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Abstract

We study a dynamic repair shop scheduling problem in the
context of military aircraft fleet management. A number of
flights, each with a requirement for a specific number and
type of aircraft, are already scheduled over a long horizon.
The overall scheduling horizon is considered to be composed
of multiple time periods. The goal is to maintain a full com-
plement of aircraft. We need to assign aircraft to flights and
schedule repair activities while considering the repair capac-
ity limit and aircraft failures. The number of aircraft awaiting
repair dynamically changes over time because of aircraft fail-
ures. We designed three re-scheduling policies using different
optimization and heuristic techniques to solve the dynamic
problem over successive time periods. Experimental results
demonstrate that the wave coverage is higher if the optimiza-
tion technique, logic-based Benders decomposition, is used to
solve the problem over longer time periods more frequently.

Introduction
In industries using expensive machinery, it is common to re-
pair rather than replace a machine when it breaks down. For
example, it is far too expensive for a railroad or airline com-
pany to keep stock on-hand to replace failed machines. The
need for repair, however, generates a set of new decisions:
“How many repair resources (e.g., repairpersons) should be
allocated?”, “Where should repairs take place?”, and “When
should they be done and using which resources?”. In this
paper, we study an aircraft repair shop. When aircraft fail,
the management process must dynamically react to failures
by scheduling and re-scheduling repair activities to maxi-
mize aircraft availability. A high-quality schedule capable of
dealing with uncertainty and adjusting to unexpected events
leads to an efficient repair operation.

Motivated by the case study in Safaei et al. (Safaei, Ban-
jevic, and Jardine 2010), we address the problem of aircraft
fleet management where a number of flights are planned
over a long horizon consisting of several time periods. Every
flight, called “wave”, has a requirement for a specific num-
ber of aircraft of different types. Aircraft flow over a long
horizon is illustrated in Figure 1.

The goal is to construct a repair schedule that will max-
imize wave coverage while allowing for aircraft failures in
systematic pre- and post-flight checks. Each aircraft fail-
ure requires a set of repair activities with known processing
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Figure 1: A flow chart representing aircraft flow among
waves, checks, and the repair shop over a long horizon.

times and resource requirements to be scheduled using re-
sources with a limited capacity.

Simply stated, we view the dynamic problem as succes-
sive scheduling problems over time periods. We use three
scheduling techniques including logic-based Benders de-
composition (LBBD), mixed-integer programming (MIP),
and a dispatching heuristic developed in our previous work
(Aramon Bajestani and Beck 2011) to solve the scheduling
problem in each time period. To revise the schedule, we
design three different policies based on when and how the
re-scheduling is done.

Empirical studies indicate that solving the scheduling
problems more frequently over longer time periods using
LBBD results in the best performance and that solving the
scheduling problems more frequently is more important than
solving them over longer time periods.

The main contributions of our paper are:

• generalizing an offline scheduling problem studied in
(Aramon Bajestani and Beck 2011) to its dynamic coun-
terpart;

• demonstrating how to adapt existing solution techniques
to a dynamic problem;

• empirically analyzing the impact of applying different re-
scheduling strategies to determine when and how to re-
spond to real-time events.

The following section defines our problem, reviews the
scheduling algorithms used for each time period and dis-
cusses the literature on scheduling a repair system. We go
on to describe the proposed re-scheduling strategies, present
our experiments and results, suggest possible directions for
future work, and provide a conclusion.



Background
In this section, we present the formal definition of the prob-
lem, review the solution approaches for scheduling the re-
pair shop, and discuss the literature on scheduling a repair
system.

Problem Definition
The problem at time 0 is shown schematically in Figure 2.
The circles represent aircraft. It is assumed that the total
number of aircraft is constant over a long horizon. In our
example, at the beginning, three aircraft are ready for the
pre-flight check; others are in the repair shop awaiting repair
before they can proceed to the pre-flight check. A number
of waves (five are shown) and their corresponding pre- and
post-flight checks are already scheduled over a long horizon.
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Figure 2: Snapshot of the problem at time 0 over a long
horizon.

At the beginning, we schedule the repair activities over
a time period, for example the interval containing the first
three waves. The schedule may not be executed as is. We
dynamically react to actual aircraft failures by re-scheduling
the repair activities after, for example, each wave.

The goal in each time period is to assign aircraft to waves
to maximize coverage while respecting constraints on main-
tenance capacity. The coverage is the extent to which the
aircraft requirements of the waves are met. The scheduling
problem is under the constraints that the repair shop has lim-
ited capacity and the aircraft are subject to breakdown which
can be detected in pre- or post-flight checks. We assume that
once an aircraft fails, it goes to the repair shop and waits un-
til its repair operations are performed.

We use the following notation to represent the problem.

• N is the set of aircraft. λn is the failure rate of the aircraft
n ∈ N .

• K is the set of aircraft types. For each aircraft type k ∈
K, there are Ak aircraft ready (i.e., not in the repair shop)
at the beginning of the first time period. λ̄k is the mean
failure rate over all aircraft of type k.

• R is the set of repair resources (called “trades”). The max-
imum capacity of trade r ∈ R is Cr.

• W is the set of waves and D is an ordered set of due dates
in the time period. D consists of the wave start-times plus
a big value, B sorted in ascending order. Each wave, w ∈
W has a start-time, stw ∈ D, and an end-time etw. Each
wave requires akw aircraft of type k.

• J is the set of jobs in the time period. Each job is asso-
ciated with a specific aircraft, and Ik denotes the set of
repair jobs for aircraft type k. Mr is the set of jobs requir-
ing trade r. Each job might require more than one trade
to be completed. The processing time of job j on trade r
is pjr and cjr is the capacity of trade r required by job j.

To understand how the dynamic problem over the long
horizon can be viewed as scheduling problems over succes-
sive time periods, assume that we start repairing the failed
aircraft and assigning them to the waves based on the com-
puted schedule at time 0. A wave might start while a repair
is under way in the repair shop. If some aircraft fails the
pre-flight check, it goes to the repair shop. Each failed air-
craft requires a set of repair activities with known processing
times and resource requirements. At the repair shop, some
of the previously failed aircraft might be already repaired,
some might be under repair, and others might be awaiting
repair. Once the failed aircraft enter the repair shop, we
have a new repair scheduling problem with a new set of
jobs, including the recently failed aircraft and the previously
failed aircraft whose repairs are still under way or are not yet
started. The new problem has an added constraint, namely
that the repairs currently under way cannot be disrupted.

Scheduling for a Time Period
This section reviews the details of mixed-integer program-
ming, logic-based Benders decomposition, and the dispatch-
ing heuristic presented in (Aramon Bajestani and Beck
2011).

Mixed Integer Programming The variables are defined
in Table 1 and the model is shown in Figure 3.

Var. Definition
Zkw The number of aircraft of type k assigned to fly in wave w
xij xij = 1 if the ith due date is assigned to job j
stjr The start-time of job j on trade r
Ukw The number of aircraft of type k whose repair due date is stw
Ekw The expected number of available aircraft type k for wave w
etjr The end-time of job j on trade r

Table 1: The decision variables (top) and inferred variables
(bottom) for the MIP model.

The objective function (1) maximizes the number of air-
craft assigned to a wave subject to a limit on the number of
aircraft required and the expected number available (Con-
straint (5)). Equation (2) calculates the number of aircraft of
type k whose repair due date is stw. Equation (3) calculates
the expected number of available aircraft for the first wave.
Equation (4) calculates the expectation of availability for the
other waves. The first term includes those aircraft available
but not used for the previous wave and those newly arrived
from the repair shop. The second term includes all aircraft
that are available because they have completed waves since
the previous wave started. ξprek and ξpostk denote the prob-
ability of failure associated with aircraft type k in pre- and
post-flight checks, respectively: ξprek = (1 − e−αλ̄k) and
ξpostk = (1 − e−βλ̄k), where α < β to reflect deterioration
of the aircraft through use. As tracking the history of the
aircraft is prohibitive to find the actual probability of fail-
ure for each, they are distinguished based on their type and
the failure rate of each aircraft type λ̄k is used to estimate
the probability of failure. Constraint (6) ensures that exactly
one due date is assigned to each job. Equation (7) calculates



max.
W∑
w=1

K∑
k=1

Zkw (1)

s.t. Ukw =
∑
j∈Ik

xij , if di = stw (2)

Ek1 = (Ak + Uk1)(1− ξprek ), ∀k (3)

Ekw = (Ek(w−1) − Zk(w−1) + Ukw)(1− ξprek ) +

w−1∑
v=1

Zkv(1− ξpostk )(1− ξprek ),

if stw−1 < etv ≤ stw,∀w 6= 1, k (4)
Zkw ≤ min(Ekw, akw), ∀k,w (5)
|D|∑
i=1

xij = 1, ∀j (6)

stjr + pjr = etjr,∀j, r (7)

etjr ≤
|D|∑
i=1

xijdi, ∀j, r (8)∑
j∈Mr

cjr ≤ Cr, if stjr ≤ t < etjr, ∀t, r (9)

xij ∈ {0, 1}, ∀i, j (10)
0 ≤ Ekw ≤ |N |, ∀k,w (11)

stjr, etjr ∈ Z+ ∪ {0}, ∀j, r (12)

Zkw ∈ Z+ ∪ {0}, Zkw ≤ |N |, ∀k,w (13)

Figure 3: The global MIP model for one time period.

the end-time of the jobs. The end-time of each job is guar-
anteed to be less than or equal to the assigned due date by
constraint (8). Constraint (9) enforces the capacity limit of
each trade, where t denotes the discrete time during which
job j is under way.

Logic-based Benders Decomposition A logic-based
Benders decomposition (LBBD) method can be formulated
where the master problem assigns aircraft to waves to max-
imize wave coverage over the current time period and the
sub-problems create the maintenance schedules given the
due dates assigned by the master problem solution. The
master problem is solved using MIP, while constraint pro-
gramming (CP) is used for the scheduling sub-problems.

The Due-Date Assignment Master Problem (DAMP):
MIP Model To formulate the master problem as a MIP
model, we use a binary variable xij for each j ∈ J and
i ∈ D with the same meaning as in the global MIP model.
A MIP formulation of DAMP is as follows:

max. Objective (1)
s.t. Constraints (2) to (6), (10), (11), (13)∑

j∈Mr,
∑|D|

i=1 xijdi≤stw

cjrpjr ≤ stwCr, ∀r, w

(14)
MIP cuts (15)

The master problem incorporates a number of the con-
straints in the global MIP model. It does not represent the
start-times of jobs nor does it fully represent the capacity
of the trades. As is common in Benders decomposition, the
master problem includes a relaxation of the sub-problems
(Constraints (14)) and Benders cuts (Constraints (15)).
The Sub-problem Relaxation Constraint (14) is the relax-
ation of the capacity of a trade, expressing a limit on the
area of jobs that can be executed. The limit is defined us-
ing the area bounded by the capacity of the trade and the
time intervals [0, stw] for each wave w, plus [0, B] where B
is the maximum due date assigned to the jobs on the trade.
The area of each interval must be greater than or equal to
the sum of the areas of the jobs that finish by the end of the
interval.
The Benders Cuts We demonstrate the intuition with an ex-
ample before defining the cut. Assume that for a given trade
with five jobs and a due date set, D = {14, 17, 20, 100},
the current master solution is: x21 = 1, x12 = 1, x43 =
1, x14 = 1, and x15 = 1. Job 1 is assigned to the second
due date, 17, Job 2 has the first due date, 14, and so on. If
the current solution is infeasible due to the resource capacity
of the trade, then we know that at least one of the jobs must
have a later due date. We can, therefore, constrain the sum
of the consecutive xij up to and including the ones assigned
to 1 to be one less than the number of jobs. In our example,
the cut would be:

(x11 + x21) + (x12)+

(x13 + x23 + x33 + x43) + (x14) + (x15) ≤ 5− 1

Formally, assume that in iteration h, the solution of the
DAMP assigns a set, Q, of due dates to the jobs on trade r.
Assume further that there is no feasible solution on trade r
with the assignments in Q.

The cut after iteration h is:∑
j∈Mr

∑
i∈Irjh

xij ≤ |Mr| − 1, ∀r (16)

where Irjh = {i′|i′ ≤ i, and xhij = 1} is the set of due dates
indices less than or equal to the due date index assigned to
job j and |Mr| is the number of jobs on trade r.

Job Scheduling Sub-problem Given a set of due dates as-
signed to the jobs on a trade, the goal of the job scheduling
sub-problem (JSSP) is to assign start-times to the jobs to sat-
isfy the due dates and the trade capacity. The JSSP for each
trade can be modeled using cumulative constraints (Hooker
2005). We use a CP formulation:



Cumulative([tj |dhj ], [pjr|dhj ], [cjr|dhj ], Cr), ∀r
0 ≤ tj ≤ dhj − pjr, ∀j, r (17)

where t is an array of variables such that tj is the start-time
of job j, d is an array of values such that dhj is the due date
assigned to job j in master problem in iteration h. The vari-
ables pjr, cjr, Cr are as defined above. Constraint (17) en-
forces the time windows: the job cannot be started later than
dhj − pjr.
A Dispatching Heuristic The dispatching heuristic, in-
spired by the Apparent Tardiness Cost (ATC) heuristic
(Pinedo 2005), is a list-scheduling heuristic. It prioritizes
repair activities based on how early the corresponding air-
craft type is needed, the processing time of each job, and
the relative type demand. The ranking index we use is as
follows:

Ij = ST (kj) exp(−FNj
FCj

), ∀j

If we let kj denote the type of aircraft j, then ST (kj) is the
start-time of the first wave that requires an aircraft of type
kj . FNj is the fraction of the total number of aircraft of
type kj required by the first wave that requires kj , and FCj
is the maximum proportion of the capacity needed by job j
over all its required trades, as follows.

FCj = max
r

(
pjrcjr

ST (kj)Cr
), ∀r

The heuristic sorts the jobs in ascending order of the index
and then iterates through the jobs, scheduling each job at its
earliest available time.

Literature Review
Queuing theory is often used to model repair systems [(Ira-
vani, Krishnamurthy, and Chao 2007) and the references
therein]. Queuing theory has a long-term definition of op-
timality resulting in some sort of repair policy commonly
assuming that the repair resources are unary capacity (i.e.,
one repair is carried out at a time). A repair policy deter-
mines the order under which the repair activities should be
carried out.

Queuing theory does not model the combinatorics of the
scheduling problem. In our problem, the optimization of
scheduling performance at discrete time points (i.e., before
each flight) is of interest, and the repair resources have a dis-
crete capacity. Therefore, we believe that better performance
can be achieved by dealing directly with the combinatorics
and explicitly scheduling the repair shop to meet the waves.

Dynamic scheduling is well-suited to handle the uncer-
tain and combinatorial structure of the scheduling problem.
Dynamic scheduling concerns the allocation of resources to
activities over time when the real-time events occur during
the execution of previously determined schedule (Aytug et
al. 2005).

The real-time event studied in this paper is a job-related
event (Vieira, Hermann, and Lin 2003) because of the uncer-
tainty involved in the systematic pre- and post-flight checks.

Some of the repaired aircraft cannot accomplish their as-
signed flight: they are diagnosed as failed and must return
to the repair shop.

When and how to respond to the real-time events are two
independent variables in dynamic scheduling problems ad-
dressed in (Vieira, Hermann, and Lin 2003; Aytug et al.
2005; Bidot et al. 2009). In our problem, the length of each
time period, and the frequency of re-scheduling determine
how and when we react to the aircraft failures, respectively.

Re-scheduling Strategies
Our strategies have three main parts: scheduling the repair
activities, observing the aircraft failures while executing the
computed schedule, and responding to dynamic events by
re-scheduling the repair activities. They start by schedul-
ing the repair activities over one time period at time 0. The
length of time period defines the scheduling horizon over
which the repair activities are scheduled. The re-scheduling
strategies start executing the repair schedule while observing
the aircraft failures. The frequency of re-scheduling deter-
mines when our strategies dynamically respond to the air-
craft failures.

We use the techniques reviewed in the Background sec-
tion to schedule the repair activities over one time period.
Three different policies denoted as Pij are designed in which
i and j define the length of scheduling horizon and the fre-
quency of re-scheduling in number of waves, respectively.

The three policies discussed here are:

• P11: This policy has a scheduling horizon with a length
of one wave and re-schedules after every wave. In Figure
4, we show that P11 schedules one wave at a time (i = 1)
and re-schedules after each wave (j = 1).

• P31: This policy has a scheduling horizon with a length of
three waves and re-schedules after every wave. In contrast
to P11, for P31 (Figure 5), the scheduling horizon is three
waves but re-scheduling is still done after each wave.

• P33: This policy has a scheduling horizon with a length of
three waves and re-schedules after every third wave (Fig-
ure 6).
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Figure 4: The P11 policy.
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Figure 5: The P31 policy.

To model the dynamic events, we simulate the aircraft
failures in pre- and post-flight checks. Every aircraft ei-
ther passes or fails each check. If the aircraft fails, a new
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Figure 6: The P33 policy.

set of repair activities with known processing times and re-
source requirements is added to the repair shop. If the air-
craft passes, it flies the wave. To model the aircraft deterio-
ration, we increase the failure rate of the aircraft by γ percent
each time it flies a wave. For example, consider that λn is
the initial failure rate of the aircraft n ∈ N . Its failure rate
after flying t waves will be equal to λn(1 + γ)t.

The observed wave coverage for each wave is the number
of aircraft flying the wave divided by the number required.

Experimental Results
The next sub-section describes the problem instances and
the experimental details. We then compare the impact of us-
ing different scheduling techniques and re-scheduling poli-
cies on the observed wave coverage.

Experimental Setup
For our problem instances, the number of aircraft, the num-
ber of trades, and the total number of waves are set to
{10, 15, 20, 25, 30}, {4}, and {30} respectively. Each com-
bination has 5 instances for a total of 25 instances. Each
instance is simulated 10 times.
Aircraft The number of aircraft types is equal to |N |5 , where
|N | is the number of aircraft. The aircraft are randomly as-
signed to different types, and the initial failure rate for each
aircraft is randomly chosen from the uniform distribution
of [0, 0.5]. The failure rate of an aircraft is increased by
γ = 5% each time it is used. The values of α and β are
1 and 3, respectively (see the Mixed Integer Programming
section).
Trades The capacity limit for each trade is Cr = 10.
Repair Jobs The repair jobs at time 0 each require half the
trades, on average. Subsequent repair jobs require all trades.
This difference was done to have enough repair jobs for the
successive scheduling problems. The capacity of trade r
used by job j, cjr, is drawn from [1, 10] while the processing
time, pjr, is drawn from [r, 10r]. At time 0, having 80% of
the aircraft in the repair shop results in |J | = 0.8|N | repair
jobs.
Waves The plane requirement for each wave is randomly
generated from the integer uniform distribution [1, ak] where
ak denotes the number of aircraft of type k. The length of
each wave is drawn with uniform probability from [3, 5]. To
find an appropriate start time for the first wave (not too early
or too late) and subsequent waves, T = 1.2×LB is defined
where LB = maxr(Sr). The sum of the processing areas of
the jobs in each trade, r, divided by the trade capacity is de-
noted by Sr. The processing areas in each trade are summed
over the jobs in the repair shop at time zero. The start time
of each wave is generated as st1 = rand[T3 ,

T
2 ] for the first

wave, and stw = etw−1 + rand(0, 40) for 1 < w ≤ 30. As
mentioned earlier the total number of waves is 30.
Dynamic events To simulate an aircraft failure, we generate
a random value from the uniform distribution [0, 1] for each
aircraft at each check. If the random value is less than the
aircraft’s probability of failure, the aircraft fails; otherwise,
it passes. The aircraft’s probability of failure in pre- and
post-flight checks are calculated using (1−e−αλn) and (1−
e−βλn), respectively. As mentioned earlier, λn is the failure
rate of aircraft n ∈ N which increases by γ = 5% each
time the aircraft flies a wave. Note that, passing the pre-
flight check of a wave does not necessarily mean that the
aircraft flies the wave. If the number of available aircraft are
more than the requirements, the aircraft that fly are randomly
selected to meet the requirements.

The time-limit to schedule the repair activities in each
scheduling horizon is 600 seconds. We execute the best fea-
sible schedule found before the time-limit if MIP times out.
In the case that LBBD times out, the schedule created by the
dispatching heuristic is executed as LBBD cannot create a
feasible schedule when it times-out.

The scheduling uses IBM CPLEX 12.1 and IBM ILOG
Solver/Scheduler 6.7, and the simulation is coded in C++.

Computational Results
In this section, we discuss our results to answer a number of
different questions.

Question 1 What is the impact of using a complete tech-
nique vs. the dispatching heuristic on the mean observed
wave coverage?

We expect a complete technique to achieve higher wave
coverage because it incorporates known information on un-
certainty into scheduling the repair activities, while the dis-
patching heuristic does not have this property.

Figure 7 shows the mean observed coverage up to wave
w ∈ {1, 2, ..., 25} for different scheduling techniques over
all three policies. The mean observed coverage up to wave
w is Ow =

∑w
i=1 νi
w , where νi denotes the coverage of wave

i. As illustrated, LBBD achieves about a 40% higher mean
coverage over all waves than either MIP or the dispatching
heuristic. The MIP algorithm also takes the probabilistic in-
formation into account creating a repair schedule but it times
out on 72% of scheduling problems without finding a feasi-
ble solution. The dispatching heuristic then is used to create
the repair schedule. Therefore, using MIP and the dispatch-
ing heuristic results in waves with almost the same coverage
as the dispatching heuristic alone.

Table 2 presents further data for all scheduling techniques:
the mean observed coverage, the percentage of waves with
less than or equal to 0.3 coverage, and the percentage of
waves with more than or equal to 0.7 coverage. The data
indicate the clear superiority of LBBD over the dispatching
heuristic.

Question 2 DoesP31 policy provide the waves with higher
coverage than P33 and P11 policies using the optimization
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Figure 7: Mean observed coverage for different scheduling
techniques.

Scheduling Mean Observed % Waves with a % Waves with a
Technique Coverage Coverage ≤ 0.3 Coverage ≥ 0.7
LBBD 0.71 6.07 55.80
MIP 0.49 27.31 21.40
Heuristic 0.51 26.39 26.43

Table 2: The mean observed coverage, the percentage of
waves with less than or equal to 0.3 coverage, and the per-
centage of waves with more than or equal to 0.7 coverage up
to wave 25 over all the policies.

technique LBBD?
We expect that P31 with LBBD will produce better cov-

erage because it schedules over a longer horizon and adjusts
the schedule as soon as aircraft failures occur. Although P31

with the dispatching heuristic also responds quickly to the
aircraft failures, it does not incorporate the length of the
scheduling horizon into the ranking index for repair activ-
ities and always repair the aircrafts for the earliest future.

Figure 8 shows the mean observed coverage for different
policies using LBBD up to wave w ∈ {1, 2, .., 25}. The P31

policy leads to consistently higher coverage.
Figure 9 displays the cumulative percentage of the waves

with a coverage less than or equal to ω for LBBD and the
dispatching heuristic, where ω denotes the values on the x-
axis. The best performing approach will have a fewer waves
with a low coverage and more waves with a high coverage.
Therefore, its curve will be closer to the lower right-hand
corner. As illustrated, in LBBD, P31 performs better than
the two other policies. In contrast, in the dispatching heuris-
tic, P31 results in waves with the same coverage as P11.

Question 3 Does P11 have more waves with very low cov-
erage than P33 using LBBD?

We expect that P33 will result in fewer waves with very
low coverage beacuse it takes the possibility of a more dis-
tant future into account when creating the repair schedule,
while P11 policy repairs the aircraft at the earliest possible
time.

Figure 10 demonstrates that our intuitions are correct that
the P33 policy has fewer waves with very low coverage than
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ing LBBD.
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or equal to ω, where ω denotes the values on the x-axis.

the P11 policy using LBBD.

Question 4 Is a quicker reaction to the dynamic events
more important than scheduling over a longer horizon?

The P31 policy changes the repair schedule after each
wave and trades-off the coverage among three consecutive
waves by scheduling over a longer horizon. In contrast,
the P11 policy schedules for one wave and reacts after each
wave while the P33 policy reasons over a longer term with-
out a quick response to the dynamic events.

As already shown in Figure 8, the P31 policy results in
a higher mean coverage. The superiority of policy P31 in-
dicates that both features of quick response to the dynamic
events and long-term reasoning contribute to the overall per-
formance, but the question is which one contributes more.

To answer the question, the waves are partitioned into
buckets of size 3. We expected that P33 would achieve a
higher mean coverage over each bucket than P11 because
it reasons about the trade-off among the three waves. How-
ever, Figure 11 demonstrates that both policies achieve equal
performance until wave 15 and the policy P11 then does bet-
ter. This observation indicates that quick reaction to the air-
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Figure 10: Percentage of waves with a coverage less than or
equal to 0.3 using LBBD.
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Figure 11: Mean observed coverage over each wave bucket
using LBBD.

craft failures has more significant impact on the observed
coverage than long-term reasoning.

To obtain more insight, the mean observed coverage for
the first, second, and third waves in each bucket is shown
in Figures 12, 13 and 14, respectively. As illustrated, P11

results in a higher coverage than P33 for the waves sched-
uled later in each bucket. The mean difference between two
policies (P11 − P33) is equal to -5, 2, and 10 percent for the
first, second, and third waves in buckets, respectively. In-
tuitively, we expect that P11 provides the earlier waves in
buckets with a higher coverage than P33 because the later
policy trades off between three waves when assigning the
aircraft to the waves. However, the observation contradicts
our expectation and is an evidence that the quick reaction is
more important than scheduling over longer horizon.

Summary The following conclusions are supported by
empirical observations:

• LBBD provides the waves with a higher coverage than the
dispatching heuristic.

• The P31 policy results in waves with a higher coverage
than P11 policy using LBBD and with the same coverage
using the dispatching heuristic.

• The P33 policy is shown to result in fewer waves with
very low coverage than P11 policy using LBBD.

• Scheduling over a longer horizon and quickly adjusting
the schedule based on the real events are the features con-
tributing to the increase in the observed coverage. Fur-
thermore, it is shown that the quick reaction to the dy-
namic events is more important than the long scheduling
horizon.

Future Work
Although the experiments show that scheduling over a
longer horizon and responding quickly to disruptions using
optimization techniques in a dynamic and uncertain envi-
ronment yield better performance, the generality of this ob-
servation remains in question. One promising direction in
future work would be to establish a formal framework to
determine how long the scheduling horizon should be and
how quickly we should respond to real events. Bidot (Bidot
2005) presented the first steps toward a generic theoretical
framework in his PhD thesis.

In this paper, to measure system performance, we have
focused on the value of mean observed coverage, not tak-
ing into account the computational cost of applying different
policies. Although P33 is shown to be the dominant policy,
it has a greater computational cost and potentially increases
the unnecessary changes in the schedule (Aytug et al. 2005).
Optimizing over a longer scheduling horizon and reschedul-
ing repair activities once failed aircraft enter the repair shop
explain the high computational cost and the increased un-
necessary changes, respectively. How to quantify costs in
order to evaluate different policies is another interesting di-
rection for future work.

Conclusion
In this paper, we address a dynamic aircraft scheduling prob-
lem in a repair system. The goal is to meet the aircraft
requirements for each wave by assigning the failed aircraft
to the flights considering the maintenance capacity and the
aircraft failures. The number of failed aircraft dynamically
changes because of aircraft breakdowns. Our proposed so-
lution approaches solves the dynamic problem as successive
scheduling problems over multiple time periods. We use
three different scheduling techniques developed in our pre-
vious work and three re-scheduling policies to schedule the
repair activities on-line with dynamic reaction to the aircraft
failures. The length of the scheduling horizon and the fre-
quency of re-scheduling are the features defining our three
policies.

The computational results show that an optimization ap-
proach using logic-based Benders decomposition, schedul-
ing over a longer horizon, incorporating the known informa-
tion on aircraft failures, and adjusting the repair schedule as
soon as new jobs enter the repair shop yield higher mean
coverage. The results also provide evidence that quick reac-
tion to the aircraft failures is more important than schedul-
ing over a longer horizon as the policy with a higher fre-
quency of re-scheduling does better than the policy with
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Figure 12: Mean observed coverage for the first waves in
buckets.
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Figure 13: Mean observed coverage for the second waves in
buckets.
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Figure 14: Mean observed coverage for the third waves in
buckets.

longer scheduling horizon on the waves scheduled later in
each time period.
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