
Directed Search for Generalized Plans Using Classical Planners∗

Siddharth Srivastava and Neil Immerman and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts Amherst

Tianjiao Zhang
Department of Computer Science

Mount Holyoke College

Abstract

We consider the problem of finding provably correct general-
ized plans for situations where the number of objects may be
unknown and unbounded during planning. The input is a do-
main specification, a goal condition, and a class of concrete
problem instances or initial states to be solved, expressed in
an abstract first-order representation. Starting with an empty
generalized plan, our overall approach is to incrementally in-
crease the applicability of the plan by identifying a problem
instance that it cannot solve, invoking a classical planner to
solve that problem, generalizing the obtained solution and
merging it back into the generalized plan. The main con-
tributions of this paper are methods for (a) generating and
solving small problem instances not yet covered by an exist-
ing generalized plan, (b) translating between concrete classi-
cal plans and abstract plan representations, and (c) extending
partial generalized plans and increasing their applicability.
We analyze the theoretical properties of these methods, prove
their correctness, and illustrate experimentally their scalabil-
ity. The resulting hybrid approach shows that solving only
a few, small, classical planning problems can be sufficient
to produce a generalized plan that applies to infinitely many
problems with unknown numbers of objects.

1 Introduction
In real-life domains, an agent may need to tackle situations
without precise information about the number of objects of
each type. For instance, a transport planner may not know
the number of objects to be transported or the number of lo-
cations to be visited; a recycling agent that must sort objects
from a bin into boxes for different types may not know the
number of objects present in the bin. Two significant points
motivate the study of such problems: robustness in handling
real-world problems, and the need for scalable planning. In-
deed, if a general solution can be found, it can obviate the
need for planning explicitly in state spaces whose sizes grow
exponentially with increasing numbers of objects.

For true applicability across problem instances with dif-
ferent quantities of objects, generalized plans need to in-
clude cyclic or recursive structures. Plans with such repre-
sentations are difficult to verify for correctness; very few
approaches have been developed for finding such general-
ized plans (Shavlik 1990; Hu and Levesque 2010; Winner

∗A version of this paper will be presented at at ICAPS-2011.

and Veloso 2007; Srivastava, Immerman, and Zilberstein
2011)—and even fewer attempt to provide guarantees of cor-
rectness, or even termination, of their computed plans (Hu
and Levesque 2010; Srivastava, Immerman, and Zilberstein
2011).

Any control structure, acyclic or cyclic, is likely to be ap-
plicable on a broad class of problem instances (cyclic struc-
tures hold greater potential but at a greater risk of unex-
pected outcomes or non-terminating computation). One ap-
proach to this problem, therefore, is to compute cyclic plans
for solving a given problem instance and then, to study the
class of instances which they can solve. In this paper, we ad-
dress a significantly different problem: given a class of prob-
lem instances of interest, our objective is to produce a gener-
alized plan that can solve as many of these instances as pos-
sible. In doing so, we guarantee that the possible outcomes
of executing a computed generalized plan will always be
well-defined. Previously, only Hu and Levesque addressed
this particular problem, but only for problem instances that
varied on a single numeric parameter.

We build upon techniques originally developed for static
analysis of programs to compute provably correct general-
ized plans for solving a given class of problems. Our method
can be viewed as an incremental process for interleaving the
construction of a generalized plan with a validation phase
for computing an over-approximation of the set of problem
instances that are not solved by the existing plan. Starting
with an empty generalized plan, we repeatedly construct a
concrete example, or an instance, of the given general prob-
lem that is not yet handled by the generalized plan, solve it
using a classical planner, generalize it, and assimilate this
solution with the current generalized plan. The process ter-
minates when the generalized plan handles the entire desired
class of concrete problem instances or when a predefined re-
source limit is reached.

We focus on three key questions: how to efficiently deter-
mine the class of open problems for an existing partial gen-
eralized plan? how to efficiently generate small instances of
this class? and how to use the solution in order to increase
the scope of the generalized plan. We employ a standard
classical planner to solve concrete problem instances, thus
leveraging existing powerful heuristic search capabilities in
this process. We start with a description of the formal frame-
work, followed by the details of the proposed approach and

analysis of its properties. The concluding sections discuss
experimental results and directions for future work.

2 Formal Framework
We use a state and action representation developed in prior
work (Srivastava, Immerman, and Zilberstein 2011). In this
formalization of planning, states and actions are represented
using first-order logic with transitive closure (FO(TC)). We
provide a brief overview of this representation. States are
represented as logical structures in a domain’s vocabulary as
shown below.
Example 1. A typical blocks world vocabulary would con-
sist of the relations {on2, topmost1, onTable1}. Although
topmost and onTable can be defined in terms of on, for clar-
ity in presentation, we will treat each of these relations as
distinct. An example structure, S, in this vocabulary can
be described as: |S| = {b1, b2, b3}, onTableS = {b3},
topmostS = {b1}, onS = {(b1, b2), (b2, b3)}.

Each action a consists of a precondition pre(a) and update
formulas defining the new value of each predicate p after a
has been applied.
Example 2. In the blocks world, the action move has two
arguments: obj1, the block to be moved, and obj2, the block
it will be placed on. Update formulas for on and topmost
are:

on′(x, y) = ¬on(x, y) ∧ (x = obj1 ∧ y = obj2)
∨ on(x, y) ∧ (x 6= obj1 ∨ y = obj2)

topmost′(x) = ¬topmost(x) ∧ (on(obj1, x) ∧ x 6= obj2)
∨ topmost(x) ∧ (x 6= obj2)

Since the ensuing abstraction retains precision on unary
predicates, we assume that the goal formula is expressed
entirely using unary predicates. Most planning benchmarks
can be easily reformulated into this representation. For ex-
ample, in the blocks world we can use a new predicate to
express the goal positions of blocks, and a unary predicate,
inplace, to express a goal condition. inplace would be set for
a block by the move action whenever that block is placed
upon the correct block, as required in the goal.

2.1 Abstract States and Actions
We need to represent compactly sets of states with un-
bounded quantities of objects. For this purpose, we use
canonical abstraction, an abstract representation originally
developed for the TVLA system of static analysis of pro-
grams (Sagiv, Reps, and Wilhelm 2002). This representation
also allows a sound application of actions in an abstract state
space. In prior work, we developed a formulation of this ap-
proach for planning (Srivastava, Immerman, and Zilberstein
2011). We provide a summary of the most relevant aspects
of this formulation below.

In canonical abstraction, a subset of the unary predicates
in the domain, A, is identified as the set of abstraction pred-
icates. In all examples used in this paper, the set of abstrac-
tion predicates is the set of all unary predicates. We define
the role of an element in a state as the set of abstraction
predicates that it satisfies. The abstraction of a structure is

on

on

on, on

topmost

onTable

on

(b) Abstract(a) Concrete

on

on

on

onTable

topmost

t

m

b4

3

2

1

++

Figure 1: Canonical abstraction of a tower of blocks

computed by merging together all elements with a role into
one element with that role. The collapsed element is a sum-
mary element if there were multiple elements with that role
in the original structure. This results in a structure with at
most one element per role. Essentially, this abstraction uses
symmetry in a domain structure to reduce the effective size
of its universe. The notion of symmetry however is restricted
to that revealed by the unary predicates. Exploiting symme-
try in structures is a well established methodology in model
checking (Emerson and Sistla 1996).

A third truth value, 1
2 , is used to express the non-definite

information about relations involving summary elements.
Truth values of tuples involving summary elements are set
to be the most specific generalizations of the truth values
of tuples they represented. For example, Fig. 1(b) represents
the canonical abstraction of the four block tower shown in
Fig. 1(a). In this figure, dotted edges represent predicates
with the truth value 1

2 , solid edges, the truth value 1, and
false predicates are not shown. Double circles represent
summary elements; for clarity, the transitive closure of on,
on+ is shown only on the right. Transitive closure is neces-
sary for expressing relationships between unknown numbers
of objects, such as the fact that the topmost block in Fig. 1(b)
is above all the other blocks.
Integrity Constraints A set of integrity constraints can
be used to clarify the set of legal structures represented
by an abstract state. Integrity constraints in the TVLA
system are expressed as first-order formulas of the form
ψ(x1, . . . , xn) B ϕ(x1, . . . , xn), where ψ is any first-order
formula with free variables x1, . . . , xn and ϕ is a predicate
or its negation. These constraints are enforced only when the
truth value of ψ is found to be 1 for an interpretation of its
free-variables in a structure. In that case, the truth value of
the atom on the right is set so that the literal ϕ evaluates to
1. For example, the following integrity constraint in blocks
world asserts that a block cannot be onTable if it is on an-
other block: ∃v2 on(v, v2)B¬onTable(v). TVLA’s Coerce
algorithm enforces each integrity constraint on a structure
immediately before and after performing action updates.

In generalized problems where only a subset of the in-
stances represented by an initial structure is solvable, we
also allow integrity constraints to specify this subset. In par-
ticular, we allow integrity constraints that express inequali-
ties between role-counts, or the number of objects of each
role in a structure. For example, in the blocks world we can
assert that the number of blocks with the role {blue} exceeds
the number of {red} blocks by 3: #{blue} = #{red} + 3.
To summarize, we use integrity constraints to constrain the
set of concrete states represented by an abstract state to just
the states that are truly valid and of interest.
Semantics of Abstract Structures To define what it

means for a structure to represent another structure, we first
define a precision ordering, “x ≺ y”, to mean that y is more
precise than x, i.e., x = 1

2 and y ∈ {0, 1}. Let x � y mean
that x ≺ y or x = y. Structure S2 represents structure S1

(denoted as S1 ∈ γ(S2)) iff S1 is embeddable in S2 and
S1 satisfies the integrity constraints. An embedding is a map
from |S1| onto |S2| that does not change truth, but may lose
precision:

Definition 1. (Embeddings) The function f : |S1| →
onto |S2|

embeds S1 in S2 (S1 vf S2) iff for all rela-
tion symbols pa and elements, u1, . . . , ua ∈ |S1|,
[[p(f(u1), . . . , f(ua))]]S2 � [[p(u1, . . . , ua)]]S1 .

Abstract structures can thus represent states with unknown
quantities of objects: Fig. 1(b) represents the set of all towers
of height at least three.
Action Application on Abstract States Action argu-
ments need to be separated from their summary elements
prior to the action update. Otherwise, indefinite truth values
on relations involving summary elements tend to propagate
to all predicate tuples through successive action updates.

We accomplish this using “choice” actions, which select a
representative element of a given role prior to the real, state-
transforming actions. For instance, the mv(obj1, obj2) ac-
tion described in Eg. 2 would be preceded by actions choose
obj1: role1 and choose obj2: role2, where rolei are the
roles of obj1 and obj2 respectively in the structure on which
this update is applied. A choice operation can result in two
outcomes if the role of the object being chosen was repre-
sented by a summary element. These two outcomes corre-
spond to cases where the number of elements represented
by this summary element was exactly one, or more than one.
After executing choice operations, action updates can be ap-
plied on each resulting abstract structure. For action, a, and
abstract or concrete structure, T , let τa(T) denote the result
of applying action a to T . The following result captures the
soundness of action application in this framework:
Fact 1 If S represents S# then τa(S) represents τa(S#).
(Sagiv, Reps, and Wilhelm 2002).

This implies that if the truth value for any formula, (e.g.
the goal formula, or a formula representing an action’s pre-
conditions) is 1 or 0 in τa(S), then that formula must evalu-
ate to 1 or to 0 respectively in τa(S#), for every S# ∈ γ(S).

This action mechanism, though already sound, is made
more precise for practical purposes. Just prior to action ap-
plication on an abstract structure, the truth values of action
preconditions and update formulas are made precise. This
is done using the Focus operation. Given a set of first-order
formulas and an abstract structure, Focus generates multiple
abstract structures corresponding to all the possible definite
(0 or 1) truth values of the given formula. The Focus formu-
las for an action consist of all predicates used in an action’s
update and preconditions. Each Focused result is processed
by Coerce, and action updates are applied on the results only
if their preconditions evaluate to 1. If certain restrictions on
the actions of a domain hold, the outcomes of a focus oper-
ation on a structure depend only on the role-counts in that
structure. Domains that satisfy these restrictions are called
extended-LL domains (Srivastava, Immerman, and Zilber-

stein 2011). In particular, domains that are expressible in
STRIPS using only unary predicates are extended-LL do-
mains.

In concluding this section, we note that Fact 1 continues to
hold when Focus is used, but with the single structure τa(S)
replaced by the set of structures obtained by applying action
updates on each of the Focused, Coerced results of S.

2.2 Plan Representation and Execution
Our representation of generalized plans is similar to finite
state controllers. We use directed graphs whose nodes are
labeled (via a labeling function Struc()) with abstract struc-
tures and edges are labeled with actions. Structure labels de-
note an over-approximation of all possible states that may
occur at that node in the generalized plan. Edge labels may
also include conditions (with the default condition True) un-
der which they may be taken. Execution begins at one of the
pre-defined start nodes whose structure represents the set of
initial problem states. At any stage during the plan execution
a program-counter (initialized with the start node) labels the
active node. The labels of outgoing edges from each node
represent the next possible actions. At each step in plan exe-
cution one of these actions (say a) for the active node (say n)
whose preconditions are satisfied is executed. A neighboring
node (connected to n by an edge labeled a) whose structure
embeds the resulting state becomes the new active node. A
generalized plan solves a concrete state S# if every allowed
execution of the plan on S# ends at a state satisfying the
goal after a finite number of operations.
The Generalized Planning Problem We define the gen-
eralized planning problem as follows:
Definition 2. Given an abstract initial state S0, a set of
actions A, a set of integrity constraints K and a goal for-
mula ϕg , compute a generalized plan which solves every
S ∈ γ(S0).

In this paper we only consider problems where the con-
crete members of S are the fully observable initial states, or
problem instances, that we wish to solve.

3 Generalized Plan Synthesis
We focus on finding generalized plans with two critical
properties: that they represent valid executions, and that any
cyclic flow of control must terminate after a finite number of
iterations. We formalize these two properties as follows:
Definition 3. (Well-defined executions) A generalized plan
Π satisfies the property of well-defined executions iff:
• It is guaranteed to terminate after a finite number of ac-

tions on every instance represented by its start node.
• During any execution, if the flow of control is at an inter-

nal node, at least one of the outgoing edges is applicable.
Therefore, a generalized plan with well-defined executions
must terminate, and when it does, it must do so at a node
with no outgoing edges. We call terminal nodes whose struc-
ture labels satisfy the goal formula, the goal nodes of the
plan. All terminal, non-goal nodes are referred to as open
nodes. If we maintain the property of well-defined execu-
tions, then executing a generalized plan can only end in a

Unsolved

Abstract Structure

Gen Plan w/

Branches and Loops

Problem Instance
Planner

Classical

Classical Plan

Linear

Gen Plan
Gen Plan w/

Branches

n0 S 0Struc() =

n0GenPlan = { }

Get FO Spec

FO Abs. State

Generate Model

Get unsolved instance

Open Node

Choice Actions

Add

Trace

E
x
te

n
d

P
a

rt
ia

lP
la

n

Initialize:

Figure 2: Architecture of the proposed approach: ARANDA-hybrid

concrete state represented by the labels of its terminal nodes,
which may either be goal nodes or open nodes. This facili-
tates our overall approach, which incrementally finds paths
from a plan’s open nodes to the goal.

Fig. 2 shows our overall approach (ARANDA-hybrid) for
generalized plan synthesis; the corresponding algorithm is
presented as Alg. 1. The generalized plan is initialized with
a single node labeled with a set of initial states represented
using an abstract structure S0. Thus, S0 labels the first open
node in this algorithm. The main loop in Alg. 1 iteratively
picks an open node n, obtains a classical plan solving one of
the instances represented by Struc(n), generalizes that plan,
and finally, merges it with the existing generalized plan. The
open node to be solved in each iteration can be prioritized.

Given an open node n, steps 4-6 generate a concrete in-
stance,Cn, of the set of states represented by Sn = Struc(n).
This process is discussed in Section 3.1. In step 7, a classical
planner is invoked with a PDDL version of Cn, an instanti-
ated goal formula and a PDDL version of the domain D.
AddChoiceActions then generalizes the obtained plan πn by
inserting argument-selecting choice actions before each of
πn’s actions. The choice action for selecting an action argu-
ment is constructed using the role of that argument, extracted
from the concrete state on which the action was applied in
πn. This operation requires knowledge of the sequence of
concrete states visited by the obtained classical plan. This
can be easily obtained by modifying the classical planner or
by simulating the execution of the obtained plan on Cn.

Subroutine Trace in step 9 is derived from the “general-
ize” subroutine introduced earlier (Srivastava, Immerman,
and Zilberstein 2011) to compute the portions of Sn that πc

n
may not solve. In this subroutine, abstract action operators
are applied to abstract structures starting with Sn. When-
ever an action leads to multiple abstract states due to Focus
or choice operations, the next action from πc

n is applied only
on the state that embeds the result obtained at that step in an
execution of the plan πc

n upon the original concrete instance
Cn. Other structures at each step represent situations that
were not encountered in the execution of πn. These struc-
tures are also stored in the trace, using the same representa-
tion as generalized plans. The main segment of a trace is
a path of abstract states and actions consistent with what
occurred in the execution of πc

n on example Cn; some of
these states have secondary edges which terminate at nodes

Algorithm 1: Hybrid Generalized Plan Synthesis
Input: Abstract structure S0, domain D, goal formula ϕg

Output: Generalized Plan Π
Π← 〈V = n0, E = ∅, Struc(n0) = S0, OpenNodes = (n0)〉1
repeat2

Pick an open node n3
RoleCounts← GetValidRoleCounts(Sn = Struc(n))4
ϕn ← GetFOSpec(Struc(n), RoleCounts)5
Cn ←ModelGenerator(ϕn)6
πn ← ClassicalPlanner(PDDL Translation(Cn), DPDDL)7
πc

n ← AddChoiceActions(πn, PDDL Translation(Cn))8
tn ← Trace(πc

n, Struc(n))9
Π← ExtendPartialPlan(tn, Π, n)10

until OpenNodes = ∅ or ResourceLimitReached

representing structures that were not consistent with the ex-
ample execution. In this way, members of Struc(n) that are
not solved by the generalized example πc

n get collected in
the trace’s open, or non-goal terminal nodes. Step 10 assim-
ilates this trace into the existing generalized plan. This is
described in detail in Section 3.2.

3.1 Generating Concrete Instances
Given an abstract structure Sn, we need to generate a con-
crete member, preferably as small as possible, of γ(Sn).
As shown below, any abstract structure can be represented
as an FO(TC) formula. The problem therefore is that of
model generation, which could have been solved by any
existing first-order model generator—if transitive closure
had not been used. As discussed above, however FO(TC) is
necessary to represent relationships between unknown, un-
bounded numbers of objects. Below, we utilize a theoretical
result to compile transitive closure into first-order logic.

As the first-step in model generation, GetValidRole-
Counts generates an instance of the role-count inequalities
included in integrity constraints using a mathematical
package (we used Mathematica). Next, the subroutine
GetFOSpec constructs a first-order representation ϕn, of the
abstract structure Sn. ϕn consists of three sets of axioms,
Axu, Axe, and Axi, capturing facts about the elements of
the universe, its relations, and the integrity constraints re-
spectively. Recall that every element in an abstract structure
corresponds to a unique role, and that its summary elements
may correspond to multiple elements in a concrete structure
that it represents. Let r(S) be the set of roles with non-
empty instantiations in S and u(Sn) be the set of roles that
correspond to singleton elements in Sn. We use the abbre-
viation ri(x) to denote first-order formulas for roles. That is,

ri(x) ⇐⇒ (∧pj∈roleipj(x) ∧pk 6∈rolei ¬pk(x))

Axu ensures that every element has one of the roles r(Sn)
and that roles corresponding to singleton elements hold for
unique elements:

Axu(Sn) ≡ ∀x (∨ri∈r(Sn)ri(x)) ∧
∧rj∈u(Sn)∀x, y (rj(x) ∧ rj(y) =⇒ x = y) (1)

Axu is extended in a straightforward manner to assert that
every role holds for the number of elements returned by Get-
ValidRoleCounts.

For expressing the constraints on relations, the key
observation is that every element in S will be characterized
by a unique role, due to canonical abstraction. Axe asserts
truth values between elements for every pair of roles that
have a definite relationship in S:

Axe(Sn) ≡
∧

v∈{>,⊥}

∧
p, ri, rj :

[[p(ri, rj) = v]]Sn = 1

∀x, y (ri(x) ∧ rj(x)

=⇒ p(x, y) = v) (2)

Axi consists of all the integrity constraints with B
replaced by =⇒ . We now need to write an FO formula
defining the transitive closure predicates used in Axe and
Axi. We will use the new predicate ptc as the transitive clo-
sure of a predicate p in the vocabulary of a domain-schema.
Consider the following FO formula:

T1[p] ≡ ∀x, y (ptc(x, y) ⇐⇒ p(x, y)∨(∃z p(x, z)∧ptc(z, y)))

The result below ensures that if the relation p is constrained
to be acyclic, then in every finite structure, T1[p] defines ptc

as exactly the non-reflexive, transitive closure of p.

Theorem 1. (Lev-Ami et al. 2009) In any finite and acyclic
model of T1[p], ptc is equivalent to p+, the non-reflexive
transitive closure of p.

We found that transitive closure in this restricted setting
suffices to express necessary state properties such as “every
block in the tower is above the bottommost block”, “every
grid square in a row is to the west of the eastern border”
etc. Such expressions are used in all but the delivery and
transport problems presented in Section 4.

Let PTC be the set of predicates in the domain for which
transitive closure is used. The first-order expression for Axi

therefore includes, in addition to any integrity constraints
used in the domain, the axioms T1[p] and the statements
∀x¬ptc(x, x), for all p ∈ PTC.

For a three-valued structure S, let FO(S) ≡ Axu(S) ∧
Axe(S) ∧ Axi. The following result shows that step 6 in
Alg. 1 generates a concrete instance Cn ∈ γ(Sn) as long as
the model generator employed is sound.

Theorem 2. Suppose that all p ∈ PTC are acyclic and S
is an abstract structure corresponding to an open node in
a generalized plan. Then a concrete structure C belongs to
γ(S) iff C |= FO(S).
Proof. Suppose C ∈ γ(S). Then there must be an embed-
ding of C into S. Because this embedding can only make
truth values imprecise, it will have to map an element in |C|
to an element in |S| of the same role. Thus, C must sat-
isfy the first conjunct in Axu, stating that every element must
have one of the roles in S. Under this embedding, multiple
elements of |C| (say c1, . . . , cm) can be mapped to a single
element (say s1) of |S|, only if [[s1 = s1]]S is 1

2 . Otherwise,
the truth value of s1 = s1 in S will become inconsistent
with at least one of [[c1 = c2]]C (= 0) and [[c1 = c1]]C (= 1).
In other words, there must be exactly one element in C for
every singleton roles u(S) in S. Thus, we have C |= Axu.
By a similar reasoning, C must satisfy Axe: otherwise we
get a tuple whose truth value on a predicate in C conflicts
with the truth value of the corresponding tuple in S.

Algorithm 2: ExtendPartialPlan
Input: Trace

t = (s0, a0, s1, O1), . . . , (sm, am, sm+1, Om+1), GP
Π, open node prev

Output: Extended version of Π
for (si, ai, si+1, Oi+1) in t do1

for (prev, nk) in outgoing edges from prev do2
if (prev, nk) subsumes (si, ai, si+1) then3

prev = nk; e = (prev, nk)4
matched = True5
break6

end
end
if not matched then7

n = getSafeNodeToJoin(si+1, prev)8
e = addEdge(prev, n, ai, si+1, Π)9

end
addUnsubsumedOpenNodes(Oi+1, e, Π)10

end
return Π11

In order to show that C |= Axi, we first note that T1[p] is a
sound axiom scheme: it is always satisfied by a model which
interprets ptc as the correct transitive closure of p. Since we
have C ∈ γ(S), C interprets ptc correctly, and therefore
must satisfy T1[p] for every p ∈ PTC. Finally, by definition
of γ(S), we know thatC must satisfy all the domain-specific
integrity constraints. Thus, we have C |= Axi.
Conversely, suppose C |= FO(S). We need to construct
an embedding from |C| into |S| and show that C satisfies all
the integrity constraints, and interprets ptc correctly. Because
C |= Axu, we know every element’s role in C corresponds
to an element’s role in S. Further, S must have at most one
element of each role because the action update mechanism
merges multiple elements with the same role into a summary
element of that role. The required embedding therefore maps
every element in |C| to the element with the same role in
|S|. Axiom Axe ensures that this mapping is an embedding.
Finally, C |= Axi, so C satisfies all the integrity constraints,
and all p ∈ PTC must be acyclic. This implies that C must
interpret ptc correctly, due to Thm. 1.

3.2 Extending the Generalized Plan
Alg. 2 closes an open node by assimilating a trace represent-
ing a path to a goal state. In doing so, it needs to maintain the
property of well-defined executions by ensuring that at least
one of the action edges added to a node will be applicable
when that node is reached during execution. Given a trace t,
a generalized plan Π, and an open node prev, Alg. 2 extends
Π to include the flow of control represented by t, starting
at prev. For brevity, we represent the trace as a sequence of
tuples in this description. Each element of the trace consists
of a structure si, the action ai which was applied on si, the
result si+1 of this application that was consistent with the
result observed in the example execution and the set Oi+1,
possibly empty, consisting of the other abstract result struc-
tures. As noted before, these structures represent the trace’s
open nodes, or cases not handled by the traced plan.
Main Loop Alg. 2 iterates over each tuple in the trace.
The main loop operates under the invariant that the initial

structure si of the current trace tuple is embeddable in the
structure labeling prev. In step 2, it searches for an outgoing
edge from prev that leads to a node whose structure label
embeds si+1 and whose action matches ai. If such a node is
found, this edge is recorded as e. If no such outgoing edge
is found (step 7), then this means that the control flow in
the input trace differed from the existing plan, giving us a
new path to the goal. This case always holds in the first iter-
ation of the main loop, because prev was an open node for
Π and had no outgoing edges. In this case, the subroutine
getSafeNodeToJoin is called.
Finding candidate nodes to join In step 8, subroutine
getSafeNodeToJoin returns a node n, such that (a) Struc(n)
embeds si+1, (b) only simple loops with shortcuts1 (Srivas-
tava, Immerman, and Zilberstein 2010a) may be created by
adding an edge from prev to n, and (c) any simple loop with
shortcuts created in this way will terminate after a finite
number of iterations. If no such node is found, getSafeN-
odeToJoin creates a new node in the plan and returns that
node. getSafeNodeToJoin searches for nodes first in the set
of ancestors and then in the set of non-ancestors of prev. The
condition that only simple loops with shortcuts are created is
enforced by only considering ancestors from which no path
to prev passes through a cycle.

Termination of simple loops with shortcuts is established
by identifying a role r whose role-count, (the number of el-
ements satisfying r) always shows a net decrement in every
possible single iteration of the simple loop with shortcuts.
This is an efficient test that ensures termination because a
role-count can never fall below zero. Changes in role-counts
due to actions in a generalized plan can be determined ef-
ficiently in extended-LL domains. In general, functions that
can be shown to decrease in every iteration of a loop are
referred to as ranking functions in model checking. Any ap-
proach for synthesis of ranking functions can be used in get-
SafeNodeToJoin to ensure that all created loops terminate.
Edge Addition In step 9, an edge is added between prev
and n with appropriate labels. As discussed above, this edge
may create terminating loops. Note however that these loops
may not be evident from a syntactic analysis of repeat-
ing patterns in the concrete plans themselves. In fact, con-
crete plans may even be too small to exhibit clear repetitive
behavior. ExtendPartialPlan still, consistently, found useful
loops in experiments where the generated instances were
two small to exhibit repetitive patterns. For instance, none
of the plans generated for delivery (Section 4) executed two
complete iterations of the identified loop.
Maintaining Open Nodes Finally, step 10 conducts book-
keeping for storing open nodes together with the edge e. If
e already existed in the plan, it only adds open nodes that
are not embeddable in the other nodes attached to e’s start
node. In extended-LL domains, this routine also computes
and stores with each edge, the conditions on role-counts un-
der which each of the action branches will be taken.
Well-defined Executions We already ensured that all
loops must terminate. Alg. 2 may still have led to ill-defined

1A simple loops with shortcuts is a strongly-connected compo-
nent such that removing one of its nodes makes it acyclic.

executions in steps 4 and 9. Step 4 assimilates a trace edge
with an existing edge in the plan and step 9 can merge si+1

into an existing node in the plan. In either case, the next ac-
tion ai+1 from the new trace, will be applied to a structure
represented by an existing node in the plan. The embeddabil-
ity tests in steps 3 and 8 ensure that ai+1 will be applicable
to this structure. Step 10 ensures that all possible outcomes
of each action edge are stored in the plan. Thus:
Theorem 3. If the plan input to Alg. 2 has well-defined exe-
cutions, then its output also has well-defined executions.

Although other algorithms have been previously devel-
oped to merge plans together, to our knowledge Alg. 2 is the
first that maintains the property of well-defined executions
in the presence of loops. In addition, in comparison to our
prior work (Srivastava, Immerman, and Zilberstein 2010b),
this algorithm is much more efficient: it also considers the
addition of loop edges within the new trace, rather than only
between the trace and the previous version of the general-
ized plan. This reduces the number of examples required for
complete solutions by up to 50% in our experiments.

3.3 Optimizations
The subroutines used in Alg. 1 and Alg. 2 can be further
optimized. We implemented two optimizations to minimize
planner and model-generator invocations. First, we maintain
a data structure with all the plans generated, indexed by the
concrete instances that they solve. Before generating an in-
stance for an open node, we check if one of the previously
generated instances can be embedded in it. If so, we jump
to step 9 (tracing) in Alg. 1. This is useful because instance
generation, in particular, can be expensive when transitive
closure is involved (see Section 4). Second, after every call
to ExtendPartialPlan, an attempt is made to merge each open
node with a node within the plan that embeds it, while guar-
anteeing termination using getSafeNodeToJoin. A few other
promising optimizations are discussed in Section 5.

3.4 Properties of Generalized Plan Synthesis
We summarize the key properties of Alg. 1 in the form of the
following consequences that follow from Theorem 3 and the
property of well-defined executions.
Corollary 1. Generalized plans produced by Alg. 1 have
well-defined executions.
Corollary 2. If a generalized plan produced by Alg. 1 can-
not solve a problem instance represented by its start node’s
label, its execution will terminate at an open node.
Theorem 4. If a generalized plan produced by Alg. 1 has no
open nodes, it will solve every instance represented by the
label of its start node.

Reachability of Generated Instances Action update on
an abstract structure may result in a structure that embeds
a superset of the actually possible concrete results (Sa-
giv, Reps, and Wilhelm 2002). This over-approximation
is neither entirely undesirable nor unintended—an over-
approximated state representation can capture future states
and is therefore fundamental to the mechanism of recog-
nizing and creating loops. However, open nodes that only

Figure 3: Performance of instance generation

represent concrete states that are unreachable along any ex-
isting path in the plan can lead to wasteful model genera-
tor and planner invocations. Such open nodes can be pruned
using precondition evaluation techniques proposed in prior
work (Srivastava, Immerman, and Zilberstein 2010a): if the
precondition for reaching a node is not consistent with the
initial abstract state, then that node can be removed from
the plan. If the preconditions are consistent with the initial
abstract state, then they can be used to construct a special
concrete instance which will reach the open node and can be
solved. Therefore, we get the following result:

Theorem 5. If preconditions for reaching open nodes can
be computed, then the set of problem instances covered by
the generalized plan strictly increases with every iteration
of the main loop in Alg. 1.

In prior work (Srivastava, Immerman, and Zilberstein
2010a) we showed that the antecedent of Thm. 5 holds in
extended-LL domains for a broad class of plans with loops.
Reachable, yet unsolvable open nodes may be produced in
domains where action effects cannot be reversed. Identify-
ing an open node as unsolvable requires reasoning abilities
beyond the scope of this paper; however, if an open node is
known to be unsolvable, and if preconditions can be com-
puted for reaching that node, then an instance of the initial
state satisfying those preconditions can be generated. The
classical planner solution for this instance can then be added
to the generalized plan’s start node as the initial open node.
In this way, the scope of the generalized plan can be ex-
tended to include problem instances that would have led to
the unsolvable open node.

4 Implementation and Results
We divide this section into two parts. First, we investigate
if our approach for representing abstract structures as first-
order formulas can be used in practice for instance genera-
tion. Next, we study the overall approach presented in this
paper. All experiments were carried out on a 1.6GHz-Intel
Core2Duo laptop with 1.5GB of RAM.
Evaluation of Instance Generation We used the first-
order model generator Mace4 (http://www.cs.unm.
edu/∼mccune/mace4/) for implementing step 6 in
Alg. 1. Mace4 can take as its input the least domain size that
it should consider. For tests in this section, we gave it ac-
curate domain sizes. In the overall planning algorithm how-
ever this is not always possible, and in its tests we only give

Mace4 a lower bound by assuming all summary elements
instantiate to a single element (this is often inaccurate).

Fig. 3 shows the times taken to generate instances of dif-
ferent sizes for initial abstract structures from three of the
problems considered in the next section. Of these, the de-
livery problem does not have any transitive closure (TC)
properties and the blocks problem has one, asserting that all
blocks are in a single tower. The grid problems have multiple
TC relations: one for each row, asserting connectivity along
the right edges and the TC of up edges. These problems are
the hardest to generate instances for, as all the horizontal
and vertical TC relationships need to be consistent. The tim-
ing results show that as long as we use a limited number of
mutually constrained TC relationships, instance generation
scales well. For the last points of grid problems our exper-
iments were bottlenecked by system memory. In all cases,
generation of first-order formulas from an abstract structure
took less than a second.
Overall Approach Our overall implementation is in
Python, which is an interpreted language and is not built
for performance comparisons. However, we include system-
independent metrics for evaluating the algorithm. Any clas-
sical planner could be used for solving instances; we used
FF (Hoffmann and Nebel 2001) due to its robustness in
handling inputs with negative preconditions and quantified
goals. Our implementation uses a resource limit of 3000s,
but this was never reached in the experiments. The system
automatically computes changes in role-counts and branch
conditions in terms of role-counts when possible.

We tested the system on open problems in the plan-
ning literature (Delivery, Transport, Striped Tower (Srivas-
tava, Immerman, and Zilberstein 2011), Hall-A, GridYx
or “Prize-A” (Bonet, Palacios, and Geffner 2009)). All of
these problems involve unknown, unbounded numbers of
objects. There are currently no approaches capable of com-
puting generalized plans with well-defined executions for
any of these problems. In the grid problem, we consider
versions with 3, 5, and 6 rows, with unknown, unbounded
numbers of squares in each. The goal in these problems
is to compute a path for visiting all the grid squares. In
this case, classical planners can generate solutions that lack
any particular exploration pattern, because ties are bro-
ken arbitrarily every time several successor states have the
same heuristic value during search. Using a Java version
of FF, JavaFF (http://personal.cis.strath.ac.
uk/∼ac/JavaFF/), we made a small modification to al-
ways resolve ties using a lexicographic order of actions.

Table 1 shows a summary of the results with the number
of planner calls, the largest problem instance and plan gen-
erated, applicability status of the resulting solution and the
total time taken for computing the generalized plan. In ap-
plicability, “T” indicates proven termination, “C” indicates
a complete solution, and “P” indicates an automatic proof
of completeness (no open nodes). We consider two starting
role-counts for each summary element, 1 and 5. The results
show that a role-count of 5 is almost always better in terms
of the number of planner and model-generator invocations,
as well as total time. For Grid6x, we could only increase the
initial role-count to 3 before running out of memory.

Initial Role Count = 1 Initial Role Count = 5∗

Problem Ncalls ‖S‖max ‖π‖max Applicability T(s) Ncalls ‖S‖max ‖π‖max Applicability T(s)

Delivery 7 9 9 T, C, P 297 7 14 25 T, C, P 246
Grid3x 6 15 12 T, C, P 166 3 21 20 T, C, P 82
Grid5x 8 25 22 T, C, P 631 4 35 34 T, C, P 172
Grid6x∗ 10 30 27 T, C, P 1791 9 30 29 T, C, P 1902

Hall-A 7 10 6 T, C, P 180 3 24 18 T, C, P 70
Reverse 7 8 6 T, C 119 6 8 15 T, C, P 128
Sorting 7 7 6 T, C, P 78 7 9 6 T, C, P 82

Striped Tower 10 10 11 T, C, P 831 5 14 24 T, C, P 290
Y-Transport 9 13 53 T, C, P 943 7 13 63 T, C, P 550

Table 1: Summary of results

A benefit of representing and planning with unknown,
unbounded quantities of objects is that we can now model
and solve non-trivial programming problems as generalized
planning problems. We tested the applicability of this ap-
proach on two such problems: reversing a singly linked list
(LL) and an online version of sorting. In sorting, given an
unbounded, sorted LL and a new element, the problem is to
insert the element in the appropriate position, thus returning
to the initial abstract state. The resulting solution essentially
gives an implementation of insertion sort. We studied two
models of LL domains: in sorting, the problem remains
interesting even without pointer manipulation and we used
high level actions such as mvPtrFwd(x) and insert(x,y) for
moving a pointer and inserting x before y respectively. For
reverse, we used lower level programing actions such as
ptr1 = ptr1->next, ptr1->next=ptr2, and
ptr1=ptr2. Pointer assignment actions in this domain
can be irreversible as data elements can get lost. This makes
it difficult for model checkers to even just verify existing
LL-manipulation programs. For reverse, when the initial
role-count was set to 1, our approach computed the correct
program with a loop for reversing the list pointers, but
also generated two unreachable and unsolvable nodes. The
computed program is guaranteed to terminate and forms
a complete solution, but a proof of completeness requires
the pruning of these unreachable nodes which is beyond
the scope of this paper. In all other problems we obtained
generalized plans with loops with provably complete
coverage and termination.

5 Conclusions and Future Work
We presented an approach for planning with unknown and
unbounded quantities of objects. It is well understood that
this problem is unsolvable in general. Even for the prob-
lem classes that we solved, no other approach can find
generalized plans while guaranteeing the property of well-
defined executions. We also showed how unbounded quanti-
ties of objects and relationships between them can be repre-
sented compactly using transitive closure in many interest-
ing planning problems. These properties make our approach
uniquely qualified for settings where plans are intended to
be applied on many different problem instances.

The direction of work that comes closest to our ap-
proach (Hu and Levesque 2010) requires stronger conditions
for asserting correctness: only 1 numeric parameter of vari-

ance in the initial state, with only decrementing actions on
that parameter. Our own prior work only addressed the prob-
lems of finding simple loops in a given classical plan (Sri-
vastava, Immerman, and Zilberstein 2011), and developed a
less efficient method for merging user-generated plans (Sri-
vastava, Immerman, and Zilberstein 2010b). These methods
don’t maintain the property of well-defined executions. The
approach presented here extends these approaches and in-
troduces methods for axiomatization and instantiation from
abstract structures as well as for using classical planners to
extend generalized plans with well-defined executions. The
resulting approach can compute well-defined, safe solutions
to algorithm-design problems. This suggests a great poten-
tial for solving non-trivial programming problems while uti-
lizing the heuristic search capabilities of modern classical
planners.

The proposed approach can be extended functionally,
through methods for pruning open-nodes, as well as qual-
itatively, through improvements in its subroutines. For ex-
ample, loop detection could search for loops that make the
most progress towards a given goal. The approach is also
suitable for generalized planning in non-deterministic envi-
ronments with sensing actions, but may be more sensitive to
order of open node resolution in that case. The extension of
the general approach to such domains is left for future work.

Acknowledgments
Support for this work was provided in part by the Na-
tional Science Foundation under grants CCF-0541018,
CCF-0830174, and IIS-0915071.

References
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. of the 19th International
Conference on Automated Planning and Scheduling, 34–41.
Emerson, E. A., and Sistla, A. P. 1996. Symmetry and model
checking. Formal Methods in System Design 9:105–131.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hu, Y., and Levesque, H. J. 2010. A correctness result
for reasoning about one-dimensional planning problems. In

Proc. of the Twelfth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.
Lev-Ami, T.; Immerman, N.; Reps, T.; Sagiv, M.; Srivastava,
S.; and Yorsh, G. 2009. Simulating reachability using first-
order logic with applications to verification of linked data
structures. Logical Methods in Computer Science 5.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. ACM Transactions on Program-
ming Languages and Systems 24(3):217–298.
Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–70.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010a.
Computing applicability conditions for plans with loops. In
Proc. of the 20th International Conference on Automated
Planning and Scheduling, 161–168.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010b.
Merging example plans into generalized plans for non-
deterministic environments. In Proc. of the 9th International
Conference on Autonomous Agents and Multiagent Systems,
1341–1348.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. In Artificial Intelligence, volume 175:2, 615–
647.
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learning
domain-specific planners from example plans. In Workshop
on AI Planning and Learning, in conjunction with ICAPS.

