onken 

and Schulte 2010) the assistant system initiates these dia-

logs only if it is found necessary to support the human 

operator, i.e. he/she made an error (i.e. his/her behavior is 

below a certain optimality threshold) or an error is antici-

pated by the assistant system (i.e. his/her plan seems below 

a certain optimality threshold). To decide whether, when, 

and how assistance should be provided to the operator 

• the assistant system has to be able to anticipate, which 

tasks the operator has to execute and when he/she is 

supposed to do this (i.e. plan is incomplete and has to be 

evolved soon due to time constraints), and 

• the assistant system has to be able to notice sub-

optimality in the past planning performance of the opera-

tor (i.e. his/her plan is too suboptimal). 

 Accordingly, during the execution of the mission the 

assistant system has to check the completeness and opti-

mality of the operator-given UAV tasks upon any operator 

input that is conflicting with the current plan, any relevant 

tactical situation change (e.g. new threat enters the scenar-

io), and any mission order change (i.e. new mission objec-

tives received or mission objectives have already been 

met). The assistant system also needs the ability to propose 

a new plan to the operator in case his/her plan is infeasible 

or suboptimal. Taking all this together, the system requires 

•  the ability of temporal planning to complete, generate 

from scratch, and monitor a task agenda, as well as 

• the ability of plan evaluation (cost comparison).  

 Hence, the world model of the MMP has to incorporate 

the conceptions of time and costs, and it has to be able to 

perform the necessary calculations in order to provide a 

basis for assistant system decisions. These decisions have 

to be made fast, therefore anytime planning is useful. 

Concept of the MMP 

In order to develop a Mixed-initiative Mission Planner for 

the MUM-T domain, we first have to analyze the role of 

the human and of the automation as well as their mixed-

initiative interplay. The starting point is that the human 

shall be able to enter mission plan into the system com-

pletely on his own. This is due to our passive assistant 

system approach and the mentioned responsibility he/she 

has concerning the mission and the involved systems. This 

planning task has to be performed by means of a graphical 

user interface that only allows the incremental generation 

of a single plan.  

 Now we suppose that the human has at least one plan in 

his/her mind and that he/she enters this (the best one or the 

primary) into the UAV guidance system. Therefore, we can 

distinguish between the plan(s) in the human mind (human 

plans – HuP) and the plan that is stored in the system (sys-

tem plan – SyP), i.e. the current active plan for the auto-

matic UAV guidance, that is recognized and modified by 

the human operator and the assistant system in mixed-

initiative fashion. Because it is difficult to get hold of the 

HuP, the assistant system can only evaluate the SyP.  

 Plans generated by the assistant system (assistant sys-

tem plans – AsP) constitute a third type of plans in our 

concept. Figure 2 shows the concept that incorporates all 

these plan types. Both human and machine shall be able to 

take initiative in order to manipulate the system plan ac-

cording to their understanding.  

Figure 2: Mixed-initiative planning concept for the MMP 

 The assistant system plans (AsP) can be further divided 

into what the machine computes as the best possible plan 

(reference plan – ReP) and what the machine supposes that 

the human is planning (assumed human plan – aHuP). In 

theory, multiple plans of each subtype can be stored by the 

assistant system, but this is not regarded in the following. 

The assumed human plan (aHuP) converges to the true 

human plan (HuP) with each additional detail the human 

discloses by tasking the UAVs and thereby expanding the 

SyP. Furthermore, the operator is driven to detail his plan 

by the warnings and proposals of the assistant system, 

possibly letting the HuP and SyP converge to either the 

aHuP or the reference plan of the machine (ReP). 

 Similar to (Miller et al. 2005) our concept follows a 

shared task model that allows human and machine to 

communicate about tasks for the aircraft, goals and plans. 
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This is explained in more detail in (Strenzke et al. 2011). 

Furthermore, our MMP concept is based on planning the 

mission as reaching a defined world state (which is in our 

case the end state of the mission) and optimizing the way 

to this state. Hence, partial human plans must be completed 

in the machine's mind to evaluate them. 

Design of the MMP 

During the mission, the assistant system receives infor-

mation about the mission order, the current tactical situa-

tion, and the aircraft task agendas out of SyP (cf. figure 3). 

From this information, the assistant system has to generate 

the aHuP as well as the ReP. In order to accomplish this, 

different constraint sets have to be transferred to the MMP. 

For this purpose the assistant system uses the Simple Tem-

poral Constraint Interface (STCI) as input interface of the 

MMP. We therefore deploy two instances of the MMP. 

One is intended to create the aHuP, and the other shall 

generate the ReP at the same time. 

Figure 3: Integration of the assistant core and MMP instances 

Slave and Free MMP Instances 

Both instances of the MMP receive the information about 

the current tactical situation, but they differ with respect to 

the constraints they take into consideration.  

 The so-called Slave instance of the MMP is slave to the 

human input, i.e. it uses the constraints expressed by the 

SyP (aircraft tasks) and the mission order to check the 

feasibility and completeness SyP. If the SyP is feasible, the 

assistant core receives the start times and durations of the 

tasks that were calculated by the MMP, which is needed 

for monitoring the execution of already planned tasks. In 

case the SyP is incomplete (partial), the missing tasks will 

be added by the MMP, thereby assembling the aHuP, 

which allows the assistant system to monitor if the operator 

evolves the plan early enough to stay in schedule. 

 The Free instance of the MMP is responsible for the 

generation of the ReP. It receives only the mission order 

constraints, i.e. it is meant to disregard the SyP completely. 

Thereby, it checks if the problem is solvable in general, 

and in this case it generates a complete Free plan (i.e. the 

ReP), which can then be compared with the best scoring 

Slave plan (i.e. the aHuP) by the assistant system (see 

Evaluation chapter). This comparison reveals if the human 

operator inserted some elements into the SyP which might 

be suboptimal or even counterproductive and can therefore 

be used by the assistant system as basis for the decision 

whether to offer the ReP as the new SyP to the human. 

Simple Temporal Constraint Interface 

The STCI has been developed as an interface for the assis-

tant system core to the MMP to transfer planning con-

straints. Each constraint refers either to a task to be per-

formed or a state to be reached by an agent (i.e. aircraft or 

troops). State constraints are “be at ground position”, “be 

at air position” and task constraints include “transit”, “un-

load troops”, “load troops”, “cross FLOT”, “land”, “take 

off”, “recce route”, “recce area”, “object surveillance”. To 

generate multiple (and also open) time windows the tem-

poral specifiers for constraints are “at beginning”, “at end”, 

“anytime”, “not before”, “not after”. The latter two are 

associated with a single time value. “Anytime” means the 

task has to be done or the state has to be reached at some 

unspecified point in time or interval. The specification of a 

closed or half-open interval is possible with the addition of 

“not before” and/or “not after” constraints. An “at end” 

constraint specifies a goal state for the planner (non-

temporal) and “at-begin” constraints are needed to model 

tasks that are already in progress at the time of planning 

and therefore can be finished (before the agent starts exe-

cuting any other task). The constraints can be specified as 

either hard (mandatory) or soft (associated with definable 

violation costs). 

Implementation of the MMP 

Although many mission planning systems with symbolic 

focus used in the aerospace domain are based upon the 

HTN (Hierarchical Task Network) knowledge-based plan-

ning approach, there is a reason for us to prefer a classical 

operator-based planner. An HTN planner is designed to 

explore different predefined possibilities of task decompo-

sition and perform scheduling. This provides less flexibil-

ity compared to an operator-based planner, which is ex-

ploring combinations of atomic actions. Also, HTN plan-

ners have problems at planning for individual and inter-

leaving actions for multiple agents (Goldman 2006). For 

example in the HTN-based Playbook™ Approach, a play 

(cooperative action of multiple UAVs) has to be defined 

before it can be invoked by the operator (Miller et al. 

2004), which lowers flexibility. To find fine-granular solu-
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tions of non-prescribed multi-agent cooperation in a central 

planning approach seems to be a strong advantage in the 

complex and dynamic environment of a MUM-T mission, 

although it poses a heavy burden on solution search per-

formance. This article briefly shows that for the MUM-T 

scenario described above good solutions can be found 

sufficiently fast by the MMP in principle. Performance 

details can be found in (Strenzke and Schulte 2011b). 

Figure 4: MMP internal structure and functionality 

 We chose the PDDL (Planning Domain Definition Lan-

guage) 2.2 (Edelkamp and Hoffmann 2004) representation 

due to its temporal expressiveness. In our implementation, 

the assistant system sends plan requests and constraints via 

the STCI to the Planning Process Manager (PPM). The 

PPM then translates the constraints dynamically into a 

PDDL 2.2 problem definition and starts multiple planner 

processes, which work upon this problem and use different 

static Domain Knowledge Configurations (DKCs) (see 

figure 4). The DKCs contains slightly varying MUM-T 

world models in order to try out different problem-solving 

heuristics. The generated plans (task agendas) are finally 

collected by the PPM and provided to the assistant system.   

Planning Process Manager 

As soon as the PPM receives a planning command via the 

STCI, it dynamically generates a PDDL problem file con-

taining the complete MUM-T problem with all aircraft. 

The current tactical situation, which includes all vehicle 

data (type, position, state) and all mission-relevant loca-

tions, is used as the initial state for the problem description. 

Also, all distances between the locations are calculated and 

set as numerical values (i.e. PDDL functions). As men-

tioned before, the human operator guides the UAVs on a 

task-based level, i.e. he/she provides tasks to the individual 

UAVs. Each task can be seen as a declaration of the opera-

tor’s intent. Hence, these operator-given UAV tasks consti-

tute constraints to the further planning process in addition 

to the externally given mission order when generating the 

aHuP. These and the constraints from the mission order are 

processed as follows. 

 The conversion of hard temporal constraints into PDDL 

works with timed initial literals (Edelkamp and Hoffmann 

2004) in combination with denying or allowing precondi-

tions for actions defined in the domain. E.g. if a constraint 

states that the takeoff of a specific aircraft from a specific 

location is allowed only after 10:00 (“not before” con-

straint), then via a timed initial literal at 10:00 a predicate 

“takeoff_denied” for this aircraft at this airport becomes 

false, which is a precondition for the “takeoff” action.  

The hard “at end”- and “anytime”-constraints are direct-

ly translated into goal states for the PDDL planner (see 

figure 5). In case of task constraints (“anytime”), a post-

condition is defined for the action corresponding to the 

task, which leads to the fulfillment of the predicate con-

tained in the goal state upon action execution. Soft con-

straints are realized via a benefit that is calculated into the 

total costs of the solution in case the constraint is met (e.g. 

normally the costs for landing are zero, but if landing is 

preferred at a specific location then the cost function for 

this location is set to a negative value). Unfortunately it is 

not possible to generate soft temporal (“not before”/”not 

after”) constraints with the current implementation. 

Figure 5: PDDL goals example including constraint sources 

Planning Engine 

As planning engine we use the PDDL 2.2 compatible LPG-

td (Local Search for Planning Graphs – timed initial literals 

and derived predicates) 1.0 (Gerevini, Saetti, and Serina 

2004) due to its full support of temporal planning capabili-

ties defined in PDDL 2.2 and its good performance. Also, 

due to its local search algorithm, it seems to work well 

with giving it the SyP as a goal chain that will be followed 

strictly by the resulting plan (i.e. each next UAV action 

fulfills one goal in the chain). The planner is used in best-

quality mode, i.e. it incrementally puts out the best plan 

found so far (evaluated by cost minimization constraint) 

until there has been provided a new planning request by the 

assistant system. The different LPG planning processes 
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that are set off by the PPM perform their search each with 

a distinct initial random seed. Each MMP instance uses 12 

LPG processes in the current setup. 

Domain Definition 

The PDDL domain definition includes the description of   

object types, predicates, functions and actions. In the 

MUM-T world model there are location, aircraft and troop 

objects. In total, around 60 predicates and functions have 

been defined for the locations and their interconnections 

(in order to allow coarse route planning) and the descrip-

tion of the agents (aircraft, troops), e.g. location, speed etc. 

 All tasks that can be assigned via the task-based UAV 

guidance interface are represented as durative actions. Like 

the UAVs, the helicopter is of the aircraft object type but it 

is excluded from reconnaissance and surveillance actions. 

However, it has additional abilities, i.e. the loading and 

unloading of troops. Some tasks need multiple action mod-

els to cover different situations (e.g. “finish departure” as a 

special case of “departure” when this task is already in 

progress while starting the planner). This results in 30 

different durative actions implemented in total.  

 The MMP works with multiple PDDL domain configu-

rations in parallel in order to favor different heuristics. E.g. 

one DKC contains the additional very costly action “land 

at unrecc’d site”, allowing a solution including this action 

in principle. Because not all DKCs include this action and 

the pool of LPG processes is fed with the different DKCs 

in equal amounts (cf. figure 4), certain effort is spent on 

the search for solutions excluding this costly action per se. 

 All costs can be implemented via functions in PDDL 

and therefore need not to be part of the domain model but 

can be generated dynamically in the problem file. The cost 

model is still being tuned to satisfy test persons’ needs and 

optimize MMP as well as assistance system performance, 

therefore we do not present any numbers here. 

Evaluation of the MMP 

In this chapter we give preliminary evaluation results from 

the first experimental campaign that includes the MUM-T 

assistant system and the MMP. Then, some facts about 

typical problem sizes are provided and an evaluation meth-

od for assistant system decisions based on data generated 

by the MMP is outlined. More detailed data about the sub-

jective and objective MMP evaluation can be found in 

(Strenzke and Schulte 2011b). 

Subjective Evaluation 

The test persons were four German Army helicopter pilots 

acting as UAV operator, each solving two training mis-

sions with assistance system aid, then solving two experi-

mental missions without, and then two experimental mis-

sions again with assistance system aid. All of the missions 

were different but following the scheme described above. 

Subjective questionnaires about the MUM-T assistant 

system delivered the following results, which show a 

slightly positive trend, but also improvement potential: 

• Slightly better efficiency through automated task inser-

tion by the assistant system (when automated task exe-

cution was turned off) 

• Proposals to insert tasks lowered workload slightly 

• Proposals to insert tasks were considered rather useful 

• Proposals to insert tasks seemed rather necessary 

Objective Evaluation 

The most critical situation for the MMP in terms of per-

formance is the early phase of the mission after the opera-

tor has entered the UAV tasks into the system. In this situa-

tion the longest action sequence has to be generated in 

order to accomplish the mission and bring the aircraft back 

home again. Some rounded benchmark data for this case 

are given below: 

• 35 tasks to be given to the UAVs to fulfill mission 

• 600 facts about the 25 locations and their relations 

• 45 facts about the 5 agents 

• 35 timed initial literals 

• 50 goal predicates (Slave MMP) 

• 75 action steps in the solution 

• 20-30 seconds
1
  to find a satisfactory plan  

 (viewpoint of developer) 

Figure 6: Example of a good aHuP (Slave plan, red) 

 To analyze situations of false alarms as well as actions 

missed by the assistant system, it is interesting to compare 

the plan quality generated over time by the Free and the 

Slave MMP instances because a future version of the assis-

tant system will perform exactly this comparison in order 

to decide whether to take initiative to propose not only a 

                                                 
1 Each MMP instance is running on a high-performance PC with 6 hyper-
threading processors (i.e. 12 virtual processors, 1 per LPG process). 
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single additional UAV task but a completely new mission 

plan. At the moment this is only done in special use cases. 

Two thresholds can be set in order to tune the decision 

process: the time to wait until a decision is made and the 

cost difference between the Free and the Slave plan. Figure 

6 shows an example of a good Slave plan (aHuP) beats the 

Free plan (ReP) after 16 seconds of incremental planning. 

This means that the human planning heuristics were more 

effective than those of the machine. Because of the chang-

es in the situation (e.g. aircraft moving, threat blocking 

primary corridor) and the goals (e.g. follow-up mission), it 

is not possible to compare the aHuP against any baseline or 

against the optimal solution because it is not known. 

Therefore, it is necessary to analyze these graphs in certain 

mission situations, where re-planning should be proposed 

by the assistance system. The threshold values could be set 

to start checking for a cost difference of e.g. 10.000 after 

waiting 20 seconds after starting both planners (see figure 

7). This analysis process is not yet completed. 

Figure 7: Applying time and cost thresholds to compare quality 

A Critical View on the MMP Implementation  

Our Cognitive Skill Merging approach to mixed-initiative 

has the goal to combine general human strengths and gen-

erals machine strengths in order to optimize overall hu-

man-machine system performance and compensate each 

other’s weaknesses (Strenzke and Schulte 2011a). Howev-

er, we see weak points in our implementation that are in 

conflict with the concept of this approach.  

 The first is the uninformed search concerning route plan 

generation. Routes that are longer than necessary can be-

come optimized through the incremental mode of the LPG 

over time. But these optimizations are associated with 

relatively small costs (e.g. in comparison to landing at 

threatened site) and therefore can lead to a time-intensive 

optimization process, while the sub-optimality of the route 

is easily visible for the human operator. From the human-

automation integration standpoint one would think that the 

route planning is a machine’s strength and not a weakness. 

The missing of explicit geometrical planning and reasoning 

leads also to problems concerning reconnaissance coverage 

optimization, which is an important issue for reconnais-

sance UAV mission planning. 

 Another weak point of the MMP is the lack of continu-

ous planning. This means that plan fragments that have 

already proven to be useful are not re-used. Instead every 

planning request by the assistant system makes the MMP 

generate a completely new plan (however, certain frag-

ments will reoccur due to the constraints the MMP re-

ceives). On the one hand, this leads to the problem that the 

operator can be confronted with a new machine plan that 

differs in many aspects from the previous one, which can 

cause confusion. However, this problem arises rarely in our 

current configuration because the Slave planner regards the 

human input as hard constraints, and therefore all aHuPs 

overlap in all tasks that these constraints refer to. On the 

other hand, the plan optimization process is interrupted and 

reset very often, even if there are only minor changes to the 

problem to solve. Hence, it is difficult to maintain or im-

prove plan quality in the long term. This problem could be 

addressed by remembering constraints that improved the 

solution and re-applying them. But this leads into the prob-

lem of having to try out hard constraint combinations. 

 A further problem is associated with the plan feasibility 

checking feature of the MMP. Because the search of the 

LPG does not terminate in case only temporal constraints 

deny the solution and there is no other possibility than to 

define these constraints as hard, the only workaround is to 

set a timeout concerning the waiting for planner output. To 

relieve the problem a little, one of the twelve LPG process-

es is fed with an “emergency plan” problem file with in-

creased helicopter travel speed (near helicopter vmax).  

 One drawback of operator-based planning in comparison 

to HTN planning also is that critical decision points (e.g. 

which corridor, which drop zone) are rather implicitly 

modeled and “lost” in combinatorial space. Test persons 

reported that they do not tend so much to plan hierarchical-

ly. Instead they liked our forward planning style interface. 

However, they are indeed used to plan their missions by 

means of suchlike critical decision points. 

Future Work 

Figure 8 visualizes two main trends in the development of 

planners today, which can be seen as the generalization and 

flexibilization on the one hand (e.g. triggered by the Inter-

national Planning Competition’s current focus on domain-

independent planning). On the other hand, many real-world 

applications need not only the flexibility of a planning 

engine but also performance, which is why Hierarchical 

Task Network (HTN) planning is used widely in real-world 

applications (Nau et al. 2005). As depicted in our Sigma-
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Delta scheme (figure 8), such domain-configurable plan-

ners usually lack the flexibility of classical, domain-

independent planning. We explained before, that this was 

one reason for choosing a domain-independent planner. 

For planning more complex missions during human-in-the-

loop experiments with an acceptable response time, we 

consider a hybrid approach of classical operator-based and 

HTN planning, which would be similar to (Estlin, Chien, 

and Wang 1997; Biundo and Schattenberg 2001; Castillo, 

Fernández-Olivares, and González 2001), who set a trend 

towards efficient planning in a dynamic and unforeseeable 

real world. Further steps that alleviate real-world planning 

problems, like portfolio-based planning (Gerevini, Saetti, 

and Vallati 2009) or the situation-dependent assemblage of 

algorithms and a modular planner (Jameson et al. 2005), 

will not be taken in the near future. 

Figure 8: Planning approaches: Trends, performance, flexibility 

 Our future human-machine interaction research will 

address brittle (suboptimal) machine solutions (plans and 

advices) (Strenzke and Schulte 2011b). We will also regard 

different interaction timing configurations, i.e. the thresh-

old concerning the cost difference between the assumed 

human plan and the reference plan can be lowered to in-

crease and antedate automation-initiative or raised to make 

the assistant system intervention less intrusive. Further 

human-in-the-loop experiments to prove the concept of the 

MMP and investigate the above mentioned research topics 

are planned for the near future. 

References 

Biundo, S., and Schattenberg, B. 2001. From abstract crisis to 

concrete relief – A preliminary report on combining state abstrac-

tion and HTN planning. In Proceedings of the 6th European 

Conference on Planning.  

Castillo, L.; Fernández-Olivares, J.; and González, A. 2001. On 

the adequacy of hierarchical planning characteristics for real-

world problem solving. In Proceedings of the 6th European 

Conference on Planning. 

Donath, D.; Rauschert, A.; and Schulte, A. 2010. Cognitive assis-

tant system concept for multi-UAV guidance using human opera-

tor behaviour models. In HUMOUS’10, Toulouse, France. 

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The Language 

for the Classical Part of the 4th International Planning Competi-

tion. In Technical Report 195, Albert-Ludwigs-Universität 

Freiburg, Institut für Informatik, Germany. 

Estlin, T.A.; Chien, S.A.; and Wang, X. 1997. An argument for a 

hybrid HTN/operatorbased approach to planning. In Proceedings 

of the 4th European Conference on Planning.  

Ferguson, G., and Allen, J. 1998. TRIPS: An Intelligent Integrat-

ed Problem-Solving Assistant. In Proceedings of the Fifteenth 

National Conference on Artificial Intelligence, Madison, WI. 

Funk, H.; Goldman, R.; Miller, C.; Meisner, J.; and Wu, P. 2005. 

A Playbook™ for Real-Time, Closed-Loop Control. In Proceed-

ings of the First International Conference on Computational 

Cultural Dynamics, August 27-28; College Park, MD. 

Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning in 

PDDL2.2 Domains with LPG-TD. In Proceedings of ICAPS-04. 

Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An Automatically 

Configurable Portfolio-based Planner with Macro-actions. In 

Proceedings of ICAPS-2009. 

Goldman, R. 2006. Durative planning in HTNs. In Proceedings of 

ICAPS-06. 

Jameson, S.; Franke, J.; Szczerba, R.; and Stockdale, S. 2005. 

Collaborative Autonomy for Manned/Unmanned Teams. In 

Proceedings of the American Helicopter Society 61th Annual 

Forum. 

Miller, C., Funk, H., Wu, P., Goldman, R., Meisner, J., Chapman, 

M. 2005. The Playbook Approach to Adaptive Automation. In 

Proceedings of the Human Factors and Ergonomics Society's 

49th Annual Meeting. Orlando, FL. 

Miller, C.; Goldman, R.; Funk, H.; Wu, P.; and Pate, B. 2004.  A 

Playbook Approach to Variable Autonomy Control: Application 

for Control of Multiple, Heterogeneous Unmanned Air Vehicles. 

In Annual Meeting of the American Helicopter Society. 

Nau, D.;   Au, T.-C.;   Ilghami, O.;   Kuter, U.;   Wu, D.;   Yaman, 

F.;   Munoz-Avila, H.; and  Murdock, J.W. 2005. Applications of 

SHOP and SHOP2. In Intelligent Systems, IEEE, Vol. 20 Issue: 2. 

Onken, R., and Schulte, A. 2010. System-ergonomic Design of 

Cognitive Automation: Dual-Mode Cognitive Design of Vehicle 

Guidance and Control Work.  Heidelberg, Germany: Springer. 

Strenzke, R., and Schulte, A. 2011(a). Mixed-Initiative Multi-

UAV Mission Planning by Merging Human and Machine Cogni-

tive Skills. In 8th Conference on Engineering Psychology & 

Cognitive Ergonomics, in conjunction with HCI International.  

Strenzke, R., and Schulte, A. 2011(b). Design and Evaluation of a 

Mixed-Initiative Multi-Vehicle Mission Planning System. In 

IJCAI-11 Workshop AI in Space: Intelligence beyond Planet 

Earth. Barcelona, Spain. 17 July 2011. 

Strenzke, R.; Uhrmann, J; Benzler, A.; Maiwald, F.; Rauschert, 

A.; and Schulte, A. 2011. Managing Cockpit Crew Excess Task 

Load in Military Manned-Unmanned Teaming Missions by Dual-

Mode Cognitive Automation Approaches. In: AIAA Guidance, 

Navigation, and Control (GNC) Conference. Portland, Oregon. 

Uhrmann, J.; Strenzke, R.; and Schulte, A. 2010. Task-based 

Guidance of Multiple Detached Unmanned Sensor Platforms in 

Military Helicopter Operations. In COGIS, Crawley, UK. 



82

Planning for Human-Robot Teaming
Kartik Talamadupula† and Subbarao Kambhampati† and Paul Schermerhorn§ and

J. Benton† and Matthias Scheutz§

†Department of Computer Science
Arizona State University
Tempe, AZ 85287 USA

{krt,rao, j.benton}@ asu.edu

§Cognitive Science Program
Indiana University

Bloomington, IN 47406 USA
{pscherme,mscheutz}@ indiana.edu

Abstract
One of the most important applications of planning technol-
ogy has been – and continues to be – guiding robotic agents in
an autonomous fashion through complex problem scenarios.
Increasingly, real-world scenarios are evolving in a way that
includes humans as actors in the loop along with the robot and
the planning system. These humans are stakeholders whose
roles may vary between that of a commander or a system
or domain expert; the one common thread is that together
with the robot, they form a team that shares common goals.
In this paper, we consider challenges posed by such human-
robot teaming scenarios from a purely planning-centric per-
spective, and discuss the dimensions of variation within ap-
plication problems in such scenarios. We seek to differenti-
ate planning for human-robot teaming from the general area
of human-robot interaction, since we are mainly interested
in the planning tools that facilitate such teaming. We look
at some problems that are encountered in deploying existing
planning techniques in such teaming scenarios, and illustrate
these with our experience in a real world search and rescue
scenario. We follow this up with results from runs involving
a robot controlled by a planner whose goal handling capabil-
ities are augmented.

Introduction
One of the earliest motivations for Artificial Intelligence as a
field of study was to provide autonomous control to robotic
agents that carry out useful service tasks. Application sce-
narios for these kinds of tasks span a wide spectrum that
includes military drones and mules, household assistance
agents (Goebelbecker et al. 2010) and search and rescue
robots (Schermerhorn et al. 2009). The concept of team-
ing between humans and robots is central to all these ap-
plications – the notion of robotic agents that support a hu-
man agent’s goals while executing autonomously is a recur-
ring theme. The level of autonomy that is desired of these
robotic agents is often achievable only by integrating them
with planning systems that can not only plan for the initially
specified goals, but also updates to these goals as well as
changes to the world and to the agent’s capabilities.

Recent years have seen the emergence of fast planning
algorithms and systems that can account for a large num-
ber of the features that distinguish a real world application
from a theoretical scenario – time, cost, resources, uncer-
tainty and execution failure. Though planners of the past

have been able to model many of these features (Penberthy
and Weld 1995), the scale-up that is required to support real
world time windows has only come about in the past decade
due to the use of heuristic search methods for plan synthesis.
Current planners still operate under a number of restrictive
assumptions, and classical planners like LAMA (Richter and
Westphal 2010) are clearly the fastest of the lot. The chal-
lenge then is one of identifying the features that are essential
when considering planning support for such joint human-
robot endeavors, and of providing a general framework for
these problems. This problem is quite distinct from the ex-
isting field of human-robot interaction (HRI), since we are
interested more in what existing planning techniques can
be used or extended in order to facilitate teaming scenar-
ios. Towards this end, we discuss a new class of problems
under the collective term human-robot teaming (HRT), and
present the essential dimensions of such problems with re-
spect to planning. The teaming aspect of these problems
arises from the fact that the human and the robot are both
acting towards achieving the same set of shared goals, and
the relationship between them can be defined in terms of
known modes of interactions in teams (e.g. colleagues,
commander-subordinate, etc.). Though there has been work
in the past on the intersection of tasks involving humans,
robots and planners, most of that work has concentrated on
a system-centric view of the interaction. Our focus in this
paper is instead on the teaming, and on describing the char-
acteristics of this problem as applicable to planning.

The rest of this paper is organized as follows: we first
discuss the concept of human-robot teaming and list the di-
mensions of interest to planning in such scenarios. Follow-
ing this, we look at a search and rescue scenario that we had
to provide planning support for as a case study, and place
it within the HRT spectrum. We then detail some initial
work that we have undertaken in tackling some planning
challenges inherent in teaming scenarios. We discuss two
specific problems – handling incomplete models, and the
problem of goal specification and revision. As part of the
latter, we also detail our work with a robot executing in a
real-world search and rescue scenario, and present the ag-
gregated results of the robot’s runs through this task guided
by our planning system. Our hope is for this paper to serve
as a catalyst that spurs the planning community into further
defining and mapping the application-rich field of human-
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robot teaming, and the specific planning challenges that lie
in this area.

Human-Robot Teaming
In this paper, we focus our attention towards the planning
challenges that must be tackled in order to support human-
robot teaming scenarios. Our motivation in pushing this
problem is to present a larger class of applications that the
planning community can provide tightly-knit support for,
and to open the door to discussions on the nature of such
support. Our experience with this problem stems from our
work with a search and rescue scenario (detailed in the next
section) and the planner extensions that were required in or-
der to support tasks from that scenario. In later sections,
we detail some of these extensions along with references to
more detailed work.

We begin by clarifying the nomenclature: human-robot
teaming scenarios are those involving (possibly multiple)
human and robotic agents that acquire their “teaming” na-
ture from the autonomous behavior of the robotic agent(s).
Though it is assumed that the top-level goals are determined
and specified by the human, the robot is completely au-
tonomous in that it only receives a set of goals that it must
accomplish within some specified constraints while respect-
ing the notion of optimizing some pre-defined metric. For
the robot to exhibit this autonomy, it is imperative that the
system be equipped with a planner that can handle the var-
ious dimensions of the environment that the team must op-
erate in. We briefly describe these dimensions and the chal-
lenges in supporting them here, as a list of the defining com-
ponents of a human-robot teaming (HRT) scenario:

Scenario One of the most important factors in HRT is the
problem scenario in which the team is executing – here, we
use “scenario” in a ubiquitous sense to describe the partic-
ular task or collection of tasks at hand that the team is in-
terested in solving. More often than not, these scenarios
are very close approximations of real-world applications in
which essential tasks were carried out by humans before the
advent of the human-robot team. As such, there is almost
always a large amount of domain knowledge available about
the scenario that may be exploited – such knowledge resides
either with humans who have been actors in the scenario
previously, or in carefully compiled manuals and technical
documents. Taking the scenario into consideration when
planning for a human-robot teaming problem is key, since
it determines the kinds of tasks that must be supported. The
scenario also determines the kind of features a planner must
support in order to guide the robot in pursuit of the team’s
goals; we elucidate on this in subsequent sections.

Robot The robot is the central actor in an HRT scenario,
since it has upon itself the responsibility of executing all the
actions and gathering sensory feedback from the world to
relay back to the human team member and the team’s repos-
itory of knowledge. Teaming must account for the fact that
there exist various types of robots with varying capacities,
and that the type of robot in use may change according to
the scenario. A planning system that is providing support

in such HRT scenarios must be able to deal with robots with
different capabilities (for e.g., mobile robots versus grippers)
and must take into account the constraints that arise. The
model of a robot’s capabilities determines the actions that
may be used in fulfilment of the scenario’s top-level goals,
and hence this is an imperative feature when evaluating an
HRT scenario.

Human (User) The human user is a key player in an HRT
scenario, since the robot (and consequently the planner) are
often achieving goals specified by the user. These users can
belong to one of three general categories, contingent on their
level of familiarity with the robot’s working and the overall
integrated system in use:

1. Novice: A novice user is one who does not understand the
intricacies of the system (representation, component inter-
action etc.) and is merely using the robot (and the system)
as an assistant. An example of a scenario featuring such a
novice user might be a robot designed to assist the elderly
at home – in such scenarios, allowances have to be made
in the system for information that may be incompletely
or wrongly specified by running extra validation via the
robot.

2. Domain Expert: A domain expert is a user who is an au-
thority on the environment that the robot is executing in,
and is in a position to pass on new goals and information
to the robot as they become available. Such a user if often
the dominant force in the human-robot team, and it can
generally be assumed that knowledge gleaned from this
user is reliable and may be acted upon without further de-
liberation. Examples of such users include commanders
in military or rescue teams who have a very good under-
standing of their environment, yet may not be at all famil-
iar with the system’s internal representations.

3. System Expert: A user who is a system expert exhibits a
high degree of familiarity with the integrated system that
manages the robot – its setup, the representation scheme
used, and its various capabilities and shortcomings. Such
a user is often the person that set up the system integra-
tion in the first place (or someone who is debugging it);
as such, examples from real-world scenarios may be re-
searchers and programmers who are in-charge of main-
taining the overall system. System experts may also be
domain experts, but this is not necessarily always the case.

Model Management The model is the system’s internal
representation of the dynamics of the environment and world
that it must handle. Various components within the system
may have different models at different levels of detail; for
example, the planner may maintain a PDDL model of the
system, while lower level components like the path-finding
apparatus may use a grid-like approximation of the world.
On a higher level, it is almost always the case that the robotic
and human actors in the team have different versions of the
world model, and one of the planner’s responsibilities might
be to bridge this gap and produce plans that will succeed
upon execution. The model is usually encoded before the
scenario begins, but may also be provided piecemeal by the
human component of the team. Learning is another possibil-
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ity – though we do not currently support it, learning certain
characteristics and parameters of the environment automat-
ically through the robot is a promising direction for future
work.

Goal Management Distinct from the notion of encoding
and using the world model is the idea of specifying and up-
dating goals. The very utility of a human-robot teaming
scenario stems from the assumption that smaller goals will
be specified by a human in the pursuit of some overarching
purpose, and that the robot will autonomously perform ac-
tions in the world that will lead to the fulfilment of those
goals. In such scenarios, it is imperative that the definition
of “goal” be expanded so that the user may specify differ-
ent kinds of goals (and possibly plan trajectory constraints
as goals (Baral and Zhao 2007)). Since the responsibility
of planning for robot’s actions falls on the planner, provid-
ing means to specify new types of goals is a key planning
challenge in such scenarios. Flexibility in goal specification
includes supporting ideas like goals with different priorities
(using rewards), goals that need not be achieved (using soft
goals) and goals that condition on currently unknown facts –
and just as important, the ability to specify changes to goals
on the fly. We talk about this problem and the work we have
done in this direction in detail in a later section.

Communication Given that the team is composed of sep-
arate human and robotic components, communication is a
non-trivial issue, and is quite often the bottleneck in speci-
fying and achieving goals optimally. Communication affects
everything in the scenario, from the specification and modi-
fication of the domain model and goals, to the human user’s
knowledge of the evolution of the world – which may some-
times only be via the robot. The problem with respect to
communication is unifying the various representations used
by different components in a manner that minimizes infor-
mation loss and processing time. For example, a comman-
der may only specify information using natural language,
but the system must translate this into a form suitable for the
planner (and robot) to use; the system must also convey the
results of action execution and goal achievement (whether
failure or success) to the commander.

Related Work
Though there has been no prior work that directly addresses
the problem of planning for human-robot teaming, there is
definitely a large volume of work that is related to various
aspects of this problem. As shown in Figure 1, previous
work can be classified into three parts – human-robot inter-
action, human-planner interaction and planner-robot inter-
action. More specifically:

• Planning and execution monitoring deals with the interac-
tions between a fully autonomous robot and a planner.

• Human-robot interaction (HRI) works toward smooth in-
teractions between a human user and a robot.

• Mixed initiative planning relates to interactions between
humans who are receiving plans and the automated plan-
ners that generate them.

HUMAN

ROBOT PLANNER

Planning and Execution 

Monitoring

Human Robot Interaction 

(HRI)

Mixed Initiative Planning 

(MIP)

Figure 1: The various modes of interaction in human-robot
scenarios.

Since the focus of this work is on providing planning sup-
port for human-robot teams, the most interesting work is that
which relates planning and execution monitoring to mixed
initiative planning. A lot of work has been done in both
these areas, and their intersection; the closest work seems
to be Bagchi et al.’s (Bagchi, Biswas, and Kawamura 1996)
system for controlling service robots. In their system, the
robot is equipped to handle the user’s changing goals and ad-
vice at different levels of detail via a planner that can refine
and modify goals dynamically. There has also been work
on how humans interact with planners, and how the process
of accepting user input can be streamlined. In particular,
work by Myers [1996, 1998] has dealt specifically with ad-
visable planning that allows a human to specify partial plans,
recommendations or methods to evaluate plan quality, all in
natural language. Space precludes a detailed description of
all past related work; the reader is directed to (Talamadupula
et al. 2010a) for a complete listing.

However, planning for human-robot teaming tasks has
received a significant amount of attention very recently as
well. In particular, two sub-problems have seen a lot of in-
terest. The first is the idea of using two (or more) distinct
models during the planning process – a higher, more task-
oriented model while trying to come up with actions that
support end goals; and a lower-level model to decompose
those tasks in tune with the capabilities of the robotic agent
being used. The other idea that has received some attention
has been that of robotic proactiveness, and the notion that a
robot may “ask for help” if it (the planner) is unable to come
up with a course of action to fulfil a particular goal. Both
these problems have much scope for work, and there exists
some work in the planning community currently under re-
view that addresses them.

An HRT Case Study: Search and Rescue
One of the primary applications of human-robot teams is in
scenarios where a human actor has a plethora of knowledge
about the problem at hand, yet cannot act in the world due
to inherent dangers to human life – emergency responders
and firefighters are among the best examples of such hu-
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Feature \ Task Search and Report Reconnaissance Kitchen Robot
Robot Mobile Mobile Mobile and Manipulator

Human (User) Domain Expert System Expert Novice
Model Less Dynamic Dynamic Highly Dynamic
Goals Changing Static Changing

Communication Natural Language APIs Natural Language

Table 1: The dimensions of a Human-Robot Teaming scenario illustrated for a few example tasks.

mans. In such cases, having a robotic agent as part of the
team greatly increases the chances of achieving the desired
end-goals (rescuing people, putting out a fire etc.) without
exposing the human component of the team to risks.

In this paper, we use a specific scenario that we had to
provide planning support for to illustrate the challenges that
crop up when planning for human-robot teaming. This is the
urban search and rescue (USAR) scenario – a team consist-
ing of a human and a robot is tasked with finding and report-
ing the location of critical assets (e.g. injured humans) in an
urban setting (usually a building). A given USAR scenario
may consist of multiple problems, each with different chal-
lenges that depend on the end goals that must be satisfied -
examples of such problem tasks are given in table 1, along
with an analysis of the how the various HRT features apply
to these tasks. The human member of the team usually has
intimate knowledge of the setting of the scenario, but cannot
perform the required tasks due to inherent dangers like fires,
gas leaks, collapsed structures etc. Examples of tasks in the
USAR scenario include transporting essential materials to
a specified location or entity; and reconnaissance tasks like
reporting the locations of trapped or injured humans to the
commander and taking pictures of objects or areas of inter-
est. In the following, we present two USAR tasks that are of
particular interest to us as examples to illustrate the planning
challenges that are inherent in human-robot teaming.

Search and Report
In this problem, the robot’s main goal is to deliver essen-
tial medical supplies within the area of interest – during its
run, the robot may be given additional information and goals
about other assets. The human component of the team (the
commander) has intimate knowledge of the building’s lay-
out, but is removed from the scene and can only interact
with the robot via on-board wireless communication. The
robot begins in a long hallway that has doors leading off
into rooms on either side.

Initially, the robot is unaware that that these rooms may
contain injured or trapped humans, and its goal is to reach
the end of the hallway to deliver the supplies by a given
deadline. As the robot executes a plan to achieve that goal,
the human commander notes that it is passing the rooms
and recalls that injured humans may be trapped in these
rooms. The commander then passes on this information
linking rooms to injured humans to the robot, and specifies a
new goal on reporting the location of as many such humans
as possible given the time and resource constraints imposed
by the achievement of its original goal. In a succeeding sec-
tion, we talk about the changes to goal specification that had

to be handled to enable a planner to handle such a task, and
present some past work on this application.

Reconnaissance
The other task that we touch on is based on a classic robotic
application - reconnaissance. Quite often in urban settings,
there arise situations where more information is needed
about certain objects before making a decision, yet the cost
or risk of obtaining that information manually (for humans)
is too high. A sterling example is defusal of explosives; of-
ten, a closer look and more accurate imagery is required
in order to determine whether an unrecognized objects is
dangerous and should be disposed off in a suitable manner.
Given the high costs of adverse events in such scenarios, it is
much more preferable to have robotic agents do the close-up
examination required. The challenge in these scenarios is to
support changes to the model of the robotic agent’s capabil-
ities as conveyed to the planner – it is entirely possible that
given a new task like taking a zoomed-in picture of a sus-
picious box, the commander may either give the robot new
effectors that accomplish such a task, or may simply specify
a way of using the robot’s existing capabilities to simulate
such an effect. These are changes to the model that the plan-
ner is planning with, and hence need to be accomodated to
enable goal achievement.

Incomplete Models
We now turn our attention to the first of two important
planning challenges that arise when supporting human-robot
teaming scenarios, that of changes to the model while the
agent is executing in the world. Take the example of the first
task in the USAR scenario – search and report – where the
human commander is removed from the scene due to the in-
herent dangers of the situation. The agent thus needs to act
in an autonomous manner to achieve the goals prescribed to
it. To this end, the agent follows a domain theory that is
provided by a domain expert; however, updates to this do-
main may be specified while the agent is executing a plan in
the world. Updates to the agent’s knowledge of the world
may also arrive in tandem with execution. In such circum-
stances, two things are of essence: first, we need a repre-
sentation for specifying such updates and integrating them
into the knowledge base of the planner that is guiding the
agent. Subsequent to this, the problem changes to one of
reasoning about the changes and their effect on the current
plan’s validity and metrics. Replanning from scratch is a
trivial approach – however, with sophisticated update meth-
ods and reward models, such a method can account for com-
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Figure 2: A map of a sample search and report scenario; boxes in rooms are stand-ins for humans, where green (at left) indicates
injured and blue (at right) indicates normal.

mitments (Cushing, Benton, and Kambhampati 2008). Nev-
ertheless, such methods ignore the fact that many changes
are localized to a certain portion of the domain and may not
require the (often expensive) re-computation of a new plan.

As automated planning systems move into a support role
for real world problems that involve such teaming, the prob-
lem of incompletely or incorrectly specified domain theo-
ries is a recurring one. The shortcomings associated with
not having a completely specified domain theory manifest
themselves as reduced robustness in synthesized plans, and
subsequent failures during the execution of such plans in the
world. One way of dealing with such contingencies is to em-
ploy a reactive approach that replans from scratch (as men-
tioned above) – however, this approach will fail if there are
parts of the domain model that are never revealed to the sys-
tem (and planner) at all. Consider for example the act of
opening doors that are locked, yet the planner’s model does
not support the notion of locks on doors. A reactive plan-
ner would keep trying an ‘open’ action with no success, and
very little information in terms of why the action was failing.

More generally, it is the case in many scenarios that
though plan synthesis is performed using a rudimentary do-
main model and less than complete information about the
world, there are domain experts who specify changes to the
specific problem instance and sometimes the domain model
itself during the planning process. Quite often it is useful
to take this new information into account, since it may help
prevent execution failures when the plan is put into action.
Additionally, new information about the domain or the prob-
lem may open up new ways of achieving the goals specified,
thus resulting in better plan quality as well as more robust
plans. Given the progress in automated planning technology
and a planning system that can be engineered to handle such
changes, it would be wasteful to stick to reactionary plan-
ning and not exploit the plan improvements that are possible
when changes in the model are taken into account.

Model Management
As described above, model updates are a reality that many
real world integrated systems have to contend with. When
viewed through the prism of the search and rescue scenario

that we support, the process of updating these models breaks
down into one of two kinds of tasks:

1. Model Maintenance: This is a more complete solution
to the problem of model updates, founded in the for-
mal representation of domain models. The expectation in
this kind of update is that the domain expert will specify
changes to the model that will ultimately be in the same
format that is used for representation. In this type of up-
date, post-update consistency of the model is a trivial is-
sue since the specification mechanisms will ensure that
only permissible updates can be specified. This kind of
update is suited to scenarios where the planner is part of a
larger integrated system and communicates via some kind
of API that supports the planner’s internal representation.

2. Model Revision: This approach seeks to incorporate
changes that are specified in a representation that is less
formal than the one used by the planner. An example
of such a scenario would be a human commander spec-
ifying (via natural language) that there have been certain
changes to the problem at hand – the planner needs to
make the best it can of these updates and change the cur-
rent plan accordingly. Note that it is significantly harder
to offer guarantees about goal achievement, plan validity,
or model consistency with this approach.

In the context of our current work, the first scenario is
more relevant - even though the updates to the domain are
specified through natural language, the planner only receives
them via an established API that allows interaction with the
the agent architecture. However, the bigger point is that the
the kinds of update tasks that one has to consider in these
kinds of scenario are really a manifestation of the agents in
the system and the architecture underlying it. Most of the
changes to the current world state can be described as part of
a specific problem description and changes to it. However,
there is another kind of update that is possible; an update to
the domain model. It is quite unlikely that these kinds of
updates are “discovered” as changes to the world; the more
likely eventuality is that such updates are specified to the
planner by a domain expert – perhaps even the person who
crafted the domain in the first place. Domain design is not an
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Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

1 + + + Yes Yes No No No
2 + + - Yes Yes ⊥ ⊥ ⊥
3 + - + No No No No No
4 + - - Yes Yes ⊥ ⊥ ⊥
5 - + + Yes Yes No No No
6 - + - Yes Yes ⊥ ⊥ ⊥
7 - - + No No No No No
8 - - - Yes Yes ⊥ ⊥ ⊥

Table 2: Results of trial runs with a deadline of 100 time units. ⊥ denotes that there is no feasible plan from that point on that
fulfils all hard goals.

MODEL

Robot

Human

Figure 3: The robot and the human user share a model, but
have different perceptions of that model.

exact science, and creating even an approximation of a real
world model is fraught with errors of omission and com-
mission. However, most domains are designed such that the
first few versions are never completely off-base. Very rarely
is there a need to change a significant percentage of a do-
main model, and more often than not, changes are updates
to small portions of the description.

This is especially true in human-robot teaming scenarios
like search and rescue – (human) domain experts are more
likely to provide additional information that is relevant to
the immediate tasks that are being performed. In terms of
symbolic planning, this translates into the operators that are
currently being executed as part of the overall plan. In such
scenarios, it makes more sense to provide a way of updating
the existing domain description and the plan that is currently
executing than to throw out all the search effort and replan
from scratch, since the changes to the domain may not af-
fect a significant portion of the plan. In addition, this kind of
approach is preferable even in scenarios where domain de-
scriptions are learned (and updated) automatically through
repeated planning and execution episodes.

Goal and Knowledge Revision
Along with information about the model, the other impor-
tant user-specified information that the robot (and planner)
must deal with is the specification of the goals that must be
achieved in a given task. This goal specification may the ac-

tual goals to be achieved, as well as the values of achieving
such goals, and priorities and deadlines (if any) associated
with these goals. The fact that the system’s goals are deter-
mined and specified by the human in the loop also introduces
the possibility that goals may be specified incompletely or
incorrectly at the beginning of the scenario. Such a contin-
gency mandates a need for a method via which goals, and
the knowledge that is instrumental in achieving them, can
be updated.

The biggest planning challenge when it comes to the prob-
lem of goal update and revision is that most state-of-the-art
planning systems today assume a “closed world” (Etzioni,
Golden, and Weld 1997). Specifically, planning systems ex-
pect full knowledge of the initial state, and expect up-front
specification of all goals. Adapting them to handle the “open
worlds” that are inherent in real-world scenarios presents
many challenges. The open world manifests itself in the
system’s incomplete knowledge of the problem at hand; for
example, in the search and report scenario, neither the hu-
man nor the robot know where the injured humans may be.
Thus an immediate ramification of the open world is that
goals may often be conditioned on particular facts whose
truth values may be unknown at the initial state. For exam-
ple, the most critical goal in the USAR scenario – reporting
the location of injured humans – is conditioned on finding
injured humans in the first place. In this section, we de-
scribe recent work on bridging the open nature of the world
with the closed world representation of the planner that has
been done in the context of the USAR problem.

Open World Quantified Goals
Open world quantified goals (OWQG) (Talamadupula et al.
2010b) combine information about objects that may be dis-
covered during execution with partial satisfaction aspects
of the problem. Using an OWQG, the domain expert can
furnish details about what new objects may be encountered
through sensing and include goals that relate directly to the
sensed objects. Newly discovered objects may enable the
achievement of goals, granting the opportunity to pursue re-
ward. For example, detecting a victim in a room will allow
the robot to report the location of the victim (where reporting
gives reward). Given that reward in our case is for each re-
ported injured person, there exists a quantified goal that must
be allowed partial satisfaction. In other words, the universal
base, or total grounding of the quantified goal on the real
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Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

9 + + + Yes Yes Yes No Yes
10 + + - Yes Yes Yes No Yes
11 + - + No No No No No
12 + - - Yes Yes Yes No Yes
13 - + + Yes Yes Yes No Yes
14 - + - Yes Yes Yes No Yes
15 - - + No No No No No
16 - - - Yes Yes Yes No Yes

Table 3: Results of trial runs with a deadline of 200 time units.

world, may remain unsatisfied while its component terms
may be satisfied.

As an example, we present an illustration from our sce-
nario: the robot is directed to “report the location of all in-
jured humans”. This goal can be classified as open world,
since it references objects that do not exist yet in the plan-
ner’s object database; and it is quantified, since the robot’s
objective is to report all victims that it can find. In our syn-
tax, this information is encoded as follows:

1 (:open
2 (forall ?z - zone
3 (sense ?hu - human
4 (looked_for ?hu ?z)
5 (and (has_property ?hu injured)
6 (in ?hu ?z))
7 (:goal (reported ?hu injured ?z)
8 [100] - soft))))

We evaluated the efficacy of OWQGs via experimental
runs in the search and report scenario introduced earlier.
We used the planner SapaReplan (Cushing, Benton, and
Kambhampati 2008), an extension of the metric temporal
planner Sapa (Do and Kambhampati 2003) in order to im-
plement and test the OWQGs. The task at hand was the
following: the robot is required to deliver essential supplies
(which it is carrying) to the end of a long hallway – this is a
hard goal. The hallway has doorways leading off into rooms
on either side, a fact that is unknown to the robot initially.
When the robot encounters a doorway, it must weigh (via the
planner) the action costs and goal deadline (on the hard de-
livery goal) in deciding whether to pursue a search through
the doorway. In the runs described here, green boxes acted
as stand-ins for victims, whereas blue boxes denoted healthy
people (whose locations need not be reported) as shown in
figure 2. The experimental setup consisted of three rooms,
which we represent as R1, R2 and R3. The room R1 con-
tained a green box (GB), representing a victim; R2 con-
tained a blue box (BB), representing a healthy person; and
R3 did not contain a box. The respective doorways leading
into the three rooms R1 through R3 are encountered in order
as the robot traverses from the beginning of the hallway to
its end.

To achieve our goal of demonstrating the use of the
OWQGs, we conducted a set of experiments where we var-
ied four parameters – each of which could take on one of two
values – thus giving us 16 different experimental conditions
through the scenario. The factors that we varied were:

1. Hard Goal Deadline: The hard goal deadline was fixed
at 100 time units, resulting in the runs in Table 2, and 200
time units to give the runs in Table 3.

2. Cost: Presence or absence of action costs to demon-
strate the inhibiting effect of costly sensing actions on the
robot’s search for injured people.

3. Reward: Presence or absence of a reward for reporting
injured people in rooms.

4. Goal Satisfaction: Label the goal of reporting injured
people as either soft or hard, thus modulating the bonus
nature of such goals.

In the tables provided, a + symbol stands for the presence of
a certain feature, while a - denotes its absence. For example,
run number 5 from table 2 denotes an instance where the
deadline on the hard goal (going to the end of the hallway)
was 100 time units, action costs were absent, the open world
goal of reporting people carried reward, and this goal was
classified as soft.

The experimental runs detailed in this section were ob-
tained on a Pioneer P3-AT robot as it navigated the USAR
scenario with the initial hard goal of getting to the end of
the hallway, while trying to accrue the maximum net benefit
possible from the additional soft goal of reporting the loca-
tion of injured people. The robot starts at the beginning of
the hallway, and initially has a plan for getting to the end
in fulfilment of the original hard goal. An update is sent to
the planner whenever a doorway is discovered, and the plan-
ner subsequently replans to determine whether to enter that
doorway. In the first set of runs, with a deadline of 100 units
on being at the end of the hallway, the robot has time to enter
only the first room, R1 (before it must rush to the end of the
hallway in order to make the deadline on the hard goal).

In spite of this restriction, the robot exhibits some inter-
esting behavior. The planner directs the robot to enter R1 in
all the runs except 3 and 7 – this can be attributed to the fact
that there is no reward on reporting injured people in those
cases, and the reporting goal is soft; hence the planner does
not consider it worthwhile to enter the room and simply ig-
nores the goal on reporting. The alert reader may ask why it
is not the case that entering R1 is skipped in runs 4 and 8 as
well, since there is no reward on reporting injured people in
those cases either; however, it must be noted that this goal
is hard in cases 4 and 8, and hence the planner must plan to
achieve it (even though there may be no injured person in
that room, or reward to offset the action cost). This exam-
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ple illustrates the complex interaction between the various
facets of a typical HRT scenario – the robot’s capbilities,
user-specified goals, and model parameters like costs and
rewards.

In terms of computational performance, the planning time
taken by the planning system was typically less than one sec-
ond (on the order of a hundred milliseconds). Our empirical
experience thus suggests that the planning process always
ends in a specific, predictable time frame in this scenario—
an important property when actions have temporal durations
and goals have deadlines. Additionally, in order to test the
scale-up of the system, we evaluated it on a problem in-
stance with ten doors (and consequently more runtime ob-
jects) and found that there was no significant impact on the
performance.

Conclusion
In this paper, we presented the problem of providing plan-
ning support for human-robot teaming scenarios, and out-
lined some of the prominent planning challenges that must
be addressed in conjunction with this problem. We pre-
sented the Urban Search and Rescue scenario as a case study
in which a planner actively supports a human-robot team,
and showed the dimensions along which two tasks that are
part of this scenario require planning support. Motivated
by our applied work in this scenario, we delved deeper into
two particular planning challenges – model management and
dealing with incomplete and dynamic models, and the prob-
lem of goal and knowledge revision. In these sections, we
outlined the extensions that had to be made to existing plan-
ning technology in order to fulfill the support role that the
planner plays in the team. We concluded with a look at re-
sults from a search and report task from the USAR scenario
where our planner was able to guide the robot’s pursuit of
fairly complex and dynamic goals.
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Abstract

Fleet repositioning problems pose a high financial bur-
den on shipping firms, but have received little atten-
tion in the literature, despite their high importance
to the shipping industry. Fleet repositioning problems
are characterized by chains of interacting activities, but
state-of-the-art planning and scheduling techniques do
not offer cost models that are rich enough to repre-
sent essential objectives of these problems. To this
end, we introduce a novel framework called Temporal
Optimization Planning (TOP). TOP uses partial or-
der planning to build optimization models associated
with the different possible activity scenarios and ap-
plies branch-and-bound with tight lower bounds to find
optimal solutions efficiently. We show how key aspects
of fleet repositioning can be modeled using TOP and
demonstrate experimentally that our approach scales
to the size of problems considered by our industrial
collaborators.

Introduction
Liner shipping networks transport containerized cargo
through regularly scheduled shipping routes. Fleet
repositioning problems consist of moving ships between
services in a liner shipping network in order to better
orient the overall network to the world economy and
to ensure the proper maintenance of ships. Thus, fleet
repositioning involves sailing and loading activities sub-
ject to complex handling and timing restrictions. As is
the case for many industrial problems, the objective is
cost minimization (including costs for CO2 emissions
and pollution), and it is important that all cost ele-
ments, including the ones that are only loosely coupled
with activity choices, can be accurately modeled.

Optimization problems that involve chains of activ-
ities with complex interactions, like fleet repositioning
problems, are hard to represent as mathematical pro-
grams. AI-planning and OR-scheduling offer a wide
range of approaches to allocate interacting activities
over time, but it has been observed in both fields (e.g.,
(Karger, Stein, and Wein 1997; Smith, Frank, and
Jónsson 2000)) that the compound objectives of real-
world problems often are hard to express in terms of
the simple objective criteria like makespan and tardi-
ness minimization considered in these approaches.

In this paper, we introduce a novel general frame-
work called Temporal Optimization Planning (TOP)
and show that it can model key aspects of fleet repo-
sitioning problems. The core idea of TOP is to asso-
ciate durative planning actions with optimization model
components and use planning algorithms to build and
search through complete optimization models that are
associated with the different activity scenarios of the
problem. In contrast to advanced temporal planning
languages (Fox and Long 2006), TOP does not enforce
a strong semantic relation between planning actions and
optimization components. The format of optimization
components can be chosen freely by the model designer
as long as the set of complete plans corresponds to the
set of activity scenarios of the problem.

In this way, TOP allows general optimization models
to be constructed, but at the same time makes it pos-
sible to naturally represent and explore complex inter-
actions between durative activities with the expressive
action models of AI-planning and its powerful search
algorithms. In fact, TOP accommodates any optimiza-
tion model over real-valued variables and thus is a sim-
ple way to reason about interacting durative activities
in such models.

We solve TOP problems by an optimization version
of partial-order planning (Penberthy and Weld 1992)
based on a branch-and-bound and demonstrate the ap-
proach for linear optimization models. We define a gen-
eral lower bound for partial plans in the naturally oc-
curring case where the minimum costs of optimization
components are non-negative. We show that this bound
can be improved by an extension of the hmax heuristic
(Haslum and Geffner 2000) that makes it possible to
estimate the cost of required actions not currently in
the plan.

The TOP framework is validated experimentally on
a set of fleet repositioning problems developed in col-
laboration with a liner shipping company. We provide
a basic model of a fleet repositioning problem that gives
a first step towards solving such problems in TOP. We
include key aspects such as the temporal interaction be-
tween ships and complex cost objectives such as sailing
fuel consumption and the fixed cost of ships over time.
Our experimental evaluation shows that the TOP ap-
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proach scales to the size of problems faced by the in-
dustry and that our lower bounds are tight enough to
reduce the total computation time by orders of magni-
tude.

The remainder of the paper is organized as follows.
First we describe fleet repositioning problems, followed
by a formalization of TOP along with a description of
the hcostmax heuristic for estimating lower bounds of par-
tial plans. Then we describe our model of a simple fleet
repositioning problem and we present experimental re-
sults showing the performance of the TOP framework
with several plan selection heuristics. Finally, we draw
conclusions and discuss directions for future work.

Fleet Repositioning

Liner shipping networks consist of multiple services,
which are circular routes that connect a sequence of
ports. Each service consists of one or more ships that
maintain a weekly schedule. That is, each port on a ser-
vice is visited by a ship on the same day each week, and
a service is assigned as many ships as are necessary to
maintain weekly frequency. Ships are periodically repo-
sitioned, in which they are moved from their current
service to some other service. Shipping firms reposition
their ships so that they can undergo regular mainte-
nance, be returned to their owner, or to better match
ships to markets.

Consider the example repositioning problem shown
in Figure 1 in which a new service is being started and
requires ships to sail on it. This example involves the
temporal alignment of several ships. First a ship from
the service on the left must sail to the dashed line ser-
vice, but the ship on the dashed line service may not
leave for its goal service until its replacement ship has
arrived, and cargo has been transshipped. Second, the
two ships sailing to the service on the right must have
a time spacing of exactly one week. Complicating mat-
ters further is that shipping firms want to reposition
their ships as cheaply as possible.

Fleet repositioning problems can be even more com-
plicated than the example given, with several ships re-
placing one another in long chains. Aligning the ships
temporally and finding a minimum cost plan of activ-
ities presents a significant challenge. The possible ac-
tivities that a ship may undertake during repositioning
is given as follows.

• Ships can leave or enter a service only at a port on
days when the port is scheduled to be called.

• Ships must sail between their minimum and maxi-
mum speed, the cost of which is a function of the
ship’s speed and draft,

• Ships can idle at a port, incurring a fixed cost per
hour (in shipping parlance, hotel cost).

• Cargo can be on/off loaded, resulting in a fee per
container moved.

• Cargo can be directly transhipped between ships, in-
curring a reduced per container fee.

Figure 1: An example fleet repositioning problem in-
volving three ships. Two ships are being repositioned
from their initial services (solid, dashed) to a new ser-
vice (bold solid). The ship on the dashed service is be-
ing replaced by a ship from the dashed-dotted service,
which will cease operations. Circles represent ports and
are labeled with the day the service calls the port.

• Ships can move equipment (empty containers) to
where it is needed, reducing the overall cost of repo-
sitioning.

• Ships may satisfy certain demands in the shipping
network for a profit.

A number of constraints pose restrictions on when the
given activities may take place. Ships must be replaced
by another ship in order to leave their service, except
for certain, designated ships. Ships may not load or un-
load cargo in certain ports due to cabotage restrictions,
which are laws that prevent foreign ships from offer-
ing domestic services. If multiple ships are entering the
same service, they must enter one week apart in dis-
tance or time from one another. In addition, multiple
ships must alternate in size such that if there are sev-
eral ships entering a service, no two ships of the same
capacity should follow one another.

Given the high expense of repositioning, the goal of
fleet repositioning problems is to find a scenario of ac-
tivities, which involve continuous decisions regarding
sailing time and cost configurations, associated with a
lowest cost optimization model.

The fleet repositioning problem is difficult to solve
for existing scheduling and planning methods.

Scheduling is concerned with the optimal allocation
of scarce resources to activities over time (Karger, Stein,
and Wein 1997), and scheduling research has focused on
problems that only involve a small, fixed set of choices,
while planning problems like fleet repositioning often in-
volve cascading sets of choices that interact in complex
ways (Smith, Frank, and Jónsson 2000). Another lim-
itation is that mainstream scheduling research has fo-
cused predominately on optimization of selected, simple
objective criteria such as minimizing makespan or min-
imizing tardiness (Smith 2005). More general objective
criteria are required in order to solve fleet repositioning
problems.

Integer Programming (IP) has successfully been ap-
plied to solve classical planning problems using com-
petitive encodings based on the planning graph heuris-
tic (Van Den Briel, Vossen, and Kambhampati 2005).
An earlier version of this approach has also been used
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to extend classical planning with possibly continuous
state variables over which linear constraints and objec-
tives can be stated (Kautz and Walser 1999). A limi-
tation of these encodings is, though, that they are un-
able represent continuous time. In general, it is difficult
to represent partial-order planning with IP since the
number of actions in a partial-order plan in principle
is unbounded. A SAT encoding of actions with contin-
uous duration (Shin and Davis 2005), however, shows
that other encodings of continuous time using IP may
be possible, but this encoding currently does not cover
any objective criteria except minimizing the number of
unique time points in the plan.

Within AI, there exists domain independent planners
for temporal planning languages and specialized appli-
cation planners.With respect to the former, while early
approaches had limited scalability (e.g., (Ghallab and
Laruelle 1994; Penberthy and Weld 1995)), a number
of powerful solvers have recently been developed for
planning languages with durative actions, real-valued
state variables, and linear change of quantities dur-
ing action execution (e.g. (Coles et al. 2009; 2010;
Li and Williams 2008; Shin and Davis 2005)). These
planning languages can model domains where activi-
ties depend on shared resources like electric power dur-
ing execution, which is a typical situation for popular
application domains within robotics and aerospace sys-
tems (e.g., (Frank, Gross, and Kurklu 2004; Muscettola
1993)). However, the fleet repositioning problem in-
volves decoupled actions that intersect only temporally.
Furthermore, most of these domain independent and
application specific planning systems only allow simple
objective criteria like makespan minimization. A no-
table exception is Sapa (Do and Kambhampati 2003),
which can represent multi-criteria objectives covering
any combination of makespan minimization and min-
imization of fixed action and resource costs. On the
other hand, Sapa only handles discrete time and fixed
action durations.

Recently, the 2008 International Planning Compeiti-
tion (Helmert, Do, and Refanidis 2008) featured a
net benefit optimization category with several entries:
hsp∗, MIPS-XXL, and Gamer. These planners are un-
able to reason temporally, and only support fixed action
costs in their objective, preventing them from handling
many aspects of fleet repositioning problems, such as
hotel costs and variable action cost. Linear Program-
ming has been used to strengthen plan length estima-
tion (e.g. (Bylander 1997; Van Den Briel et al. 2007)),
however these approaches do not handle a cost-based
objective or temporal setting, with the ordering relax-
ation in (Van Den Briel et al. 2007) being particularly
troubling for a temporal planner.

Temporal Optimization Planning
In the absence of a suitable method for solving fleet
repositioning problems, we introduce Temporal Opti-
mization Planning (TOP). TOP diverges fundamen-
tally from classical AI-planning approaches by intro-

ducing two sets of variables that decouple the planning
problem from the optimization model. Thus, the opti-
mization model is not tightly bound to the semantics
of actions. Actions are merely used as handles to op-
timization components that are built together to com-
plete optimization models using partial-order planning.
This decoupling makes it possible to formulate any ob-
jective that can be expressed by the applied optimiza-
tion model. Moreover, computationally expensive ac-
tion models including real-valued state variables and
general objective functions are avoided.

In contrast to the current trend in advanced temporal
planning languages, TOP bypasses computationally ex-
pensive dense time models of shared resources like elec-
tric power consumption during activities. These models
are important for the robotic or aerospace applications
that often are targeted in AI-planning (e.g., (Frank,
Gross, and Kurklu 2004; Muscettola 1993)), but TOP
focuses on more physically separated activities where
resources are exclusively controlled.

On the other hand, while this decoupling offers some
new possibilities, it makes TOP less capable of solving
traditional planning problems where a strong coupling
is assumed as well as problems that fit within a classical
scheduling model.

TOP is built off a state variable representation
of propositional STRIPS planning (Fikes and Nilsson
1971). TOP utilizes partial-order planning (Penberthy
and Weld 1992), and extends it in several ways. First,
an optimization model is associated with each action
in the planning domain. This allows for complex ob-
jectives and cost interactions that are common in real
world optimization problems to be easily modeled. Sec-
ond, instead of focusing on simply achieving feasibility,
TOP minimizes a cost function. Finally, begin and end
times can be associated with actions, making them du-
rative. Such actions can have variable durations that
are coupled with a cost function.

Formally, let V = {v1, · · · , vn} denote a set of state
variables with finite domains D(v1), · · · , D(vn). A state
variable assignment ω is a mapping of state variables to
values {vi(1) 7→ di(1), · · · , vi(k) 7→ di(k)} where di(1) ∈
D(vi(1)), · · · , di(k) ∈ D(vi(k)). We also define vars(ω)
as the set of state variables used in ω.

A TOP problem is represented by a tuple

P = 〈V,D,A, I,G, pre, eff ,x, obj, con〉,

where D is the Cartesian product of the domains
D(v1) × · · · × D(vn), A is the set of actions, I is a
total state variable assignment (i.e. vars(I) = V) rep-
resenting the initial state, G is a partial assignment (i.e.
vars(G) ⊆ V) representing the goal states, prea is a par-
tial assignment representing the precondition of action
a, eff a is a partial assignment representing the effect
of action a1, x ∈ Rm is a vector of optimization vari-

1In practice, is it often more convenient to represent ac-
tions in a more expressive form, e.g. by letting the precon-
dition be a general expression on states prea : S → B and
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ables2 that includes the begin and end time of each
action, xab and xae respectively, for all actions a ∈ A,
obja : Rm → R is a cost term introduced by action a,
and cona : Rm → B is a constraint expression intro-
duced by action a with cona |= xab ≤ xae ∧ xab ≥ 0 ∧
xae ≥ 0.

Let S = {ω|vars(ω) = V} denote the set of all the
possible states. An action a is applicable in s ∈ S if
prea ⊆ s and is assumed to cause an instantaneous
transition to a successor state defined by the total as-
signment

succa,s(v) =

{
eff a(v) if v ∈ vars(eff a),

s(v) otherwise.

We further defineMa = min{obja|cona}, which is the
optimization model component introduced by action a.

A temporal optimization plan is represented by a tu-
ple 〈A,C,O,M〉, where A is the set of actions in the
plan, C is a set of causal links, O is a set of ordering
constraints of the form a ≺ b, where a, b ∈ A, and M is
an optimization model associated with the plan. M is
defined by

min
∑
a∈A

obja(x)

s.t. xaie ≤ x
aj
b ∀ai ≺ aj ∈ O (1)

cona(x) ∀a ∈ A (2)

The objective of M is to minimize the sum of the
costs introduced by actions. The first constraint ensures
that the start and end time of actions are consistent
with the plan, and second constraint requires that each
action constraint is satisfied. Let cost(π) denote the
cost of an optimal solution to M to a partial plan π.

An open condition
µ−→ b is an unfulfilled precondition

µ of action b ∈ A, that is, µ ∈ preb and ∀a ∈ A, a µ−→
b 6∈ C. An unsafe link is a causal link a

µ−→ b that is
threatened by an action c such that i) vars(µ) ∈ eff c,
ii) µ 6∈ eff c, and iii) {a ≺ c ≺ b} ∪O is consistent.

To deal with durative actions in TOP we need
to keep track of another type of flaw called inter-
ference. We adopt an interference model based on
the exclusive right to state variables (Sandewall and
Rönnquist 1986). Thus, two actions a and b interfere if
vars(eff a)∩vars(eff b) 6= ∅ and O implies neither a ≺ b
nor b ≺ a.

An open condition flaw
µ−→ b can be repaired by

linking µ to an action a such that µ ∈ eff a and by
posting an ordering constraint over a and b. Thus,

represent conditional effects like resource consumption by
letting the effect be a general transition function, depending
on the current state of S, eff a,s : S → S. Such expressive
implicit action representations may also be a computational
advantage. We have chosen a ground explicit representa-
tion of actions because it simplifies the presentation and
more expressive forms can be translated into it.

2In a slight abuse of notation, we sometimes let x denote
a set rather than a vector.

Algorithm 1 Optimization planning algorithm, based
on (Williamson and Hanks 1996).

1: function TOP(I, G)
2: Π← {InitialTOP(I,G)}
3: πbest ← null
4: u←∞ . Cost of the incumbent (upper bound)
5: while Π 6= ∅ do
6: π ← SelectPlan(Π)
7: Π← Π \ {π}
8: if NumFlaws(π) = 0 ∧ Cost(π) < u then
9: u← cost(π)

10: πbest ← π
11: else if EstimateCost(π) < u then
12: f ← SelectFlaw(π)
13: Π← Π ∪ RepairFlaw(π, f)
14: return πbest

C ← C∪{a µ−→ b} andO ← O∪{a ≺ b}. In the case that
a 6∈ A, A← A ∪ {a} and O ← O ∪ {a0 ≺ a, a ≺ a∞}.

An unsafe link a
µ−→ b that is threatened by action c

can be repaired by either adding the ordering constraint
c ≺ a (demotion) or b ≺ c (promotion) to O. Similar
to unsafe links, an interference between actions a and b
can be fixed by posting either a ≺ b or b ≺ a to O.

Together, open conditions, unsafe links and inter-
ferences constitute flaws in a plan. Let flaws(π) =
open(π) ∪ unsafe(π) ∪ interfere(π) be the set of flaws in
the plan π, where open(π) is the set of open conditions,
unsafe(π) is the set of unsafe links, and interfere(π) is
the set of interferences. We say that π is a complete
plan if |flaws(π)| = 0, otherwise π is a partial plan. A
plan π∗ is optimal if it is feasible and for all feasible
solutions π, cost(π∗) ≤ cost(π).

Linear Temporal Optimization Planning

To solve fleet repositioning problems, we introduce lin-
ear temporal optimization planning (LTOP). In LTOP,
all of the optimization models associated with planning
actions have a linear cost function and a conjunction of
linear constraints. Thus, obja is of the form cax′, where
ca ∈ Rm and cona is of the form

∧
1≤i≤na

(αai x
′ ≤ βi),

where αai ∈ Rm, βi ∈ R and na is the number of con-
straints associated with action a. Thus, Ma and M are
linear programs (LPs).

Algorithm 1 shows a branch-and-bound algorithm
that finds an optimal plan to an LTOP problem. First,
an initial plan πinit is created by the InitialTOP func-
tion (line 2). We define πinit = 〈{a0, a∞}, ∅, {a0 ≺
a∞},Minit}〉, where a0 is an action representing I with
prea0 = ∅ and eff a0 = I, a∞ is an action representing
G with prea∞ = G and eff a∞ = ∅, and Minit is an opti-
mization model with no objective and two constraints,
cona0 and cona∞ , which are special constraints on the
dummy actions a0 and a∞ such that cona0 = (xa0b =
xa0e ∧ x

a0
b ≥ 0) and cona∞ = (xa∞b = xa∞e ∧ xa∞b ≥ 0).

The optimization variables xa0b , x
a0
e , x

a∞
b and xa∞e rep-

resent the begin and end times of actions a0 and a∞
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Figure 2: A partial temporal optimization plan from Figure 1 showing the ship sailing from the dash-dotted service
to the dashed service (v1) and the ship sailing from the dashed service to the bold, solid service. Boxes represent
actions and contain associated optimization models. Arrows between boxes show causal links. The optimization
variables xab and xae represent the begin and end time of action a, and hb,v, he,v are the begin and end hotel time of
vessel v respectively. Each vessel v is associated with a state variable sv with a domain of {i,t,g} which indicate
that v is on its initial service, in transit or at its goal service, respectively.

respectively.
The algorithm then selects a plan from Π (line 6)

and checks to see if it is a complete plan. If the plan is
complete, its cost is compared with the current upper
bound (u), and if the cost is lower, the incumbent πbest
is replaced with the current plan π and the upper bound
is updated (lines 9 and 10). When π is a partial plan,
an estimated lower bound of the plan is compared with
the cost of the incumbent solution (line 11). If the esti-
mated cost of the plan is higher, the plan is discarded.
Otherwise, a flaw is selected and repaired (lines 12 and
13). This process is repeated until Π is empty, at which
point the current incumbent is returned, if there is one.

Algorithm 1 is guaranteed to find the optimal solu-
tion (if there is one) as long as EstimateCost does not
overestimate the cost of completing a partial plan. To
prune as much of the branch-and-bound tree as possi-
ble, we need tight lower bounds. If we require that the
cost of each action subject to its constraints is non-
negative, we can prove that cost(π) is such a lower
bound.

Proposition 1. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0 ∀a ∈ A, cost(π) ≤ cost(π̄)
for any completion π̄ of π.

Proof. Let π′ be π with a single flaw repaired. The flaw
is either i) an unsafe link, ii) an interference, iii) an
open condition being satisfied by an action in the plan,
or iv) an open condition being satisfied by an action not
in the plan.

In cases i and ii the flaw is repaired by adding an
ordering constraint to π, which further constrains π,
thus cost(π) ≤ cost(π′). Case iii results in a new
causal link and an ordering constraint, and is there-
fore the same as cases i and ii. In case iv, the ac-
tion’s optimization model is added to π, but since the
cost function of the action must be non-negative under
its constraints, cost(π′) cannot be less than cost(π).
By applying this argument inductively on the com-
plete branch-and-bound subtree grown from π, we get
cost(π) ≤ cost(π̄) for any completion π̄ of π.

Heuristic Cost Estimation
Although cost(π) provides a reasonable lower bound for
π, the bound is only computed over actions in the plan.
It can be strengthened by also reasoning over actions
that are not in the plan. We present an extension of the
hmax heuristic (Haslum and Geffner 2000), hcostmax, which
estimates the cost of achieving the open conditions of a
plan π. Let

hcostmax(ω, π) =


0 if ω ⊆ effsπ, else

f(ω, π) if ω = {µ}, else

g(ω, π) if |ω| > 1,

f(ω, π) = min{a∈A\A|µ∈eff a}{Ma + hcostmax(prea, π)},
g(ω, π) = maxµ∈ω{hcostmax({µ}, π)},

where ω is a partial state variable assignment, µ is a
single state variable assignment v 7→ d, and effsπ =⋃
a∈Aeff a. The heuristic takes the max over the esti-

mated cost of achieving the elements in the given as-
signment ω. The cost is zero if the elements are al-
ready in π, otherwise the minimum cost of achieving
each element is computed by finding the cheapest way
of bringing that element into the plan.

Proposition 2. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0 ∀a ∈ A, cost(π) +
hcostmax(open(π), π) ≤ cost(π̄) for any completion π̄ of π.

Proof. We have hcostmax(ω, π) =
∑
a∈RMa, where R is

a set of actions not currently in π (R ∩ A = ∅) that
are required to resolve ω and among such sets has the
minimum cost. Thus, any completion π̄ of π as de-
scribed in Proposition 1 must at least increase cost(π)
by hcostmax(ω, π) =

∑
a∈RMa.

Modeling Fleet Repositioning
We describe an LTOP model of fleet repositioning prob-
lems that represents a first step towards modelling and
solving fleet repositioning problems. Our model repre-
sents a subset of fleet repositioning that captures its dif-
ficult elements, while excluding excessive detail. We fo-
cus on several key components of the fleet repositioning
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problems that form the basis for more difficult versions
including i) the temporal interaction between ships in a
sequence of replacements, ii) variable ship sailing dura-
tions, iii) sailing costs that vary linearly with the sailing
duration, and iv) ship hotel costs that must span mul-
tiple actions.

Given a set of services, the goal is to carry out a se-
quence of repositionings in which a ship on each service
is moved to the next service in the sequence at minimal
cost. A ship may not be moved from its service until
replaced by another ship, except in the case of the first
service in the sequence.

Ships cease operations on their initial service through
the action out and begin operations on a service
through the in action. During the time in between out
and in, ships are charged their hotel cost, which is rep-
resented in the objective of the in action. The hotel
cost objective is given in the out action for ships that
do not have a target service, and will therefore not use
the in action, such as a ship being returned to its owner
or heading for repairs.

Ships must sail between ports within their minimum
and maximum speed, incurring a cost that varies lin-
early with the speed. In order for a ship to replace
another ship on a service, they must transship their
cargo. Transshipments in our model are instantaneous,
free actions that require both ships to simultaneously
be at a port where it is lawful for the ships to perform
a transshipment. Transshipments are only allowed at
ports in which a ship is lawfully able to transfer cargo,
which we are able to represent by simply not including
transshipment actions between ships at ports where it
would be unlawful.

Implicit in our model are wait actions. Such an action
does not need to be explicitly given, because actions,
even those that are ordered or linked, are not required
to start directly after one another. The objective of this
implicit action is given by the hotel cost computed in
the out and in actions.

Figure 2 shows a fleet repositioning partial plan in
the LTOP framework in which two ships are moved off
of their initial services (out action), and meet at port f
where they transship cargo (transship action). Ship v1
then begins service at port f (in action), freeing v2 to
continue to a different service or undergo maintenance.
Notice how the objective for the hotel cost for v1, rep-
resented by hb,v1 and he,v1 , is computed in the in(v1, f)
action, but the bounds for the hotel cost are updated
throughout the partial plan. This allows the LP to com-
pute a more accurate bound throughout the planning
process. Multiple actions are therefore contributing to
the hotel cost, meaning that the interaction of actions
can have interesting cost consequences.

Even this simple version of the fleet repositioning
problem is not solvable with existing scheduling or plan-
ning approaches like ZENO (Penberthy and Weld 1995)
due to the lack of general optimization criteria or Sapa
(Do and Kambhampati 2003) due to the lack of continu-
ous time. But even if it was, an advantage of TOP from
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Figure 3: A plot of the performance of LTOP with the
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an OR-perspective is that it is easy to use any optimiza-
tion model within the framework without changing the
representation of activities.

Experimental Evaluation

We created a dataset of sample problems based on dis-
cussions with a liner shipping company. The instances
range in size from 4 to 12 ports with 2 or 3 services over
time frames of 2 to 3 weeks.

Table 1 and Figure 3 display the performance of our
LTOP solver using several plan selection heuristics on
our dataset. Results were computed on dual six-core
2 GHz AMD Opteron 2425 HE processors, and each
execution was allowed a maximum of 4 GB of RAM. In
addition, our LTOP solver uses the linear programming
solver in COIN-OR 1.5.0 (Lougee-Heimer 2003). The
number of actions in the optimal plan varies with the
number of ships being repositioned. Instance CR1’s
optimal plan has five actions, while CR13 has 8 actions.

The hcostmax + LP plan selection heuristic selects the
cheapest plan available using the sum of the real cost
of a plan and the estimated cost of the plan’s comple-
tion, the LP heuristic only uses the real cost of the
plan, and the Flaws heuristic selects the plan with the
lowest number of flaws. The LP + hcostmax heuristic per-
forms the best, taking on average 61% of the time of the
LP heuristic, and only 3.3% of the time of the Flaws
heuristic. The geometric mean of hcostmax +LP is over 12
times as fast as Flaws and almost twice as fast as LP ,
indicating that hcostmax +LP performs well across the en-
tire dataset, and not just on a few instances. Thus, the
superior search guidance provided by the hcostmax heuristic
is worth the extra computation time. The TOP frame-
work is therefore able to scale to solve real world sized
problems with the LP and hcostmax heuristics.
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Instance Actions hcostmax + LP LP Flaws
CR1 32 0.07 0.10 0.20
CR2 82 1.20 1.47 1.52
CR3 83 0.95 1.96 1.64
CR4 92 1.21 2.82 138.53
CR5 93 11.32 12.80 5.74
CR6 126 4.96 10.50 358.81
CR7 151 5.36 3.78 9.06
CR8 158 6.27 19.40 376.84
CR9 160 15.25 38.00 1,519.92
CR10 178 7.30 17.44 174.89
CR11 221 9.02 16.46 1,519.92
CR12 237 49.45 156.02 2,339.51
CR13 339 118.20 96.67 382.12

Mean 17.74 29.03 525.28
Geo. Mean 4.94 8.55 61.35
Std. Dev. 32.81 46.03 762.30

Table 1: Results from our LTOP solver on a crafted
dataset for our sample fleet repositioning problem with
several plan selection heuristics. All times are CPU
times given in seconds.

Conclusion

We presented a novel framework called Temporal Op-
timization Planning (TOP) for modeling and solving
fleet repositioning problems with compound objectives
spread throughout interconnected activities. We intro-
duced an extension to the domain independent hmax
heuristic, hcostmax, and showed that by using this heuris-
tic to estimate the costs of actions required to complete
a plan, the TOP framework is capable of scaling to the
size of real fleet repositioning problems.

We gave a model of a fleet repositioning problem that
represents the first step to understanding and solving
problems in the fleet repositioning domain. The model
captured key aspects of fleet repositioning that cannot
be modeled with current methods, such as hotel cost,
variable sailing durations and duration linked costs.

The TOP framework shows promise as a new method
for tackling many industrial cost minimization prob-
lems that are difficult to solve using state-of-the-art
AI or OR methods. We intend to further investigate
TOP on more realistic versions of the fleet reposition-
ing problem and related problems, including problems
that are non-linear and problems that do not have non-
negativity restrictions on the optimization models. In
addition, we will investigate forward-chaining methods
for TOP, similar to those in (Coles et al. 2010). Finally,
we also intend to see if it is possible to implement TOP
within a mixed integer programming framework.
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Knowledge representations for high-level and low-level planning
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Figure 1: A humanoid robot is shown in a kitchen perform-
ing several tasks. (top) With a multi-fingered hand, a glass
can be grasped in different ways. (bottom) Two robot place-
ments are shown for grasping the plate on the table.

Problem statement
In general a service task like setting the table can be fur-
ther resolved into several subtasks. When objects have to
be grasped, choosing grasps and approach directions are
problems that have to be solved. In Figure 1 two service
tasks and their challenges are illustrated. Objects have to be
moved from one location to another. A number possibilities
for grasping a glass are shown in Figure 1 (top). The robot
has to decide where to place itself to be able to reach an ob-
ject. The number of robot placements is infinite (Figure 1
(bottom)). These issues have to be taken into account by a
logical planner when planning a task.
Logical planners are expected to divide a task into a set of
subtasks, e.g. first the closet is opened, then the dishes are
taken out of the closet, the closet is closed and the dishes are
transported to the table. Path planners are used for moving
the robotic arm without collisions between two positions. A

Figure 2: Different levels of abstraction during the planning
and execution of a service task. High-level planning is equiv-
alent with logical planning. Possibly parallel running actions
are mapped to low-level planners. The planning results are
then executed by divers robot controllers.

grasp planner provides good grasps for handling an object.
A robot placement planner positions a robot for performing
a grasp or a trajectory. The logical planner has to trigger the
execution of the subtasks by appropriately parameterizing
and using the low-level planners, i.e. the path planner, the
grasp planner and the robot placement planner (Figure 2).
Depending on the parameterization, e.g. the start and the
goal robot arm configuration, a low-level planning problem
may not be solvable. Either no collision-free path is found
or the object cannot be grasped from the queried direction.
However, a logical planner has no knowledge about the ge-
ometry of the scene and works with an abstract scene model
where objects are represented by labels. It does not know
e.g. from which direction an object can be approached best.
Therefore a chosen subtask may not be executable. For the
high-dimensional planning problems in service robotics, de-
termining whether a solution exists is computationally too
expensive. A brute force approach lets the logical planner
propose a plan and test whether the plan is valid. In this
process the low-level planners try to find a solution for as-
signed subtasks to determine the truth value of associated
labels. This is repeated until a solution is found or a termi-
nation criterion is met (Dornhege et al. 2009), (Kaelbling
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Figure 3: Visualization of the capability map. Regions in
the center of the workspace (blue) can be reached with the
largest number of poses.

and Lozano-Perez 2010). Since each of the low-level plan-
ning problems is already very complex, even simple tasks
can take a long time to be solved. Furthermore, for objects
like a coffee mug, directions exist from which the object is
better graspable. To open a closet door or a dish washer, not
every placement of the humanoid robot results in success-
ful task execution. The humanoid robot may place itself so
that it can grasp the door handle but opening the door is not
possible. Therefore, models are needed that e.g. describe the
capabilities of a robot. They can support decision processes,
their parameter choices and reduce the search space.

The capability map
In the reachable workspace volume of the robot arm, posi-
tions can be reached in at least one orientation. In the dexter-
ous workspace volume positions can be reached in all orien-
tations (Craig 1989). However, in general seldom all orienta-
tions are needed. Let the versatile workspace of a robot arm
describe with which orientations a position can be reached.
A representation of the versatile workspace for a robot arm
can be exploited by high-level and low-level planner types.
It enables a task planner to predict whether an object is gras-
pable or whether a certain trajectory is executable for the
robot. This information helps to estimate whether an action
is valid. Given a set of grasps for an object and a scene
description, the representation can be used to estimate the
difficulty of the planning problem. For instance, if a lot of
grasps are unreachable, the scene could be very crowded
and the target object could be difficult to reach resulting in
long planning times. This information can be used by the
task planner to e.g. consider a rearrangement of the scene to
make the planning problem easier.
The capability map is a representation of the versatile
workspace of a robot arm (Zacharias, Borst, and Hirzinger
2007). Using this knowledge representation good parameter-
izations for planners can be determined or the search space
can be reduced. The capability map of a robotic arm de-
scribes how well regions of the workspace are reachable
(Figure 3). A visualization of the versatile workspace facil-
itates analysis and interactive planning. The representation

can be used to guide planning processes, make reliable pre-
dictions about the feasibility of tasks and avoid unsuccessful
planning runs. The generation of the model is performed of-
fline once and can then be used in online algorithms.

Applications
(Zacharias et al. 2009) presented an algorithm that uses the
capability map to determine where given 3D trajectories are
executable. The search method can be used to evaluate how
well a robot is suited for specific environments or tasks. The
determined number of solutions for the trajectory correlates
with the ability of the robot to cope with disturbances e.g.
objects left behind by a human. The method is especially
suited to decide whether or not a task can be performed. This
information can be used by a task planner to decide which
planner or execution component to trigger. In (Zacharias et
al. 2011) an ergonomics criterion in combination with the
capability map was used to determine whether objects are
graspable in a human-like manner. Good parameterizations
for a path planner were derived. The path planner was then
able to plan more human-like robot arm motion. The com-
putation times and quality of the robot motion were signif-
icantly improved. This method can help a logical planner
evaluate the feasibility of grasping tasks and obtain good
planner parameterizations. (Pandey and Alami 2010) intro-
duce the mightability map to reduce the search space in plan-
ning human-robot interaction tasks.
To be able to use logical planning to efficiently solve ser-
vice robotics tasks, more knowledge representations like the
capability map are needed to reduce the search space dimen-
sionality and provide an intermediate layer between logical
planning, geometrical planning and robotics.
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