Predicting Atomicity Violations in Concurrent Programs via Planning

Niloofar Razavi

Azadeh Farzan

Sheila A. Mcllraith

Department of Computer Science,
University of Toronto,
Toronto, Ontario, Canada
{razavi, azadeh, sheila} @cs.toronto.edu

Abstract

Testing concurrent programs is more difficult than testing se-
quential programs due to the interleaving explosion problem:
even for a fixed program input, there are numerous different
runs that need to be tested to account for scheduler behaviour.
Testing all such interleavings is not practical. Consequently,
most effective testing algorithms attempt to generate runs that
are likely to manifest bugs. Aromicity violating runs have
been proposed as good candidates since a large fraction of
the existing concurrency bugs result from such violations.In
this paper we present a general approach to predicting atom-
icity violations that is based on techniques from Artificial In-
telligence (Al) automated planning. We encode the dynam-
ics of our program abstractly in terms of the properties of
observed events from a successful program run. We charac-
terize the generation of a run as a sequential planning prob-
lem with the temporally extended goal of achieving a partic-
ular pattern of atomicity violation. We have integrated our
approach into the PENELOPE concurrency testing tool (Sor-
rentino, Farzan, & Madhusudan 2010). Initial experiments
comparing the run prediction time for an implementation of
our approach showed it to be comparable to PENELOPE’s
static analysis approach. However, there are indications that
the planning approach may scale better on longer runs. Fur-
ther, unlike PENELOPE’S current approach, runs predicted by
our approach all correspond to concrete runs of the system.
Finally, our planning-based approach has the merit that it can
easily accommodate complex atomicity violation patterns by
simply modifying the planning goal. For all these reasons,
the planning-based approach presented here appears to be a
fruitful area for further investigation.

1. Introduction and Background

Testing concurrent programs is an important and timely
problem, particularly with the advent of multicore hardware.
The problem is challenging because of the potentially large
number of possible thread interleavings that exist, even for a
fixed input. Programmers often find it difficult to account for
all such interleavings when writing or updating code, and it
is computationally infeasible to test for all such interleavings
even with automated testing tools.

Much state-of-the-art technology for concurrent program
testing involves stress testing (i.e., running the program re-

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

peatedly with various inputs, and as many threads as possi-
ble) with random sleep (or yield) statements inserted in the
code to force the concurrent program to take a different path
every time (e.g., IBM’s ConTest tool'). Unfortunately, such
methods are limited in their effectiveness at exposing bugs.

A popular approach to testing concurrent programs is to
use a set of selection criteria to choose and test a small subset
of interleavings (runs) that are likely to lead to bugs. Tools
that adopt this approach differ with respect to the selection
criteria they employ and with respect to the quality and fi-
delity of the runs that they generate for subsequent testing.
One such tool is the CHESS system developed by Microsoft
(Musuvathi & Qadeer 2006). CHESS tests all interleav-
ings that use a bounded number of preemptions (unforced
context-switches) with a small bound, based on the belief
that most errors will be found in this set.

Another powerful interleaving selection criterion is to se-
lect runs that may lead to atomicity violations (e.g., (Sor-
rentino, Farzan, & Madhusudan 2010; Wang et al. 2010;
Wang & Stoller 2006b; 2006a; Park, Lu, & Zhou 2009;
Park & Sen 2008; Yi, Sadowski, & Flanagan 2009)). Atom-
icity, or serializability, is a semantic correctness condition
for concurrent programs. Intuitively, a thread interleaving
is serializable if it is equivalent to a serial execution, i.e., a
thread interleaving that executes an execution block without
other threads interleaved in between (Wang et al. 2010). A
recent study that classified concurrency errors showed that
just over two-thirds of bugs in concurrent programs could
be attributed to atomicity violations (Lu ef al. 2008). As
such, they define an important class of errors for which in-
terleaving selection criteria have been developed.

For simplicity, many approaches that attempt to predict
atomicity-violating runs focus on three-access atomicity vi-
olations — patterns of atomicity violations that involve two
threads and three global accesses to shared variables. Intu-
itively, two of these accesses belong to a code block of one
thread, and the third access is the interfering access that if
executed in the middle of the first two, could cause unwanted
results. PENELOPE, a testing tool for concurrent software
(Sorrentino, Farzan, & Madhusudan 2010) predict runs that
may contain such three-access atomicity violations.

The PENELOPE system follows a three-phase approach.

"http://www.alphaworks.ibm.com/tech/contest/

In the first phase (monitoring phase), the program is ex-
ecuted on a test input and a sequence of critical program
events in the run is recorded. These events form an abstrac-
tion of the run which consists of reads and writes to shared
variables, lock acquisitions, and lock releases. In the sec-
ond phase (run prediction phase), PENELOPE first performs
a simple and comparably fast static analysis on the (abstract)
run to generate the set of all lock-valid access patterns pos-
sible for this run. The patterns are selected such that for
each of them there exists at least one lock-valid predicted
run in which atomicity is violated. Note that this lock-valid
predicted run does not necessarily correspond to an actual
run of the concurrent program as data is ignored in the anal-
ysis. Then, PENELOPE predicts an atomicity-violating run
according to each access pattern. This prediction is per-
formed via static analysis using some heuristics. The pre-
dicted runs have the following properties: (1) each run is a
permutation of the events of the original run, (2) each run
has an atomicity violation, and (3) each run is valid with re-
spect to synchronization operations but may not correspond
to a real program execution. In the last phase (rescheduling
phase), PENELOPE executes the program according to the
predicted runs and the same fixed input. If a predicted run is
not feasible it is discarded. Otherwise, the program output
is checked to see if any error has occurred. The advantage
is that PENELOPE scales very well compared to approaches
such as FUSION, discussed below. It is important to note
that PENELOPE only observes accesses to shared variables,
and synchronization operations from the original run. It is
blind to local accesses, and to any computation performed
inside a thread. The disadvantage is that PENELOPE may
predict some infeasible runs.

The FUSION system (Wang et al. 2010) also tries to pre-
dict atomicity-violating runs based on an observed run. Like
PENELOPE, predicted runs by FUSION maintain proper-
ties (1) and (2), however unlike PENELOPE each FUSION
run corresponds to a real execution in the program. This is
achieved by observing all the operations that happen in the
original run (local, global, synchronization, etc), and gener-
ating a set of constraints that enforce properties (1) and (2)
in addition to ensuring each run is a concrete program execu-
tion. These constraints are encoded in a decidable logic, and
SMT solvers are used to find a solution (a run) to the set of
constraints. The approach is elegant and theoretically inter-
esting, but currently does not scale beyond runs containing a
few thousand events. This is while in practice, runs of even
small concurrent programs contain millions of events.

In this paper we propose an approach to atomicity-
violating run prediction based on techniques from Al au-
tomated planning. The novelty of our approach lies in the
conceptualization and encoding of the problem as an Al au-
tomated planning problem, and in the addition of a con-
straint that enables us to ignore local computation while
ensuring that predicted runs progress through unobserved
parts of the run just as they did in the original observed run.
Following the general approach of PENELOPE, we assume
the existence of a sequence of observed events from a suc-
cessful program run and use these to abstractly character-
ize the behaviour of a successful run. Observed events are

treated as plan operators with temporal ordering properties.
In this context, the prediction of an atomicity-violating run
is characterized as a sequential planning problem with the
temporally extended goal of achieving a particular pattern
of atomicity violation. Our formal characterization of the
task is general, and our plan-based problem encoding can
be used with a diversity of planners (e.g., heuristic-search
based, SAT based). Here we integrate our work into the
PENELOPE infrastructure using the Fast Foward (FF) heuris-
tic search planner to generate runs (Hoffmann 2001).

We compared our approach to the current static analy-
sis approach employed by PENELOPE. Initial experimen-
tal evaluation indicates that the time for run generation is
comparable to that of PENELOPE. However, unlike PENE-
LOPE’S current approach where runs are sound with respect
to synchronization violations but can be infeasible, our runs
all correspond to concrete runs of the system. Further, as
with PENELOPE’S current approach, and unlike other pro-
posed approaches that are guaranteed to generate concrete
runs, our approach appears to scale well, at least to the de-
gree necessary to handle the suite of current test programs
investigated by the concurrency testing community. FF’s run
prediction time was more than an order of magnitude faster
than PENELOPE’S for the one test suite of significant length.
While no conclusions can be drawn from 40 runs on one test
suite, it suggests that the planning-based approach may scale
better than PENELOPE current static analysis approach and
calls for further experimental investigation.

In Section 2, we provide a motivating example that further
elaborates upon the problem being addressed. In Section 3,
we elaborate on some mathematical foundations underlying
the prediction of atomicity-violating runs. In Section 4, we
discuss our planning approach to run prediction, while in
Section 5, we present our initial experimental results. We
summarize and conclude in Section 7.

2. Motivating Example

Given a concurrent program, we want to find bugs, but due
to the interleaving explosion problem it is infeasible to try all
possible interleavings of threads even for a single test input.
Therefore, we prefer to try a subset of runs that are more
likely to expose concurrency bugs than others. The inter-
leavings in which atomicity is violated are strong candidates
to contain concurrency bugs.

A three-access atomicity violation pattern consists of
three access points (eq, ez, f), such that e; and e are in
the same execution block of a thread that is intended to be
executed without interference and f is in a different thread.
Therefore, if e; and e; are interfered in between by f then a
problem may occur. Hence, given an execution of the pro-
gram and an atomicity violation access pattern (ey, e, f) ex-
isting in that execution, we want to predict a run consisting
of events in the given execution such that f occurs between
e; and e;. We will then execute the program according to
the predicted run, hoping to find bugs.

Figure 2 provides the implementation of the
synchronized method addAll from the built-in Java
library class vector. The method gets a collection,
c (can be a vector), as its input parameter and then adds

T1 Tz Tl T2
Ty T, : :
: €1 —» rea{i(x) €1 —» rea{i(x)
€1 —» read(x) : :
: e .
: if(f}ag) flag:;:true
flag:}:true : :
: : _
: f» write(x) if(flag)
€ —» read(x) —
—_ : :
1f(f}ag) flag := true f—» write(x)
[~ vrite(x) €2 » read(x) €3 » read(x)
(a) ©)

Figure 1: Example. A feasible vs. an infeasible schedule for atomicity violation.

public synchronized boolean addAll (Collection c) {

modCount++;
int numNew = c.size();
/] e possible interference

ensureCapacityHelper (elementCount + numNew) ;
Iterator e = c.iterator();
for (int 1i=0; i<numNew; i++)

elementData[elementCount++] = e.next ();
return numNew != 0;
}
Figure 2: Method addAll of concurrent Java class

vector.

all elements of it to the end of the current vector. In the
method, first method size is called on the input collection
that returns the total number of elements in it. This number
is written on a local variable numNew. Then, it iterates over
the elements in the input collection for numNew times and
adds one element to the current vector in each iteration. The
problem with this method is that a concurrent thread can
just access the collection after the current thread retrieves
the number of elements in the collection, and modify it
before the current thread finishes copying elements. For
example, the concurrent thread can remove some elements
from the collection and as a result variable numNew does
not represent the total number of the variables that should
be copied anymore. Therefore, an exception will be raised
when the method tries to access elements that are not
there anymore. This bug can be capture if we try a run in
which atomicity of the method addAl1l is violated by an
interfering access to the collection in another thread that
reduces the number of elements in it.

In real programs, for each execution block, one can pre-
dict many runs that violate atomicity, even with a fixed in-
terfering access. However, not all of the predicted runs may
be feasible in the program and it is not effective to try all of
them to find a feasible one. Therefore, our goal is to predict
runs that are guaranteed to be feasible. Let us clarify this by
an example. Consider run R, corresponding to an execution
of a program, in Figure 1(a). Variables x and flag are shared
between the threads. We assume that the value of flag is ini-
tially false and is no write to flag in R other than the one

which is performed by thread 77 in the figure.

If data is ignored during run prediction (which is true
for PENELOPE (Sorrentino, Farzan, & Madhusudan 2010)),
we would come up with the execution demonstrated in Fig-
ure 1(b). This execution, however, is not feasible since be-
fore the control reaches write (x) event in T», 7> will di-
verge from the above path since it finds the value of flag
to be false. Consequently, the write (x) event will never
get executed, and the atomicity violation will never get hit.

In our approach, we ensure that in the predicted run thread
T, will read the same value for flag as it did in the original
run. Therefore, write (x) will be executed. Our approach
predicts a run represented in Figure 1(c). Of course, the vi-
olation occurs in this run. The feasibility of predicted runs
are guaranteed if every read from a shared variable in the
predicted run reads the same value as it did in the original
run. In this case, we can guarantee that the local computa-
tion that follows the read (dots in Figure 1), will remain the
same as the original run.

3. Foundations
3.1 Programs and Traces

Given a run of a program, each thread executes a series of
execution blocks that are logical units of code intended by
the programmer to be executed without interference. An ex-
ecution block is a sequence of computations and synchro-
nization. Every read or write to a shared variable is con-
sidered as a global computation. The sequence of reads
and writes to local variables between two consecutive global
computations of a thread is considered as a single local com-
putation.

We assume an infinite set of thread identifiers 7=
{T,T,...} and define an infinite set of shared variables SV
= {sv1,sv2,...} that the threads can access. Without loss of
generality, we assume that each thread 7; can also access a
single local variable lv;. Let V = SV |J;lv; represent the set
of all variables. We define Val(x) representing the set of
possible values that variable x € V can get, and Init(x) rep-
resenting the initial value of x. We also fix a set of global
locks L.

A set of actions that a thread 7; can perform on a set of
variables X; = SV U {lv;} and global locks L is defined as

Yr = {T; : >, T; - <} UAT; @ readyyar, T; : writexyq | x €
SV and val € Val(x)} U{T; : lc;} U{T; : acquire(l),T; :
release(l) | 1 € L}. Actions T; : > and T; : < correspond
to the beginning and the end of execution blocks in thread
T;, respectively. Actions T; : ready ,, and T; : writey ,q cor-
respond to reading value val from and writing value val
to shared variable x, respectively. Action T; : lc; corre-
sponds to a local computation that accesses only /v;. Ac-
tion T; : acquire(l) represents acquiring lock / and action
T; : release(l) represents releasing lock ! by thread T;. Define
Y. = Uprer Ly, as the set of all actions.

A word 0 € ¥* is lock-valid if it respects the seman-
tics of the locking mechanism. Formally, let Y, = {7; :
acquire(l),T; : release(l) | T; € T} denote the set of lock-
ing actions on lock /. Then o is lock-valid if for every [€ L,
oly, is a prefix of [Uycr (7i : acquire(l) T; : relese(1))]*.

A word ¢ € Y* is data-valid if for each read action r =
ready 4 in O, either the last write action to variable x writes
value val (i.e. write action is w = write, ,4) or there is no
write action to variable x before the read action r and val is
the initial value of x. Formally, for each i such that oli| =
ready 1 one of the following hold:

o There is a j < i such that o[j] = write, , and there is no
j < J <isuchthat o[j] = write, . for any val’, or

e There is no j < i such that o[j] = write,,y, for some
val’, and val = Init(x).

In the former case, action r is said to be coupled with
write action w (represented by Coupled,.,,) and in the latter
case action r is reading the initial value of x (represented by
Coupled, i)

Let ExecBlks; = (T; : ©>).[(Ic; GlobComp;)*lc;].(T; : <)
where GlobComp; = {T; : ready,q,T; : writex,q | x €
SV and val € Val(x)} U{T; : acquire(l),T; : release(l) | | €
L}. An execution block of a thread 7; is a word in ExecBlkr,.
Intuitively, an execution block can perform a number of
global computations while there is a local computation be-
tween two consecutive global computations. ExecBlkst, =
(ExecBlkr,)* denotes the set of all possible sequences of ex-
ecution blocks for a thread 7;.

Definition 1 (Run) A run over a set of threads T, variables
V, and locks L, is a word 6 € Y. such that for each T; € T,
o|7. belongs to ExecBlkst, and o is both lock-valid and
data-valid. Let Runty denote the set of all runs over threads
T and variables V.

In other words, a run is a lock-valid, data-valid sequence
of actions such that its projection to any thread 7; is a word
divided into a sequence of execution blocks, where each ex-
ecution block begins with 7; : I>, is followed by a sequence
of alternating local and global computations, and ends with
T;: <.

Let rn = ey...e, be a run of a program. The occurrence
of actions in runs are referred to as events in this paper. For-
mally, the set of events of the runis E = {1,...,n}, and there
is a labeling function A that maps every event to an action,
given by A(u) = e,.

While the run rn defines a total order on the set of events
in it (E,<), there is an induced total order between the
events of each thread. We formally define this as C;: for
any i,j € E, if ¢; and e; belong to thread 7; and i < j then
iGJ.

We define W, ,4 as the set of write events that write value
val to x.

Definition 2 (Precisely Predictable Runs) Given a run,
rn, over a set of threads T, variables V, and locks L, run
rn’ is precisely predictable from rn if for each T; € T :

1. ri'|1, is a prefix of rn

2. rn' is lock-valid,

3. for each read event r = ready,q in rn’ we have ei-
ther Coupled,,, such that w = writex,q € Wy, oOF
Coupled,.yjs.

T

Pred(rn) denotes the set of precisely predictable runs from
rn.

Intuitively, precisely predictable runs of rn are lock-valid
permutations of the events in rn, respecting the program or-
der, such that each read r from a shared variable can be cou-
pled only with a write event writing the value being read by
rin rn.

Theorem 1 Let P be a program and rn be a run correspond-
ing to an execution of P. Then every precisely predictable
run rn’ € Pred(rn) is feasible in P.

3.2 Access Patterns

There are five different types of access patterns that cor-
respond to simple three-access atomicity violations of two
threads and one variable. An access pattern p consists of
three events (e1, ez, f), such that e; and e; are in the same
block of a thread that is intended to be executed without in-
terference and f is in a different thread where all accesses
are to the same shared variable and f conflicts with both e
and e;. Two accesses have conflict with each other if at least
one of them is a writes access. As a result, a pattern should
be of one of the following formats:

RWR |) o= e o Srend(s)
Rww [g I e S
WWR | 16 = e end(n) -
WRW | 1 T el
www | e

4. Predicting Atomicity-Violating Runs via
Planning
In this section we describe our conceptualization and encod-
ing of atomicity-violating run prediction using planning. We
describe the basic correspondence between the run predic-
tion task and that of planning. This is followed by a more

detailed description of the encoding for a particular three-
access atomicity violation pattern. We begin with a brief
review of planning.

4.1 Planning

A classical planning problem (Nau, Ghallab, & Traverso
2004) is defined as a tuple P = (Sp, F, A, G) where F is
a finite set of atomic facts, Sy C F is the initial state, and A
is a finite set of deterministic actions. Each action a € A is
described by a tuple pre(a), add(a), del(a) where pre(a) is
apair (pre™(a), pre~(a)) of disjoint subsets of F represent-
ing positive and negative preconditions of action a, respec-
tively. Each action has a positive and a negative set of ef-
fects represented by add(a) and del(a), respectively, which
are disjoint subsets of F.

A planning state is a subset of elements in F. In classi-
cal planning, complete information about the planning state
is assumed. Therefore, every f € F that is not explicitly
mentioned in a planning state, including the initial state, is
assumed to be false in that state. Action a is applicable in
a planning state s C F iff pre™ (a) C s and pre™ (a)Ns = 0.
Applying action a in state s would result in a new, successor
state, succ(a, s) = (s\del(a)) Uadd(a). The goal G corre-
sponds to a set of planning states and a plan, d, consists of
a finite sequence of actions ay, ...,a, which, when applied to
the initial state, will produce a state in G.

A temporally extended planning problem, P (e.g., (Baier
& Mcllraith 2006)), in this setting is a classical planning
problem P = (S, F, A, G) where the goal G is not restricted
to a final-state goal, but rather is a set of facts together with
some ordering constraints. Such temporally extended goals
are often specified in linear temporal logic (LTL) (Pnueli
1977). A plan for a temporally extended goal G is simply
a sequence of actions, d@, which when applied to the inital
state results in a sequence of actions that entails G.

Automated planning problems are typically encoded in
terms of a planning domain description that describes the
dynamics of the planning problem — the actions, their pre-
conditions and effects, and by a problem instance that in-
cludes a description of the intial state and the goal. The
de facto standard for specifying planning domains and plan-
ning instances is PDDL, the Plan Domain Definition Lan-
guage (McDermott 1998). PDDL has evolved over the years
to address increasing needs for expressiveness, and is firmly
established as the input language for most automated plan-
ning systems. Automated planning systems themselves vary
in their approaches to plan generation. Two popular ap-
proaches are those based on heuristic search, as exempli-
fied by the very successful FF planner used here (Hoffmann
2001), and those based on SAT. While these systems take
PDDL as input, most transform the PDDL into an internal
representation that is tailored to the needs of their search al-
gorithm.

4.2 Approach

We characterize the problem of predicting a feasible run that
has the potential to violate atomicity as a sequential plan-
ning problem with the goal of achieving a particular pattern
of atomicity violation. Using the observed abstract run as

an (approximated) specification of the behaviour of our pro-
gram, we encode the dynamics of our program as an ini-
tial state Sy, a set of facts F, and a set of actions A. Each
action corresponds to an event (read, write, ...) within the
observed abstract run. The facts record which actions (pro-
gram events) have been executed and some specific prop-
erties relating to read-write synchronization and lock avail-
ability. The preconditions and effects for individual actions
are written so as to enforce the necessary ordering of events
imposed by the threads and the abstract run, and also to
enforce the read-write constraints that ensure that any plan
generated from this planning instance corresponds to a fea-
sible run of the concurrent program. We illustrate this en-
coding in the section that follows.

An important contribution of this paper, and one that is
not limited to the planning approach presented here, is the
insight into how to enforce the prediction of feasible runs
— runs that correspond to concrete executions of the pro-
gram — while ignoring local computation. In the observed
run (which is trivially feasible), each read event is coupled
with a write event that determines the value being read by
the read event. This write event is the most recent write to
the corresponding shared variable that occurs before the read
event (if there is no write to the variable before the read event
then the initial value of the variable is being read). In our
approach, we consider a class of feasible runs in which each
read event reads in the same value as it did in the observed
run. This forces the paths that are taken by each thread to
remain the same as the paths in the observed run. The feasi-
bility of predicted runs is guaranteed as long as each thread
is guaranteed to take the same path as it took in the observed
run. Note that the read events in the predicted run are al-
lowed to be coupled with write events other than the ones
they were coupled with in the observed run as long as data-
validity is preserved.

An access pattern for an atomicity violation is either a
partial or full ordering of the subset of events that define
the particular access pattern for which the run is being gen-
erated. For example, the simple three-access we have been
discussing is e; < f < ez, where < here is the order of occur-
rence. In PENELOPE access patterns are identified via static
analysis of the abstract run in the prediction phase. In our
planning approach to run prediction, such access patterns
are treated as temporally extended goal. In the most general
case, they can be specified as an LTL formula where the oc-
currence of an event e; is encoded as the fact Happened _e;.
As such the task of generating a run that achieves a pattern of
atomicity violation is viewed as the automated generation of
a plan with a temporally extended goal. In so doing, a plan
that achieves this temporally extended goal corresponds to
a feasible predicted run for an initial portion (a prefix) of
an atomicity-violating run. lLe., it is the prefix of a feasi-
ble run of the concurrent program that realizes that access
pattern and that has the potential to violate atomicity. Ex-
ploiting results proposed in (Baier & Mcllraith 2006) such
problems can be transformed into classical planning prob-
lems, by exploiting an established correspondence between
LTL and Biichi automata. In more restrictive cases, such as
the three-access pattern described here, there is an even sim-

pler transformation of the temporally extended goals into a
final-state goals (Haslum & Grastien 2011) via what is ef-
fectively precondition control on the actions. We illustrate
the use of this in the encoding section that follows.

4.3 Encoding

In this section we present schemas or templates for the gen-
eral PDDL encoding we employ for run predication. For
ease of explanation, syntax does not strictly conform to
PDDL syntax but is expressively equivalent. We illustrate
the encoding with respect to the set of event types observed
by PENELOPE and the three-access pattern (e1, €3, f).

The concrete problem that we wish to address is “Given a
run R and an access pattern (ey, e, f) is there any precisely
predictable run from run R such that f happens after ey and
before e;?”. Notice that if f is a read event from x, then
we would like f to read a value other than the value it read
in the observed run. Indeed, we would like to diverge from
the observed run at f by letting f read a different value.
Note that once f reads a different value, we cannot schedule
any event in R that occurs after f and is dependant on the
value read by f because such events might not happen in
the predicted run when f is reading a different value; and in
particular we cannot ensure that e, will occur after f. The
prediction problem is hence formulated as follows: “Given
a run R and an access pattern (ey, ez, f) find a precisely
predictable run of R that executes e followed by f and e;
has not occurred.”

Encoding Events and Program Order A run consist of a
set of events which are reads and writes to shared variables,
lock acquires, and lock releases that appeared in the run.
Each event is encoded as an action in the planning domain.
Therefore, we may have four different types of actions: read,
write, lock acquire, and lock release actions.

Suppose o is the given run. Let o|T; = {t1,2,...,tm } be
the projection of the run on thread 7;, i.e. the set of events in
the run that belong to thread 7;. Also, suppose that we have
H Cit,tr Cit3,...,t—1 5 t,y. According to the program
order, event ¢ in thread 7; cannot be executed unless event
t; in thread T; is executed. To encode the program order of
events, a predicate is considered according to each action
that represents the application of the action.

Let action Ac; ; represent event #; ;, i.e. the j event in
thread 7;. Predicate (Done; ;) is used to show that Ac; ; is
applied. Therefore, (Done; ;) should be initially false and
become true after the application of Ac; ;.

In the planning domain, an action may be applied several
times in order to find a plan. Note that in our case, each ac-
tion is representing an event in the run. Therefore, each ac-
tion cannot be applied more than once. To encode this fact, a
predicate (Not_Executed; ;) is considered according to each
action Ac; ; representing that the action has not been applied
yet. These predicates should be initially frue and become
false after the application of the corresponding actions.

Putting these constraints together, the following is the
template for event t; ;. Each action might have other
preconditions and effects according to the type of the event
they represent.

(zaction Ac;
: precondition(and(Done; (j_)) (Not Executed, j)...)
s ef fect(and(Done; ;) (not (Not_Executed,; j))...)

Note that if an actions is encoding the first event in
a thread 7;, then the precondition set consists of only
(Not_Executed; 1).

Encoding Write Events There might be several write
events in the run to a single variable. Suppose that W,
represent the set of all write events to variable x in the given
run. To keep the track of the most recent write event to
variable x, we consider a set of predicates, represented by
writes(x):

Writes(x) = {(xm,n)| Imn € WX}U{(xinif)}

Predicate (xjn;) represents the initial value of x. It is
initially true indicating that no write event has been per-
formed to x. Predicate (x,, ,) denotes that #,,, , has performed
the most recent write to variable x. Predicates of this type
are all initially false. Predicate (x,,,) becomes frue when
Acp,, 1s applied. Semantically, at each point of time only
one of the predicates in writes(x) can be true.

Suppose that Ac; ; corresponds to a write event to variable
x. The following shows how this event is encoded:

(: action Ac; ;
: precondition(and(Done; ;1)) (Not_Executed, j))
:effect(and(Done; ;) (not (Not_Executed; j)) (xij)
: p € [writes(x) = {(xi;)}] : (not (p)))

In the effect set, event f;; is set to be the most recent
write event to x by (x; ;). In addition, any write event to x
other than event #; ; is set not to be the most recent write
event to x by Vp € [writes(x) — {(xi ;) }] : (not (p)).

Encoding Read Events To obtain a precisely predicted
schedule, which guarantees feasibility, each read event from
variable x is allowed to be coupled with only a write event to
x that writes the same value as being read by the read event
in the observed run.

However, we are not encoding the real values in the
planning domain and it is just enough to know the set of
write events that a read event can be coupled with. Suppose
that event #; ; = ready ,; is reading value val from variable
x and Write, ,, denotes the set of events that write value
val to variable x. The read event #; ; can be coupled with
any write in Writey,q. Therefore, for each write event
tmn € Write, ,q an action is considered as follows:

(:action Ac; j_coupledy,,
: precondition(and(Done; (;_y)) (Not_Executed, ;)

(Ximn))

s ef fect(and(Done; ;) (not (Not _Executed, j))

Having (x,,,) in the precondition of the action would
force the read event to be coupled with the write event #,, ;.
Here, we consider several actions according to a read event
that allow the read event to be able to couple with each
write event in Write, 4.

Encoding Lock Acquiring and Lock Releasing Events
Each lock can be obtained by at most one thread at each
point in time. Therefore, if a lock is obtained by thread T
then other threads cannot acquire it unless 7 releases the
lock. Assume that L = {ly,...,1,,} is the set of locks used in
the run. To guarantee lock-validity, a predicate (Available;,)
is considered according to each lock /;, representing lock /;
is not obtained by any thread and is free. These predicates
are initially frue since all of the locks are available at the
beginning of the run.

The actions corresponding to lock acquiring events on
lock ! have (Available;) in their precondition set and
(not (Available;)) in their effect set. Having (Available;) in
the precondition set requires lock / to be available before the
application of the action. Note that after performing the ac-
tion, lock / is not available any more and cannot be acquired
by any other thread. On the other hand, the actions corre-
sponding to lock releasing events of lock [have (Available;)
in their effect set, making the lock available again.

Encoding Atomicity Violation and Goal Atomicity is vi-
olated with respect to pattern (e;, ey, f) when e; is exe-
cuted followed by f and e; never occurs. Two predicates
(Happened_e1) and (Happened_f) are considered to en-
code the occurrence of events e; and f, respectively. These
predicates are both initially false, representing that none of
these events has happened at the beginning of the run.

Suppose that Ac;,, Ac;,, and Acjy are the actions cor-
responding to events ej, e, and f, respectively. Action
Aciy has (Happened_e) in its effect set. Action Acj has
(Happened _ey) in its preconditions set, requiring e; to hap-
pen before, and (Happened_f) in its effect set. Action Ac;,
has (Happened_f) in its precondition set forcing it to not
occur before Acj 4.

From this, the classical final-state goal is defined as (:
goal(Happened_f)). Since action Acj; (event f) cannot
be applied before action Ac; ,, (event eq) or after action Ac; ,,
(event ey), atomicity is violated whenever it is applied. We
see in this instance that the temporally extended goal has
been easily compiled into constraints on the evolution of the
domain. With more complex access patterns, alternative en-
codings may be necessary.

Initial State In the initial state, all shared variables have
their initial values and also all locks are available. Therefore
we have Ay, cgy (Xinir) Avier (Available;), where SV and L
represent the set of all shared variables and the set of all
locks, respectively. Predicate (x;,;;) becomes false when a
write action to variable x is applied and also (Available;)
becomes falseltrue after the application of each lock ac-
quire/release action on lock /.

Proposition 1 Suppose that given run R and an access pat-
tern (e1, ea, f), P is a classical planning problem generated

according to the above encoding. Every plan 7 (if it exists),
represents a precisely predictable run from R in which atom-
icity is violated according to the access pattern (e, e3, f).

Lemma 1 Suppose that given run R and an access pattern
(e1, ea, f), P is a classical planning problem generated ac-
cording to the above encoding. Every plan 7 (if it exists),
represents a feasible run.

This follows trivially from Proposition 1. and Theorem 1.

4.4 Example

Consider the simple run in Figure 1(a). The run consists
of the sequence of events t1 1 : ready yq1, 112 : Writefiag true-
113 i ready yqp, 121 : readyiag trues 122 2 Writey . Both read
events from variable x are reading the initial value of x and
the read of flag by 1,1 is coupled with the write event 77 5.
Considering (ey, ez, f) = (t1,1, 113, 12,2) to be a three-access
atomicity violation pattern, the corresponding planning
problem would consists of the following actions:

(: action Acy
: precondition(and (Not_Executed) 1) (Xinit))
s ef fect(and(Done) 1) (not (Not_Executed, 1))
(Happened_ey))
)

(: action Acip
: precondition(and(Done 1) (Not_Executed, 2))
seffect(and(Done; ») (not (Not_Executed, 7))
) (not(flaginir)) (flagi2))

(: action Aci3
: precondition(and(Done ») (Not_Executed, 3)
(Xinit) (Happened_f))
s effect(and(Done; 3) (not (Not_Executed, 3)))

)

(: action Acy 1
: precondition(and (Not _Executed, 1) (flagi2))
s effect(and(Doney) (not (Not_Executed)))

(: action Acy»
: precondition(and(Doney) (Not_Executed, »)
(Happened _ey))
s ef fect(and(Done 5) (not (Not_Executed,))
: (not (xinir)) (x2,2) (Happened_f))

where only predicates (Not_Executed,),
(Not_Executed, »), (Not_Executed, 3), (Not_Executed, 1),
(Not_Executed,), Xinir, and flagiy;, are initially true and
the goal is (: goal(Happened_f)). The plan for this goal is
the sequence of actions Acy,1,Acy2,Ac2,1,AC).

l

Run Information

Run Prediction

l

Program Input | Threads | Vars | Locks | Run No. of No. of No. of No. of Percentage of Avg Time Avg Time | Bugs
(Line of Length | Access | Feasible Runs | (Feasible) Runs Feasible Runs Feasible Runs per Run per Run
Code) Patterns | by PENELOPE by FF FF plus PENELOPE | PENELOPE - FF | by PENELOPE | by FF
Pool 1.2 Testl 4 18 2 356 374 275 280 285 96% - 98% 0.01s 0.01s 1
(5.8K)
Pool 1.3 Testl 4 18 2 422 417 211 195 300 70% - 65% 0.02s 0.15s 1
(7K)
Elevator Datal 3 503 | 50 63K 43 41 42 42 97% - 100% 3.76s 0.20s 0
(566)
Vector Testl 4 24 2 353 3 2 3 3 66% - 100% 0.02s 0.015s 1
(1.3K) Test2 4 24 2 350 23 23 23 23 100% - 100% 0.01s 0.01s 1
Apache | Ign_script 5 112 4 578 33 7 29 33 21% - 87% 0.02s 0.01s 3
FTPserver
(22K)

Table 1: Experimental Results: Percentage of feasible runs predicted by PENELOPE and FF (4 column in Run Prediction) is
obtained by dividing the number of feasible runs predicted by PENELOPE and FF, respectively, by the total number of feasible
runs predicted considering both of them (i.e. 3" column in Run Prediction).

5. Implementation and Experimental Results

In the previous section, we proposed a means of encoding
the task of feasible run prediction as a planning problem.
The encoding supports run predication using a variety of
plan generation algorithms. Here we describe experimental
results using the FF heuristic search algorithm. We compare
our experimental results to those generated by PENELOPE’s
static analysis approach. While the planning approach ex-
tends beyond three-access atomicity violation patterns, we
were limited by PENELOPE to consider only this class of
patterns in our experiments.

The PENELOPE tool executes each program on a provided
test input. Then, the execution of the program is monitored
and a set of three-access patterns are extracted from the ob-
served run. Access patterns are extracted in such a way
that at least one lock-valid run can be predicted in which
atomicity is violated according to the pattern. Therefore,
PENELOPE can always come up with a lock-valid predicted
run that violates atomicity according to each access pattern.
Since runs predicted by PENELOPE are not guaranteed to
be feasible (data is ignored), the program is re-executed ac-
cording to a predicted run to see whether it is feasible or not.
In the case of feasibility, the outputs of the program are just
examined to see whether they are as expected.

Although the planning approach we are advocating can
be used to generate a run of the program from the beginning
until atomicity is violated according to an access pattern
= (e1, €2, f), in the implementation within PENELOPE, we
isolate a segment of the observed run 6, that is relevant to
o and use the planning approach to reorder the events in
Oy, consistently to find an atomicity violation. Therefore,
the observed run is cut at some point before e; and f. The
algorithm for finding an appropriate and efficient cut-point
is out of the scope of this paper. The prefix of the run before
the cut-point, called G, is considered as the prefix of the
predicted run and the planning approach is used to generate
only a fragment of the run just after the cut-point till f is
executed after e;. Note that this is an optimization step that

allows us to deal with shorter run segments.

Theorem 2 Given an observed run o, and an access pat-
tern o0 = (ey, ey, f), suppose that we cut G at some cut-point
before ey and f. Let 0y, represent the prefix of the run be-
fore the cut-point and Oy, be the suffix of the run after the
cut-point. Our proposed encoding provided with 64 and o
would generate a fragment of the entire predicted run, called
o', having f as the last event. Then, the predicted run 6" =
Opre. O’ is feasible.

Proof Sketch: The proof follows from Theorem 1 and the
fact that 6, is feasible.

We implemented a translation tool that takes a given run
and a three-access atomicity violation pattern as input and
automatically generates a PDDL planning problem accord-
ing to the proposed encoding. We augmented the run predic-
tion phase of PENELOPE with this tool. Given the observed
run, for each three-access pattern, we automatically generate
a planning problem such that any plan for it would represent
a feasible run in which atomicity is violated according to
the access pattern. Here, we use Fast Forward (FF) (Hoff-
mann 2001) to find such runs. It is obvious that FF is used
as a box and it is possible to use any other planner as well.
For every run predicted by FF, we re-execute the program
based on the prediction to see whether a bug can be found.
In cases where FF does not predict a feasible run, we try the
corresponding run predicted by PENELOPE. This is done in
order to assess the value of PENELOPE augmented with the
planning approach.

Our experimental analysis was driven, in part, by the fol-
lowing questions: (1) How effective are the approaches in
predicting feasible runs?, (2) How time efficient are the ap-
proaches in predicting feasible runs?, and (3) How effec-
tive are the approaches in finding bugs? To answer the first
question, we compared the number of (trivially feasible) pre-
dicted runs by FF with the number of feasible runs predicted
by PENELOPE. To answer the second question, we compare
the average time taken by FF in predicting a run with that

of PENELOPE. To answer the last question, we report the
number of the bugs found by our approach.

Our benchmark suite consists of 5 concurrent Java pro-
grams that use synchronized blocks and methods as
their means of synchronization. They include elevator
from (von Praun & Gross 2001), Vector from Java li-
braries, Pool (two different releases) from the Apache
Commons Project, and Apache FtpServer.

Table 1 summarizes information regarding the i) observed
runs, ii) the runs that were predicted, and iii) the number of
bugs found in each program. With respect to the observed
runs, we record the number of threads, variables, and locks;
the length of the run; and the number of access patterns. Un-
der run prediction, we report the number of feasible runs pre-
dicted by PENELOPE, by FF, and by the combination of the
two. lL.e., in cases where FF alone found no feasible run, the
corresponding run predicted by PENELOPE was used. We
also report the average time taken by each of PENELOPE and
FF to predict a run. From this table, we make the following
observations.

e The number of feasible runs predicted by each approach
is comparable (with one exception where the planning
approach was notably superior). Recall that the plan-
ning approach finds a set of precisely predictable runs
which are guaranteed to be feasible while PENELOPE
only guarantees lock-validity and the predicted runs are
not guaranteed to be feasible. The planning approach
predicted considerably more feasible runs in the Apache
FtpServer test suite.

o Time efficiency is comparable (with one exception where
the planning approach was notably superior). The
average time required for each of PENELOPE and the
planning approach to predict a run was comparable
with one exception. In the elevator test suite, the
planning approach was more than an order of magnitude
faster than PENELOPE. Note that the execution length of
the observed run for this program was also an order of
magnitude greater than in the other programs. This leads
us to question whether the planning approach might scale
better for longer runs and suggests the need for further
experimental evaluation.

e Both approaches are effective at finding bugs (with one
exception where PENELOPE was superior). We ran the
programs under the test inputs several times, randomly
generating runs. These random runs found (almost)
none of the reported bugs. The number of bugs found
in each run prediction approach (the planning approach,
PENELOPE, and the combination of the two) was the same
in all cases with the exception of Apache FtpServer.
There, none of the runs predicted by the planning ap-
proach found the bugs. In contrast, PENELOPE found 3
bugs, as did the approach that combined PENELOPE with
the planning approach in cases where the latter did not
find a feasible run.

e The combination of both approaches has merit. All runs
predicted by the planning approach are feasible. However,
in cases where the approach was unable to find a feasible
run, the combination approach tried a run predicted by

PENELOPE. Some of these lock-valid runs could be
feasible, but are not guaranteed to be so. In the case of
Pool 1.3, the combination approach outperformed each
of the planning approach and PENELOPE individually,
demonstrating the merit of this combined approach and
indicating that some of PENELOPE’s runs were feasible.

e Despite the lack of guarantee PENELOPE predicted feasi-
ble runs quite frequently in some cases. In some cases,
the number of runs predicted by PENELOPE that turned
out to be feasible was comparable to or slightly exceeded
the number of feasible runs predicted with the planning
approach (e.g. Pool 1. 3). Further experiments are war-
ranted to evaluate the frequency of this phenomenon.

Finally, there is an important issue in comparing the plan-
ning approach with PENELOPE, which is not reflected in Ta-
ble 1. Since the runs predicted by PENELOPE are not guar-
anteed to be feasible, one has to re-execute the program ac-
cording to the predictions to find out whether the PENELOPE
runs are feasible or not. In cases where PENELOPE predicts
a large number of infeasible runs, this overhead can signifi-
cantly impact overall performance.

6. Related Work

In Section 1, we provided significant discussion of various
approaches to testing concurrent programs. Nevertheless,
we only discussed a subset of the previous work on detect-
ing atomicity-violating runs. In this section we complete
this discussion by referencing other related work. None of it
exploits techniques related to Al planning and as such, un-
derlies some of the novelty of our approach.

In two papers (Wang & Stoller 2006b; 2006a), Wang and
Stoller study the prediction of runs that violate atomicity
from a single run. However, they keep track of a large graph,
which doesn’t scale as the size of executions increases.

A recent related work is the tool CTRIGGER (Park, Lu, &
Zhou 2009), that has similar motivation as PENELOPE (Sor-
rentino, Farzan, & Madhusudan 2010) in predicting and
scheduling atomicity violations. CTRIGGER uses tech-
niques that are entirely heuristics in nature and the predicted
runs are not guaranteed to be feasible.

There is a recent work on active randomized testing for
atomicity in the tool ATOMFUZZER (Park & Sen 2008).
It uses randomization techniques that executed and holds
threads at strategic points to try to find atomicity. However,
it can interrupt the threads at wrong positions and therefore
it may not be able to create all atomicity violations that could
happen with a given input.

There has also been work on finding atomicity violations
by using a generalized dynamic analysis of an execution.
SIDETRACK is a new tool (Yi, Sadowski, & Flanagan 2009)
that finds atomicity violations by a generalized analysis of
the observed run. Note that this technique does not examine
runs that are causally different from the original run, and
hence does not do any rescheduling.

Apart from the related work discussed above, atomicity
violations based on serializability have been suggested to be
effective in finding concurrency bugs in many works (Flana-
gan & Freund 2004; Wang & Stoller 2006b). Lipton trans-

actions have been used to find atomicity violations in pro-
grams (Lipton 1975; Flanagan & Qadeer 2003).

7. Summary and Conclusion

Atomicity-violating runs are some of the best candidates
runs to use when searching for bugs in concurrent programs.
Indeed, a recent study claimed that over two-thirds of bugs
in concurrent programs could be attributed to atomicity-
violating runs. As outlined in this paper, a number of ap-
proaches have focused on predicting runs that violate three-
atomicity access patterns. These approaches suffer from ei-
ther an inability to scale beyond runs containing a few thou-
sand events, or they do not guarantee the feasibility of the
predicted runs. In this paper, we conceptualized and en-
coded the problem of predicting atomicity-violating runs as
an Al automated planning task. We implemented a transla-
tor to automatically generate our encoding from an observed
abstract run, combining it with FF, a well-known heuristic-
search based planner, to perform the actual run generation.
An important property of our approach is that, unlike previ-
ous related work, it guarantees the feasibility of predicted
runs. We undertook a preliminary evaluation of the effec-
tiveness of our approach. Unfortunately, a more extensive
evaluation was not possible because of a lack of large test
suites, and because of PENELOPE’s inability to consider any-
thing more complicated that an three-access atomicity viola-
tion. Nevertheless, in the experiments that were performed,
our approach scaled well to large runs. While our approach
was generally consistent with PENELOPE’s, in several in-
stances (with long runs) it significantly outperformed PENE-
LOPE. This observation underlines the need for further ex-
perimental evaluation.

Perhaps one of the most compelling aspects of the pro-
posed approach is its generality and extensibility. While the
encoding was used here with one particular heuristic-search
planner, it could equally well be used with other planners,
with a general SAT solver or with a SAT-based planner that
is tailored to the encoding. Further, the characterization of
atomicity patterns as temporally extended goals, supports
the simple extension of the encoding to more complex atom-
icity patterns. These are all fruitful avenues for future work.

Acknowledgements

The authors gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).

References

Baier, J., and Mcllraith, S. 2006. Planning with first-order tem-
porally extended goals using heuristic search. In Proceedings of
the 21st National Conference on Artificial Intelligence (AAAI’06),
788-795.

Flanagan, C., and Freund, S. N. 2004. Atomizer: a dynamic atom-
icity checker for multithreaded programs. In Proceedings of 31st
Symposium on Principles of Programming Languages (POPL),
256-267.

Flanagan, C., and Qadeer, S. 2003. A type and effect system for
atomicity. In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation (PLDI),
338-349.

Haslum, P., and Grastien, A. 2011. Diagnosis as planning: Two
case studies. In Proceedings of the International Scheduling and
Planning Applications Workshop SPARK.

Hoffmann, J. 2001. Ff: The fast-forward planning system. Al
magazine 22:57-62.

Lipton, R. J. 1975. Reduction: a method of proving properties of
parallel programs. Commun. ACM 18(12):717-721.

Lu, S.; Park, S.; Seo, E.; and Zhou, Y. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug
characteristics. In Proceedings of 13th Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), 329-339.

McDermott, D. V. 1998. PDDL — The Planning Domain Defini-
tion Language. Technical Report TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.

Musuvathi, M., and Qadeer, S. 2006. Chess: Systematic stress
testing of concurrent software. In Proceedings of the 2006 Interna-
tional Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR), 15-16.

Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated Planning:
Theory & Practice. San Francisco, CA, USA: Morgan Kaufmann.

Park, C.-S., and Sen, K. 2008. Randomized active atomicity vi-
olation detection in concurrent programs. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
software engineering, 135-145. New York, NY: ACM.

Park, S.; Lu, S.; and Zhou, Y. 2009. CTrigger: exposing atomicity
violation bugs from their hiding places. In Proceedings of 14th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 25-36.

Pnueli, A. 1977. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS’77),46-51.

Sorrentino, F.; Farzan, A.; and Madhusudan, P. 2010. Penelope:
weaving threads to expose atomicity violations. In Proceedings of
the 18th ACM SIGSOFT international symposium on Foundations
of software engineering, FSE *10, 37-46. New York, NY, USA:
ACM.

von Praun, C., and Gross, T. R. 2001. Object race detec-
tion. Proceedings of the 16th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA) 36(11):70-82.

Wang, L., and Stoller, S. D. 2006a. Accurate and efficient runtime
detection of atomicity errors in concurrent programs. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 137-146.

Wang, L., and Stoller, S. D. 2006b. Runtime analysis of atomic-
ity for multi-threaded programs. [EEE Transactions on Software
Engineering 32:93-110.

Wang, C.; Limaye, R.; Ganai, M.; and Gupta, A. 2010. Trace-
based symbolic analysis for atomicity violations. In TOOLS AND
ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF
SYSTEMS, 328-342.

Yi, J.; Sadowski, C.; and Flanagan, C. 2009. Sidetrack: gener-
alizing dynamic atomicity analysis. In Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging (PADTAD),
1-10.

