
A Loop Acceleration Technique to Speed Up Verification of
Automatically-Generated Plans

Robert P. Goldman and Michael J.S. Pelican and David J. Musliner
SIFT, LLC

211 N. First St.
Minneapolis, MN 55401

{rpgoldman,mpelican,musliner}@sift.net

Abstract
The CIRCA planning system automatically creates reactive
plans and uses formal verification techniques to prove that
those plans will preserve system safety.CIRCA’s timed au-
tomata verification system is highly efficient, yet can dis-
play pathologically bad behavior when reasoning about re-
action loops, a particular form of interacting cycles of states.
In this paper we describe a loop acceleration technique that
recognizes these state space structures during the verification
process and bypasses the process of expanding an arbitrarily
large cycle of states, effectively compressing any size loop
into a compact, finite set of states. The resulting performance
improvement can be very dramatic: in domains where tight
loops of short-duration transitions interact with long-duration
transitions, our new loop acceleration methods can reduce
verification time (and hence planning time) from hours to be-
low a second.

Introduction
The ability to automatically prove reachability properties of
programs or plans have many applications in computer sci-
ence, including safety proofs for plans generated by classical
planning systems. Although intractable in the worst-case,
algorithmic improvements and modern computing hardware
have made these model-checking techniques practical for
larger and larger problems. We describe a specific challenge
to existing model-checking algorithms for timed automata
and a practical solution to many instances of this challenge.

The problem arises when state transitions of greatly dif-
ferent temporal latencies create interacting cycles of states.
This problem was first described by Hune (2000) and
Iversen (Iversen et al. 2000) in the context of verifying
real-time controllers for LEGO R© MindstormsTM robots.
In some cases where two transition cycles apply to the
same plan state, the shorter duration transition can “frag-
ment” (Hendriks and Larsen 2002) the larger transition, cre-
ating an explosion in the number of states considered by the
verifier.

CIRCA Background
CIRCA’s planning system contains two main modules of in-
terest for this paper: a Controller Synthesis Module (CSM)

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that reasons about time-abstract states to plan actions, and a
Verifier that reasons about partial and complete plans to en-
sure that they meet logical and timing safety requirements.
In this section, we briefly sketch these functional modules
and describe an example problem that we will carry through-
out the paper, to clarify how CIRCA uses model verification
in the context of automated planning and how the loop ac-
celeration technique speeds up model verification.

State Space Planning
Unlike traditional AI planners, CIRCA reasons about uncon-
trollable processes including adversaries, and metric, con-
tinuous time. The CSM takes in a description of the pro-
cesses in the system’s environment, represented as a set of
time-constrained transitions that modify the value of world
features. Discrete states of the system are modeled as sets
of feature-value assignments. Transitions have precondi-
tions, describing when they are applicable, and bounded de-
lays, capturing the temporal characteristics of controllable
processes (i.e., actions) and uncontrollable processes (i.e.,
world dynamics). For example, Figure 1 shows several tran-
sitions from a CIRCA problem description for controlling
the Cassini spacecraft during Saturn Orbital Insertion (Gat
1996; Musliner and Goldman 1997). The transition descrip-
tions, together with specifications of initial states, implicitly
define the set of possible system states. The CSM is re-
sponsible for deciding, in each state, what action the system
should take to maintain system safety and drive the system
towards its goals. For example, Figure 2 illustrates a small
portion of the Saturn problem’s state space, after the CSM
has made only its first few decisions about how to control
the system.

The CSM reasons about both controllable and uncontrol-
lable transitions:
Action transitions represent actions selected by CIRCA;

the CSM’s objective is to assign an action to each reach-
able state. In Figure 2, a dashed arrow shows that the
system has chosen the action start_IRU2_warm_up
in the initial state zero. The special ’do nothing’ action
“no op” can be assigned. Associated with each action is
a worst case execution time, an upper bound on the delay
before the action occurs.

Temporal (uncontrollable) transitions represent uncon-
trollable processes. Associated with each temporal

ACTION turn_on_main_engine ;; Turning on the main engine
PRECONDITIONS: ’((engine off))
POSTCONDITIONS: ’((engine on))
DELAY: <= 1

EVENT IRU1_fails ;; Sometimes the IRUs break without warning.
PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’((IRU1 broken))

;; If the engine is burning while the active IRU breaks,
;; we have a limited amount of time to fix the problem before
;; the spacecraft will go too far out of control.
TEMPORAL fail_if_burn_with_broken_IRU1

PRECONDITIONS: ’((engine on)(active_IRU IRU1) (IRU1 broken))
POSTCONDITIONS: ’((failure T))
DELAY: >= 5

Figure 1: Example transition descriptions given to CIRCA’s CSM.

State 8
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)

State 6
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)

turn_on_main_engine warm_up_IRU2

State 3 **
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)

start_IRU2_warm_up

State 0
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)

Figure 2: The beginning of a state space plan for Saturn
Orbit Insertion.

transition is a lower bound on its delay. If the precon-
ditions hold true for at least this time, the transition
may fire and enforce its postconditions. If a temporal
transition leads to an undesirable state, the CSM may
plan an action to preempt the temporal by ensuring that
the action will definitely occur before the temporal could
possibly occur. Transitions whose lower bound is zero
are referred to as events, and are handled specially for
efficiency reasons. Transitions whose postconditions
include the distinguished proposition (failure T)
are called temporal transitions to failure (TTFs).

Reliable temporal transitions represent continuous pro-
cesses that may need to be employed by the CIRCA agent.
Reliable temporal transitions have both upper and lower
bounds on their delays. For example, when CIRCA turns
on an Inertial Reference Unit it initiates the process of
warming up that equipment; the process will definitely
complete if it is continued without interruption for some
time, as shown by the solid arrow leaving state 3 in Fig-
ure 2.

Note that each transition is an implicit description of
many transitions in an automaton model. Each of these tran-
sitions is enabled in any discrete state that satisfies its pre-
conditions, and disabled everywhere else.

Algorithm 1 (Controller Synthesis).

1. Choose a state from the set of unplanned reachable states
(at the start of state space planning, only the initial states
are reachable).

2. For each uncontrollable transition enabled in this state,
choose whether or not to preempt it. Transitions that lead
to failure states must be preempted. The CSM creates a
boolean constraint variable for the preemption decision
for each of these uncontrollable transitions.

3. Choose a single control action or no-op for this state.
4. Invoke the verifier to confirm that the (partial) controller

is safe (see below for a discussion of how the verifier is
invoked on partial controllers). “Safe,” here is defined as
“does not make any transitions to the distinguished fail-

ure state” and “successfully enforces all of the preemp-
tion decisions made in Step 2.”

5. If the controller is not safe, use a counterexample from the
verifier to direct backjumping and goto step 1 (Goldman,
Pelican, and Musliner 2004).

6. If the controller is safe, recompute the set of reachable
states.

7. If there are no unplanned reachable states (reachable
states for which a control action has not yet been chosen),
terminate successfully.

8. If some unplanned reachable states remain, loop to step 1.

The search algorithm maintains the decisions that have
been made, along with the potential alternatives, on a search
stack. The algorithm makes decisions at two points: step 2
and step 3. Preemption decisions are boolean: the algorithm
can choose to require preemption or not, for each uncontrol-
lable transition leading out of a state. The set of alternative
action choices for a state is dependent on the domain de-
scription and several pruning heuristics that eliminate appli-
cable but inappropriate actions from consideration.

The CSM uses the verifier to confirm both that failure is
unreachable and that all the chosen preemptions will be en-
forced. The CSM uses the verifier module after each assign-
ment of a control action (see step 4). This means that the
verifier will be invoked before the controller is complete. At
such points we use the verifier as a conservative heuristic by
treating all unplanned states as if they are “safe havens.”1

Unplanned states are treated as absorbing states of the sys-
tem, and any verification traces that enter these states are
regarded as successful. Note that this process converges to
a sound and complete verification when the controller syn-
thesis process is complete. When the verifier indicates that
a controller is unsafe, the CSM will query it for a path to the
distinguished failure state. The set of states along that path
provides a set of candidate decisions to revise, as discussed
in (Goldman, Pelican, and Musliner 2004).

Formal Underpinnings
In this section, we provide a mathematical description of a
plan and briefly introduce the corresponding timed automa-
ton model and algorithms used for formal safety verification.

The search described by the planning algorithm is con-
ducted to create a plan

Definition 1 (CIRCA plan graph). plangraph = 〈S,E,
→
F

,
→
V , φ, I, T, ι, η, p, π〉 where

1. S is a set of states.
2. E is a set of edges.
3.

→
F= [f0...fm] is a vector of features (in a purely proposi-
tional domain, these will be propositions).

1This is a conservative heuristic in the sense that it is conserva-
tive about identifying search failures. Any failure that is detected in
this process is definitely a true failure (soundness), but the verifier
may fail to identify failures (incompleteness). At the limit, when
the control program is complete, the verifier will be both sound and
complete.

4.
→
V= [V0...Vm] is a corresponding vector of sets of values
(Vi = {vi0...viki}) that each feature can take on.

5. φ : S 7→
→
V is a function mapping from states to unique

vectors of value assignments.
6. I ⊂ S is a distinguished subset of initial states.
7. T = U ∪ A is the set of transitions, made up of an un-

controllable (U) subset, the temporals and reliable tem-
porals, and a controllable (A) subset, the actions. Each
transition, t, has an associated delay (∆t) lower and up-
per bound: lb(∆t) and ub(∆t). For temporals ub(∆t) =
∞, for events lb(∆t) = 0, ub(∆t) =∞.

8. ι is an interpretation of the edges: ι : E 7→ T .
9. η : S 7→ 2T is the enabled relationship — the set of tran-

sitions enabled in a particular state.
10. p : S 7→ A ∪ ε (where ε is the “action” of doing nothing)

is the actions that the CSM has planned. Note that p will
generally be a partial function.

11. π : S 7→ 2U is a set of preemptions the CSM expects.

In order to verify a partial CSM SSP graph, P , we trans-
late it into a timed automaton (TA) model, θ(P). θ(P) is the
product of a number of individual automata.

Definition 2 (Timed Automaton (Alur and Dill 1994)). A
timed automatonA is a tuple

〈
S,si,X ,L, E , I

〉
where S is a

finite set of locations; si is the initial location; X is a finite
set of clocks; L is a finite set of labels; E is a finite set of
edges; and I is the set of invariants. Each edge e ∈ E is
a tuple (s, L, ψ, ρ, s′) where s ∈ S is the source, s′ ∈ S is
the target, L ⊆ L are the labels, ψ ∈ ΨX is the guard, and
ρ ⊆ X is a clock reset. Timing constraints (ΨX) appear in
guards and invariants and clock assignments. In our models,
all clock constraints are of the form ci ≤ k or ci > k for
some clock ci and integer constant k. Guards dictate when
the model may follow an edge, invariants indicate when the
model must leave a state. In our models, all clock resets
re-assign the corresponding clock to zero; they are used to
start and reset processes. The state of a timed automaton is
a pair: 〈s, C〉. s ∈ S is a location and C : X → Q ≥ 0 is a
clock valuation, that assigns a non-negative rational number
to each clock.

It often simplifies the representation of a complex system
to treat it as a product of some number of simpler automata.
The labels L are used to synchronize edges in different au-
tomata when creating their product.

A timed automaton trace is a series of state transitions that
represents the computation of a timed automaton. Corre-
sponding to any timed automaton, A, is a transition system,
SA, with two types of transitions: time-elapse transitions
and jump transitions:

Definition 3 (Time-Elapse Transition). A time-elapse
transition, 〈s, C〉 t→ 〈s, C + t〉 can occur when for all t′
such that 0 ≤ t′ ≤ t, t′ satisfies the invariant I(s).

Definition 4 (Jump Transition). A jump transition,
〈s0, C〉

e→ 〈s1, C ′〉, for some e ∈ E can occur when C
satisfies the guard of e, ψ(e) and C ′ satisfies the reset of e
applied to C, ρ(e, C).

INIT
Guard: ()
Resets: (1 2 3 4)

RTA−Location 0
INIT
Invariant: ()

RTA−Location 1
FAILURE
Invariant: ()

#<ACTION start_IRU2_warm_up>
Guard: (c(1) >= 0)
Resets: (1 3)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

RTA−Location 2
SSP−State 0
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)
Invariant: (c(1) <= 1)

#<ACTION turn_on_main_engine>
Guard: (c(1) >= 0)
Resets: (1 2)

#<RELIABLE−TEMPORAL warm_up_IRU2>
Guard: (c(3) >= 45)
Resets: (1)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

RTA−Location 3
SSP−State 3 **
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: (c(1) <= 1 c(3) <= 60)

RTA−Location 4
SSP−State 8
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: uninitialized

RTA−Location 5
SSP−State 6
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)
Invariant: uninitialized

Figure 3: The timed automaton model corresponding to Fig-
ure 2.

Definition 5 (Time Quotient). The time quotient of a timed
automaton is a non-deterministic finite automaton whose
states correspond to the locations of the timed automaton,
and in which there is an edge e between s and s′ whenever
there exists s′′ and t such that s t→ s′′

e→ s′.

The CIRCA SSP graph is the time quotient of a TA model
of the corresponding plan. The translation of SSP graphs to
TA models is described in (Goldman, Musliner, and Pelican
2002).

Figure 3 illustrates the timed automaton model corre-
sponding to our running example, the partial Saturn orbit
insertion plan shown in Figure 2. Since the CSM has not yet
completed the plan in Figure 2, the timed automata model
has sinks at locations 4 and 5, corresponding to the un-
planned CSM states 6 and 8. Figure 4 illustrates the corre-
sponding transition system reachability graph, where boxes
correspond to a reachable location and clock zone, repre-
sented as a difference bound matrix. The reachability graph
shows that locations 4 and 5 are reachable, but since their
corresponding states are unplanned, the verification traces
halt there. The plan is safe so far, since failure is not reach-
able.

In this paper, we will concern ourselves primarily with
reachability verification of a particular timed automaton. We
will be asking if it is possible for a timed automaton to reach
a particular location, s ∈ S. In particular, we will be check-
ing the safety of a CIRCA plan by asking if a timed au-
tomaton corresponding to the plan can ever reach the dis-
tinguished failure state. While such reachability queries are
not tractable, they are computable, and can be answered by
simple graph search algorithms.

INIT

RTA−State 0
SSP−State INIT

#<ACTION start_IRU2_warm_up>

RTA−State 1
SSP−State 0

#<RELIABLE−TEMPORAL warm_up_IRU2> #<ACTION turn_on_main_engine>

RTA−State 3
SSP−State 3

RTA−State−Continuation 4
SSP−State 8

RTA−State−Continuation 5
SSP−State 6

Figure 4: The timed automaton reachability space corre-
sponding to Figure 2.

Algorithm 2 (Reachability Verification).
1. let openlist := initial state (〈si,0〉)
2. if openlist = ∅ then return safe;
3. let state := pop(openlist);
4. if visited(state) then goto 2;
5. if failure(state) then return unsafe;
6. let succ := successors(state)
7. openlist := openlist ∪ succ;
8. goto 2;

Of course, any naive attempt to apply Algorithm 2 is
doomed to failure. In particular, if one assumes dense time,
the state space of this search may be uncountably large.
Practical verification systems for timed automata typically
search in a space of equivalence classes of states, since the
state space of any timed automaton can be reduced to a fi-
nite number of equivalence classes(Alur 1998). Typically,
a verification system will collapse together multiple states
using clock zones. In the following discussion we will use
“state” for both state and state equivalence class; no confu-
sion should result since any practical algorithm will have to
manipulate the latter, rather than the former.

Verification systems also employ clever techniques for re-
ducing the number of states that must be explored, answer-
ing the visited query (step 4, above), and computing the suc-
cessor set (step 6). Furthermore, instead of simply returning
unsafe, reachability verification systems typically return a
counterexample trace, that exhibits a path from the initial
state to the failure state, and can be used for debugging. To
the best of our knowledge, CIRCA is unique in automat-
ing the exploitation of counterexample traces in planning
(see (Goldman, Pelican, and Musliner 2004) for an expla-
nation of our technique for using counterexample traces to

Figure 5: A portion of the fragmented verifier state space
resulting from a CIRCA reaction loop.

direct backtracking in planning search). We will return to
the skeletal search algorithm later and describe modifica-
tions for our planning application.

Recall that the CSM verifies partial plans during construc-
tion, before they are fully designed. Before the planning
process is complete, there will be states that do not yet have
action assignments. We verify partial plans by treating such
states as safe sink states. That is, we modify Algorithm 2 by
adding a step after 4 as follows:

4.5 if not action-assigned(state) then goto 2;

Note that when Algorithm 1 is completed, all of the states
will have an action assigned to them, so the final verification
will be a full verification. The sequence of verifications can
be thought of as a fixpoint computation that converges on a
full TA verification of the CSM plan.

The Problem: Reaction loops
Some patterns of interaction between a CIRCA controller
and its environment, in a CIRCA plan, cause state space ex-
plosion when verifying. Hendriks and Larsen (2002) refer
to this state space explosion as fragmentation, because it is a
failure of the timed automaton verifier’s abstraction methods
in which the verifier cannot exploit repeated structure. Frag-
mentation occurs when a high speed process interacts with
a slow one. In control systems, this typically occurs when
a digital control system (fast) interacts with its environment
(slow). Figure 5 gives a qualitative impression of what can
happen in this kind of situation.

Examples arise in the following situations: CIRCA is con-
trolling a system in an environment that presents the system
with repeated threats, while a slow process carries the sys-
tem towards a state where it can achieve its goals. For exam-
ple, a vehicle might have to carry out small course correc-

tions in response to obstacles in its path, while it is navigat-
ing towards a position at which it can carry out some task.
The system can rapidly respond to the need for a course
correction, where “rapidly” means that the duration of the
response transition is small relative to the duration of the
process of navigating to the destination, and the need for
course corrections can also recur relatively frequently. One
more complication is necessary — there must be another
transition out of the “unthreatened” state (the one where no
course connection is necessary), that will impose an invari-
ant on that state. For example, while the vehicle is navi-
gating smoothly, but before it has reached its destination, it
might wish to seize the opportunity to send a message to
base that will update information about its current state.

Intuitively, what happens during verification is that the
verifier first considers what happens if it must correct its
course early in the course of a traversal, and then later, and
then later, and then later, and considers every possible way
that the clocks representing the course correction processes
interact with the clocks for the navigation process and op-
portunity exploitation. The clock zone techniques for col-
lapsing the temporal state space (Alur 1998) fail to partition
the state space into a small number of equivalence classes,
and the state space becomes fragmented. In practice, this
problem can cause CIRCA to fail to find plans in important
cases — the reaction loop problem is not at all uncommon in
safety-focused controllers. Note that if there is no invariant
— if all we are concerned with is reaching the destination
eventually, then the pathology does not arise; clock zone
techniques (based on difference-bound matrices) are suffi-
cient.

S1	

S2	

These	
 two	

must	
 be	
 the	

same	
 planner	

transi5on,	
 and	

must	
 have	
 a	

lower	
 bound.	

There	
 must	
 be	

an	
 urgent	

transi5on	
 out	

that	
 imposes	

an	
 upper	

bound	
 on	
 the	

dwell	
 5me	
 in	

S2.	

Edge	
 into	
 the	

loop.	

Figure 6: An illustration of the subgraph pattern that pro-
vides candidates for loop acceleration in CIRCA.

Loop acceleration for reaction loops
In the course of verification, our technique looks for can-
didates that meet the reaction loop pattern described above.
Specifically, in the forward verification search, the verifier
checks for states where:

• There is a backedge from the current location2 to the lo-
cation from which the current state was reached.

• There is a long-duration process that is active in both of
the locations.

• There is a transition in the current location, other than the
backedge, that imposes an upper bound (invariant) on the
state.

To return to our earlier example, consider a looping pair
of locations:

• In the first state, the vehicle is navigating smoothly. In
this state, the system would like to send a transmission
(imposes a deadline by a transition to an out-of-loop state
where the transmission has been sent), but it may en-
counter an obstacle, carrying it to the second loop state.

• In the second loop state, the system will execute a course
correction, that will carry it back to the first state.

In both states, the vehicle is making progress towards reach-
ing its destination, at which it will perform some specified
series of actions.

In the context of the CIRCA solver, the very large loop-
related state space depicted in Figure 5 can be collapsed into
only three states:

1. A state for the top location, entering the loop;

2. A state for the bottom of the loop location and

3. A state for the top location, in iterations after the first en-
try.

The reason that this is possible is that we can compute the
possible states of the various clocks upon leaving the loop
without explicitly enumerating the states relating to the two
clocks that control the loop proper. The loop clocks will
behave the same way upon exit from the loop no matter how
many times the loop is executed (with the exception of the
first entry into the loop, which is why we have three states,
instead of two. We may reason by cases about all of the
other clocks. During the loop, the other active clocks will be
related to each other (and to the loop clocks) in one of two
ways:

1. They will be synchronized (possibly with some offset),
when they enter the loop, and will stay synchronized or

2. They will be unconstrained with respect to each other.

Which of these possibilities happens depends on what hap-
pens when the system passes through the transition that cor-
responds to the backedge. All of the clocks that are reset
by this transition will be reset to zero and will become syn-
chronized. Once we take these facts into account, we may
simply remove the upper bounds on any clock that is not re-
set in the loop, and thus capture the exit conditions (the state
of the clocks upon leaving the loop) very simply in differ-
ence bound matrices. The ability to simply desynchronize
or synchronize clocks causes the state space to collapse to-
gether drastically. We may do a simple static check to verify
if the state of the system in the loop remains safe, as well.

2Discrete portion of the state.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 10 20 30 40 50 60 70

V
e
ri

fi
e
r

ru
n
ti

m
e
 (

m
s)

Verifier run

No accel
Accel

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70
V

e
ri

fi
e
r

st
a
te

s
cr

e
a
te

d

Verifier run

No accel
Accel

Figure 7: The first 56 of 72 verifier runs in this single-
threat domain are fairly quick even without loop acceler-
ation. The final six runs illustrate long-duration reaction
loops that cause the original verifier to perform very badly;
the loop-accelerated verifier continues to perform well.

The current version of CIRCA incorporates this loop ac-
celeration technique as an option, and on many scenarios
speeds up problem solving sufficiently to make previously
infeasible problems solvable. In the next section, we demon-
strate this with test results.

Experimental results
Our initial evaluation of the loop acceleration technique in-
dicates that it can provide tremendous benefit to the CIRCA
verification system, and rarely incurs any cost that makes
it worse than the baseline verification approach. For exam-
ple, the graphs in Figure 7 and Figure 8 compare the verifier
performance on 62 verification runs during planning for a
spacecraft domain in which a single threat interacts with op-
portunities to achieve a single goal. In this domain the plan-
ner never makes an incorrect choice, so each of these ver-
ifier runs actually explores the entire reachable state space
and concludes failure is not reachable. Overall, the loop-
accelerated planning system builds a verified plan in a total
of 3.6 seconds, while the original system requires over 4000
seconds.

In domains where the planner does make poor choices,
the loop acceleration can provide another huge benefit: the
counterexamples it produces can be dramatically shorter

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

V
e
ri

fi
e
r

ru
n
ti

m
e
 (

m
s)

Verifier run

No accel
Accel

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

V
e
ri

fi
e
r

st
a
te

s
cr

e
a
te

d

Verifier run

No accel
Accel

Figure 8: Zooming in on the data in Figure 7, we can see that
even in the first 56 verifier runs, the loop-accelerated verifier
outperforms the original.

than the non-accelerated verifier. For example, in another
spacecraft planning domain with additional action choices
that confuse the planner’s heuristic guidance, the fifth veri-
fication run in the non-accelerated verifier required 164 sec-
onds, expanded over 20,000 states, and returned a coun-
terexample of 20,002 states (0-1-4-1-4...1-4-11)! In con-
trast, the loop accelerated version completed the whole plan-
ning problem in less than a tenth of a second and, on the
same fifth verification, its counterexample was just six states
long (0-1-4-1-4-11).

Related work
The most closely-related work to ours is the work on
loop acceleration for UPPAAL done by Hendriks and
Larsen (Hendriks 2006; Hendriks and Larsen 2002). It was
the discovery of this work that inspired our own. Despite
that, their work is quite different from ours in technique and
objectives.

In particular, their technique is particularly tailored to ver-
ifying correct controllers. It was developed in response to a
problem verifying the correctness of a controller that con-
ducted a busy-waiting loop during the course of a long-
running process in the controller’s environment. It was
very expensive to recognize that the system would eventu-
ally reach the desired state — verification of an “eventually
reachable” LTL goal. Their solution involves adding loop
acceleration edges to the model, allowing UPPAAL to de-
tect the reachability more quickly, using breadth-first search,
than with the original un-augmented model.

Such a technique would not only not help us in the ver-
ification of CIRCA control plans, it would actually make
verification worse! The difference is that the primary task in
CIRCA verification is to demonstrate that the controller is
safe by showing that it can never reach an undesirable state.
This means that verification involves exhaustive search of
the state space, so that augmenting the model with new tran-
sitions (shortcuts), as Hendriks and Larsen do, would actu-
ally make the search space bigger, and in the case where
the controller is safe, would make the search consume more
time. Our technique, by contrast, works by collapsing to-
gether parts of the state space that are equivalent with re-
spect to the class of safety queries, making exhaustive search
faster.

Hendriks and Larsen’s technique also works only in the
case where a loop is concerned only with a single clock.
That is, where all the guards and invariants involve only
a single clock, and where the value of that single clock
increases monotonically. By contrast, in our loops there
are typically multiple clocks racing against each other, and
clocks are reset — since the loop involves the controller re-
peatedly servicing some process in the environment.

Conclusions
Our work in this area is ongoing. We are working to gener-
alize the loop acceleration technique to applicability beyond
simple two-state reaction loops. Although our current tech-
nique has substantially expanded the set of problems that
CIRCA can solve, by speeding up a common pattern, we

would like to extend its applicability to problems where in-
stead of simple loops of states, there are “meshes” of states
created from multiple threats interacting with the system,
potentially interleaving.3 We are also working to translate
our informal proof of correctness of the transformation into
one that is more formal and publishable.

Acknowledgments
This article was supported by Office of Naval Research con-
tract N0014-10-1-0188 via Carnegie Mellon University sub-
award number 1140185-240250. This paper does not rep-
resent the official position or opinions of Office of Naval
Research or Carnegie Mellon University.

References
Alur, R., and Dill, D. L. 1994. A theory of timed automata. Theo-
retical Computer Science 126:183–235.
Alur, R. 1998. Timed automata. In Working Notes of the NATO-ASI
Summer School on Verification of Digital and Hybrid Systems.
Gat, E. 1996. News from the trenches: An overview of unmanned
spacecraft for AI. In Nourbakhsh, I., ed., AAAI Technical Report
SSS-96-04: Planning with Incomplete Information for Robot Prob-
lems. American Association for Artificial Intelligence.
Goldman, R. P.; Musliner, D. J.; and Pelican, M. J. S. 2002. Ex-
ploiting implicit representations in timed automaton verification for
controller synthesis. In Tomlin, C. J., and Greenstreet, M. R., eds.,
Hybrid Systems: Computation and Control (HSCC 2002), number
2289 in LNCS. Springer Verlag. 225–238.
Goldman, R. P.; Pelican, M. J. S.; and Musliner, D. J. 2004. Guid-
ing planner backjumping using verifier traces. In Zilberstein, S.;
Koehler, J.; and Koenig, S., eds., Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling,
279–286.
Hendriks, M., and Larsen, K. G. 2002. Exact acceleration of real-
time model checking. Electronic Notes in Theoretical Computer
Science 65(6).
Hendriks, M. 2006. Model Checking Timed Automata - Techniques
and Applications. Ph.D. Dissertation, Institute for Programming
research and Algorithmics (IPA).
Hune, T. S. 2000. Modeling a language for embedded systems in
timed automata. Research Series RS-00-17, BRICS, Department
of Computer Science, University of Aarhus. 26 pp. Earlier ver-
sion entitled Modelling a Real-Time Language appeared in Fourth
International Workshop on Formal Methods for Industrial Critical
Systems (FMICS99) pages 259–282.
Iversen, T. K.; Kristoffersen, K. J.; Larsen, K. G.; Laursen, M.;
Madsen, R. G.; Mortensen, S. K.; Pettersson, P.; and Thomasen,
C. B. 2000. Model-checking real-time control programs - verifying
lego mindstorms systems using uppaal. In In Proc. of 12th Euromi-
cro Conference on Real-Time Systems, 147–155. IEEE Computer
Society Press. also available as RS-99-53.
Musliner, D. J., and Goldman, R. P. 1997. CIRCA and the Cassini
Saturn orbit insertion: Solving a prepositioning problem. In Work-
ing Notes of the NASA Workshop on Planning and Scheduling for
Space.

3Note that where we say “threat,” the pattern is actually more
general — any case where the controller must service an outside
process that is time-pressured exhibits the same pattern.

