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Abstract

This paper presents a method for the development of systems
composed of communicating components that satisfy time
constraints, by stepwise refinement. The main result is the
formal proof of correctness of a refinement with time con-
straints. The method is illustrated by some examples. It is is-
sued from studies on real-time embedded systems, but should
apply to the specification of other execution-related metrics
and is compatible with other development methods which fo-
cus on different criteria.

1 Introduction
One particularly important aspect of the development pro-
cess of systems is formally coupling design and verifica-
tion of timing constraints. Such constraints, that concern
the whole system, must be broken into smaller constraints
for each subsystem – a process which when done by hand
is difficult and error-prone. Refinement-based development
methods are particularly well-suited to this task. In this pa-
per we propose such a formalism, building on Moore ma-
chines (Moore 1956), that allows to build systems under
timing constraints bearing on both communications and sub-
systems. If the specification used in a development process
is compatible with our formalism, i.e. a specification can
be automatically translated into such a machine, then cor-
rectness of refinement w.r.t. constraints can be proved, and
modules can be developed independently.

Related work. There are many formal methods for spec-
ifying and developing systems made of communicating
agents. They address a wide range of problems: specify-
ing the concurrent aspects (Bolognesi and Brinksma 1987;
Sifakis 2009), the algorithmic aspects (Nielsen et al. 1988)
and the temporal aspects (Alur and Dill 1994) of the sys-
tems; helping the developer by enforcing incremental meth-
ods, and verifying the correctness of the result with regard
to the specification with a varying degree of automation.

Our work was inspired by the specification and verifica-
tion of real-time systems (David et al. 1998). A compo-
sitional verification of systems using Moore machines was
given by (Clarke, Long, and McMillan 1989). Our speci-
fication formalism based on a notion of reaction time was

inspired by the literature on information flow analysis (Bar-
buti, Bernardeschi, and De Francesco 2002) and by the lit-
erature on the category-theoretic view of process algebras
(Meng and Barbosa 2006).

2 Enforcing constraints in refinement-based
development

Our specification formalism models programs as finite-
state transducers known as Moore machines (Moore 1956).
Timed Moore machines are then defined as Moore machines
enriched with information on reaction time. They will be ab-
breviated TM-machines or simply machines when the con-
text is unambiguous. We then give their composition laws
and the definition and properties of their refinement.

2.1 Timed Moore machines
In the rest of the paper, we will assume the existence of
some basic data types, among which finite integers int and
booleans bool = {tt ; ff }. The set of data types is the
free monoid ⟨Type,×⟩ generated by these finite sets and
closed under cartesian product. Thus, our data will be vec-
tors of fixed dimension. The neutral element of Type is
the singleton set 1 = {⋆} (up to isomorphism). We will
work up to the isomorphisms (a, b) ↦ (b, a), (⋆, x) ↦ x,
(x,⋆) ↦ x and associativity. These isomorphisms can be
extended to sequences of data (words), set of sequences of
data (languages) and machines. Moreover, the pairing oper-
ation ⟨a, b⟩ can be extended to words of same length. As a
model of discrete duration, we will use the order on integers.

Moore Machines. We will first proceed to the defini-
tion of a plain Moore machine. A Moore machine m =
⟨IN,OUT,Q,Γ,E⟩ is defined as follows.

• The input and output alphabets are IN,OUT ∈ Type.
• The finite set of states Q (with a distinguished initial state
qinit) is labelled by Γ ∶ Q → OUT which associates to
each state its output data vector.

• The finite set of edges is E ⊆ Q× IN ×Q. We note p
i→ q

as a shorthand for (p, i, q) ∈ E. We also require that all
possible inputs must be accepted (this will be refered to
as the totality constraint).
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Figure 1: Example of unfolding.

This defines a Moore machine whose inputs and outputs are
tuples of fixed dimension. The positions on the tuples are
called informally “ports”. The set of Moore machines on
alphabets IN andOUT is noted IN ⇒ OUT . For instance,
a machine that has a couple of integers on input and boolean
for output has IN = int × int; OUT = bool. Input data will
be noted ⟨i0, i1⟩ ∈ IN , and output symbols b ∈ OUT .

The following figure is a first example of machine such
that IN = bool andOUT = {0,1}. The output data is drawn
inside nodes alongside the state name qa,b, and the input is
displayed on edges.

qa : 0 qb : 1

tt

ff

ff tt

This machines outputs the symbol 1 when it receives tt , and
it outputs 0 when it receives ff .

Run of a machine. A run is defined as in the case of a
plain non-deterministic finite-state machine. We recall here
some definitions. Let E be a set of edges and Q its un-
derlying set of states. A finite run is a word of the shape
q0in0q1in1 . . . innqn belonging (roughly) to the transitive
closure E+ of the transition relation E. Such a run defines
an output word Γ(q0).Γ(q1) . . .Γ(qn) associated to the in-

put word in0 . . . inn. We will note q0
wiÐ→
wo

+
qn a run with

input word wi and output word wo going from q0 to qn. Let
RunsE ∶ Q × IN∗ → ℘fin(E+) the function which asso-
ciates to any state the set of maximal runs associated to a
finite sequence of inputs (for a fixed set of edges E).

Unfoldings. As a mean to display our definitions in a more
graphic way, we will use unfoldings (also called synchro-
nization trees (Winskel 1984)) as canonical representatives
of bisimulation classes. Informally, the infinite unfolding
of a machine from a state q is a finitely branching, infinitely
deep tree whose nodes correspond to states and whose edges
are the possible transitions between states. Thus, all finite
branches of an unfolding are finite runs and given an input
word, RunsE computes a sub-tree of the unfolding. Fig. 1
shows the unfolding of the machine depicted before.

Behavior of a machine In order to specify and verify
systems, it is essential to have a formal model which ab-
stracts away irrelevant details. Two different systems which

perform the same computation under the same constraints
should be equivalent in this model. Two such systems have
the same behavior. The classical way of defining equiva-
lence of state-transition machines is bisimulation.
Definition 1 (Bisimulation) Let m ∶ I ⇒ O be a machine.
Let p and q be two states of m. p and q are said to be bisim-
ilar if and only if p ∼ q. ∼ is the greatest relation s.t.:

p ∼ q ↔ Γ(p) = Γ(q) ∧
(∀p aÐ→ p′,∃q aÐ→ q′, p′ ∼ q′) ∧
(∀q aÐ→ q′,∃p aÐ→ p′, p′ ∼ q′)

The behavior of a machine in a given state is defined as the
bisimulation equivalence class it belongs to. Although not
technically useful for bisimulation, the ability to quantify
differently over the data coming from different ports will be
crucially used when treating the negation of bisimulation.

Reaction time. Specification of reaction time guarantees
a functionally dependent reaction to an input in bounded
time. Many verification methods only check for the oc-
currence of some particular events (e.g. sending a mes-
sage) after receiving an input – property which is not suf-
ficient to entail a functional dependency on a critical data
path. As a trivial example, consider a program which pe-
riodically emits a randomly generated message; or another
program which ignores some of its incoming orders. We
make functional dependency formally explicit and study
how to bound the time of a functionally dependent output.
In this paper, this idea is applied to Moore machines, but
the concept of reaction time could be investigated in other
formalisms, such as timed automata (Alur and Dill 1994;
David et al. 2010).

Reaction to an input is a purely observational quality of
a system, and should not rely on particular implementation
methods. We will first define reaction to an input; this defi-
nition will then be enriched to take into account a bound on
the number of transitions needed to observe a reaction. A
extensive study of these concepts can be found in (Garnier
et al. 2011).
Discriminating states and inputs. Characterizing con-
stantness for a total function f is straightforward: if the re-
sult of applying its whole input domain results in a single
point in the codomain, we know that f is constant. Dually,
if there exists two inputs i1 /= i2 such that f(i1) /= f(i2) then
f is non-constant. We thus define discriminating reaction to
inputs as non-constantness w.r.t. an input, i.e. functional de-
pendency. However, in the setting of automata theory this
corresponds to the negation of bisimilarity.
Definition 2 (Non-bisimilarity) Let m ∶ I ⇒ O be a ma-
chine. Let p and q be two states of m. p and q are said to be
non-bisimilar if and only if p ≁ q, where ≁ is the following
inductively defined relation:

BASE
Γ(p) ≠ Γ(q)

p ≁ q
IND

∃p aÐ→ p′,∀q aÐ→ q′, p′ ≁ q′ ∨ ∃q aÐ→ q′,∀p aÐ→ p′, p′ ≁ q′
Γ(p) = Γ(q)

p ≁ q
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Figure 2: Non-discriminating and discriminating states.

The extension to multiple ports can be found in Sec. 2.1.
A machine can be seen as a relation extended in time

(Abramsky 1996). We can thus write a very similar defini-
tion for the predicate RQ which characterizes states which
are discriminating w.r.t. their next input: if there exists two
different inputs such that the reached states are not equiva-
lent, the state is discriminating.
Definition 3 (Discriminating states, separating pairs)
Let m ∶ I ⇒ O be a machine. Let r be a state of m. The fact
that r is reactive is noted RQ(r).

RQ(r) ≜ {r ∣ ∃inp /= inq ∈ I, (∃r
inp→ p,∀r

inq→ q, p ≁ q)} .

Such input symbols (inp, inq) are the separating pairs of
state r. A separating pair of a state r is deterministic iff:

∃inp /= inq ∈ I, (∀r
inpÐÐ→ p,∀r

inqÐÐ→ q, p ≁ q).

It will be shown that deterministic separating pairs are pre-
served by the refinement operation. The set of separating
pairs of a state r is noted SP(r), and the set of determin-
istic separating pairs is DSP(r). Given two states p, q,
(in1, in2) ∈ SP(r) ∩ SP(r) is a strongly separating pair
of (p, q) (noted SSP(p, q)) iff:

(∃p in1→ p′,∀q in2→ q′, p′ ≁ q′) ∨ (∃p in2→ p′,∀q in1→ q′, p′ ≁ q′).

Having (in1, in2) ∈ SSP(p, q) implies that (in1, in2) is
also a separating pair of the set-theoretical union of the
transitions of p and q. The subset constituted of determinis-
tic separating pairs is noted DSSP(p, q).

Fig. 2 shows two machines. In the topmost one, the initial
state q0 has all its successor states in the same bisimulation
class. Hence, any input data read from q0 will have no im-
pact on the future of the execution of this machine. In the
lowest one, this is not the case; state q0 discriminates its in-
puts, thanks to the strongly separating pair (tt, ff). In the
rest of the paper, as an abuse of language, we will use the
term “reactive” instead of “discriminating” since it conveys
the core of our idea.

Reaction time and separators. Reaction time is a finer-
grained notion of reactiveness. Letm ∶ I ⇒ O be a machine.
Let’s assume that the state r of m is reactive. This implies

the existence of at least two transitions r
inpÐÐ→ p and r

inqÐÐ→ q
s.t. inp /= inq and p ≁ q. Any constructive proof of p ≁ q
yields a pair of separating runs runp, runq labelled by an
input word w s.t. runp ∈ RunsE(r, inp.w) and runq ∈
RunsE(r, inq.w):

runp = r
inp.wÐÐÐÐ→
outp.op

+
pt runq = r

inq.wÐÐÐÐ→
outq.oq

+
qt.

These runs are such that op /= oq . The input wordw is called
a separator, and we say that p and q are separable. The pair
(op, oq) is an observable effect induced by the correspond-
ing separating run at time ∣w∣. This notion has a graphic rep-
resentation in terms of unfoldings: it amounts to perform-
ing a bounded-depth comparison on sub-trees. Fig. 3 shows
two unfoldings of two different states. The fact that they
are non-bisimilar is proved by the existence of two separa-
tors (although one would suffice) of length two and three, as
emphasized by the dotted paths. The observable effects are
respectively (8,3) at time 2 and (1,3) at time 3.

A separator w is deterministic when all its runs runp ∈
RunsE(r, inp.w) and runq ∈ RunsE(r, inq.w) are sepa-
rating (i.e. correspond to a proof of p ≁ q). The set of de-
terministic separators of p and q will be noted DS(p, q) A
pair of states (p, q) is strongly separable if all infinite in-
put words are prefixed by a deterministic separator of (p, q).
This implies the occurrence of an observable effect in finite
time. Together with the fact that the set of edges is finite,
this implies the finiteness of DS(p, q). The fact that (p, q)
are strongly separable will be noted p� q.

Let p, q be two states s.t. p � q. In this setting, an ob-
servable effect (op, oq) at time t is deterministic iff all input
words of w of length t generate this observable effects, i.e.
all runs are s.t.:

p
wÐÐÐÐ→

outp.op

+

pt q
wÐÐÐÐ→

outq.oq

+

qt.

This defines a partial function diffO ∶ Q × N ⇀ O × O
which possibly maps an deterministic observable effect to a
state and a number of transitions. In a similar fashion, it is
possible to define a function DSPseqI ∶ Q ×N → ℘fin(I ×
I) associating a set of deterministic strongly separating pairs
to a state and a number of transitions. DSPseqI(q, t) is de-
fined by computing the intersection of all the deterministic
strongly separating pairs reachable in t transitions from q
(Garnier et al. 2011). Together, diffO and DSPseqI com-
pute a deterministic and linear under-approximation of the
behavior of a machine.

We can now define the notion of reaction time of a state.

Definition 4 (Reaction time) Let m ∶ I ⇒ O be a machine.
The reaction time of a state w.r.t. an input is the maximum
number of transitions that must be performed to see the first
observable effect arise. Let q ∈ Q be a state s.t. RQ(q)
holds and s.t. for any separating pair of inputs to a pair of
states (q1, q2), we have q1 � q2. We noteRT (q) = t the fact
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Figure 3: Example of bounded non-bisimilarity on unfold-
ings.

that q has a reaction time of t transitions, where:

RT (q) =max{∣w∣ ∣ (a1, a2) ∈ DSP(q), q
a1→ q1, q

a2→ q2,
w ∈ DS(q1, q2)}

Multiple input-output ports. The previous definitions
only address the case of machines whose interface is struc-
tured in one input port and one output port. We can gen-
eralize these definitions to a more general setting. Let
m ∶ I1 × I2 ⇒ O1 × O2 be a machine with input and out-
put ports structured such that we only want to consider the
reaction time (i.e. the deterministic separators) from I1 to
O1. A deterministic separator w ∈ DSI1,I2 can either be
existential, if there exists a word on I2 s.t. w exists; or uni-
versal, if w exists for all words on I2. Both kinds are useful,
but in order to ensure compositionality we are interested in
universal deterministic separators.

However, enumerating all contexts in order to find these
separators is cumbersome. Working on the projection of the
relevant data on the whole machine (i.e. when erasing the
data on irrelevant ports) would be more lightweight. Projec-
tion on machines is defined as the extension of projections
on data. If m = ⟨A × I,B ×O,Q,Γ,E⟩, then the projection
of m on I ⇒ O is defined as

πI⇒O(m) = ⟨I,O,Q,πO ○ Γ,{(p, πI(i), q)∣(p, i, q) ∈ E}⟩.
Deterministic separators on the projection are a subset of
the universal deterministic separators. We can thus soundly
restrict our attention to machines with one input port and one
output port. The proof is out of the scope of this paper.

2.2 Composition of machines
Given two machines with their respective types, there are
at least two ways to present their composition: we can ei-
ther give explicitly a communication network as a graph, or
we can give an algebra of composition operations on ma-
chines. We choose the latter solution. (Clarke, Long, and
McMillan 1989) use explicit port names and their composi-
tion operation performs both parallel composition and com-
munication. We opt for a more category-theoretical view

(Abramsky 1996). Our operations are parallel composition
and feedback (sequential composition can be recovered from
feedback). These operations allows us to build more com-
plex systems from simpler ones. In (Garnier et al. 2011),
we have shown that reaction time is not compositional in
general, but that a sound under-approximation of it can be
computed and easily composed. This under-approximation
relies on deterministic separators and deterministic separat-
ing pairs (which are themselves under-approximated by de-
terministic separators on projections). We will thus consider
these notions in the following developments. We will only
sketch the process of composition, as the formal definitions
and associated proofs can be found in (Garnier et al. 2011).

Parallel composition. Let m1 ∶ A1 ⇒ B1 and m2 ∶ A2 ⇒
B2 be two machines:

mx∈{1,2} = ⟨Ax,Bx,Qx, qinit,x,Γx,Ex⟩.
The parallel composition is m1 ∥ m2 ∶ A1 × A2 ⇒ B1 ×
B2. It is computed as a standard synchronous product of
automata: there is no inter-communication between the two
machines. The resulting signatures are the cartesian product
of the sub-components. Parallel composition does not alter
the temporal behavior of its sub-components. The machine
m1 ∥m2 is computed as follows.

Q∥ = Q1 ×Q2, qinit,∥ = (qinit,1, qinit,2)
E∥ = {((q11, q21), ⟨input1, input2⟩, (q21, q22)) ∣

(q1i, inputi, q2i) ∈ Ei}
Γ∥(q1, q2) = ⟨Γ1(q1),Γ2(q2)⟩

Feedback. The feedback operation redirects the data of an
output port to an input port. By creating new computation
paths in the composite machine, the feedback operation can
alter its reaction time. For instance, if there is no separator
on an input-output port pair (e.g. in the case of a parallel
composition), the feedback will allow to compute a new re-
action time by summing the reaction time of the start state
with the reaction times of the intermediate states (only if
their composition guarantees a functional dependency).

Feedback definition. Letm ∶ I×U ⇒ O×U be a machine:
m = ⟨I ×U,O ×U,Qm, qinit,m,Γm,Em⟩.

The operation of connecting an output of m to an input of
identical type U is feedbackU ∶ (I×U ⇒ O×U) → I ⇒ O.
Performing the feedback restricts the set of edges to those
compatible with the data emitted on the output component
U . The feedback is defined below.
Qfb = Qm qinit,fb = qinit,m Γfb = Γm

Efb = {(q, πA(input), q′) ∈ Em ∣ πU(input) = πU(Γm(q))}

Observe that the totality constraint (cf. Sec. 2.1) is still
respected on the resulting machine: the feedback operation
only reduces non-determinism on I ⇒ O × U . Hence, pre-
vious deterministic separators on I ⇒ O still exist, as well
as deterministic separating pairs. New separators on I ⇒ O
can be computed by composing separators from I ⇒ U with
separators from U ⇒ O. This process of composition relies
on matching deterministic observable effects with determin-
istic strongly separating pairs.
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Figure 4: Reaction time computation.

Definition 5 (Composing observable effects) Let q be a
state of feedbackU(m). Let t be a number of transitions s.t.
diffU(q, t) = (o1, o2) and s.t. (o1, o2) ∈ DSPseqI(q, t +
1). Then, for all q′ reachable in t transitions (i.e. q →t+1 q′),
the observable effects common to all these states q′ also be-
long to q.

Example of feedback. Using feedback and parallel com-
position, it is possible to express sequential composition,
as shown in the following example. Let m1 and m2 be
two machines (cf. Fig. 4). The state p0 of m1 is re-
active with (tt , ff ) as deterministic separating pair and
diffint(p0,3) = (1,−1). Thus, the reaction time of p0 is 3.
The set of (deterministic) separators for p1 and p5 is all input
words of length 3, that is bool3. Thus, we have p1 � p5.

In m2, the states q0 to q3 of m2 are not reactive. State
q4 is reactive and has a reaction time of 1 for the determin-
istic separating pair (1,−1), with as separators all words of
length 1 with input alphabet int. Thus, q5 � q8 and we have
as only observable effect diff{a,b}(q4,1) = (a, b). The se-
quence of deterministic strongly separating pairs of p0 is

DSPseqint(q) = ∅.∅.∅.∅.{(1,−1)}.∅ . . .
We have trivially diffint(p0,3) ∈ DSPseqint(q,4), hence
we obtain diff{a,b}(p0,5) = (a, b) as compound observable
effect. We obtain the words of length ∣bool3∣ + ∣bool2∣ = 5 as
fresh deterministic separators.

Definition of the refinement relation. Our refinement re-
lation is a variation of simulation. We want a relation such
that whenever a machinem1 is refined by a machinem2, re-
activity is conserved. Unfortunately, plain separators are not
conserved by refinement, as well as separating pairs. The
reason is that refinement can break asymmetries arbitrarily
by suppressing transitions, making previously non-bisimilar
states bisimilar.

However, the totality constraint guarantees the conserva-
tion of the deterministic counterparts of the aforementioned
notions (cf. the universal quantifications in the definitions).
Since our definition of reaction time RT (q) is defined in
terms of deterministic separators and deterministic separat-
ing pairs, we can show that it is indeed preserved in a strong
sense by refinement: it monotonically decreases.

Letm1,2 = ⟨IN,OUT,Q1,2, qinit,1,2,Γ1,2,E1,2⟩ be two ma-
chines of identical types. The formal definition of the refine-
ment relation ≾∶ Q1 ×Q2 follows.

Definition 6 (Refinement) We say that q1 ∈ Q1 refines q2 ∈
Q2, noted q1 ≾ q2, when:

Γa(q1) = Γb(q2) ∧ ∀q1
inputÐÐÐ→ p1,∃q2

inputÐÐÐ→ p2, p1 ≾ p2.
Refinement is straightforwardly extended to machines: mb

refinesma, notedma ≾mb, iff qinit,a ≾ qinit,b. Note that the
validity of refinement is decidable. The proof that reaction
time can only decrease with refinement follows directly from
the fact that deterministic observable effects are preserved
(by definition of deterministic observable effects, all input
words, hence all runs, generate them).

Refinement is a congruence. When the developer per-
forms a refinement, it is often a local modification of an
earlier design. It may be too costly to recompute the whole
machine (by performing the parallel compositions and feed-
backs) just to check the correctness of this local modifica-
tion. We want local modifications to have a local impact,
and this behavior arises when the refinement relation is a
congruence, i.e. it commutes with any context. In our case,
the contexts C for a machine m are defined inductively as:

C[m] ∶∶= m
∣ ∀U, feedbackU(C[m])
∣ ∀m′,m′ ∥ C[m]
∣ ∀m′,C[m] ∥m′

Of course, in this definition, all the well-formedness con-
straints are supposed respected. We can now state our theo-
rem:
Theorem 1 Refinement is a congruence.

∀ma,mb, ma ≾mb → ∀C,C[ma] ≾ C[mb]
The proof proceeds straightforwardly by induction on

contexts.

2.3 Specification mechanism
We have defined a notion of reaction time and seen how it
is preserved under composition. In order to use it during
development, we propose a small specification language re-
lying on reaction time. As noted in Sec. 2.1, reaction time
on a input-output port pair (I,O) can be conditional to some
other value on an input port I ′. The language is presented as
a propositional logic where atoms are timing constraints of

the shape Guard→ I
d↝ O where I is an input port, O is an

output port d is a duration and Guard is a set of equations
of the shape I ′ = value. The guard can of course be empty.

The set of formulas φ is defined inductively: φ ∶∶=
Guard → I

d↝ O ∣ φ0 ∧ φ1 ∣ φ0 ∨ φ1. A formula of the

form Guard → I
d↝ O is true on a state q if and only

if ∃t ≤ d, q ∈ RTI,O(t) under the additional assumptions
of Guard. The validity of an arbitrary formula follows
straightforwardly.

2.4 Abstraction of machines
In practice, it is difficult to develop and verify machines with
large state-space, for algorithmic complexity reasons. It is
useful to investigate the behavior of our definitions when
we abstract our state transition system (Cousot and Cousot
1976).
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Abstract alphabets. An abstraction is the data, for each
basic datatype Σ0, of an abstract lattice Σ1 and of a galois
connection Σ0

α
⇄
γ

Σ1 where α ∶ Σ0 → Σ1 and γ ∶ Σ1 →

℘fin(Σ0). An abstract value denotes a set of concrete val-
ues. The order relation of the lattice is the abstraction of
set inclusion on the powerset of the concrete alphabets. The
various properties of galois connections are explained in e.g.
(Schmidt 1995; Cousot and Cousot 1992).

Abstract machines. The abstraction and concretization
function on alphabets can be lifted to machines. An abstract
machine is a Moore machine using abstract alphabets. Let
⟨IN1,OUT1,Q1,Γ1,E1⟩ be an abstract machine. The cor-
responding set of concrete machines is:

{⟨IN0,OUT0,Q0,Γ0,E0 ∣ Q0 = Q1 ∧
∀q,Γ0(q) ∈ γ(Γ1(q)) ∧
∀(p, in1, q),∀in0 ∈ γ(in1), ∃(p, in0, q) ∈ E0}.

Soundness of abstraction w.r.t. reaction time In this set-
ting, an abstract separator w for two abstract states p, q is an
abstract word s.t. for all possible abstract machines, the two
states are still separable by a word of length less than ∣w∣.
It can be shown that abstract deterministic separators allow
to overapproximate reaction time as defined in our frame-
work. The full formalization is out of scope. We will now
assume that we can safely develop and verify using approxi-
mated data types (e.g. intervals instead of integers, booleans
extend with undefined value, etc).

3 Example: the steam-boiler
This section contains an example of refinement-based de-
velopment using our formalism. This example comes from
the real-time domain, but it is meaningful since it shows a
development process for actions that have time constraints.
We will first proceed to the definition and explanation of
some syntactical extensions, then we will give an informal
overview of the problem, and we will proceed to the devel-
opment itself.

3.1 Syntactical extensions.
We will use explicit port names instead of the positional no-
tation used previously (these are equivalent). While defining
machines, We will also use variables which will be assigned
on transitions. Assignment of a value v to a variable x will
be noted x ∶= v. Accessing the value of the variable will

be noted !x. Also, we will assume that data types are en-
dowed with lattice-like structure (in particular, we will use
the semi-lattice of booleans tt , ff ≤ ⊺, meaning that ⊺ is an
undefined value). Our definitions are sound relatively to the
extensions to lattices. Together, these extensions do not in-
crease the expressive power of our formalism, but they will
allow us to reduce the state space of machines.

3.2 Informal specification of the steam-boiler.
Our example is inspired from the specification given in
(Abrial 1996). The whole system is composed of a physical
system and of a computer program (which we must develop)
whose task is to control and monitor the physical system.

Physical components of the steam-boiler. The steam-
boiler is a device which inputs water, heats it and outputs
steam. It is composed of the parts described thereafter.
• The steam-boiler itself is a water tank characterized by

its critical maximal water level Lc, its nominal maximal
water level Ln, its current water level Lvl and the amount
of steam being produced V . Lc, Ln and Lvl are in litres;
V is in litres/unit of time.
If Lvl ≥ Lc for 5 units of time or more, the steam-boiler
physical integrity is endangered.

• The water is poured into the steam-boiler by two water
pumps whose functioning mode is coupled. Their capac-
ity is each of ls litres/unit of time. Water pumps can stop
functioning, in which case they emit an appropriate mes-
sage. For simplicity’s sake, we assume that the pumps can
be turned on or off immediately.

Overview of the control program. The program’s main
task is to ensure that the level of water does not exceeds Lc.
The program must also handle pump failures. It features the
following functioning modes:
• initialization (INIT),
• normal functioning mode (NORMAL),
• degraded functioning mode (DEGRADED),
• emergency stop (EMERGENCY STOP).

The INIT mode. The control unit is in an active waiting
state until it receives the message SB WAITING (“steam-
boiler waiting”) from the physical unit. It then checks that
the quantity of steam produced V is equal to 0. If not, it
indicates a physical malfunction and the program enters the
EMERGENCY STOP mode. If V = 0, the control unit sends
a message PROGRAM READY (“program ready”) to the
physical unit and waits for the message PU READY (“phys-
ical unit ready”). When PU READY is received, the control
units enter the NORMAL functioning mode.

The NORMAL mode. In this mode, the control unit task
is to adjust the quantity of water Lvl so that it does not go
above the critical level Lc. The target level of water is Ln.
The quantity of water is adjusted by turning on or off the
pumps. This process is activated periodically. When a mes-
sage PUMP FAILURE is received, it means that one of the



pumps has ceased functioning, altering the quantity of water
flowing into the steam-boiler. In this case, the control unit
goes into DEGRADED mode. Whenever the critical Lc level
is reached, the control unit goes into EMERGENCY STOP
mode.
The DEGRADED mode. This mode is similar to the
NORMAL functioning mode, except that it assumes that
only one pump is functioning. Whenever another
PUMP FAILURE message is received, or whenever the crit-
ical level is reached, the control unit goes into EMERGENCY
STOP mode.

The EMERGENCY STOP mode. Entering this mode shuts
down the physical system. This is handled by the physical
units. This mode is terminal: it is impossible to go to an-
other functioning mode. All these functioning modes are
organized as in the following diagram:

Init Normal Degraded

EmStop

init ok pump failure

init failure
physical risk

physical risk

ok ok

The physical system structure and interface is described
in Fig. 5.

3.3 The steam-boiler control program.
We recall the temporal constraints that the system should
respect: i) the level of water Lvl must not go above Lc for
more that five units of time, ii) the treatment performed by
NORMAL and DEGRADED must be periodic, iii) in the rest
of the paper, the “immediate” treatment of a message should
be understood as having an observable relation as soon as
possible. Our example starts with three machines, which are
described below.

First development step. Our machines are displayed as
automata enclosed in boxes. The input ports are at the left
of these boxes, and the output ports are at the right. State
names will be omitted when they are not needed. The tran-
sitions are labelled by input symbols, i.e. tuples drawn from
the alphabet of the machine (similarly for output symbols).
Timing constraints are contained in dashed nodes. For this
first development step, we display explicitly on edges and in
states to which port belongs the data. For space reasons, this
will not be the case in subsequent refinements.

• INIT handles the initialization. It inputs the boolean
messages SB WAITING and PU READY , as well as
the amount of steam V . It outputs a boolean message
PROGRAM READY to the physical system, a boolean
FM STARTUP message to the FUNCTIONING MODES
machine and a boolean message to the EMERGENCY
STOP in case of failure during the initialization. As can
be seen in Fig. ??, the starting point of this machine is a
state which inputs everything and inputs anything.

• FUNCTIONING MODES handles the NORMAL and DE-
GRADED modes. It inputs the current quantity of water
Lvl, encoded as a floating point value. It also inputs a

boolean message FM STARTUP allowing the machine to
start monitoring the physical system as well as a boolean
message PUMP FAILURE indicating a physical failure
in a pump. It outputs the functioning mode of the pump
as a boolean which is tt if the pumps must be started or
ff if they must be stopped. In case of physical risks, it also
emits a boolean message EM STOP .
Fig. 6 shows that this initial machine behavior is to wait
on the first state for the FM STARTUP message from
INIT. In this waiting state, it emits nothing. When this
message is received, the machine proceeds to some still
unknown computations, outputting possibly anything.

• EMERGENCY STOP is a software interface to the
physically-managed emergency stop. It receives boolean
messages EM STOP and let the physical system handle
its shutdown. We assume that all messages emitted to this
machine are correctly handled (i.e. no message is missed).

Refinement of INIT. The INIT machine is refined so as
to obey to its informal specification. The resulting machine
(Fig. 6) first waits for a SB WAITING message. Upon re-
ception of this message, it immediately checks for the error
condition: if V > 0, an EM STOP message is sent. Note that
the immediate treatment of this message should be manda-
tory to the receiver. This condition holds because of our
hypothesis on the machine EMERGENCY STOP.

If the error condition is not triggered, the machine emits a
PROGRAM READY message to the physical unit and waits
a PU READY message from it. When this message is re-
ceived, the INIT machine sends a message to be treated im-
mediately by FUNCTIONING MODES. It then goes into a
non-reactive state.

The fact that the original INIT machine is correctly refined
by any machine straightforwardly entails that this refinement
is correct. Moreover, the fact that mandatory messages are
well treated is verified by performing the synchronous prod-
uct of INIT and FUNCTIONING MODES: all states whose
component contains a mandatory message are reactive (ob-
serve that the initial state of FUNCTIONING MODES does an
active waiting on this very message).

Refinement of FUNCTIONING MODES. We proceed by
refining FUNCTIONING MODES into three sub-machines,
whose description follows.

• The NORMAL machine handles the normal func-
tioning mode. The machine actively awaits a
NORM STARTUP before proceeding to some non-
specified computations.

• The DEGRADED machine handles the degraded function-
ing mode. The behavior of this machine is almost identi-
cal to NORMAL’s, it will thus be omitted from our devel-
opments.

• The MODESWITCH machine handles the activation of the
NORMAL and DEGRADED modes, and also routes the
data produced by either one of them to the other machines
and the physical units. This machine actively waits for
a FM STARTUP message (sent by INIT). It then sends
a NORM STARTUP message to activate the NORMAL
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〈tt,>,>,>,>,>〉

〈>, tt,>,>,>,>〉

〈>,>,>,>,>,>〉

〈>,>,>,>,>,>〉

〈ff,>,>,>,ff,>〉
pumpmode := mode0

〈>,ff,>,>,>,>〉
pumpmode := mode1
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EM STOP
mode

Normal

Lvl
NORM STARTUP
PUMP FAILURE

〈>,>,>〉 〈>,>,>〉

〈>,ff,>〉

〈>, tt,>〉

〈>,>,>〉

mode0
EM STOP0

DEGR STARTUP REQ

Degraded

Lvl
DEGR STARTUP
PUMP FAILURE

〈>,>〉 〈>,>〉

〈>,ff,>〉

〈>, tt,>〉

〈>,>,>〉

mode1
EM STOP1

Figure 6: Refinement of INIT and FUNCTIONING MODES.



functioning mode. It then simply routes the data incoming
on the mode0 input port to the output mode port. When-
ever one of this data is a DEGR STARTUP REQ mes-
sage, it starts up the DEGRADED machine and proceeds to
routing its data. Starting the NORMAL and DEGRADED
machines is submitted to an immediate reactivity con-
straint, which are not verified at this refinement level.

First refinement of NORMAL. The informal description
of the NORMAL functioning mode specifies that the com-
putation is to be done periodically. We peform a design
choice by setting the period to 5 units of time. This directly
gives us the global structure of the machine (cf. Fig. 7).
After receiving a NORM STARTUP message from MOD-
ESWITCH, the NORMAL machine enters a state in which it
tests its inputs against still undefined conditions. These con-
ditions can also entail the emission of an EM STOP0 or
a DEGR STARTUP REQ message. We specify that:
on input-output ports Lvl of NORMAL to EM STOP of
MODESWITCH, state p1 must have a reaction time less that
2; on input-output ports Lvl of NORMAL to mode of MOD-
ESWITCH, if PUMP FAILURE is false then p1 must
have a reaction time less that 5; on input-output ports Lvl
of NORMAL to DEGR STARTUP of MODESWITCH, if
PUMP FAILURE is true then p1 must have a reaction
time less that 5; from state qes, there must be an immediate
observable reaction in port EM STOP of MODESWITCH;
from state qdeg , there must be an immediate observable reac-
tion in port DEG STARTUP of MODESWITCH. None of
these constraints are verified at this point of the refinement.

Last refinement of NORMAL. This last refinement en-
riches the preceding one by defining the control flow.
The machine enters its control loop after receiving a
NORM STARTUP message. It always assumes a maxi-
mal behavior of the physical system. The quantity of water
poured in n units of time while in NORMAL mode is n.2.ls:
as shown in Fig. 7, this is taken into account when test-
ing Lvl. Moreover, when an message PUMP FAILURE be-
comes visible and the integrity of the system is guaranteed,
the NORMAL machine sends a request to activate the DE-
GRADED mode and goes into a non-reactive state. In order
to illustrate our formalism, we will prove the partial cor-
rectness of this final refinement. The simulation relation is
{(qx, px) for all x}. Let’s consider Lvl

2↝ EM STOP :
if PUMP FAILURE = ff , we can exhibit transitions

q1
⟨x,⊺,⊺⟩
ÐÐÐÐ→ qes and q1

⟨y,⊺,⊺⟩
ÐÐÐÐ→ q2 s.t. x + 2ls ≥ Lc, y +

2ls < LC and πEM STOP0(Γ(qes)) /= πEM STOP0(Γ(q2)).
If PUMP FAILURE = tt , we can exhibit transitions

q1
⟨x,⊺,⊺⟩
ÐÐÐÐ→ qes and q1

⟨y′,⊺,⊺⟩
ÐÐÐÐ→ qdeg with similar properties.

Hence, for all contexts, state q1 is reactive from port Lvl to
port EM STOP0 in time 0, i.e. with a separator of length
0. Moreover, state qes verifies an immediate reactivity con-
straint as can be checked by performing the composition of
the involved machines. This implies that state p1 is reac-
tive in one unit of time. The other constraints are verified
similarly.

We have exposed the stepwise development of a steam-
boiler control program. The three initial temporal con-

straints on reaction time and periodicity were decomposed
into 8 constraints on reaction time, using four steps of re-
finement.

4 Conclusions and future works
We have described in this paper a formal framework dedi-
cated to the time-based refinement of communicating sys-
tems modeled as Moore machines. The framework allows
reasoning on the notion of reaction time, but is extensible to
other metrics by associating to each transition an arbitrary
cost, e.g. energy consumption. This allows to assess the
cost of computation paths statically, which in turns may al-
low more precise schedules and more accurate and robust
plans. Our refinement relation supports local modifications,
allowing scalable verification and the independent develop-
ment of modules. In order to illustrate our method, we also
sketched an example which also emphasizes the applicabil-
ity of our method to safety related real-time systems. More-
over, our method being based on finite state machines allows
the application of all standard model-checking techniques to
the verification of other properties.

An important observation we made is that functional de-
pendencies are only weakly compositional (Garnier et al.
2011). Our framework is thus quite restrictive. Enrich-
ing specifications in order to make it more flexible would
prove fruitful. Our work opens some other research direc-
tions: a broader investigation of the notion of reaction time
in a more general setting (Haghverdi, Tabuada, and Pappas
2005) could prove fruitful and lead to simpler, more abstract
and general definitions.

We provide a formal development framework based on
time and associated automated verification tools which
should be able to help the software designer and program-
mer to deliver reliable, predictable and efficient systems.
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