
Command and Control Training Centers:
Computer Generated Forces Meet Classical Planning ∗

Carmel Domshlak
Industrial Engineering & Management,

Technion, Israel

Ziv Even-Zur and Yannai Golany
Elbit Systems, Ltd.

Israel

Erez Karpas and Yevgeni Nus
Industrial Engineering & Management,

Technion, Israel
Abstract

We describe SHOGUN, a fully automated system for con-
trolling tactical agents, developed for integration within
simulation-based command and control training centers pro-
duced by Elbit Systems Ltd. In particular, we focus on
describing the action planning module of SHOGUN: while
controlling tactical agents in military-style domains involves
dealing with uncertainty and partial information in adversar-
ial settings, the planning module of SHOGUN is based on clas-
sical, deterministic planning only, and employs a general-
purpose classical planner. We describe our embedding of
classical planners within the commercial command and con-
trol training center, and report on a recent evaluation of
SHOGUN in operational scenarios, confronting subject mat-
ter experts as trainees.

Introduction
Comprehensive training of forces responsible to react in
complex adversarial situations is critical for military high
and low intensity conflicts as well as for homeland secu-
rity scenarios of border control and smart city environments.
Such a training should put together teams of trainees at var-
ious levels of command, and train them in realistic setups
to improve their command and control (C2) capabilities. A
vastly dominating portion of C2 training is delegated these
days to software simulation systems in which commands
of both role-playing trainees and adversary-playing instruc-
tors are accomplished by the respective computer gener-
ated forces (CGF). Following the paradigm of “train as you
fight”, the trainees are connected to the virtual battlefield
through their operational C2 systems and combat-net radio,
coupled by the overall training system to the simulation.

These days, commercial simulations for C2 training al-
ready achieve a sufficiently high level of realism in terms
of modeling the physical properties of both the environ-
ment and forces. The outcome of the training, of course,
depends a lot on the effectiveness of the instructors play-
ing the role of the adversary, and this turns out to be an is-
sue. Putting together a team of skilled and coordinated role-
players needed for a large-scale simulated exercise requires
months of costly preparations, availability of instructors for

∗The work was partly funded by a Magneton Grant. The au-
thors would like to thank Yoav Manor and Gilad Mandel from Elbit
Systems for their devoted work on the project.

a long period of time, and a suitable venue. These limi-
tations of relying on human instructors in simulation-based
training suggest at least partly replacing them with artificial
adversary-players implementing this or another action plan-
ning technology. Here we describe SHOGUN, a fully auto-
mated system for controlling tactical agents within a com-
mercial military training simulation. SHOGUN has been de-
veloped in a joint effort of Elbit Systems Ltd. and the Tech-
nion for subsequent integration within the line of large-scale
simulation-based training centers produced by Elbit. This
system has been recently deployed to Elbit, and successfully
passed a detailed performance evaluation.

An interesting property of SHOGUN is that the planner
it embeds is not just inspired by the artifacts of academic
AI research, but actually is such a direct artifact. More-
over, while in general controlling tactical agents in rele-
vant domains involves decision making under uncertainty
and partial information in adversarial settings, our experi-
ence provides yet more evidence that successful reasoning
about real-world systems of active entities does not neces-
sarily have to take explicitly into account all that complexity
when choosing between alternative courses of action. While
classical planning, capturing single-agent problems with de-
terministic actions and effectively full knowledge, has been
repeatedly criticized for being unrealistic and thus irrelevant
to real-world problems, here we demonstrate that this crit-
icism should be taken with lots of caution: The decision
making module of SHOGUN is based on classical, PDDL-
based planning only, and employs a general-purpose (and
thus fully replaceable) classical planner.

In what follows we describe our embedding of classical
planners within the commercial C2 training system, as well
as the way in which we divide-and-conquer the details of
the physical system between the planning and the simulation
modules. We then describe the aforementioned evaluation of
SHOGUN in operational scenarios, confronting professional
military personnel as trainees.

SHOGUN Architecture and Design Decisions
In this section we describe the overall architecture of
SHOGUN, focusing on the adopted planning and execution
formalism and its support within the system. At high level,
SHOGUN comprises a standard architecture of iterative plan-
ning, depicted in Figure 1a. It consists of three major mod-



input: planning task stub Π = 〈V,A,G〉
local: partial-order plan ρ
ρ = 〈·〉
forever:

receive from EM the current state of knowledge σ and
plan status {ρdone, ρexe, ρnext}

s = TRANSLATE(σ,Π)
s′ = PROGRESSION(s, ρexe)
if VERIFY-PLAN(s′, ρnext) fails then
ρ = MAKE-PLAN(〈V,A, s′, G〉)
send ρ to EM

(a) (b)
Figure 1: High-level (a) structure of the system, and (b) flow of the planner interacting with the KE abstraction mapping.

ules: (i) a planning module, (ii) a plan execution monitor,
and (iii) a real-time high fidelity 3D tactical computer gen-
erated forces (CGF) simulation in which the actions selected
by both trainees and instructors are actually simulated.

Planning, Execution simulation, and Monitoring
The CGF simulation maintains the entire battlefield arena,
and supports an arbitrary number of force types (such as
tanks, artillery, reconnaissance, etc.), as long as the simula-
tion is provided with their respective physical models. The
simulation runs a full 3D virtual environment of the terrain
and physical models of sensors (such as line of sight and
detection) and actuators (such as ballistics, path planning,
and movement). The battlefield comprises two adversarial
forces, blue force and red force, each comprising a, possibly
heterogeneous, set of acting units. The trainees fully control
the blue force troops and interact with the virtual arena via
a training station using a high-level language of command.
The planning module replacing the instructors fully controls
the red force, and communicates with the simulation via ef-
fectively the same language of command. The control of the
red force is achieved via a planning and execution loop that
takes place during the entire training session. The overall
loop is described below and the perspective of the planning
module on that loop is pseudo-coded in Figure 1b.
• The execution monitor pulls from the CGF simulation all

the data σ required to provide the planner with the cur-
rent state of the red units (their locations, heading, am-
munition, etc.), as well as with those parts of the state of
the blue units that are considered by the simulation to be
observable by the red units. Status of the blue units not
detected by any red unit is not provided to the planner.
Likewise, the execution monitor pulls from the CGF sim-
ulation a status of the currently executed plan ρ of the red
force. Since the execution is continuous, at the moment
of the query some of the actions of ρ have been already
accomplished, some have started and are still executing,
and some are yet to be started. Note that “accomplished”
can stand here for both “successfully accomplished” and
“failed”. In any case, both the collected state of knowl-
edge σ and the plan status {ρdone, ρexe, ρnext} are passed to
the planning module.

• The CGF simulation is the core of the virtual arena of
Elbit’s strategic and tactical training centers, designed to

communicate with the training stations of human opera-
tors. Hence, the information σ about the current state of
the (observable) world takes the form of a raw data. This
raw data is then translated to a state of the world descrip-
tion s, corresponding to the abstraction of σ in terms of
the planning problem operated by the planner. This trans-
lation is based on a knowledge engineering layer that is
devoted to bridge between the physical view of the simu-
lation and the symbolic view of the planner.

• Given state s and plan status {ρdone, ρexe, ρnext}, the plan-
ning module estimates whether the current plan ρ of the
red force is still valid. In case the goal of reds turns out
to be unachievable from s along the still unaccomplished
part of ρ, a new plan is generated from the new initial state
s, and passed to the execution monitor.

Classical planner: Why and How.
The heart of SHOGUN is its planning system. The first deci-
sion we had to make is whether to develop a special-purpose
planner, or to adopt a generic, model-oriented planning sys-
tem. The second, and in a sense, tangential decision we had
to make was what details of the problem the planner should
take into account and what details it could ignore without
sacrificing the quality of the training.

While in principle special-purpose solutions can be more
efficient and effective than generic ones, their development
requires the enterprise to establish a development team in
the respective area of expertise. Along with the fact that the
development basically starts ”from scratch”, that adds nu-
merous risks to the project. Generic planners obviously do
not exhibit these risks by the virtue of being generic, having
potential to be reused between various verticals. Of course,
model-oriented generic planners come with their own risks
such as capability of the respective model to capture the de-
sired domain, the computational efficiency of the planner on
the domain of interest, etc. However, in contrast to the risks
associated with developing a brand new special-purpose sys-
tem, these risks can be verified in very short time at the be-
ginning of the project using an off-the-shelf planner.

Considering now the choice of the planning formal-
ism, decision making in C2 environments of our interest
always involves action non-determinism, partial informa-
tion, and adversarial settings (Wilkins and Desimone 1992;
Tate et al. 2000; Kott et al. 2005). A priori, this sug-



gests that our planning tasks should be specified in terms
of much more complicated action models than that of clas-
sical planning because the latter assumes deterministic ac-
tions, effectively full knowledge, and single-agent setting.
Adopting complex planning formalisms, however, comes
with a price: the performance of planning for such for-
malisms currently does not meet the requirements of large-
scale C2 training. On the other hand, the performance of
classical planners has been dramatically improved over the
last two decades, and today these are capable of generat-
ing in seconds plans of hundreds of steps in state models
of more than 21000 states. In addition, it is of growing un-
derstanding that successful reasoning about real-world sys-
tems of active entities does not necessarily have to explic-
itly take into account all the complexity of the reality while
choosing between alternative courses of action. This prop-
erty of many real-world domains has been exploited in the
past both in experiments (Yoon, Fern, and Givan 2007;
Yoon et al. 2008), as well as in ambitious applications of
AI reasoning (Muscettola et al. 1998).

Departing from this matter of business, we have decided
to start with a fully off-the-shelf satisficing classical planner,
adapting it only when really needed and only via external
wrappers. Specifically, in the experiments described later
on, SHOGUN was using the very popular these days Fast
Downward planner (Helmert 2006), using its greedy best
first and WA? search engines, and the seminal FF heuris-
tic (Hoffmann and Nebel 2001). The actual planning tasks
have been encoded using the PDDL language of the In-
ternational Planning Competitions (IPC) 1. PDDL allows
representing planning tasks concisely using first-order lit-
erals and logical connectives. Fast Downward compiles
PDDL input into a ground representation with variables of
arbitrary finite range (Helmert 2006). The representation
used in Fast Downward is based on the SAS+ action lan-
guage (Bäckström and Nebel 1995), and extends it with con-
ditional effects and derived predicates. A SAS+ planning
task2 is given by a quadruple Π = 〈V,A, s0, G〉, where:

• V = {v1, . . . , vn} is a set of state variables, each associ-
ated with a finite domain dom(vi).

• the initial state s0 is a complete assignment, and the goal
G is a partial assignment to V .

• A = {a1, . . . , aN} is a finite set of actions, where each
action a is a pair 〈pre(a), eff(a)〉 of partial assignments
to V called preconditions and effects, respectively. Each
action a ∈ A is associated with a non-negative real-valued
cost C(a).

An action a is applicable in a state s ∈ dom(V ) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified. Applying
a changes the value of v to eff(a)[v] if eff(a)[v] is speci-
fied. A sequence ρ of actions applicable in the respective
states starting from s0 is a plan for Π if the resulting state s
satisfies G.

1
http://ipc.icaps-conference.org/

2For ease of presentation, we present here only the core
SAS+ language; for details of the extension we refer the reader
to (Helmert 2006).

Formulating planning tasks in SAS+ comes to provide us
with a high-level abstraction of the underlying system dy-
namics: capturing world states at the level of physical simu-
lation would require huge sets of state variables and actions,
some state variables are not necessarily observable at any
given moment, simulated actions are very much not deter-
ministic, the adversarial blue forces controlled by trainees
affect the environment, etc. However, planning at the level
of SAS+ has the advantage of fast problem solving, having
the potential for compensating for the abstraction coarseness
via rapid monitor-and-replan iterations. In what comes next
we describe our abstraction mapping of planning tasks from
the level of simulation to SAS+.

• Symbolic abstraction of the physical world. The function
TRANSLATE used by the planning module in Figure 1b to
map a physical state σ to a SAS+ state s is implemented
via a knowledge engineering sub-module (KE). The latter
comes to bridge between the general-purpose planner and
the specifics of the simulated domain; as such, it is used
twofold. First, KE allows a user to define various layers of
information over the map of the training area. These lay-
ers describe strategic points, passable areas, ballistically
dominating areas, etc., and for most, they can be derived
automatically from the digital map used by the simula-
tion. This processing can be performed once per map,
and thus completely offline not only to a specific train-
ing session, but to the training in general. In addition,
the subject matter expert (SME) in charge of the training
session can use KE to further enrich this information by
specifying, e.g., regions that he prefers not to be used for
movements/positions of specific units. Based on the now
defined information layers of the map, KE maps status
messages received from the execution monitor to proper
values of the respective SAS+ variables. The abstraction
of the geographic data such as unit locations and headings
is archived via a, possibly non-uniform, grid overlaid on
the map.

• Non-determinism of actions. While basically all actions
of the units are simulated to have stochastic effects, the
entropy of the underlying probability distributions is usu-
ally low, and typically they have single peaks that take
most of the probability mass. A natural abstraction of
such actions to fully deterministic SAS+ actions simply
ignores all but the most likely outcome of each action.
SHOGUN uses precisely that simple abstraction, corre-
sponding to a degenerate form of hindsight optimization,
an “online anticipatory strategy” for control problems
that has previously been successfully applied to prob-
lems of online scheduling (Wu, Chong, and Givan 2002)
and probabilistic planning (Yoon, Fern, and Givan 2007;
Yoon et al. 2008).

• Partial observability. Partial observability in the domain
of battlefield training stems from the true modeling of re-
ality in which the information that is available to the plan-
ner is only what the red force “sees”: blue units which
are not detected by any red units are not reported to the
planner. We use ”optimistic sensing” to get rid of this
partial observability as follows: when a red unit performs



a sensing action (that is, looks in some direction, trying
to find blue units) the expected effects of that action are
that no blue forces will be detected. If there are indeed no
blue forces - the plan can proceed normally. If there are
blue forces there, then the current plan is most likely no
longer valid, and therefore re-planning is performed, this
time accounting for the “new” blue forces.

• Optimization objectives. In most battlefield scenarios, the
mission is to achieve some objective, while trying to min-
imize friendly losses. Since we use single-agent planning,
we do not directly account for enemy actions, and specifi-
cally, we do not plan for friendly units to be destroyed.
Therefore, we do not directly try to minimize friendly
losses, but rather try to minimize risk. We associate a
risk level with each action, by assigning higher costs to
riskier actions. For example, maneuvering in a flat area at
the base of an enemy-occupied hill is riskier than maneu-
vering on top of a hill, and is therefore more expensive.
Although the planner we use is not an optimal planner, it
does try to find a low-cost plan, which directly translates
to a low-risk plan.

Domain Formulation
In formulating the domain schema, we made several choices
that affect the entire system. First, as stated before, we di-
vide the map into locations, which are arranged on a grid,
where each location can hold multiple friendly units, and
multiple enemy units. Each grid location is represented by
an object in the planning problem, and thus locations are
used as parameters for operators and predicates. The trans-
lation of world knowledge to a planning state involves map-
ping units at specific coordinates to the corresponding grid
locations.

Second, entities in operational domains often act in line
with some standard operating procedures (SOP), and thus,
in particular, act in formations. In maneuvering, for in-
stance, a formation could be either a single entity moving
by itself, 2 entities moving side-by-side, 3 entities moving
in a single column, or any other arrangement. Types of for-
mations are defined by the overall set of SOPs, and can be
provided by a subject matter expert. We chose to formulate
our domain so that all actions are performed by some for-
mations of entities. For example, moving from one location
on the grid to a neighboring location is done by using the
Move action on a formation, which describes the entities to
be moved, and their internal arrangement (side-by-side, col-
umn, etc.). Two special types of action, Set-Formation and
Break-Formation , allow entities to rearrange themselves in
different (possibly larger or smaller) formations. Note that
this is similar in spirit to the well-known Logistics planning
benchmark from IPC-1998 and IPC-2000, where a forma-
tion can be thought of as a truck, and an entity can be thought
of as a package loaded into the truck (aka joining formation).
This engineering methodology appears to be quite useful in
general; for instance a very similar technique has been used
by Balla and Fern (2009) in their recent work on action se-
lection for tactical assault, evaluated by the authors on War-
gus computer games.

Third, we had to deal with enemy units on the battlefield,
and their partial observability. We model enemy presence
by creating a state variable for the number of enemy units
at each grid location. The possible values for this range are
either a number (between 0 and some bound) or unknown -
a special value indicating that we have no knowledge about
enemy presence in that grid location. Thus, the (expected)
effect of performing a sensing action on a given grid location
is that if the number of enemy units in that location was
unknown, it becomes 0, and otherwise, there is no effect.
This formulation also allows us to ignore the identities of
enemy units, which are not part of the knowledge provided
to the planner anyway.

Load Balancing and Parallelization
One addition to the standard classical planning setting that
we found essential was load balancing between the red units.
At high level, the load balancer in SHOGUN pre-assigns each
sub-goal to a subset of units, decomposes the overall plan-
ning task into several smaller tasks that are planned for inde-
pendently, and then combines their solutions into a plan for
the overall task. This procedure is important for balancing
the workload between different role-players, causing forces
to act in a more “coordinated matter”, and reduces the size
of the individual planning tasks solved by the planner.

Similarly to all other system components, the load bal-
ancer in SHOGUN is completely domain independent. It
starts by assigning to each goal a subset of units that can
achieve it as cheaply as possible in the (easy to solve) delete-
relaxed version of the planning task. Then, the rest of the
units are assigned in proportion to the cost of the relaxed
plan for each of the goals, so that goals that are riskier
to achieve are assigned more units. Finally, the goals are
grouped based on the transitive closure of the forces as-
signed to them, and each such group of goals is planned for
using only the forces assigned to it. In the domain consid-
ered here, plan combination is trivial, since no two plans can
interfere with each other.

One thing to note is that, although the load balancer might
assign several units to a single goal, the planner might still
not utilize all of these units (the plan found could involve
just a single unit). In order to force SHOGUN to act more
realistically, we artificially increase the cost of action rep-
etitions. This puts a heavy bias toward using more than a
single unit in each plan, resulting in plans allocating forces
to goals in ad hoc proportion to the size of the goal.

Finally, though the quality metric for our plans is risk
reduction, and thus we employ a cost-oriented, sequential
planning, the actions of different units often can (and if so,
should) be applied concurrently. While we do not plan for
this second objective directly, we do convert our sequen-
tial plans into partial order plans allowing concurrent ac-
tion execution. If our domain had been formulated in plain
STRIPS, then simple Partial Order Causal Link (POCL)
backward analysis of the plan would have given us a de-
sired partial order. However, our domain formulation uses
conditional effects, and this requires slight extension of the
standard POCL analysis. To establish hypothetical causal
relations between the actions, we first simulate sequential



execution of the initial plan, determine which conditional
effects of which action instances along the plan have been
fired, compile the fired conditional effects into now uncon-
ditional effects of the respective actions, and then perform
the standard POCL backward analysis of the plan. The re-
sulting parallelization is sound and complete, and results in
realistic schedule of plans for our multi-unit forces. Over-
all, the simultaneous acting effect, achieved in SHOGUN
via the mixture of load balancing and plan parallelization,
achieves the effect of a standard military C2 methodology
called “mission-oriented C2”, allowing for solving large-
scale problems by wisely delegating its sub-parts to different
planners.

Usage Practice and Performance Evaluation
One of the critical requirements to “AI driven” systems fac-
ing users is that the amount of exposition of the users to
the technical details of the system will be as little as possi-
ble. In that sense, SHOGUN seems to achieve an extremely
high level of transparency. The overall usage of SHOGUN
comprises three steps: (i) domain, or action schema, mod-
eling, (ii) training scenario specification, and (iii) the ac-
tual training session. The action schema is modeled offline,
once for each type of units such as tank/modelX, border-
patrol/modelY, etc. This step does require a subject matter
expert to be familiar with the SAS+ action description lan-
guage, either directly or via a dedicated GUI. However, since
it is performed once for all subsequent trainings, it is fully
realistic to provide this skill to a small group of SMEs.

Next, possibly at a distant point in time, the properties of
a specific training session are specified by an instructor in
charge of the training content, e.g., a battalion intelligence
officer. This step consists of annotating the map with in-
formation relevant to the training (such as markup of areas
passable by different types of vehicles, dominating areas,
etc.), defining the initial positions of the forces, defining the
goal of the training scenario, etc. All these specifications are
made through our knowledge engineering tool (already dis-
cussed in the previous sections), and requires no knowledge
of planning technology whatsoever. Finally, the trainees also
need to know neither what SHOGUN is about, nor even the
fact that they are trained not by human instructors, but by a
fully automated system.

In what follows, we describe the evaluation of SHOGUN
that has recently been accomplished by Elbit Systems Ltd.
In each training session, an SME controlled the entire blue
force, SHOGUN controlled the entire red force, and both
operated in a realistic modeling of the situation awareness
fog of war. The context of all training sessions was the
same 4×4 kilometers area featuring jagged, hilly, terrain,
and having several spots dominating large areas and thus
having high tactical value. Several regions of the map were
marked at the stage of training scenario specification as non-
passable, disallowing movement through these regions. Fig-
ure 2 depicts a starting position of the forces in CGF simula-
tion. The blue force, controlled by the trainee, comprised an
extended armored company of 13 tanks, located initially at
a defensive position in the northern part of the map, which

Figure 2: Full (top) and role-player’s (bottom) views of a
starting position in the Elbit’s CGF simulation. Blue/red
forces are located in the north/south, respectively. Non-
passable areas are highlighted in red.

is the high ground in the training area. The red force, con-
trolled by SHOGUN, comprised an armored battalion of 27
tanks in 9 platoons, supported by 2 reconnaissance units and
limited artillery. The mission of the trainee was to defend the
blue force’s starting region, while SHOGUN’s mission was to
neutralize all blue units in a predefined region of the map,
either by destroying them or causing them to retreat. This
magnitude of forces is typical for a mission to neutralize an
area of this size, and according to the military best practices,
the defending blue force a priori has an advantage in this
scenario.

The evaluation consisted of ten training sessions with
varying starting positions of the red force, and were done
(as detailed in Table 1) by three SMEs: two company com-
manders in reserve duty (trainees 1 and 2), and one battalion
XO in reserve duty (trainee 3). As Table 1 shows, SHOGUN
won in 6 out of 10 training sessions, winning all the first
training sessions by the individual SMEs, and sometimes
losing later on to the same SME, after action review and
elaboration of lessons learnt for employing defense battle
techniques. From the loss/win pattern followed by the eval-
uation of the SMEs, SHOGUN provides a realistic adversary



1/R
1. Blue organizes for defense.
2. Red sends first attack with a single company and suffers heavy losses (2 platoons are de-

stroyed, 1 falls back).
3. Red sends full scale attack in 3 different areas, and breaches the blue defense in the east.
4. Red destroys the rest of the blue entities in the area.
1/R
1. Red sends 2 platoons to flank from the east, and one platoon to the attack zone in the west.
2. The red platoon destroys the 4 blue tanks on the hill controling the west zone.
3. The red force takes advantage of the situation and sends a massive attack through the opened

west zone (in parallel to units which move through the east zone)
4. Blue tries to organize his defense in order to cover the the west zone, but the red attack

progresses too fast and all reinforcement blue forces are destroyed.
5. The remaining blue forces try to avoid further contact but eventually are caught and destroyed

by the red force.
1/B
1. Red force sends a preemptive attack. Blue force puts two lines of defense.
2. Red force does not concentrate the attack, and blue force takes advantage of that by destroys

the red platoons one by one.
3. The balance of power shifts towards blue force, and the attack fails.
1/B
1. Blue organize in defensive positions which have absolute control on anticipated red attack:

moves west passage force to higher ground, and 2 tanks to high control road.
2. Red send 3 platoons to the center and east passages, and 2 platoons to the west passage.
3. Long range sight of the red platoons enables blue forces a safe defense. Red suffer heavy

losses in the initial attack, and the remaining force is outmatched in position and fire power.

1/R
1. Red organizes for attack, sends 2 companies with a platoon
2. Red artillery destroys a blue tank controlling the center, yet no reinforcement is sent there by

the blue force.
3. Red takes advantage of this: sends a company to the center zone and 2 platoons to the east.
4. Blue is able to hold center attack with eastern defense, shifting its attention on the center.
5. 2 red platoons in the east reach the blue tank and destroy it. This enables the center force to

breach in the center area into the blue zone.
6. The blue force defense is breached, eventually loses all troops.
1/B
1. Blue organizes in defense.
2. Red force sends 4 platoons: 2 in the east, 1 in the center, 1 in the west.
3. Blue force moves to higher positions and destroys 2 out of the 4 platoons.
4. 1 of the 2 red platoons left is able to destroy the blue defense in the east zone.
5. Blue tries to defend in the east, but suffers more losses during the defense reinforcement.
6. 1 red tank breaches the blue area in the west, stops and waits for reinforcement.
7. Red organizes for an additional massive attack in the east? but this gives the blue force time

to establish there a solid defense.
8. The new positions of the blue force create 2 zones of its full dominance in the west and

center, which the red force falls into.

Table 1: Summary of system evaluation training sessions.
Each table entry marked with X/Y corresponds to a train-
ing session by trainee X, ended with the win of Y force.
Per trainee, the sessions are listed chronologically. Dou-
ble line separates indicates a change of either the initial
conditions or the trainee.

2/R
1. Red sends 4 platoons to the east and center passage.
2. Blue relocates the 4 tanks controlling the west zone.
3. The 4 blue tanks cause damage to the red progress in the east, but are spotted and destroyed.
4. Red artillery weakens the blue defense in the center zone, while the red force destroys the

blue defense in the east passage.
5. Blue force tries to reorganize the defense.
6. Red sends a full scale attack.
7. Blue force sends 3 tanks through the eastern passage to counter attack the red forces, but they

are neutralized with only minor losses to reds.
8. The single remaining blue tank is surrounded.

2/R
1. Red sends 4 platoons: 3 from the east and 1 through the center passage.
2. Blue relocates the 4 tanks controlling the west zone in a safe passage, trying to occupy safer

positions (“learning from experience”).
3. The red platoon at the center passage is destroyed by the blue defense.
4. Red starts moving platoons in the west zone.
5. Red company at the east passage destroys the blue defense there, and falls back.
6. One of the red platoons at the west zone encounters the 4 blue tanks, and destroys them with

only minor losses to itself. The west area is now totally opened.
7. Red platoon advances in the eastern passage and destroys blue second line of defense.
8. Red starts a full scale attack with artillery support on all 3 passages.
9. Blue destroys a platoon in the east, but the blue area is totally overrun by the red force on all

3 fronts, and eventually the blue force is all destroyed.
2/B
1. Blue organizes differently for defense (”experience from last two loses”): west area tanks

move around north hill in a safe route and occupy a high position which controls a huge
portion of the terrain. A platoon moves towards a control route in the north part of the
terrain.

2. Red sends 2 platoons to the east passage and 1 platoon to the center passage.
3. Blue high position destroys red forces moving in east and center passage in mid way.
4. Red moves to full scale attack including a company in the west.
5. Blue dominant positions disallow the red forces to progress into the blue territory.
6. More than half of the red battalion is destroyed with no losses to the blue force.
7. The entire red company in the west area is destroyed.
8. Red starts artillery fire, and dstroyes the first blue tank.
9. The remaining 5 red tanks fall back and wander around the southeast part of the terrain.

10. Blue moves into offense and starts to progress towards the red forces.
11. Red force artillery destroys one more blue tank.
12. The blue force intercepts, destroys the remaining red tanks and wins.

3/R
1. Blue sends 2 tanks for patrol over high area road which controls most of the terrain.
2. Red sends 3 platoons: 1 in the center, 2 in the east.
3. Red center platoon is destroyed by the 2 tanks patrolling the higher route, but east platoons

destroy blue force defense.
4. 2 blue tanks in the high route destroy another red platoon.
5. Red sends a full scale attack accompanied with artillery (2 platoons in the center and 3

platoons in the east).
6. Blue centers his forces in the north west corner of the terrain.
7. The blue force succeeds to hold off 3 red platoons from the east zone while suffering minor

losses.
8. Red breaches the blue area in the center zone and destroys all blue troops not located in the

northwest corner.
9. Red organizes his troops for final assault on the remaining blue forces and eventually destroys

the last blue tank in the area.

in a military high intensity conflict. The gradual improve-
ment of the trainees is inline with the objectives of training,
and this improvement was indicated not only by the binary
outcome of the training sessions, but also by the quality of
actions the trainees learned to select from session to session.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Balla, R., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In IJCAI.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Kott, A.; Budd, R.; Ground, L.; Rebbapragada, L.; and
Langston, J. 2005. Building a tool for battle planning:
Challenges, tradeoffs, and experimental findings. Applied
Intelligence 23(3):165–189.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote Agent: To boldly go where no AI system
has gone before. AIJ 103(1-2):5–47.
Tate, A.; Levine, J.; Jarvis, P.; and Dalton, J. 2000. Using
AI planning technology for army small unit operations. In
AIPS.
Wilkins, D., and Desimone, R. V. 1992. Applying an
AI planner to military operations planning. In Intelligent
Scheduling, 685–709. Morgan Kaufmann.
Wu, G.; Chong, E. K. P.; and Givan, R. 2002. Burst-level
congestion control using hindsight optimization. IEEE
Transactions on Automatic Control 47(6):979–991.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In AAAI, 1010–1016.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS, 352–359.


