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Outline 

•  Part 1: Core Scheduling Technologies 
– CP, MIP, & Metaheuristics 
– 90 minutes 

•  Part 2: State of the Art 
– CP + Metaheuristics, CP + MIP 
– 60 minutes 

•  Part 3: Polemics & Perspectives  
– The Past and the Future? 
– 30 minutes 
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Outline: Part 1 

•  What is Scheduling? 
– The fundamental bits 
–  “The” classical problem 

•  Constraint Programming (CP) 
– Complete search and inference 

•  Mixed Integer Programming (MIP) 
– Complete search and relaxation 

•  Metaheuristics 
–  Incomplete search 
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Scheduling is … 

•  The allocation of resources  
to activities over time 
– Mixing machines in food manufacturing 
– Classrooms at a university 
– Trucks & planes for FedEx 

•  Mathematically hard 
•  Industrially, economically, & 

environmentally important 
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Project Scheduling 

•  There are a series 
of operations 
required to complete 
a project 
–  (e.g., build a bridge) 

•  Each operation requires  
resources 

•  Example: schedule the operations on the 
resources to meet all due dates 
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Manufacturing 
Scheduling 
•  Specialization of 

project scheduling 
– Series of operations 
– Resources required 
– Need to assign operations 

to resources over time in 
order to find shortest schedule, meet due 
dates, etc. 
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Airport Facility  
Scheduling 
•  Allocate resources 

required to “service”  
a plane 
– Runway, gate, baggage carousel, security 

personnel, re-fueling, re-stock food, … 
– Planes close to connecting flights? 
– Turn-around the plane quickly 

•  A new plane lands every minute 
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Workforce Scheduling 

•  You need a particular 
number of people with 
specific skills on each shift 

•  You need to schedule breaks,  
days-off, etc. taking into account 
regulations about #days/#hours worked 
without a break 

•  Nurse scheduling, call-centre staffing, … 
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The Key Difference with 
Planning 
•  In classical scheduling we know all the 

operations (e.g., flights, production jobs) at 
the beginning of the solving process 

•  In some formulations, we may choose not 
to schedule all operations but typically 
(and for this lecture) assume that we never 
add to the set of operations during search 
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And now for some details … 
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Jobs 

pij – processing time of job j  
 on machine i 

rj – release date of job j 
dj – due date of job j 
wj – weight of job j 

pij 

rj dj 
wj 

M1 

M2 

M3 

Sij Cij 

Sij – starting time of job j  
 on machine i 

Cij – completion time  
 of job j 
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Jobs & Operations 
•  Often jobs are made up of a set of 

operations 
– usually once you start an operation, you can’t 

interrupt it → “no pre-emption” 

p2j 

rj dj 

wj 

p0j p3j p1j 

precedence constraints 
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Example: House Building 

… 

Excavate Foundations Floor joists 

… 

Exterior plumbing 

4 wks 2 wks 3 wks 

3 wks 
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House Building Resources 

… 

Excavate Foundations Floor joists 

… 

Exterior plumbing 

4 wks 2 wks 3 wks 

3 wks 

Backhoe 
Backhoe operator 
Dump truck 
… 

requires Carpenter 

Resource Alternatives 
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Scheduling is … 

•  Assigning a start time and 
set of resources to each  
activity so that the temporal 
and resource constraints are satisfied 
– Temporal constraints: precedence, min/max  
– Resource constraints: capacity, type 

•  Often also have an objective function to 
optimize 
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Classical Objective Functions 

•  Minimize maximum completion time 
(aka “makespan”) 
– Min Cmax  [Cmax = max(C1, … Cn)] 

•  Minimize maximum lateness 
– Min Lmax  [Lmax = max(C1 – d1, … Cn – dn)] 

•  Minimize total weighted tardiness 
– Min ΣwjTj  [Tj = max(Cj – dj, 0)] 
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Hard vs. Easy 

•  Most interesting scheduling  
problems are at least NP-hard 
– some easy special cases  

•  one-machine or two-machine (with restrictions) 

– some approaches use the special case 
algorithms as heuristics 
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Job Shop Scheduling 

Job 

Operation/Task/ 
Activity 

Precedence Constraint 

Color indicates 
resource required 
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Job Shop Scheduling 

makespan 
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Complications 

•  Resources can be continuously 
produced and consumed: tanks 

•  Batch resources: ovens 
•  Setups & sequence dependent 

changeovers 
•  Multi-criteria optimization 
•  Different processing times on different 

machines 
•  … 
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Outline: Part 1 

•  What is Scheduling? 
– The fundamental bits 
–  “The” classical problem 

•  Constraint Programming (CP) 
– Complete search and inference 

•  Mixed Integer Programming (MIP) 
– Complete search and relaxation 

•  Metaheuristics 
–  Incomplete search 
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What is Constraint 
Programming (CP)? 
•  An approach to combinatorial optimization 

arising from Artificial Intelligence and 
Computer Science 
–  in contrast to Operations Research 

•  Core technology 
–  tree search + inference 

•  Successes: scheduling, planning, network 
provisioning, graph theory, … 
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Constraint Satisfaction Problem 
(CSP) 
•  Given: 

– V, a set of variables {v0, v1, …, vn} 
– D, a set of domains {D0, D1, …, Dn} 
– C, a set of constraints {c0, c1, …, cm} 

•  Each constraint, ci, has a scope  
ci(v0, v2, v4, v117, …), the variables that it 
constrains 

24 
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Constraint Satisfaction Problem 
(CSP) 
•  A constraint, ci, is a mapping from the 

elements of the Cartesian product of the 
domains of the variables in its scope to 
{T,F} 
– ci(v0, v2, v4, v117, …) maps: 

(D0 X D2 X D4 X D117 X … ) → {T,F} 
•  A constraint is satisfied iff the assignment 

of the variables in its scope map to T 
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Constraint Satisfaction Problem 
(CSP) 
•  In a solution to a CSP: 

– each variable is assigned a value from its 
domain: vi = di, di є Di 

– each constraint is satisfied 
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Constraint Optimization Problem 
(COP) 
•  A CSP plus a cost function f(V) 

–  f is a mapping from the Cartesian product of a 
subset of the domains to integers or reals 

•  A solution is a solution to the CSP where f 
is (wolog) minimized 
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Generic CP Algorithm 

Assert 
Commitment 

Inference 

Start 

Success 
Solution? 

Heuristic 
Decision 

Backtrack 
Technique 

Failure 

Nothing to 
retract? 

Dead-end? 
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Arc Consistency 

•  Fundamental notion in CP! 
•  Given: c1(v1,v2) 

– a binary constraint 
– e.g., v1 < v2 

•  Given: D1 = D2 = {0, 1, …, 5} 

29 
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Arc Consistency 
•  c1 is arc consistent iff  

–  for all values d1 є D1 there exists a value  
d2 є D2 such that c1(v1=d1,v2=d2) → T  

– And similarly for all values d2 є D2  
– We say d1 “supports” d2 (and vice versa) 

V1 V2 
< 

{0,1,2,3,4,5} {0,1,2,3,4,5} 
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What Now? 

V1 V2 
< 

{0,1,2,3,4,5} {0,1,2,3,4,5} 

V3 

{0,1,2,3,4,5} 

31 
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Generalized Arc Consistency 
(GAC) 
•  Given: c1(v1,..., vm) 
•  C1 is GAC iff  

–  for all variables di, for all values di є Di there 
exists a tuple of values [dj є Dj], j≠i such that C1
(vi=di,[vj=dj]) → T 

•  E.g., c1(v1,v2,v3,v4) 
–  for every value in d1 є D1 there must be some 

triple [d2 є D2, d3 є D3, d4 є D4] s.t. c1(v1=d1, 
v2=d2, v3=d3, v4=d4) → T 
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All-Diff vs. Clique of ≠ 

•  all-diff(v1, v2, …, vn) =def  
 vi ≠ vj for 1 ≤ i < j ≤ n 

•  D1=D2=D3={1,3} 
•  Establish AC (or GAC) for 

– v1 ≠ v2, v1 ≠ v3, v2 ≠ v3 
– all-diff(v1,v2,v3) 

≠ 

{1,3} {1,3} 

V1 V2 

V3 

{1,3} 

{1,3} {1,3} 

V1 V2 

V3 

{1,3} 

all-diff 
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Job Shop Scheduling 

makespan 
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A CP Model for JSP 
36 

Minimize the makespan 

Precedence 
constraints 

All activities end  
before the makespan 

disjunctive is a  
global constraint 

enforcing the 
resource capacity 
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The disjunctive 
Global Constraint 
•  Called disjunctive because it enforces: 

for all activities i,j on the same resource. 
•  There are a number of inference 

algorithms that have been invented – we’ll 
look at only one. 

37 
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Notation 

pj – processing time of activity j  (aka duration) 
estj – earliest start time of activity j 
lstj – latest start time of activity j 
ectj – earliest completion time of activity j 
lctj – latest completion time of activity j 

pj 

estj lctj ectj lstj 

39 
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Notation 

pj 

[estj lstj] [ectj lctj] 

Domain of start times 
(represented by an interval) 

40 
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Edge-Finding Exclusion 

100 

20 

15 

10 

15 

0 10 80 

S est(S) lct(S) 

25 
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Edge-Finding Exclusion 

100 

20 

15 

10 

15 

0 10 75 

S est(S) lct(S) 

25 
70 100 
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Exclusion Rules 

For all non-empty subsets, S, and activities 
A∉S: 

(lct(S) - est(S) < pA + p(S)) 
∧ (lct(S) - estA < pA + p(S)) estA ≥ est(S) + p(S) 

(lct(S) - est(S) < pA + p(S)) 
∧ (lctA - est(S) < pA + p(S)) lctA ≤ lct(S) - p(S) 

On the same, unary 
capacity resource 
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Global Constraints 

•  A lot of interesting global constraints for 
scheduling 
– Balance constraint [Laborie, 2003] 
– Setups (TSP and AP) [Focacci et al, 2000] 
–  Inter-distance [Artiouchine & Baptiste, 2005] 
– Timetable Edge-finding [Vilim, 2011] 
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Other Critical Solver 
Components 
•  Search 

(branching heuristics) 
– Min-slack [Cheng & Smith, 1993] 
– Texture measurements [B., 1999] 
– Solution-guided search (stay tuned …) 

•  Backtracking 
– Usual standard CP approaches 

•  Chronological, LDS, restart, … 

45 
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What Makes CP Different? 

•  Rich, expressive language 
– you can define anything you want as a 

constraint (not always a good thing) 
•  Focus on inference as the key technique 

to reduce search tree 

46 
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Outline: Part 1 

•  What is Scheduling? 
– The fundamental bits 
–  “The” classical problem 

•  Constraint Programming (CP) 
– Complete search and inference 

•  Mixed Integer Programming (MIP) 
– Complete search and relaxation 

•  Metaheuristics 
–  Incomplete search 

48 
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Mixed Integer Programming 
(MIP) 
•  Very successful complete optimization 

approach 
•  From the Operations Research/Applied 

Math community 
•  (Much) longer history than CP 

– 1940s and 1950s 

49 
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MIP Basics 

•  Variables: integer or continuous 
•  Constraints: linear 
•  Objective function: linear 
•  (more accurately called Mixed Integer 

Linear Programming (MILP)) 

50 

Comment: Much more restricted language than CP 
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MIP Basics 
51 

Objective function 

Constraints 

Could be ≤, =, or ≥ 

Integer variables 

Continuous variables 

Continuous (linear) relaxation: 
poly-time soluble! 
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MIP Solving 

•  Combination of  
–  tree search 
–  relaxation 
– cutting planes 

52 

0 1 2 5 4 3 

1 

0 

2 

3 

x2 

x1 

x2 ≤ 4 
Objective: maximize 

Thanks to Stefan Heinz & Timo Berthold, 
Zuse Institute Berlin, for the pictures. 
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Linear Relaxation 

•  Finds a “corner” 
that maximizes 
the cost function 
– Algorithms: 

simplex, 
dual simplex, 
interior point, …  

53 

So are we done? 
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Branching 

•  Add a constraint 
•  Focus on one 

sub-problem 
•  Return 

(backtrack) later 

54 

What constraints have been added here? 
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Branching 
55 
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Bounds Strengthening 

•  A form of 
inference 
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Solve LP Again … 

•  Integer solution! 
–  recall that the 

LP solution is 
guaranteed to 
be a corner 

57 
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Bounding 

•  Found an 
“incumbent” 
solution so add 
a constraint to 
require a better 
solution 

58 
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Backtrack 
59 
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Bounds Strengthen 
60 
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Solve LP 

•  New solution! 

61 

And we’re done 
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Other Critical Solver 
Components 
•  Branching heuristics 
•  Cutting planes 
•  Primal heuristics 
•  Backtracking 

– Best-First Search or  
Depth-First Search 

62 
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Job Shop Scheduling 

makespan 

64 



University of Toronto 
Mechanical & Industrial Engineering 

MIP for Job Shop Scheduling 
65 

All activities start only once 

Cmax is the largest end-time 

Precedence constraints 

Resource constraints 

Weaknesses? 
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What Makes MIP Different? 

•  Restricted language 
– cf. SAT 

•  Focus on the linear relaxation as the key 
technique to reduce search tree 

66 
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Outline: Part 1 

•  What is Scheduling? 
– The fundamental bits 
–  “The” classical problem 

•  Constraint Programming (CP) 
– Complete search and inference 

•  Mixed Integer Programming (MIP) 
– Complete search and relaxation 

•  Metaheuristics 
–  Incomplete search 

67 
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Now For Something Completely 
Different 

68 
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Metaheuristics 
(aka Local Search) 
•  Quickly & heuristically find a “good” 

solution 
•  Perturb the solution slightly, generating 

neighboring solutions 
•  Evaluate neighbors and move to the best 

one 
•  Repeat 

69 
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70 

Notation 

•  V is a set of variables {v1, …, vn} 
•  s is an assignment of each variable to a 

value 
•  Let S be the set of all assignments 
•  A neighborhood N is a function from s to T 

where  
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Notation 

•  So  
•  The assignments in N(s) are the 

“neighbors” of s 
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Crystal Maze 

•  Place the numbers 1 through 8 in the 
nodes such that: 
– Each number appears exactly once 

? 

? 

? 

? 

? 

? 

? ? 

– No connected 
nodes have 
consecutive 
numbers   
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Local Search Idea 

•  Randomly assign values (even if the 
constraints are “broken”) 
–  Initial state will probably be infeasible 

•  Make “moves” to try to move toward a 
solution 
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Random Initial Solution 

? 

? 

? 

? 

? 

? 

? ? 1 

4 

3 

2 5 

6 

7 

8 
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Random Initial Solution 

? 

? 

? 

? 

? 

? 

? ? 1 

4 

3 

2 5 

6 

7 

8 

“Broken” constraint 

Cost = # of broken constraints 
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What Should We Do Now? 

•  Move:  
– Swap two numbers 

•  Which two numbers? 
– Randomly pick a pair 
– The pair that will lead to the biggest decrease 

in cost 
•  Cost: number of broken constraints 
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What Should We Do Now? 

•  Move:  
– Swap two numbers 

•  Which two numbers? 
– Randomly pick a pair 
– The pair that will lead to the biggest decrease 

in cost 
•  Cost: number of broken constraints 
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Random Initial Solution 

? 

? 

? 

? 

? 

? 

? ? 1 

4 

3 

2 5 

6 

7 

8 
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Cost Difference Table 

1 2 3 4 5 6 7 8 
1 0 0 0 -1 0 -2 -3 -2 
2 0 -1 1 -1 -2 -1 -3 
3 0 0 0 0 -1 0 
4 0 0 0 -1 0 
5 0 0 1 -1 
6 0 -1 0 
7 0 0 
8 0 
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Cost Difference Table 

1 2 3 4 5 6 7 8 
1 0 0 0 -1 0 -2 -3 -2 
2 0 -1 1 -1 -2 -1 -3 
3 0 0 0 0 -1 0 
4 0 0 0 -1 0 
5 0 0 1 -1 
6 0 -1 0 
7 0 0 
8 0 
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Current State 

? 

? 

? 

? 

? 

? 

? ? 1 

4 

3 

2 5 

6 

7 

8 
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Swap 1 & 7: Cost 3 

? 

? 

? 

? 

? 

? 

? ? 7 

4 

3 

2 5 

6 

1 

8 
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New Cost Difference Table 

1 2 3 4 5 6 7 8 
1 0 0 0 0 2 0 3 0 
2 0 0 2 0 1 1 1 
3 0 0 0 1  1 -1 
4 0 0 1 1 1 
5 0 1 2 0 
6 0 0 0 
7 0 1 
8 0 

Incremental updates are important 
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Current State 

? 

? 

? 

? 

? 

? 

? ? 7 

4 

3 

2 5 

6 

1 

8 
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Swap 3 & 8: Cost 2 

? 

? 

? 

? 

? 

? 

? ? 7 

4 

8 

2 5 

6 

1 

3 
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Swap 6 & 7: Cost 1 

? 

? 

? 

? 

? 

? 

? ? 6 

4 

8 

2 5 

7 

1 

3 
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Moves 

•  Initial State: Cost 6 
•  Swap 1 & 7: Cost 3 
•  Swap 3 & 8: Cost 2 
•  Swap 6 & 7: Cost 1 
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Cost Difference Table 

1 2 3 4 5 6 7 8 
1 0 1 1 1 2 2 1 1 
2 0 1 2 2 1 3 1 
3 0 1 1 4  1 2 
4 0 2 1 3 1 
5 0 2 1 2 
6 0 1 1 
7 0 1 
8 0 
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Now what? 

•  There are no improving 
moves to make! 

•  So far, we have been “hill-
climbing” 

moves 

cost 
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Now what? 

•  This is when you need a metaheuristic 
– Simulated Annealing 
– Tabu Search 

•  [Blum & Roli 2003] 
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Local Search (or Iterative 
Improvement or Hill-Climbing) 

first improvement 
(aka first accept) 

best improvement 
(aka best accept) 

OR 

There is a lot that has 
been left unsaid! 
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Simulated Annealing 

“temperature” 

f(s) is the cost of solution s 

“cooling schedule” 
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Probability of Acceptance 

•  Typically: 

•  at a fixed T, the higher the difference in 
cost the lower the prob. of acceptance 

•  at a fixed cost difference, the higher the 
temperature, the higher the prob. of 
acceptance 
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Cooling Schedule 

•  Typically the temperature starts out high 
and gradually decreases 

•  A lot of theoretical work here 
•  Often, in practice  
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Tabu Search 

Could also do first  
instead of best 
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Tabu List 

•  What is the format of an element? 
•  What is the tabu tenure? 

– Variations? 
•  What are aspiration criteria? 
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Job Shop Scheduling 

makespan 
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Critical Path 

A critical “block” is a contiguous set of critical 
activities on the same resource  
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N1 Neighborhood 
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N1 & N5 Neighborhoods 

•  N1: Swap all pairs of adjacent activities in 
a critical block 
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N1 Neighborhood 
N1 Neighborhood N1 Neighborhood 

10 neighbors 
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N1 & N5 Neighborhoods 

•  N1: Swap all pairs of adjacent activities in 
a critical block 

•  N5: Swap first and last adjacent pair in 
each critical block 
– but only last pair in first block and first pair in 

last block 
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N1 Neighborhood 
N5 Neighborhood 

5 neighbors 
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Simple Tabu Search (STS) 

•  Tabu tenure 
–  randomly drawn from an interval [6,10] every 

15 moves 
•  Elite solutions 

– maintain e elite solutions 
–  if best solution hasn’t improved in a while, 

jump back to one of the elite solutions and 
start over 

•  Other sophisticated components 
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Metaheuristics 
•  Start with random or heuristic solution 
•  Make moves following the cost gradient 

– Might need some short term memory (e.g., tabu 
list) to avoid cycling 

•  Go until you find a solution or reach a bound 
on the number of moves 

106 
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Summary 

•  CP 
– search + inference, rich language, domain 

specific inference and heuristics 
•  MIP 

– search + relaxation, restricted language, 
generic relaxation 

•  Metaheuristics 
–  local search 
– hill-climbing + local minima escape 

108 
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Which is Best? 

•  CP 
– scheduling is a (commercial) success story for 

CP 
– easy to add side-constraints (and there are 

always side constraints) 
•  However: 

–  if propagation is weak, falls apart 
•  more complicated cost functions or multiple 

decisions need to be made before inference can 
work 

– scaling? 

109 
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Which is Best? 

•  MIP 
– good with complex costs 
–  flexible modeling of side-constraints 

•  if they are linear 

•  However: 
– scaling issues with time-indexed formulation 
–  if resource feasibility is the main challenge, 

falls apart 
•  especially with non-unary resources 

110 
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Which is Best? 

•  Metaheuristics 
– can be highly customized for a given problem 
– scales well 
– state-of-the-art for JSP since mid-90s 

•  However: 
– hard to incorporate side-constraints 

•  need new neighborhood 
– can’t prove optimality or even give a bound on 

solution quality 
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Outline: Part 2 

•  Remembering Yesterday 
•  Combining CP and Tabu 

Search for Job Shop 
Scheduling 

•  Combining MIP and CP for Resource 
Allocation/Scheduling Problems 
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Outline: Part 3 
•  The Origin of the Species 

– Ancient History (the 70s & 80s) 
– What’s a constraint anyway? 

•  The 90s 
•  Scheduling & AI 
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Outline 

•  Part 1: Core Scheduling Technologies 
– CP, MIP, & Metaheuristics 
– 90 minutes 

•  Part 2: State of the Art 
– CP + Metaheuristics, CP + MIP 
– 60 minutes 

•  Part 3: Polemics & Perspectives  
– The Past and the Future? 
– 30 minutes 

2 
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Outline: Part 2 

•  Remembering Yesterday 
– 90 minutes in 3 slides 

•  Combining CP and Tabu 
Search for Job Shop 
Scheduling 

•  Combining MIP and CP for Resource 
Allocation/Scheduling Problems 

3 



University of Toronto 
Mechanical & Industrial Engineering 

Scheduling is … 

•  The allocation of resources  
to activities over time 
– Mixing machines in food manufacturing 
– Classrooms at a university 
– Trucks & planes for FedEx 

•  Mathematically hard 
•  Industrially, economically, & 

environmentally important 

4 



University of Toronto 
Mechanical & Industrial Engineering 

The Key Difference with 
Planning 
•  In classical scheduling we know all the 

operations (e.g., flights, production jobs) at 
the beginning of the solving process 

•  Typically (and for this lecture) assume that 
we never add to the set of operations 
during search 

5 
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Summary 

•  CP 
– search + inference, rich language, domain 

specific inference and heuristics 
•  MIP 

– search + relaxation, restricted language, 
generic relaxation 

•  Metaheuristics 
–  local search 
– hill-climbing + local minima escape 

6 
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Outline: Part 2 

•  Remembering Yesterday 
– 90 minutes in 3 slides 

•  Combining CP and Tabu 
Search for Job Shop 
Scheduling 

•  Combining MIP and CP for Resource 
Allocation/Scheduling Problems 

8 
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Outline 

•  State of the Art in Job Shop Scheduling 
•  Iterated Simple Tabu Search (i-STS) & 

Solution-Guided Search (SGS) 
•  Hybrid i-STS/SGS 

[B., Feng, & Watson, 2011] 
Combining Constraint Programming and 
Local Search for Job-Shop Scheduling. 
INFORMS Journal on Computing, 23(1), 1-14, 2011. 

9 
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Job Shop Scheduling 

makespan 

10 
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A CP Model for JSP 
11 

Minimize the makespan 

Precedence 
constraints 

All activities end  
before the makespan 
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State of the Art for JSP 

•  TSAB (Nowicki and Smutnicki 1993, 1996) 
– Elite pool of k best solutions found 
– Repeated tabu search from elite solutions 

•  i-TSAB (Nowicki and Smutnicki 2001, 
2002, 2003, 2005) 
– Elite pool of k best solutions 
– Path relinking to diversify, TSAB to intensify 

•  Tabu search / simulated annealing hybrid 
(Zhang et al. 2006) 

12 
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State of the Art for JSP 

•  Constraint Programming 
– Sophisticated propagation techniques 
– Scheduling specific heuristics 
– Commercially successful in scheduling → 

easily model side-constraints 

However 

Doesn’t really compete on the JSP 

13 
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Taillard’s 20x20 JSPs - Makespan 
Instance UB CP - 

chron 
CP - restart 
mean (best) 

TA21 1644 1809 1694 (1686) 
TA22 1600 1689 1654 (1649) 

TA23 1557 1657 1614 (1602) 

TA24 1646 1810 1698 (1694) 

TA25 1595 1685 1673 (1664) 

TA26 1645 1827 1707 (1701) 

TA27 1680 1827 1755 (1750) 

TA28 1603 1778 1664 (1656) 

TA29 1625 1718 1666 (1660) 

TA20 1584 1666 1647 (1641) 

14 
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Outline 

•  State-of-the Art in Job Shop Scheduling 
•  Iterated Simple Tabu Search (i-STS) & 

Solution-Guided Search (SGS) 
•  Hybrid i-STS/SGS 

15 
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Tabu Search 

[Blum & Roli, 2006] 
Metaheuristics in combinatorial optimization:  
Overview and conceptual comparison. 
ACM Computing Surveys, 35(3):268-308, 2003. 
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i-STS: Initial Phase 
•  Repeat k times 

– Generate random local optima, A 
– Run STS on A until no more progress is being 

made 
–  Insert the best solution found in the STS run 

into the elite set 

[Watson, Howe, & Whitley 2006] 
Deconstructing Nowicki and Smutnicki’s i-TSAB tabu 
search algorithm for the job-shop scheduling problem. 
Computers and Operations Research, 
33, 2623–2644, 2006. 

17 
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i-STS: Proper Work Phase 

•  With 0.5 probability 
– Pick random elite solution, R, and run STS  
–  If best solution is better than R, replace R 

•  Else 
– Pick two random elite solutions, R, S  
– Walk half way between R & S to W 
– Run STS from W 
–  If best solution is better than R, replace R 

18 
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Another View 

Starting  
Solution 
Guiding 
Solution 

10010011111010 

10111010101011 
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Another View 

Starting  
Solution 

Guiding 
Solution 

10010011111010 

10111010101011 

10110011111010 

10011011111010 

10010010111010 
10010011101010 
10010011111011 

10010011111011 
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Another View 

Starting  
Solution 

Guiding 
Solution 

10010011111010 

10111010101011 

10110011111011 

10011011111011 

10010010111011 
10010011101011 

10010011111011 
10010010111011 



University of Toronto 
Mechanical & Industrial Engineering 

i-STS Results 

•  Significantly cleaner and simpler than 
i-TSAB 
– Test-bed for investigations about why i-TSAB 

really works 
•  Near state of the art 

– Equivalent performance to i-TSAB per 
iteration 

– But about 5 times slower 

23 
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Solution-Guided Search 
•  Metaheuristics use “elite” 

solutions – why not tree 
search? 
– Keep around a small set of  

the “elite” solutions 
– Guide tree search 

with one of the elite solutions 

[B. 2007] 
Solution-guided multi-point constructive 
search for job shop scheduling. 
Journal of Artificial Intelligence Research, 29, 49–77, 2007. 

25 
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SGS Algorithm 

initialize elite set, e 

while not out of time 
 r := random element of e 

 s := search(r) 
 if s is better than r 

  replace r by s 

return best(e) 

Assumes you can quickly 
find “solutions” 

1) Limited search (e.g.,  
by time, fails, etc) 

2) Should use random- 
ized heuristic 

26 
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V := varHeuristic.getVariable() 

if (V = x) є s AND if x є dom(V) 
 branch ((V = x) OR (V ≠ x)) 

else 
 w := valHeuristic.getValue(V) 

 branch ((V = w) OR (V ≠ w)) 

Guiding Search with a Solution 
•  Given a solution: 

 s ={(v1=x1), (v2=x2), …, (vm = xm)}, m ≤ n 

27 
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SGS Search 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Optimal 

Optimal 
Guiding 
solution 

Guiding 
solution 

28 



Taillard’s 20x20 JSPs - Makespan 
Instance UB CP - 

chron 
CP - restart 
mean (best) 

SGS 
mean (best) 

TA21 1644 1809 1694 (1686) 1666 (1649) 
TA22 1600 1689 1654 (1649) 1632 (1621) 

TA23 1557 1657 1614 (1602) 1571 (1561) 

TA24 1646 1810 1698 (1694) 1664 (1652) 

TA25 1595 1685 1673 (1664) 1620 (1608) 

TA26 1645 1827 1707 (1701) 1669 (1656) 

TA27 1680 1827 1755 (1750) 1716 (1706) 

TA28 1603 1778 1664 (1656) 1628 (1619) 

TA29 1625 1718 1666 (1660) 1642 (1626) 

TA20 1584 1666 1647 (1641) 1607 (1598) 
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Taillard’s 20x20 JSPs - Makespan 
Instance UB CP - 

chron 
CP - restart 
mean (best) 

SGS 
mean (best) 

i-STS 
mean (best) 

TA21 1644 1809 1694 (1686) 1666 (1649) 1648 (1647) 
TA22 1600 1689 1654 (1649) 1632 (1621) 1614 (1600) 

TA23 1557 1657 1614 (1602) 1571 (1561) 1560 (1557) 

TA24 1646 1810 1698 (1694) 1664 (1652) 1653 (1647) 

TA25 1595 1685 1673 (1664) 1620 (1608) 1599 (1595) 

TA26 1645 1827 1707 (1701) 1669 (1656) 1653 (1651) 

TA27 1680 1827 1755 (1750) 1716 (1706) 1690 (1687) 

TA28 1603 1778 1664 (1656) 1628 (1619) 1617 (1614) 

TA29 1625 1718 1666 (1660) 1642 (1626) 1628 (1627) 

TA20 1584 1666 1647 (1641) 1607 (1598) 1587 (1584) 
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Conclusion 

SGS significantly improves standard CP 
approaches 

But is not competitive with i-STS 
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Outline 

•  State-of-the Art in Job Shop Scheduling 
•  Iterated Simple Tabu Search (i-STS) & 

Solution-Guided Search (SGS) 
•  Hybrid i-STS/SGS 

33 
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Why Hybridize? 

•  Propagation algorithms work better in a 
more constrained state 
– CP can’t find good solutions, but given a good 

solution can it find a better one? 
•  We hypothesize that SGS strongly 

intensifies around a solution 
– better than tabu search at intensification? 
– does this bring us anything? 

34 
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The Simplest Hybrid  
We Could Think Of 
•  Given T seconds 
•  Run i-STS for T/2 
•  Use final elite set 

from i-STS as initial 
elite set for SGS 

•  Run SGS for T/2 

35 
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Results – Taillard’s 20x20 
Instance UB SGS 

mean (best) 
i-STS 

mean (best) 
TA21 1644 1666 (1649) 1648 (1647) 
TA22 1600 1632 (1621) 1614 (1600) 

TA23 1557 1571 (1561) 1560 (1557) 

TA24 1646 1664 (1652) 1653 (1647) 

TA25 1595 1620 (1608) 1599 (1595) 

TA26 1645 1669 (1656) 1653 (1651) 

TA27 1680 1716 (1706) 1690 (1687) 

TA28 1603 1628 (1619) 1617 (1614) 

TA29 1625 1642 (1626) 1628 (1627) 

TA20 1584 1607 (1598) 1587 (1584) 
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Results – Taillard’s 20x20 
Instance UB SGS 

mean (best) 
i-STS 

mean (best) 
Hybrid 

mean (best) 
TA21 1644 1666 (1649) 1648 (1647) 1644 (1642) 
TA22 1600 1632 (1621) 1614 (1600) 1613 (1610) 

TA23 1557 1571 (1561) 1560 (1557) 1559 (1557) 

TA24 1646 1664 (1652) 1653 (1647) 1648 (1645) 

TA25 1595 1620 (1608) 1599 (1595) 1601 (1595) 

TA26 1645 1669 (1656) 1653 (1651) 1649 (1647) 

TA27 1680 1716 (1706) 1690 (1687) 1684 (1680) 

TA28 1603 1628 (1619) 1617 (1614) 1616 (1613) 

TA29 1625 1642 (1626) 1628 (1627) 1626 (1625) 

TA30 1584 1607 (1598) 1587 (1584) 1589 (1584) 
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Results – 4 Taillard Sets 
Instance 

Set 
UB i-TSAB Zhang Hybrid 

best mean best mean worst 
TA11-20 2.29 2.81 2.37 2.92 2.26 2.42 2.69 
TA21-30 5.38 5.68 5.44 5.97 5.50 5.70 5.89 

TA31-40 0.46 0.78 0.55 0.93 0.49 0.72 0.98 

TA41-50 4.02 4.70 4.07 4.84 4.17 4.70 5.28 

Overall 3.04 3.49 3.11 3.67 3.11 3.38 3.71 

Statistic 

Mean relative error to best-known lower bound 
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Results – 4 Taillard Sets 
Instance 

Set 
UB i-TSAB Zhang Hybrid 

best mean best mean worst 
TA11-20 2.29 2.81 2.37 2.92 2.26 2.42 2.69 
TA21-30 5.38 5.68 5.44 5.97 5.50 5.70 5.89 

TA31-40 0.46 0.78 0.55 0.93 0.49 0.72 0.98 

TA41-50 4.02 4.70 4.07 4.84 4.17 4.70 5.28 

Overall 3.04 3.49 3.11 3.67 3.11 3.38 3.71 

Statistic 

Mean relative error to best-known lower bound 
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Results – 4 Taillard Sets 
Instance 

Set 
UB i-TSAB Zhang Hybrid 

best mean best mean worst 
TA11-20 2.29 2.81 2.37 2.92 2.26 2.42 2.69 
TA21-30 5.38 5.68 5.44 5.97 5.50 5.70 5.89 

TA31-40 0.46 0.78 0.55 0.93 0.49 0.72 0.98 

TA41-50 4.02 4.70 4.07 4.84 4.17 4.70 5.28 

Overall 3.04 3.49 3.11 3.67 3.11 3.38 3.71 

Statistic 

Mean relative error to best-known lower bound 
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Overall Results   

•  Able to find and prove optimality for 6 
instances 

•  10 new best solutions found out of 40 
problem instances 
– across different parameterizations 

41 
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What About More 
Sophistication?   
•  Switch back-and-forth, communicating the 

elite set 
•  Longer intervals later in the run 
•  Reinforcement learning to give more time 

to the better performer 

[Carchrae & B. 2005] 
Applying Machine Learning to low-knowledge 
control of optimization algorithms. 
Computational Intelligence, 21(4) 372-387, 2005. 

Nothing significantly improved over simple hybrid 
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Results – 4 Taillard Sets 
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Results – 4 Taillard Sets 
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What is Going On? 

•  Not completely sure 
•  Both i-STS and SGS are doing a form of 

large-neighborhood search around good 
solutions 
–  i-STS much more biased by cost gradient but 

gets further away from seed solution faster 
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Experiment (ta41-ta50) 

•  Gather all (feasible) solutions from all runs 
and bucket them by quality 
– 5-15 %tile, 25-35 %tile, etc. 

•  Randomly draw an elite pool from each 
bucket 

•  Run pure i-STS and pure SGS 

46 



University of Toronto 
Mechanical & Industrial Engineering 

Improving Elite Pools 
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Questions 

•  Why does this simple hybrid work? 
–  Is SGS just doing independent intensification 

around each elite solution? 
•  Grabbing the low-hanging fruit that i-STS misses? 

– How specific is this to JSP search space 
topology? 

•  Example of a larger hybrid pattern? 
– Heuristic search then optimize [F. Soumis] 
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Conclusion 

•  i-STS/SGS is a state-of-the-art hybrid of 
tabu search and constraint programming 
for job-shop scheduling 

•  Consistently yields very high quality 
solutions 
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Outline: Part 2 

•  Remembering Yesterday 
– 90 minutes in 3 slides 

•  Combining CP and Tabu 
Search for Job Shop 
Scheduling 

•  Combining MIP and CP for Resource 
Allocation/Scheduling Problems 

51 
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Planning & Scheduling 

Assign jobs 

Schedule Schedule Schedule 
[Hooker 2005] 
A Hybrid Method for Planning and Scheduling. Constraints, 10, 385-401, 2005. 
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CP Model 
53 

Minimize resource assignment cost 

Resource capacity constraint 

Time-window constraints 

Each activity is assigned to one resource 
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The optcumulative 
Global Constraint 
•  Generalizes disjunctive to enforce 

resource capacity including: 
– non-unary capacity (unary = one) 
– non-unary requirements 
– optional activities  

•  A number of the disjunctive inference 
algorithms have been extended 

54 
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MIP Model 
55 

Minimize resource assignment 
cost 

Resource capacity constraint 

Each activity starts once on one 
resource 
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Logic-Based Benders 
Decomposition (LBBD) 

Monolithic Model 
(e.g., MIP, CP, …) 

[Hooker 2005] 
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LBBD 

Master Problem 

Subproblem 1 Subproblem n .	
  .	
  .	
  

Solu'on	
   Solu'on	
  
Cut	
   Cut	
  

[Hooker 2005] 
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Logic-Based Benders 

•  Partition problem into 
– Master problem with decision variables, y 
– Sub-problem(s) with decision variables, x 

•  When the y’s are fixed (to say, ŷ), sub-
problems are formed 

•  Each sub-problem is an inference dual 
– What is the max. LB that can be inferred 

assuming y = ŷ? 

58 

[Hooker 2000] 
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LBBD 
59 

Master: 
Find Optimal 

Sub-problems: 
Solve 

Add cuts 

Logic-based Benders 

Restart 
tree search 



LBBD Master (MIP) 
60 

Minimize resource assignment cost 

Sub-problem relaxation 

Benders cut 

Each activity is assigned to one resource 
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Sub-problem Relaxation 
61 

C 

est lft 
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Benders Cut 

•  Do not allow same assignment of activities 
(or a superset) 
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Benders Subproblem (CP) 

•  Single-machine, feasibility problem 
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Hooker’s Instances 

Model # Optimal # Feasible Run-time (secs) 
geo-mean 

CP 62 69 1311.4 
MIP 98 195 778.8 
LBBD 119 119 227.3 

65 

•  195 instances 
•  2 – 4 resources, 10 – 38 jobs 

[Heinz & B. 2011] 
Solving Resource Allocation/Scheduling Problems with Constraint Integer 
Programming. ICAPS 2011 Workshop on Constraint  
Satisfaction Techniques for Planning and Scheduling Problems, 2011. 



MIP vs LBBD 
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Hooker’s Instances 

Model # Optimal # Feasible Run-time (secs) 
geo-mean 

CP 62 69 1311.4 
MIP 98 195 778.8 
LBBD 119 119 227.3 
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•  195 instances 
•  2 – 4 resources, 10 – 38 jobs 
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Summary 

•  Tabu + CP results in state-of-the-art job 
shop scheduling 
– good solutions guide both Tabu and CP 
– need a deeper understanding of 

neighborhood search 
•  MIP + CP in LBBD for state-of-the-art 

resource allocation/scheduling 
–  feasible solutions still a challenge (vs. MIP) 
– generic (but manual) decomposition technique 
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Themes 

•  Cost-driven vs. feasibility-driven 
– Cost: Tabu and MIP; Feasibility: CP 

•  Decomposition vs. whole problem 
•  Using good solutions for guidance 

– SGS as a form of large-neighborhood search 
– Tabu 

•  Relaxation (MIP) vs. inference (CP) 
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Outline 

•  Part 1: Core Scheduling Technologies 
– CP, MIP, & Metaheuristics 
– 90 minutes 

•  Part 2: State of the Art 
– CP + Metaheuristics, CP + MIP 
– 60 minutes 

•  Part 3: Polemics & Perspectives  
– The Past and the Future? 
– 30 minutes 
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Outline: Part 3 
•  The Origin of the Species 

– Ancient History (the 70s & 80s) 
– What’s a constraint anyway? 

•  The 90s 
•  Scheduling & AI 
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•  Computer science is a discipline that 
ignores its history 
– Alan Kay 

4 
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What’s a Constraint? 
•  A constraint, ci, is a mapping from 

the elements of the Cartesian 
product of the domains of the 
variables in its scope to {T,F} 
– ci(v0, v2, v4, v117, …) maps: 

(D0 X D2 X D4 X D117 X … ) → {T,F} 
•  A constraint is satisfied if the 

assignment of the  
variables in its  
scope map to T 

Constraint-Based  
Scheduling 

Constraint 
Prog. 

CSP 

“purple constraint” 
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What’s a “Green Constraint”? 
•  A rich, generative object that 

represents all sorts of knowledge 
about a problem 
– preferences 
–  relevance 
–  relaxations 
– descriptions of complex interactions 
– organizational responsibility & 

authority 

GOFAI 

Constraint- 
Directed 

Scheduling 
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In the Beginning was the Word 

•  … and the word was “constraint” 

•  H. Simon, “The Structure of Ill-Structured 
Problems”, Artificial Intelligence, 4, 
181-201, 1973 
– W.R. Reitman, Cognition and Thought, Wiley, 

New York, 1965 
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Herbert Simon 
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[Simon 73]: Constraints 
•  “Reitman uses the term ‘constraints’ quite 

broadly to refer to any or all of the elements 
that enter into a definition of a problem.” 

•  [Reitman 65] “… even though [problem 
instances] would be considered complex, 
they include very few constraints  
as given. Composing a fugue is a  
good example. Here the main 
initial constraint … is that the 
end product be a fugue.” 
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[Simon 73]: Designing a House  

•  Taking the initial goals and constraints, 
the architect begins to derive some  
global specifications from them –  
perhaps the square footage …  
of the house …. But the task itself,  
“designing a house”, evokes from his long-term 
memory a list of other attributes that will have to 
be specified at an early stage of the design: 
characteristics of the lot on which the house is to 
be built, its general style, …. 
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Simon Says 
•  Constraints & goals evoke  

(or contain) ways to satisfy them  
(solution components) 

•  Solution components in turn create sub-
goals and constraints 

•  Implications 
– Constraints are rich objects within a KR system 
–  (Green) constraints don’t look a lot like 

(purple) constraints 
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The Real Scheduling Problem? 

•  Fox, M., Constraint-Directed Search: A 
Case Study of Job-Shop Scheduling, PhD 
Thesis, 1983. 

•  “… the [human] scheduler was spending 
10%-20% of his time scheduling, and 
80%-90% of his time communicating with 
other employees to determine what 
additional “constraints” could affect an 
order’s schedule.” 
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The Real Scheduling Problem? 

Scheduling 
Problem 

Operation 
precedence 

Machine 
breakdowns 

Machine alternatives 
& preferences Due dates & start dates 

Setup time 

Operation  
alternatives 

Tool & fixture availability 

Machine 
capabilities 

Operation 
preferences 

Order 
Sequencing 

Work-in-process time 
Shop stability 

Quality Cost 
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Scheduling is … 

•  … a dynamic, multi-agent process that 
seeks to satisfy a diverse set of 
constraints from within (and beyond) an 
organization 

•  The real problem must be aware of: 
– organizational structure & authority 
– history & commitments 
– preferences 
– uncertainty & risk 
– … 
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Scheduling is … 

•  The allocation of resources  
to activities over time 
– Mixing machines in food manufacturing 
– Classrooms at a university 
– Trucks & planes for FedEx 

•  Mathematically hard 
•  Industrially, economically, & 

environmentally important 
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Constraints are… 

•  … key representations of all this 
knowledge to be exploited to heuristically 
guide the search for a solution 

•  Compare: 
– ci(v0, v2, v4, v117, …) maps: 

(D0 X D2 X D4 X D117 X … ) → {T,F} 
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Constraint-Directed Scheduling 

•  System-wide reasoning 
–  “anti-reductionist” 
– difficult to do controlled empirical analysis 
– difficult to generalize from success  
– difficult to publish traditional algorithmic 

papers 
•  Series of systems 

–  ISIS, OPIS, Ozone, …. 
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Outline: Part 3 
•  The Origin of the Species 

– Ancient History (the 70s & 80s) 
– What’s a constraint anyway? 

•  The 90s 
•  Scheduling & AI 
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“AI Winter” 

•  The “visions” of the 80s became hard to 
support as they were not being achieved 
– purple visions: declarative problem solving 
– green visions: system-wide reasoning 

•  Narrowing of ambitions to the easily 
testable and commercially rewarding 
– purple: CP becomes an organizational 

paradigm for OR algorithms 
– green: system building and 

  the lure of the purple 

A bit of an  
exaggeration 
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Commercial Success 

•  Resource allocation system  
based on constraint  
propagation used in Desert  
Storm more than paid for all 
the DARPA AI research funding ever 
– Patrick Winston, 9th IEEE Conference on 

Artificial Intelligence for Applications, 1993  
•  ILOG Scheduler (started ~1994) 

– embedded in SAP and Oracle supply chain 
optimization products 
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The Downside 

•  Have we solved the problem by ignoring 
those aspects that were interesting from 
an AI perspective to begin with? 

•  Competing with OR exactly  
where OR is strongest:  
well-defined “narrow”  
problems 
–  “The darkside grows strong” 

The Darkside 
26 
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Outline: Part 2 
•  The Origin of the Species 

– Ancient History (the 70s & 80s) 
– What’s a constraint anyway? 

•  The 90s 
•  Scheduling & AI 
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For the GOFAI Believers … 
•  Reasoning about time 

and resources is surely 
necessary for true AI 
– unclear that AI 

scheduling has 
developed anything 
cognitively meaningful 

– how do people reason 
about time and 
resources? How much credit card  

debt do you have? 
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AI Scheduling Opportunities 

•  Richer Problem Models 
–  robustness & uncertainty 
– alternative/optional  

activities … AI planning 
•  Meta-level Reasoning 

– Back to the Future? 
•  Information Engineering 
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Richer Problem Models: 
Uncertainty 
•  Don’t know the activity duration, 

machines breakdown, new 
orders arrive, … 

•  Notion of a solution changes to 
the ongoing control of the 
schedule execution 

•  A bunch of work here both in AI 
and OR 
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Richer Activity Models 
•  Activity alternatives 
•  Cost/benefit or quality 

depends on exection  
time and resource  
choice 

•  AI planning & scheduling 
– a lot of work in planning with time 

& resources 
– scheduling with goals 
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Meta-level Reasoning 
•  Knowing when to use 

what algorithms 
•  Use machine learning to 

select the best algorithm 
or to form a control policy 
to switch among 
algorithms 
– much work here recently 
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Information Engineering 

Scheduling 
Problem 

Operation 
precedence 

Machine 
breakdowns 

Machine alternatives 
& preferences Due dates & start dates 
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•  Negotiates 
– Can I deliver half now and half 

 later? 
•  Prioritizes 

– Job X is more important because 
the customer is very big 

•  Spends money to relax constraints 
– Can we go below safety stock to 

meet this order? 

What Does a Human 
Scheduler Do? 
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Changing the Problem 

•  Traditional optimization techniques try to 
solve the problem → a human changes 
the problem so it can be solvable! 

•  What the human scheduler does is based 
on knowledge not represented in the 
scheduling problem! 
– Think of the experience and information that 

the human needs 
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Another View of Scheduling 

•  We should be building information 
systems 
–  that give humans the information required to 

make better decisions 
–  that automate what the human scheduler 

really does 
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And Me? 
37 

AI OR 
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Research Directions 
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AI 
Planning with time and 

resources 
Partial-order planning 
Modeling in Planning 
Design Systems for Planning 

OR 
Queueing theory and 

optimization 
Constraint integer 

programming 

Both 
Uncertainty & robustness 
Multi-agent, linked scheduling 

problems 
Problem decomposition 
Hybrid algorithms 
Solution-guided search 
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