
Generating Controllers for Flexible Plan Execution: a TGA approach

Andrea Orlandini∗ and Alberto Finzi‡ and Amedeo Cesta† and Simone Fratini†
∗ ITIA-CNR, Via Bassini 15, I-20133 Milan, Italy

‡ DSF “Federico II” University, Via Cinthia, I-80126 Naples, Italy
† ISTC-CNR, Via S.Martino della Battaglia 44, I-00185 Rome, Italy

Abstract

In temporal Planning and Scheduling (P&S) system, the
synthesized plans may be temporally flexible and par-
tially specified, therefore they need suitable executive
systems for proper on-line execution. In general, instan-
tiating and executing a temporally flexible plan is not
an easy task due to constraint propagation and control-
lability issues. Previous works have tackled these prob-
lems by reasoning on the temporal constraints networks
underlying the constraint-based plan representation of-
ten used by such systems. However, these issues can
be addressed from a more abstract and general point of
view deploying formal modeling and formal methods.
In this work, we pursue such a second direction by pre-
senting a formal method to synthesize a controller as-
sociated with a generated flexible temporal plan. Con-
troller synthesis exploits Timed Game Automata (TGA)
for formal modeling and UPPAAL-TIGA as a model
checker. We present the method discussing both for-
mal and empirical issues. The collected empirical re-
sults show the practical feasibility of the approach in a
real-world robotic case study.

Introduction
In plan-based autonomous systems, robust plan execution in
uncertain environments is a critical issue (see (Lemai and In-
grand 2004) and many others). Once a plan has been gener-
ated by a planner, its actual execution requires a suitable ex-
ecutive system capable of deciding on-the-fly how and when
to execute the planned activities. This issue is particularly
important in flexible temporal planning systems, where the
generated plan is temporally flexible. Indeed, a flexible plan
captures an envelope of possible temporal behaviors to be
instantiated during the execution taking into account tempo-
ral/causal constraints and controllable/uncontrollable activi-
ties and events.

Previous works have tackled these issues in the
Constraint-based Temporal Planning (CBTP) framework de-
ploying specialized techniques based on temporal-constraint
network. In particular, several authors (Morris, Muscettola,
and Vidal 2001; Morris and Muscettola 2005; Shah and
Williams 2008) proposed the dispatchable execution ap-
proach where a compiler is to preprocess a flexible temporal
plan into a dispatchable form which is then used by a plan
dispatcher to online schedule the activities while guarantee-
ing constraints satisfaction.

In this paper, we propose to tackle the plan execution
problem from a different point of view by introducing an
alternative and novel technique based on formal modeling
and control synthesis in Timed Game Automata (TGA). In
particular, extending the approach proposed by (Cesta et al.
2010), here the generated flexible temporal plan and the dy-
namic domain are encoded into TGA models while a model
checker is deployed to synthesize a real-time plan controller
which guarantees plan execution along with other domain
dependent properties. In contrast with dispatchable execu-
tion, here the synthesized controller works as an online gen-
erated dispatcher where all the decisions are already pre-
defined, hence the on-line constraints check and propaga-
tion effort is not needed any more. This allows us to reduce
the plan execution latency; on the other hand, beyond the
planning effort, we have to consider the additional overhead
of control synthesis which can be too expensive within a
planning and execution cycle. In this paper, upon presenting
the formal method, we explore also this issue discussing its
practical applicability in a realistic robotic application sce-
nario. The collected results show the feasibility of the ap-
proach and the relation between flexible plan generation and
controller synthesis w.r.t. the complexity of the planning task
and the generated plan.

In the literature, we can find analogous formal methods
applied to plan synthesis and plan verification, but they do
not address flexible temporal plan execution. Closely related
to our work, in (Abdedaim et al. 2007) plan synthesis in
TGA is proposed and contrasted w.r.t. flexible plan gener-
ation. In this case, the focus is on plan sysnthesis and TGA
and CBTP are considered as alternative methods, instead, we
connect them deploying control synthesis in TGA to gener-
ate a controller for a CBTP flexible plan. In (Goldman et al.
2002) timed automata are exploited for incremental verifica-
tion within the plan generation process. In (Cesta et al. 2010)
the authors propose UPPAAL-TIGA for flexible plan verifi-
cation task, but they do not address plan control synthesis.

Plan-Based Robot Control
Our interest in plan-based software for autonomy is moti-
vated by the GOAC project. We are developing a Goal Ori-
ented Autonomous Controller (Ceballos et al. 2011) for the
European Space Agency (ESA) integrating different soft-
ware solutions. In particular: (a) a timeline-based deliber-
ative layer which integrates a planner derived with the APSI

Software Platform (Cesta and Fratini 2008) and an executive
that resembles the T-REX solution (Py, Rajan, and McGann
2010); (b) a functional layer which integrates GenoM and
BIP as described in (Bensalem et al. 2010).

Independently on our current use, the work described in
this paper is valid for any generic three layered control ar-
chitecture (Gat 1997) that combines a physical layer, a func-
tional layer, a deliberative layer, and a planning and schedul-
ing system. The functional layer provides an abstraction of
the physical system wrapping the controllers for the robotic
devices (e.g., PTU, Camera, navigation, etc.). A generic de-
liberative layer is composed by a planning and scheduling
module and an executive system. The planning and schedul-
ing module is responsible for mission and task planning:
given a set of mission goals, it generates temporal plans of
actions to be delivered to the executive system. The exec-
utive system is responsible for plan monitoring, command
dispatching and fault detection.

The Robotic Domain. In the paper, we use a running ex-
ample taken from the GOAC project 1. Let us consider a
planetary rover equipped with a Pan-Tilt Unit (PTU), two
stereo cameras (mounted on top of the PTU) and a commu-
nication facility. The rover is able to autonomously navigate
the environment, move the PTU, take pictures and commu-
nicate images to a Remote Orbiter. A safe PTU position is
assumed to be (pan, tilt) = (0, 0). Finally, during the mis-
sion, the Orbiter may be not visible for some periods. Thus,
the robotic platform can communicate only when the Or-
biter is visible. The mission goal is a list of required pictures
to be taken in different locations with an associated PTU
configuration. A possible mission action sequence is the fol-
lowing: navigate to one of the requested locations, move the
PTU pointing at the requested direction, take a picture, then,
communicate the image to the orbiter during the next avail-
able visibility window, put back the PTU in the safe position
and, finally, move to the following requested location. Once
all the locations have been visited and all the pictures have
been communicated, the mission is considered successfully
completed. The rover must operate following some opera-
tive rules to maintain safe configurations and do not affect
actions execution effectiveness. Namely, the following con-
ditions must hold during the overall mission: (C1) While the
robot is moving the PTU has to be in the safe position; (C2)
The robotic platform can take a picture only if the robot is
still in one of the requested location while the PTU is point-
ing at the related direction; (C3) Once a picture has been
taken, the rover has to communicate the picture to the base
station; (C4) While communicating, the rover has to be still;
(C5) While communicating, the orbiter has to be visible. In
real domains, it is not possible to determine in advance the
actual execution duration for each task. Thus, termination
commands of each robot task are to be considered as uncon-
trollable to the executive system.

1Thanks to Felix Ingrand and Lavindra De Silva from LAAS-
CNRS for the time spent to explain us the details of their robotic
platform.

Timeline-based planning and execution
Timeline-based planning is an approach to temporal plan-
ning that has been applied in the solution of several real
world problems – e.g., (Muscettola 1994). The approach
pursues a general idea that planning and scheduling for con-
trolling complex physical systems consist in the synthesis of
desired temporal behaviors (or timelines).

State variables and timelines. According to this
paradigm a domain is modeled as a set of features with
associated set of temporal functions on a finite set of
values. The time varying features are called multi-valued
state variables as in (Muscettola 1994). As in classical
control theory, the evolution of the features are described
by some causal laws and limited by domain constraints.
These are specified in a domain specification. The task
of a planner is to find a sequence of decisions that bring
the timelines into a final desired set always satisfying the
domain specification and special conditions called goals.
We assume that the temporal features – represented by
the state-variables – have a finite set of possible values
assumed over temporal intervals. The temporal evolutions
are sequences of operational states. Causal and temporal
constraints specify which value transitions are allowed, the
duration of each valued interval (i.e., how long a given
operational status can be maintained) and synchronization
constraints between different state variables.

More formally, a state variable is defined by a tuple
〈V, T ,D〉 where: (a) V = {v1, . . . , vn} is a finite set of
values; (b) T : V → 2V is the value transition function;
(c) D : V → N × N is the value duration function, i.e. a
function that specifies the allowed duration of values in V
(as an interval [lb, ub]). (b) and (c) specify the operational
constraints on the values in (a). Given a state variable, its
associated timeline is represented as a sequence of values
in the temporal interval H = [0, H). Each value satisfies
previous (a-b-c) specifications and is defined on a set of not
overlapping time intervals contained inH.

Taking
Picture (?file)

CamIdle()

Camera

Comm
(?file2)

Comm
Idle()

Communication

PointingAt
(?p,?t)

MovingTo
(?p2,?t2)

?p = ?p2
?t = ?t2

Platine Unit

At(?x,?y)

GoingTo
(?x2,?y2)

?x = ?x2
?y = ?y2

RobotBase

[1,+INF]

[10,20]

[1,+INF]

[1,+INF]

[1,+INF]

[10,10]

[10,20]

[10,30]

Visible()

Not
Visible()

Orbiter Visibility

[1,+INF]

[1,+INF]

Figure 1: Value transitions for state variables describing the
robotic platform activities (Temporal durations in seconds)

Timeline specification for the robotic domain. To ob-
tain a timeline-based specification of our robotic domain, we

consider two types of state variables: Planned State Vari-
ables to represent timelines whose values are decided by
the planning agent, and External State Variables to repre-
sent timelines whose values over time can only be observed.
Planned state variables are those representing time varying
features like the temporal occurrence of navigation, PTU,
camera and communication operations. We use four of such
state variables, namely the RobotBase, PTU, Camera and
Communication. In Figure 1, we detail the values that can be
assumed by these state variables, their durations and the le-
gal value transitions in accordance with the mission require-
ments and the robot physics. Additionally, one external state
variable represents contingent events, in particular the com-
munication opportunities. The Orbiter Visibility state vari-
able maintains the visibility of the orbiter. The allowed val-
ues for this state variable is Visible or Not-Visible and are set
as an external input.

The robotic platform can be in a certain position (At(x,y))
or moving to a certain destination (GoingTo(x,y)). The PTU
can assume a PointingAt(pan,tilt) value if pointing a cer-
tain direction, while, when moving, it assumes a Mov-
ingTo(pan,tilt). The camera can take a picture of a given
object in a position 〈x, y〉 with the PTU in 〈pan, tilt〉 and
store it as a file in the on-board memory (TakingPicture(file-
id,x,y,pan,tilt)) or be idle (CamIdle()). Similarly, the com-
munication facility can be operative and dumping a given
file (Communicating(file-id)) or be idle (ComIdle()).
0	
Camera	

RobotBase	

Communication System	

GoingTo(1,4)	At(0,0)	 At(1,4)	

MovingTo(30,-45)	PointingAt(0,0)	 PointingAt(30,-45)	

CamIdle	TakingPicture(obj,1,4,30,-45)	CamIdle	

Off	 Communicating(file)	

Pan-Tilt	

DURING

DURING

BEFORE DURING

DURING

NotVisible	Visible	 Visble	
Orbiter Visibility	 DURING

Figure 2: An example of timeline-based plan with synchro-
nizations.

Representing domain causality. Domain operational
constraints are described by means of synchronizations. A
synchronization models the existing temporal and causal
constraints among the values taken by different timelines
(i.e., patterns of legal occurrences of the operational states
across the timelines). Figure 2 exemplifies the use of syn-
chronizations in our case study domain. The following syn-
chronizations are represented in the figure: the Pointin-
gAt(0,0) value must occur during a GoingTo(x,y) value (C1);
the At(x,y) and PointingAt(pan,tilt) values must occur during
a TakingPicture(pic,x,y,pan,tilt) value (C2); the Communi-
cating(pic) must occur after a TakingPicture(pic,x,y,pan,tilt)
(C3); the At(x,y) value must occur during a Communicat-
ing(file) (C4); the Visible value must occur during a Com-
municating(file) (C5). (C1) and (C4) represent safety con-
ditions: when moving or communicating the rover must be
in a safe configuration (PTU unit in (0,0) when moving or

not moving when communicating). (C2) and (C5) repre-
sent temporal synchronizations among different activities (to
take a picture the rover must be in the proper place and con-
figuration in the right time (C2) and dumps must occur when
the orbiter is visible (C5)). (C3) describes a pure cause-
effect relationships between two activities: pictures must be
dumped once stored. In addition to those synchronization
constraints, the timelines must respect transition constraints
among values and durations for each value specified in the
domain (see again Figure 1).

Timeline-based planning. Planning goals are expressed
as desired timeline values in temporal intervals; the task of
the planner is to build a set of timelines that describe valid
sequences of values that achieve the desiderata. Hence, a
plan is a set of timelines, that is, a sequence of state variable
values, a set of ordered transition points between the values,
and a set of distance constraints between transition points.
When the transition points are bounded by the planning
process (lower and upper bounds are given for them)
instead of being exactly specified, we refer to the timeline
as time flexible and a flexible plan is the plan resulting
from a set of flexible timelines. A flexible plan defines a
set of admissible temporal behaviors. Considering a partial
horizon H ′ (with H ′ < H), the same flexible plan defines
a set of partial temporal behaviors PB. A flexible plan
P = {TL1, ..., TLn} is defined over a given horizon [0, H].
The process of solution extraction from a plan is the process
of computing (if exists) a valid and completely specified
set of timelines from a given set of time-flexible timelines.
A solution is valid with respect to a domain theory if
every temporal occurrence of a reference value implies
that the related target values hold on target timelines pre-
senting temporal intervals that satisfy the expected relations.
Plan execution. During plan execution, the plan, or seg-
ment of it, is under responsibility of the executive system
that forces value transitions over the timelines dispatching
commands to the functional layers while continuously ac-
cepting observations and, thus, monitoring the plan execu-
tion. Additionally, not all the value transitions are under re-
sponsibility of the executive, but event exists that are un-
der control of nature. As a consequence, an executive can-
not completely predict the behavior of the controlled phys-
ical system because the duration of certain processes or
the timing of exogenous events is outside of its control. In
such cases, the values for the controllable state variables
should be chosen so that they do not constrain uncontrol-
lable events. This is the controllability problem defined, e.g.,
in (Vidal and Fargier 1999) where contingent and executable
processes are distinguished. The contingent processes are
not controllable, hence with uncertain durations, instead the
executable processes are started and ended by the executive
system. Controllability issues underlying a plan represen-
tation have been formalized and investigated for the Sim-
ple Temporal Problems with Uncertainty (STPU) represen-
tation in (Vidal and Fargier 1999) where basic formal no-
tions are given for dynamic controllability (see also (Morris
and Muscettola 2005)). In (Cesta et al. 2010) these notions
have been extended to the timeline-based framework.

Since the executive system has to safely execute a flexible
plan while taking into account the controllability problem, a

plan controller is needed to execute a flexible temporal plan.
More formally, a plan controller C is a partial function from
the set of partial behaviors PB and possible horizons to the
set of controllable values for state variables plus a special
action λ representing the wait action as for TGA (see the
following section), C : PB × N→ V1 ∪ ... ∪ Vn ∪ {λ}.

Timed Game Automata and Controllers
Timed game automata (TGA) have been introduced in
(Maler, Pnueli, and Sifakis 1995) to model control problems
on timed systems (Cassez et al. 2005), in this section we
briefly recall some definitions that we shall use in the rest of
the paper.

Definition 1 A Timed Game Automaton is a tuple A =
(Q, q0,Act, X, Inv, E) where: Q is a finite set of locations;
q0 ∈ Q is the initial location; Act is a finite set of actions
split in two disjoint sets, Actc the set of controllable actions
and Actu the set of uncontrollable actions; X is a finite set
of a nonnegative, real-valued variables called clocks; Inv :
Q→ B(X) is a function associating to each location q ∈ Q
a constraint Inv(q) (the invariant of q); E ⊆ Q × B(X) ×
Act×2X×Q is a finite set of transitions. WhereB(X) is the
set of constraints in the form x ∼ c, where c ∈ Z, x, y ∈ X ,

and ∼∈ {<,≤,≥, >}. We write q
g,a,Y→ q′ ∈ E for (q, g, a,

Y , q′) ∈ E.

A state of a TGA is a pair (q, v) ∈ Q × RX≥0 that consists
of a discrete part and a valuation of the clocks (i.e., a value
assignment for each clock in X). An admissible state for
a A is a state (q, v) s.t. v |= Inv(q). From a state (q, v) a
TGA can either let time progress or do a discrete transition
and reach a new state. A time transition for A is 4-tuple
(q, v)

δ→ (q, v′) where (q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0,
v′ = v + δ, v |= Inv(q) and v′ |= Inv(q). That is, in a
time transition a TGA does not change location, but only its
clock values. Note that all clock variables are incremented
by the same amount δ in valuation v′. This is why variables
in X are named clocks. Accordingly, δ models the elapsed
time during the time transition. A discrete transition for A
is 5-tuple (q, v)

a→ (q′, v′) where (q, v) ∈ S, (q′, v′) ∈ S,

a ∈ Act and there exists a transition q
g,a,Y→ q′ ∈ E s.t.

v |= g, v′ = v[Y] and v′ |= Inv(q′). In other words, there is a
discrete transition (labeled with a) from state (q, v) to state
(q′, v′) if the clock values (valuation v) satisfy the transi-
tion guard g and the clock values after resetting the clocks
in Y (valuation v′) satisfy the invariant of location q′. Note
that an admissible transition always leads to an admissible
state and that only clocks in Y (reset clocks) change their
value (namely, to 0). A run of a TGA A is a finite or infinite
sequence of alternating time and discrete transitions of A.
We denote with Runs(A, (q, v)) the set of runs ofA starting
from state (q, v) and write Runs(A) for Runs(A, (q,~0)). If
ρ is a finite run, we denote with last(ρ) the last state of run
ρ and with Duration(ρ) the sum of the elapsed times of all
time transitions in ρ. A network of TGA (nTGA) is a finite
set of TGA evolving in parallel with a CCS style semantics
for parallelism. Namely, at any time, only one TGA in the
network can change location, unless a synchronization on

labels takes place. In the latter case, the two automata syn-
chronizing on the same label move together. Note that time
does not elapse during synchronizations.

Given a TGA A and three symbolic configurations Init,
Safe, and Goal, the reachability control problem or reach-
ability game RG(A, Init, Safe, Goal) consists in finding a
strategy f such that A starting from Init and supervised by
f generates a winning run that stays in Safe and enforces
Goal. A strategy is a partial mapping f from the set of runs
of A starting from Init to the set Actc ∪ {λ} (λ is a special
symbol that denotes ”do nothing and just wait”). For a finite
run ρ, the strategy f(ρ) may say (1) no way to win if f(ρ) is
undefined, (2) do nothing, just wait in the last configuration
ρ if f(ρ) = λ, or (3) execute the discrete, controllable tran-
sition labeled by l in the last configuration of ρ if f(ρ) = l.
The restricted behavior of a TGA A controlled with some
strategy f is defined by the notion of outcome. The outcome
Outcome(q, f) is defined as the subset of Runs(q,A) that
can be generated from q executing the uncontrollable ac-
tions in Actu or the controllable actions provided by the
strategy f . A maximal run ρ is either an infinite run or a
finite run that satisfies either i) last(ρ) |= Goal or ii) if
ρ

a→ then a ∈ Actu (i.e. the only possible next discrete
actions from last(ρ), if any, are uncontrollable actions). A
strategy f is a winning strategy from q if all maximal runs in
Outcome(q, f) are in WinRuns(q,A). A state q in a TGA
A is winning if there exists a winning strategy f from q in
A. We denote by W (A) the set of winning states of A.

The encoding as nTGA model
As said before, TGAs allow to model real-time systems and
controllability problems representing uncontrollable activ-
ities as adversary moves within a game between the con-
troller and the environment. Following the same approach
presented in (Cesta et al. 2010), flexible timeline-based plan
verification can be performed by solving a Reachability
Game using UPPAAL-TIGA.

To this end, we compile flexible timeline-based plans,
state variables, and domain theory descriptions into set of
TGA (nTGA). This is obtained with the following steps.

First, a flexible timeline-based plan P is mapped into a
nTGA Plan. Each timeline is encoded as a sequence of lo-
cations (one for each timed interval), while transition guards
and location invariants are defined according to (respec-
tively) lower and upper bounds of flexible timed intervals.
process RobotBase() {

state GoingTo {clockRobotBase <= 30}, At;

init At;

trans
GoingTo -u-> At {guard clockRobotBase >= 10;

sync pulse_RobotBase_At?; assign clockRobotBase := 0,
RobotBaseGoingTo := false, RobotBaseAt := true; },

At -> GoingTo {guard clockRobotBase >= 1;
sync pulse_RobotBase_GoingTo?; assign clockRobotBase := 0,
RobotBaseGoingTo := true, RobotBaseAt := false; };

}

Figure 3: TGA specification for the “RobotBase” state variable

Then, the related set of state variables SV is mapped into a
nTGA StateVar. Basically, we define a one-to-one mapping
from state variables descriptions to TGA (e.g. in Fig. 3 we

can fined the UPPAAL-TIGA specification for the Robot-
Base state variable). In this encoding, value transitions are
partitioned into controllable and uncontrollable.

Finally, we introduce an Observer automaton to check for
value constraints violations and synchronizations violations.
In particular, we have two locations: an Error location, to
state constraint/synchronization violations, and a Nominal
(OK) location, to state that the plan behavior is correct. The
Observer is defined as fully uncontrollable. An excerpt of
the TGA monitor specification is provided in Fig. 4.
process monitor() { state OK,ERR;

init OK;

trans
OK -u-> ERR {guard (stepRobotBase == 0) and not (RobotBaseAt);},
OK -u-> ERR {guard (stepRobotBase == 1) and not (RobotBaseGoingTo);},
OK -u-> ERR {guard (stepRobotBase == 2) and not (RobotBaseAt);},
...

// -- DT --
OK -u-> ERR {guard (clockRobotBase > 0) and (clockPlatine > 0)

and (RobotBaseGoingTo) and not (PlatinePointingAt); },
OK -u-> ERR {guard (clockCamera > 0) and (clockRobotBase > 0)

and (CameraTakingPicture) and not (RobotBaseAt); },
...

ERR -u-> ERR { };
}

Figure 4: The TGA specification of the “Observer”

The nTGA PL composed of the set of automata StateVar ∪
Plan ∪ {AObs} models a flexible plan along with state vari-
ables and domain theory descriptions. The following theo-
rem has been demonstrated (Cesta et al. 2010):
Theorem 1 The nTGA PL describes all and only the be-
haviors implemented by the flexible plan P .

Considering a Reachability GameRG(PL, Init, Safe, Goal)
where Init represents the set of the initial locations of each
automaton in PL, Safe is the Observer’s OK location, and
Goal is the set of goal locations, one for each automaton in
Plan, the following theorem has been demonstrated:
Theorem 2 Given RG(PL, Init, Safe, Goal) defined con-
sidering Init, Safe and Goal as above, winning the game im-
plies plan validity for P . (Cesta et al. 2010).

Thus, to perform plan verification, the RG(PL, Init, Safe,
Goal) defined above can be solved by means of UPPAAL-
TIGA. If there is no winning strategy, UPPAAL-TIGA pro-
vides a counter strategy for the opponent (i.e., the environ-
ment) to make the controller lose. Then, to solve the reach-
ability game, we ask UPPAAL-TIGA to check the CTL for-
mula Φ = A [Safe U Goal] in PL. In fact, this formula
states that along all the possible evolutions, PL remains in
Safe states until Goal states are reached. Thus, if the solver
verifies the above property, then the flexible temporal plan is
valid. Whenever the flexible plan is not verified, UPPAAL-
TIGA produces an execution strategy showing one temporal
evolution that leads to a fault.

Synthesizing Controllers
In this section, we provide some formal definitions for plan
controller synthesis as a direct extension of the theorems
presented above.

Theorem 1 defines a one-to-one mapping between flex-
ible temporal behaviors over [0, H] defined by P and the
automata behaviors defined by PL. This property can be

directly extended to partial plans. Indeed, since Theorem 1
holds from any horizon H , for each partial temporal behav-
ior pb ∈ PB defined over H ′ < H , there exists a unique run
ρpb of PL such that ρpb represents the temporal behavior
pb over the same horizon H ′. That is, ρpb of PL represents
the same valued intervals sequence in P limited to H ′ and
Duration(ρpb) is exactly the horizon H ′.

Analogously, by extending Theorem 1 to partial plans, the
winning strategy obtained as a side effect of the verification
process represents a flexible plan controller that achieves the
planning goals keeping the dynamic controllability during
the overall plan execution. More formally, a plan controller
Cf derived from a winning strategy f can be defined as fol-
lows.

Definition 2 Given the reachability game RG(PL, Init,
Safe, Goal) defined as above, the winning strategy f gen-
erated by UPPAAL-TIGA defines a plan controller Cf as
follows: for each partial behavior pb ∈ PB over H ′,
Cf (pb,H ′) = f(ρpb) where each action a ∈ Actc ∪ {λ}
represents the associated values in V1 ∪ ...∪Vn ∪ {λ}, oth-
erwise Cf (pb,H ′) is undefined.

As a consequence, the following theorem holds.

Theorem 3 The controller Cf defined in Definition 2 (i) cor-
rectly executes the plan P reaching the given planning goals
and (ii) maintains the dynamic controllability property dur-
ing the plan execution.

Moreover, it is also possible to define optimized controllers
for flexible plans. Indeed, given a fixed temporal interval
[u, g] along with a reachability game, UPPAAL-TIGA is
able to generate a winning strategy f∗ within that interval
which minimize the plan execution duration (Cassez et al.
2005). Since a flexible plan is associated with a planning
horizon [0, H], an optimized controller can be generated
with [u, g] = [0, H]. This allows to conclude the following.

Theorem 4 Given the reachability game RG(PL, Init,
Safe, Goal) defined as above within the temporal interval
[u,g] = [0,H], the winning strategy provided by UPPAAL-
TIGA f∗ is time optimal and, for Theorem 3, also the derived
controller Cf∗ is time optimal.

Empirical Results
In this section, we discuss the practical feasibility of the
approach using real problem instances for the robotic case
study presented above. In particular, we introduce different
planning/execution scenarios obtained by varying: the num-
ber of pictures to be taken and the plan horizon; the allowed
temporal flexibility; the number of communication opportu-
nities. These settings are defined as follows:

– Number of Pictures and Horizon. We consider problem
instances with an increasing number of requested pictures
(from 1 up to 5). At the same time, we consider flexible
plans with a horizon length ranging from 150 to 550 sec-
onds.

– Flexibility. For each uncontrollable activity (i.e., Go-
ingTo, MovingTo, TakingPicture, and Communicating),
we set a minimal duration, but we allow temporal flexi-
bility on the activity termination, namely, the end of each

activity has a tolerance ranging from 0 to 20 seconds. This
temporal interval represents the degree of temporal flexi-
bility/uncertainty that we introduce in the system.

– Number of visibility windows. We set from 1 to 4 visi-
bility windows that can be exploited to communicate pic-
tures. Notice that an increasing number of communication
opportunities raises the complexity of the planning prob-
lem with a combinatorial effect.

Among all the generated problem instances, the hardest
are the ones with higher number of required pictures,
higher temporal flexibility, and higher number of visibility
windows. As a planner, we use the OMPS (Open Multi-
Component Planner and Scheduler (Fratini, Pecora, and
Cesta 2008)), a CBTP Domain Independent Planner. In these
scenarios, we analyzed the performance of our method con-
sidering: model generation, controller synthesis, and plan
execution. We run our experiments on a MacBook Pro en-
dowed with an Intel Core i5 (2.5GHz) processor and 4GB
RAM. In the following we illustrate the collected empirical
results (the reported timings are in seconds).

Model Generation. As a preliminary step of our evalua-
tion, we consider the cost of generating the UPPAAL-TIGA
model associated with the planning task. The dimension of
the generated model is given in terms of number of gener-
ated states and bytes dimension of the files. The results are
illustrated in Table 1. For all these configurations, we ob-
serve that the generation process is very fast, taking less than
200ms, while the dimension of the generated model grad-
ually grows with respect to the dimension of the flexible
plan in terms of both plan length and number of visibility
windows. Temporal flexibility does not affect the dimension
of the generated models. Thus, we can conclude that model
generation is not a critical step for our method.

Table 1: Size of generated models (bytes and number of states)
with respect to the plan length. Flexibility does not affect the size.

1 wind 2 wind 3 wind 4 wind

pic 1 bytes 8108 8108 8671 8960
H 150 nr. of states 29 29 33 35
pic 2 bytes 10094 10370 10674 10936
H 250 nr. of states 39 39 43 45
pic 3 bytes 13051 13326 13603 13892
H 350 nr. of states 53 53 57 59
pic 4 bytes 14102 14378 14655 14943
H 450 nr. of states 59 63 65 69
pic 5 bytes 18151 16402 16678 16967
H 550 nr. of states 69 70 73 75

Controller Synthesis. We analyze the cost of controller
synthesis with respect to the cost of Planning and the cost of
Plan verification (i.e. dynamic controllability check). Fur-
thermore, we assess the dimension of the generated con-
troller in terms of number of rules defined by the UPPAAL-
TIGA winning strategy and number of kilobytes to store the
strategy. Similar data are collected for optimized controller
generation.

The planning costs are collected in Table 2. Here, the
planner performance decreases with increasing communica-
tion windows and temporal flexibility. In particular, simple
instances (i.e., 1 or 2 communication windows, see Tables

2(a) and 2(b)) are solved in few seconds, while the hardest
ones (i.e., 4 communication windows and more than three
required pictures, see Tables 2(c) and 2(d)) require and ad-
ditional planning effort. Actually, the planner is not able to
solve some of the instances due to memory limit (N/A in
Table 2(d)).

Table 2: Plan generation cost varying the number of required pic-
tures, the number of visibility windows and the temporal flexibility.

(a)
1 Comm. Window

pic 0s flex 10s flex 20s flex
1 2,105 2,319 2,242
2 2,447 2,593 2,295
3 3,046 2,981 2,936
4 2,958 2,909 2,935
5 6,023 4,108 4,063

(b)
2 Comm. Windows

pic 0s flex 10s flex 20s flex
1 2,247 2,225 2,178
2 2,816 2,356 2,404
3 4,461 3,152 4,337
4 3,276 5,872 4,451
5 4,058 4,040 4,118

(c)
3 Comm. Windows

pic 0s flex 10s flex 20s flex
1 2,275 2,263 2,214
2 3,208 3,829 3,069
3 6,025 5,953 5,940
4 17,247 20,307 26,944
5 72,698 123,386 252,386

(d)
4 Comm. Windows

pic 0s flex 10s flex 20s flex
1 2,242 2,194 2,261
2 2,306 2,285 2,261
3 6,237 14,285 27,677
4 193,204 237,139 N/A
5 54,288 N/A N/A

The results collected for dynamic controllability check
(see Table 3) and strategies generation (see Table 4) show
a quite different behavior. Interestingly, for hard problem in-
stances flexible plan verification and strategy generation are
very fast (Tables 3(d) and 4(d)). On the other hand, with sim-
pler instances (Tables 3(a) and 4(a)) we do not observe the
expected improvement in performance. This is mainly due
to the fact that simple planning problems are associated with
few constraints to be considered, hence our planner can gen-
erate highly flexible temporal plans. However, this flexibility
provides a wide search space to the verification tool reduc-
ing its performance. In contrast, harder planning problems
lead the planner to produce flexible plans that are strongly
constrained, i.e., with a lower degree of flexibility. This sim-
plifies the UPPAAL-TIGA task which can check and gener-
ate strategies more quickly (see again Tables 3(d) and 4(d)).
Also in Table 6, the same behavior is shown in which more
flexible plans are associated with more complex controller
(i.e., more rules and, then, more kbytes), while more con-
strained plans require simpler controllers. Indeed, this is an
expected behavior of the verification tool. In fact, the more
non-determinism, the harder it is for UPPAAL-TIGA to gen-
erate strategies.

Thus, an additional effort during the planning phase usu-
ally reduces the cost of plan verification and control synthe-
sis and, vice-versa, simpler planning problems are usually
associated with more complex controller synthesis tasks.

In particular, for the robotic case study, if we contrast the
controller generation time w.r.t. the planning horizon length
(assuming a comparable time available for planning), we
can see that taking apart the hardest instances (5 pictures,
and 3 or 4 pictures with less than 3 visibility windows), all
the other cases are treatable. On the other hand, when we
consider the control synthesis cost overhead with respect to
the plan generation cost, we observe that, with few pictures
(e.g., 1 or 2 required picture), for all the visibility windows

Table 3: Dynamic Controllability verification cost.

(a)
1 Comm. Window

pic 0s flex 10s flex 20s flex
1 0,062 0,074 0,088
2 2,294 3,964 4,611
3 18,131 36,980 53,664
4 61,115 106,637 120,458
5 167,279 307,876 372,972

(b)
2 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,056 0,074 0,085
2 0,115 0,200 0,208
3 4,184 6,815 8,363
4 19,053 36,063 38,971
5 70,011 126,452 153,978

(c)
3 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,018 0,019 0,018
2 0,030 0,030 0,029
3 0,382 0,674 0,870
4 2,576 5,025 6,789
5 20,760 36,971 36,201

(d)
4 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,019 0,019 0,018
2 0,031 0,030 0,029
3 0,396 0,640 0,760
4 0,190 0,265 N/A
5 19,184 N/A N/A

Table 4: Strategies generation cost for both optimized and non
optimized cases.

(a)
1 Comm. Window

pic 0s flex 10s flex 20s flex
1 0,089 0,153 0,266
2 7,067 12,636 15,142
3 57,172 121,62 185,806
4 202,023 361,326 410,104
5 834,934 892,232 923,345

Optimal
1 0,289 0,356 0,485
2 13,900 25,161 28,953
3 138,257 229,638 263,062
4 396,050 607,506 965,803
5 1521,22 1634,23 2526,90

(b)
2 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,090 0,153 0,269
2 0,257 0,612 1,026
3 12,859 20,949 26,671
4 60,071 113,865 134,046
5 224,311 400,734 500,811

Optimal
1 0,290 0,470 0,795
2 0,767 1,213 1,755
3 27,489 51,933 61,005
4 151,161 180,928 314,222
5 741,078 861,078 880,952

(c)
3 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,021 0,022 0,021
2 0,043 0,043 0,041
3 1,079 1,945 2,702
4 7,655 15,900 22,866
5 58,318 121,208 117,292

Optimal
1 0,022 0,022 0,023
2 0,064 0,084 0,077
3 1,906 3,150 4,840
4 18,671 32,553 41,840
5 123,783 238,304 269,660

(d)
4 Comm. Windows

pic 0s flex 10s flex 20s flex
1 0,022 0,022 0,022
2 0,044 0,044 0,041
3 0,978 1,754 2,349
4 0,567 0,783 N/A
5 61,629 N/A N/A

Optimal
1 0,023 0,022 0,022
2 0,065 0,077 0,068
3 1,753 3,215 5,079
4 1,207 1,761 N/A
5 126,689 N/A N/A

the control synthesis cost is acceptable, however, with addi-
tional visibility windows (e.g., 4 visibility windows), addi-
tional pictures can be considered. Moreover, when we con-
sider only few pictures ahead, in most of the cases (e.g. 1
or 2 pictures, with visibility windows > 1) the control syn-
thesis overhead remains very low, thus compatible with the
performances required by a short-horizon planner.

Plan Execution. As a final validation of the generated
plan controllers we considered the time needed for plan exe-
cution comparing optimized and non-optimized controllers.
In particular, the execution was simulated in UPPAAL-
TIGA considering time average and variance of 20 runs. The
uncontrollable events mentioned in the plan are randomly
generated within their duration intervals.

The collected results are reported in Table 5 where we
can observe a slight gain in time efficiency that seems negli-
gible, in particular when compared with the generation cost
associated with the optimization.

These results suggest that sub-optimal controllers provide
a better trade-off between synthesis generation and plan ex-
ecution.

Table 5: Average durations and variances for plan controllers ex-
ecution simulated by UPPAAL-TIGA.

(a)
1 Comm. Window

pic 0s flex 10s flex 20s flex
1 139±0 146±3 148±1
2 243±0 211±6 243±6
3 242±0 291±2 339±7
4 431±0 427±5 542±7
5 535±0 537±9 542±7

Optimal
1 98±0 118±7 132±4
2 173±0 194±11 229±16
3 237±0 286±9 332±12
4 428±0 428±6 432±7
5 512±0 527±14 531±9

(b)
2 Comm. Windows

pic 0s flex 10s flex 20s flex
1 131±0 142±7 141±3
2 198±0 232±13 238±11
3 238±0 313±5 336±9
4 421±0 415±10 437±8
5 507±0 527±8 536±12

Optimal
1 81±0 97±6 121±8
2 167±0 211±9 218±13
3 231±0 307±8 327±4
4 418±0 411±11 430±12
5 494±0 518±6 521±10

(c)
3 Comm. Windows

pic 0s flex 10s flex 20s flex
1 132±0 137±6 145±3
2 213±0 231±8 230±8
3 231±0 284±6 337±12
4 423±0 401±6 423±6
5 538±0 525±7 528±10

Optimal
1 78±0 87±4 108±3
2 145±0 176±17 201±7
3 227±0 279±4 331±14
4 420±0 397±12 421±7
5 528±0 511±8 507±9

(d)
4 Comm. Windows

pic 0s flex 10s flex 20s flex
1 116±0 139±7 138±8
2 157±0 177±11 184±12
3 230±0 211±9 224±11
4 409±0 403±6 N/A
5 529±0 N/A N/A

Optimal
1 66±0 94±6 99±12
2 142±0 153±11 167±9
3 223±0 209±4 218±15
4 404±0 401±8 N/A
5 511±0 N/A N/A

Conclusion
In this work, we have presented a formal method to auto-
matically synthesize controllers for flexible temporal plans.
Our approach allows to verify on-the-fly the dynamic con-
trollability of a flexible temporal plan and, at the same time,
generate its associated controller.

While flexible temporal plan execution is usually ad-
dressed using temporal constraint networks methods and al-
gorithms to reduce the plan in a dispatchable form, here, an
alternative novel technique based on the generation of a win-
ning strategy in TGA has been investigated.

According to our approach, the plan execution problem
can be solved completely as a side effect of dynamic con-
trollability checking; hence, all the right plan execution de-
cisions can be available before the plan execution with an ac-
ceptable overhead to the planning activity. The experimental
results demonstrate the feasibility of the approach at work
on a real world robotic scenario.

Acknowledgment. Cesta and Fratini are partially supported
by EU under the ULISSE project (Contract FP7.218815). Cesta
and Fratini are also partially supported by MIUR under the PRIN
project 20089M932N (funds 2008) and by the European Space
Agency (ESA) under the project GOAC (TRP/T313/006MM).
Finzi is partially supported by EU under the AIRobots project
(Contract FP7.248669). Orlandini is currently supported by a grant
within “Accordo di Programma Quadro CNR-Regione Lombardia:
Progetto 3”.

Table 6: Strategies dimension in terms of Kbytes and number of rules generated by UPPAAL-TIGA.

(a)
1 Comm. Window

pic 0s flex 10s flex 20s flex
1 47kb - 44 80kb - 56 133kb - 20
2 693k - 287 1447kb 2395kb - 593
3 1040kb - 352 2796kb - 717 8083kb - 1646
4 8348kb - 2100 12717kb - 2471 9925kb - 1714
5 25548kb - 5944 33743kb - 6174 39032kb - 6188

Optimal
1 235kb - 139 299kb - 149 345kb - 160
2 2575kb - 797 3394kb - 870 3572kb - 913
3 10982kb - 2591 14290kb - 2860 16630kb - 3168
4 26522kb - 5514 34986kb - 6178 39284kb - 6430
5 101780kb - 11205 81791kb - 12110 79302kb - 11194

(b)
2 Comm. Windows

pic 0s flex 10s flex 20s flex
1 47kb - 44 80kb - 56 133kb - 78
2 141kb - 120 231kb -134 383kb - 153
3 852kb - 363 1037kb - 331 1800kb - 475
4 3424kb - 1087 6023kb - 1381 7226kb - 1436
5 10898kb - 2787 10662kb - 2149 21493kb - 3703

Optimal
1 235kb - 139 299kb - 149 345kb - 160
2 383kb - 213 515kb - 229 592kb - 238
3 3771kb - 1146 4820kb - 1169 5656kb - 1291
4 11250kb - 2691 15066kb - 2984 17101kb - 1701
5 36023kb - 6309 38965kb - 7455 38977kb - 7546

(c)
3 Comm. Windows

pic 0s flex 10s flex 20s flex
1 20kb - 21 20kb - 18 20kb - 19
2 82kb - 79 73kb - 63 71kb - 58
3 305kb - 196 359kb - 195 541kb - 216
4 423kb - 229 747kb - 299 2415kb - 718
5 4888kb - 1459 5688kb - 1248 2939kb - 718

Optimal
1 40kb - 39 42kb - 35 41kb - 36
2 110kb - 100 133kb - 106 131kb - 101
3 734kb - 347 875kb - 369 993kb - 378
4 3309kb - 991 4412kb - 1021 4606kb - 1108
5 9762kb - 2134 3297kb - 2893 3807kb - 3078

(d)
4 Comm. Windows

pic 0s flex 10s flex 20s flex
1 20kb - 21 20kb - 18 20kb - 19
2 82kb - 79 73kb - 63 71kb - 58
3 378kb - 238 456kb - 223 697kb - 239
4 317kb - 243 452kb - 243 N/A
5 3685kb - 1191 N/A N/A

Optimal
1 40kb - 39 42kb - 35 41kb - 36
2 107kb - 99 134kb - 107 132kb - 102
3 774kb - 374 943kb - 401 1130kb - 403
4 491kb - 298 683kb - 336 N/A
5 9876kb - 2367 N/A N/A

References
Abdedaim, Y.; Asarin, E.; Gallien, M.; Ingrand, F.; Lesire,
C.; and Sighireanu, M. 2007. Planning Robust Temporal
Plans: A Comparison Between CBTP and TGA Approaches.
In ICAPS-07. Proc. 17th Int. Conf. on Automated Planning
and Scheduling, 2–10.
Bensalem, S.; de Silva, L.; Gallien, M.; Ingrand, F.; and Yan,
R. 2010. “Rock Solid” Software: A Verifiable and Correct-
by-Construction Controller for Rover and Spacecraft Func-
tional Levels. In i-SAIRAS-10. Proceedings of the 10th Int.
Symp. on Artificial Intelligence, Robotics and Automation in
Space.
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D. 2005. Efficient on-the-fly algorithms for the analysis of
timed games. In CONCUR 2005, 66–80. Springer-Verlag.
Ceballos, A.; Bensalem, S.; Cesta, A.; De Silva, L.; Fratini,
S.; Ingrand, F.; Ocon, J.; Orlandini, A.; Rajan; Rasconi, R.;
and Van Winnendael, M. 2011. A goal-oriented autonomous
controller for space exploration. In 11th Symposium on
Advanced Space Technologies in Robotics and Automation
(ASTRA 2011).
Cesta, A., and Fratini, S. 2008. The Timeline Representa-
tion Framework as a Planning and Scheduling Software De-
velopment Environment. In PlanSIG-08. Proceedings of the
27th Workshop of the UK Planning and Scheduling Special
Interest Group, Edinburgh, UK, December 11-12.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2010. Analyzing Flexible Timeline-based Plans. In ECAI-
10. Proc. 19th European Conf. on Artificial Intelligence, vol-
ume 215. IOS Press.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.

Gat, E. 1997. On three-layer architectures. In Artificial
Intelligence and Mobile Robots. MIT Press.
Goldman, R. P.; Musliner, D. J.; ; and Pelican, M. J. 2002.
Exploiting implicit representations in timed automaton ver-
ification for controller synthesis. In Proc. of HSCC-02.
Lemai, S., and Ingrand, F. 2004. Interleaving Temporal
Planning and Execution in Robotics Domains. In AAAI-04.
Proc. 19th Nat. Conf. on Artificial Intelligence.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. In STACS,
LNCS, 229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In AAAI-05. Proc. 20th Nat. Conf.
on Artificial Intelligence, 1193–1198.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans With Temporal Uncertainty. In Proc. 17th
Int. Joint Conf. on Artificial Intelligence, 494–502.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Py, F.; Rajan, K.; and McGann, C. 2010. A System-
atic Agent Framework for Situated Autonomous Systems.
In AAMAS-10. Proceedings of the 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems.
Shah, J., and Williams, B. C. 2008. Fast Dynamic Schedul-
ing of Disjunctive Temporal Constraint Networks through
Incremental Compilation. In ICAPS-08. Proc. 18th Int.
Conf. Automated Planning and Scheduling, 322–329.
Vidal, T., and Fargier, H. 1999. Handling Contingency in
Temporal Constraint Networks: From Consistency To Con-
trollabilities. JETAI 11(1):23–45.

