
Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Complexity Analysis in Planning
From Theory of Practice to Practice of Theory

Carmel Domshlak

Technion, Israel

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Why complexity?

understand the problem

know what is not possible

find interesting subproblems

distinguish essential features from syntactic sugar

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Complexity in Planning, by Malte Helmert
Previous summer school, ICAPS-2009

MH focused on

central complexity results

expressivity vs. complexity tradeoff

methodology for complexity analysis of planning
formalisms

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Complexity in Planning, by Malte Helmert
Previous summer school, ICAPS-2009

MH focused on

central complexity results

expressivity vs. complexity tradeoff

methodology for complexity analysis of planning
formalisms

CD will (try to focus) on something else

Improving on MH is known to be 2-EXP-hard

Great slides by MH with pointers to literature are online

My objective today is a bit different

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Goal of the Tutorial is Practice of Theory

Focus on computational tractability (CT)

present major approaches to search for CT

connect between CT and wider complexity analysis

connect between CT and empirical progress

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Goal of the Tutorial is Practice of Theory

Focus on computational tractability (CT)

present major approaches to search for CT

connect between CT and wider complexity analysis

connect between CT and empirical progress

Disclaimer

Not a comprehensive overview
(or anything else, for that matter).

Very subjective, and (hopefully) somewhat provocative.

Stresses just one aspect of the story;
many other aspects are also important.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What Do We Mean by “Computational
Tractability”?

Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

1 Ability to solve something in polynomial time.

2 Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

3 For a formalism F (model + language),
find tractable fragments of F

; Useful?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What Do We Mean by “Computational
Tractability”?

Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

1 Ability to solve something in polynomial time.

2 Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

3 For a formalism F (model + language),
find tractable fragments of F

; Useful?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What Do We Mean by “Computational
Tractability”?

Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

1 Ability to solve something in polynomial time.

2 Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

3 For a formalism F (model + language),
find tractable fragments of F

; Useful?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What Do We Mean by “Computational
Tractability”?

Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

1 Ability to solve something in polynomial time.

2 Given a problem Π, ability to solve in polynomial time
something useful for solving Π.

3 For a formalism F (model + language),
find tractable fragments of F

; Useful?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Why Computational Tractability?

Bylander, 1994

If the relationship between intelligence and computation is
taken seriously, then intelligence cannot be explained by
intractable theories because no intelligent creature has the time
to perform intractable computations. Nor can intractable
theories provide any guarantees about the performance of
engineering systems.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Why Computational Tractability?

Bylander, 1994

If the relationship between intelligence and computation is
taken seriously, then intelligence cannot be explained by
intractable theories because no intelligent creature has the time
to perform intractable computations. Nor can intractable
theories provide any guarantees about the performance of
engineering systems.

Point 1 is logical but vague (and thus misleading?)
What is the definition of “intractable theory”?
“Every science has a big lie. The big lie of complexity is
worst case analysis.” [C. Papadimitriou]
Still, worst case intractability severely limits us
algorithmically

Point 2 is a serious concern.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Some conclusions on Why Computational
Tractability?

Concrete applications

building systems with worst-case guarantees

building new search guidance mechanisms

combining a set of search guidance mechanisms

checking whether new developments any needed (*)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Model of Deterministic Planning
Transition systems

Definition (deterministic transition system)

A deterministic transition system is 〈S, I, A,G〉 where

S is a finite set of states (the state space),

I ∈ S is initial state,

actions a ∈ A (with a ⊆ S × S) are partial functions,

G ⊆ S is a finite set of goal states.

Definition (plan)

A plan for 〈S, I, A,G〉 is a sequence π = 〈a1, . . . , an〉 of
actions from A such that an(an−1(. . . a1(I) . . .)) ∈ G.

? (Shortest) path finding in digraph.

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Finite Domain Representation (FDR) Language
Also known as sas+

Definition (FDR planning tasks)

An FDR planning task is a tuple 〈V,A, I,G〉
V is a finite set of state variables with finite domains
dom(vi)
initial state I is a complete assignment to V

goal G is a partial assignment to V

A is a finite set of actions a specified via pre(a) and eff(a),
both being partial assignments to V

An action a is applicable in a state s ∈ dom(V) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified

Applying an applicable action a changes the value of each
variable v to eff(a)[v] if eff(a)[v] is specified.

Induced deterministic transition system is straightforward.

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Boolean Domain Representation (BDR) Language
Also known as STRIPS with negative preconditions

Definition (FDR planning tasks)

An FDR planning task is a tuple 〈V,A, I,G〉
V is a finite set of state variables with finite domains
dom(vi)
initial state I is a complete assignment to V

goal G is a partial assignment to V

A is a finite set of actions a specified via pre(a) and eff(a),
both being partial assignments to V

Definition (BDR planning tasks)

BDR planning tasks are FDR planning tasks with only boolean
state variables.

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Major complexity classes

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆ · · ·

~ P, NP, and beyond NP: membership and hardness proofs

~ Higher up ; rarer and smaller islands of tractability

~ Higher up ; more sophistication needed to compete with
humans?

So which floor is FDR?

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Major complexity classes

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆ · · ·

~ P, NP, and beyond NP: membership and hardness proofs

~ Higher up ; rarer and smaller islands of tractability

~ Higher up ; more sophistication needed to compete with
humans?

So which floor is FDR?

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Computational Tasks

1 PlanExt — is the task solvable?

2 PlanMin — what is the cost of the optimal plan?

3 PlanGen — generate a plan for the task

4 PlanMinGen — generate an optimal plan for the task

Connections and relevance.

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning as State-Space Heuristic Search

Heuristic functions

What? Something that can be solved in polynomial time
to assist us in solving our planning task

How? Solutions to simplifications of the planning task

Window of opportunity for computational tractability!

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning as State-Space Heuristic Search

Heuristic functions

What? Something that can be solved in polynomial time
to assist us in solving our planning task

How? Solutions to simplifications of the planning task

Window of opportunity for computational tractability!

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Heuristics Toolbox

Just 15 years ago

Nothing, but “STRIPS heuristic” (missing goals counting).

HSP is considered natural yet hopeless approach to
planning (cf. R&N, ed1).

Surprising, given successes of HS in AI back then ...

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Heuristics Toolbox

Just 15 years ago

Nothing, but “STRIPS heuristic” (missing goals counting).

In (just) 15 years

HSP is considered a leading approach to planning
(cf. R&N, ed3).

1 Delete relaxation ; hmax, hadd, hFF, ...

2 Critical paths/trees ; hm, ...

3 Landmarks ; hLAMA, hL, hLM-cut, ...
4 Abstractions

; PDBs, m&s, fork decompositions ...

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Heuristics Toolbox

Just 15 years ago

Nothing, but “STRIPS heuristic” (missing goals counting).

In (just) 15 years

HSP is considered a leading approach to planning
(cf. R&N, ed3).

1 Delete relaxation ; hmax, hadd, hFF, ...

2 Critical paths/trees ; hm, ...

3 Landmarks ; hLAMA, hL, hLM-cut, ...
4 Abstractions

; PDBs, m&s, fork decompositions ...

Related to our agenda today?

Introduction

Preliminaries

Deterministic
planning

Complexity
classes

HSP

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Syntactic fragments

What are syntactic restrictions?

Fragment of tasks
def←− restrictions on action description

(preconditions and effects)

1 Attack a la Erol, Nao, & Subrahmanian, and Bylander
Restrictions on individual actions

2 Attack a la Bäckström, Klein, & Nebel
Restrictions on action set as a whole

Note:

Membership can be verified offline

Membership can be verified in polynomial time (?)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Bylander’s Map of BDR
PlanExt

* pre
* eff

* pre
1 eff

1 pre
* eff

2 + pre
2 eff

* pre
* + eff

1 pre
1 + eff

* + pre
1 eff

1 pre
* eff
g goals

0 pre
* eff

PSPACE-complete

NP-complete

polynomial

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

NP-completeness of BDR1
1+

Membership in NP by monotonicity of state updates.
Hardness by reduction from 3SAT. Let F be a 3CNF formula
with n clauses over variables U = {u1, . . . , um}. An equivalent
BDR1

1+ task can be constructed as follows.

State variables V = {c1, . . . , cn, t1, . . . , tm, f1, . . . , fm}.
Initial state I = ∅ (all vars set to false).

Goal G =
∧n

i=1 ci.

Actions
1 For each ui, two actions: ¬fi ⇒ ti and ¬ti ⇒ fi
2 For 1 ≤ j ≤ n,

if j-th clause contains ui, then action ti ⇒ cj

if j-th clause contains ui, then action fi ⇒ cj

~ Suggests why HSP for STRIPS planning was stuck

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

NP-completeness of BDR1
1+

Membership in NP by monotonicity of state updates.
Hardness by reduction from 3SAT. Let F be a 3CNF formula
with n clauses over variables U = {u1, . . . , um}. An equivalent
BDR1

1+ task can be constructed as follows.

State variables V = {c1, . . . , cn, t1, . . . , tm, f1, . . . , fm}.
Initial state I = ∅ (all vars set to false).

Goal G =
∧n

i=1 ci.

Actions
1 For each ui, two actions: ¬fi ⇒ ti and ¬ti ⇒ fi
2 For 1 ≤ j ≤ n,

if j-th clause contains ui, then action ti ⇒ cj

if j-th clause contains ui, then action fi ⇒ cj

~ Suggests why HSP for STRIPS planning was stuck

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Islands of Tractability

BDR+
1

How? Dedicated algorithm, forward + backward search.
Search for an intermediate state that can be reached with
only positive-effect actions, and from which the goal can
be reach with only negative-effect actions.

Example: Blocksworld. ~ General practice?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Islands of Tractability

BDR+
1

How? Dedicated algorithm, forward + backward search.

Example: Blocksworld. ~ General practice?

BDR1 limited to g = O(1) goals

How? Exhaustive search through a “small” search space.
A single goal cannot expand into multiple sub-goals.

~ Rings familiar? (Hint: critical-path heuristics hm)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Islands of Tractability

BDR+
1

How? Dedicated algorithm, forward + backward search.

Example: Blocksworld. ~ General practice?

BDR1 limited to g = O(1) goals

How? Exhaustive search through a “small” search space.

~ Rings familiar? (Hint: critical-path heuristics hm)

BDR0

How? Simple means-end analysis.

~ An advanced variant of “STRIPS heuristic”
(missing goals counting).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR+
+ is in P

* pre
* eff

* pre
1 eff

1 pre
* eff

2 + pre
2 eff

* pre
* + eff

1 pre
1 + eff

* + pre
1 eff

1 pre
* eff
g goals

0 pre
* eff

PSPACE-complete

NP-complete

polynomial

* + pre
* + eff

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Bylander’s Map of BDR
PlanMin

0 pre
* eff

0 pre
2 eff

0 pre
1 eff

1 pre
* eff
g goals

0 pre
2 + eff

NP-complete

polynomial

1 + pre
1 + eff

0 pre
3 + eff

* + pre
1 eff

~ The islands are getting smaller and rarer ...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

NP-completeness of PlanMin for BDR1+
1+

And for BDR0
3+

Let F be a 3CNF formula with n clauses over variables
U = {u1, . . . , um}. Construct a BDR1+

1+ task as follows.

State variables V = {ci}n1 ∪ {tj , fj , vj}m1 .

Initial state I = ∅ (all vars set to false).

Goal G =
∧n

i=1 ci ∧
∧m

j=1 vj .

Actions
1 For each ui, four actions: ⇒ ti, ⇒ fi, fi ⇒ vi and ti ⇒ vi
2 For 1 ≤ j ≤ n,

if j-th clause contains ui, then action ti ⇒ cj

if j-th clause contains ui, then action fi ⇒ cj

;Task has a plan of length 2m+ n iff F is satisfiable.

~ Hardness of BDR0
3+ by a simple reduction from Set Cover;

both reductions prove hardness of h+.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

NP-completeness of PlanMin for BDR1+
1+

And for BDR0
3+

Let F be a 3CNF formula with n clauses over variables
U = {u1, . . . , um}. Construct a BDR1+

1+ task as follows.

State variables V = {ci}n1 ∪ {tj , fj , vj}m1 .

Initial state I = ∅ (all vars set to false).

Goal G =
∧n

i=1 ci ∧
∧m

j=1 vj .

Actions
1 For each ui, four actions: ⇒ ti, ⇒ fi, fi ⇒ vi and ti ⇒ vi
2 For 1 ≤ j ≤ n,

if j-th clause contains ui, then action ti ⇒ cj

if j-th clause contains ui, then action fi ⇒ cj

;Task has a plan of length 2m+ n iff F is satisfiable.

~ Hardness of BDR0
3+ by a simple reduction from Set Cover;

both reductions prove hardness of h+.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Revisiting the Heuristics Toolbox

Developments of the last 15 years

1 Delete relaxation ; hmax, hadd, hFF, ...

2 Critical paths/trees ; hm

3 Landmarks ; hLAMA, hL, hLM-cut, ...
4 Abstractions

; PDBs, m&s, fork decompositions ...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Syntactic fragments

What are syntactic restrictions?

Fragment of tasks
def←− restrictions on action description

(preconditions and effects)

1 Attack a la Erol, Nao, & Subrahmanian and Bylander
Restrictions on individual actions.

Restrictions are natural and “easy to think in terms of”
Computational tractability is rare already for BDR
Some (2?) islands of tractability are extremely helpful in
practice!

2 Attack a la Bäckström, Klein, & Nebel
Restrictions on action set as a whole

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Syntactic Restrictions on Actions’ Set
Back to FDR

The toolbox of four restrictions

1 Post-uniqueness: For each value of each state variable,
there is at most one action achieving that value.

~ Strong condition: desired effects determine achievers.

2 Single-valuedness: If two actions are preconditioned by the
value of some v ∈ V , and neither change its value, then
they both are preconditioned by the same value of v.

~ Generalizes “positive preconditions”.
Example: If some action requires lights on, then no action
requires lights off without turning them on.

3 Unariness (FDR1)

4 Binariness (BDR)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Bäckström & Nebel’s Map of FDR
PlanGen

US = certain generalization of BDR+
1 to FDR

~ System design? Possible (in, e.g., automated control).
Heuristics-oriented relaxations? At least not yet.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Bäckström & Nebel’s Map of FDR
PlanMinGen

~ The already small island is getting smaller ...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Two quotes from the summary of Bäckström &
Nebel (1995)

The most surprising result for us was that post-uniqueness
of operators, which appears to be a very strong restriction,
does not guarantee tractability if considered in isolation.

~ Start with a (combinatorially) simple fragment. Then
either climb to harder fragments, or you just saved yourself
a lot of time.

This should not discourage us, however. It means that we
have to start considering alternative restrictions, or
combinations of less restricted variants of [our]
restrictions.

~ And this is one thing you can do with the time you just
saved for yourself ,

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Two quotes from the summary of Bäckström &
Nebel (1995)

The most surprising result for us was that post-uniqueness
of operators, which appears to be a very strong restriction,
does not guarantee tractability if considered in isolation.

~ Start with a (combinatorially) simple fragment. Then
either climb to harder fragments, or you just saved yourself
a lot of time.

This should not discourage us, however. It means that we
have to start considering alternative restrictions, or
combinations of less restricted variants of [our]
restrictions.

~ And this is one thing you can do with the time you just
saved for yourself ,

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Structural fragments

Reminder: What are syntactic restrictions?

Fragment of tasks
def←− restr. on action description

What are structural restrictions?

Fragment of task
def←− restr. on interactions between actions

1 Attack a la Jonsson & Bäckström
Restrictions on interaction between values of individual
state variables

2 The causal graph journey
Restrictions on interaction between variables

Note:

Membership can be verified offline
Membership can be verified in polynomial time (?)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Graphical Structures as Problem Abstractions

General methodology:
1 Project planning task on some of its aprehendable aspects
2 Play with various constraints on these aspects

~ Syntactic fragmentation was precisely about that

Graphical representations/abstractions of comp. problems
1 CSP: Constraint networks, junction trees, ...
2 Probabilistic reasoning: BNs, DBNs, Markov nets, ...
3 Preferential reasoning: GAI-nets, xCP-nets, ...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Graphical Structures as Problem Abstractions

General methodology:
1 Project planning task on some of its aprehendable aspects
2 Play with various constraints on these aspects

~ Syntactic fragmentation was precisely about that

Graphical representations/abstractions of comp. problems
1 CSP: Constraint networks, junction trees, ...
2 Probabilistic reasoning: BNs, DBNs, Markov nets, ...
3 Preferential reasoning: GAI-nets, xCP-nets, ...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Graphical Structures as Problem Abstractions

~ Why graphs?
1 Cognitively convenient
2 Come with a rich math and CS toolbox

Graphical views in planning?

Yes, we have!
Today: causal graphs & domain transition graphs
~ Why these?
More to be studied, and even to be discovered/suggested

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Graphical Abstractions of Action Interactions
Causal Graphs

In the context of an FDR planning task Π = 〈V,A, I,G〉:

Definition (causal graph)

The causal graph CG(Π) of Π is a digraph over nodes V .
An arc (v, v′) is in CG(Π) iff v 6= v′ and there exists an action
a ∈ A such that

(v, v′) ∈ V (eff(a)) ∪ V (pre(a)) × V (eff(a)),

that is, both eff(a)[v′] and either pre(a)[v] or eff(a)[v] are
specified.

Notation: succ(v) and pred(v) are immediate successors and
predecessors of v in CG(Π).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Graphical Abstractions of Action Interactions
Domain Transition Graphs

In the context of an FDR planning task Π = 〈V,A, I,G〉:

Definition (domain transition graph)

The domain transition graph DTG(v,Π) of a variable v ∈ V is
an arc-labeled digraph over the nodes dom(v).
An arc (ϑ, ϑ′) labeled with ∈ A is in the graph iff

1 eff(a)[v] = ϑ′, and

2 either pre(a)[v] = ϑ, or v 6∈ V (pre(a)).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Example

A

C

D

B

E

F

G

D E at A at B at C at D at E at F at G

in c!

in c" in t

in c#

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

c! c" c# t

p! p"

p1, p2

c1, c2 c3

t

CG(Π)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Computational Tractability as a Function of Causal
Graph Form

1 From BDR to FDR

2 From severe structural restrictions to their generalizations

3 For simplicity, assume all actions have the same cost
(relevant only for optimization)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Forks

~ Informal discussion

PlanGen is easy

r’s capabilities: 0, 1, or ∞ changes.

All leafs are binary ; r changes ≤ 2.

Given a workload of r, succ(r) are
independent.

r

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Forks

~ Informal discussion

PlanGen is easy

r’s capabilities: 0, 1, or ∞ changes.

All leafs are binary ; r changes ≤ 2.

Given a workload of r, succ(r) are
independent.

r

r

PlanMinGen is easy

Given root’s workload, all leafs are independent.

Optimize over all three cases of workload for root.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Inverted Forks

~ Informal discussion

PlanGen is easy

pred(r) are independent.

if not trivial, r should change exactly
once.

find action a changing r to G[r]
such that, for each v ∈ pred(r),
G[v] reachable from I[v] via pre(a)[v].

r

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Inverted Forks

~ Informal discussion

PlanGen is easy

pred(r) are independent.

if not trivial, r should change exactly
once.

find action a changing r to G[r]
such that, for each v ∈ pred(r),
G[v] reachable from I[v] via pre(a)[v].

r

r

PlanMinGen is easy

Optimize over all actions changing r to G[r].

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

So far so good! What next?

Generalizing causal graph fragments

1 Forks =⇒ Directed Trees

2 Inverted Forks =⇒ Directed Inverted Trees

3 Directed Trees + Directed Inverted Trees =⇒ Polytrees

r

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Chains

~ Informal discussion

PlanGen is easy [BD03/BBDHP02]

loop

iteratively eliminate leafs consistent with G

change the lowest var that can be changed

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Chains

~ Informal discussion

PlanGen is easy [BD03/BBDHP02]

loop

iteratively eliminate leafs consistent with G

change the lowest var that can be changed

PlanMinGen is easy [KD08]

No choices ; Optimal.

Same algorithm works for directed trees!
What about choices? They are ∀, not ∃.

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Polytrees: Take I
Booooooooooooom!

PlanGen is easy
for graphs with fixed in-degree k [BD03]

Lemma: If causal graph is DP singly
connected, then no variable should change
value more than |V | times.

BDR ; # value changes = sequence of
value changes

Algorithm:
1 Top-down: Given parents’ sequences of

doable & possibly-needed value changes,
determine var’s sequence of such value
changes.

2 Toolbox: edge graphs

Complexity: O(|V |2k+3). (Aha ...)

r

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Polytrees: Take I

PlanGen is easy
for graphs with fixed in-degree k [BD03]

Complexity: O(|V |2k+3). (Aha ...)

PlanMinGen is easy
(for graphs with fixed in-degree k) [KD08]

Not the same algorithm!

r

r

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Connection to Graphical Structures in CSP/COP
BDR Polytrees PlanMinGen

PlanMinGen for BDR Polytrees

1 Compile Π into an equivalent constraint optimization
problem COPΠ such that

(I) COPΠ can be constructed in time polynomial in ||Π||,
(II) cost network of COPΠ = unoriented CG(Π) (aka tree)

2 Solve COPΠ using linear-time algorithm for constraint
optimization over trees.

Methodology generalizes beyond trees
(via tree decompositions of graphs).

Step (I) can be challenging.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Connection to Graphical Structures in CSP/COP
BDR Polytrees PlanMinGen

PlanMinGen for BDR Polytrees

1 Compile Π into an equivalent constraint optimization
problem COPΠ such that

(I) COPΠ can be constructed in time polynomial in ||Π||,
(II) cost network of COPΠ = unoriented CG(Π) (aka tree)

2 Solve COPΠ using linear-time algorithm for constraint
optimization over trees.

Methodology generalizes beyond trees
(via tree decompositions of graphs).

Step (I) can be challenging.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Polytrees: Take II

~ Everything so far was so good!
Can you get rid of the fixed in-degree assumption, please?

Looks like there is a promise ...

1 Compile Π into an equivalent constraint optimization
problem COPΠ such that

(I) COPΠ can be constructed in time polynomial in ||Π||,
(II) cost network of COPΠ = unoriented CG(Π) (aka tree)

2 Solve COPΠ using linear-time algorithm for constraint
optimization over trees.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Polytrees: Take II

~ Everything so far was so good!
Can you get rid of the fixed in-degree assumption, please?

Looks like there is a promise ...

1 Compile Π into an equivalent constraint optimization
problem COPΠ such that

(I) COPΠ can be constructed in time polynomial in ||Π||,
(II) cost network of COPΠ = unoriented CG(Π) (aka tree)

2 Solve COPΠ using linear-time algorithm for constraint
optimization over trees.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

BDR Polytrees: Take II

NO. . . PlanGen is NP-complete [GJ08]

Elegant reduction from 3SAT (m clauses, n vars)

rr

x x y zy z

c1c�
1

c�
2

c�
3

c2

c3

α1 α2 α3 α4 α5

� �� �
2m− 1

Note that the proof kills directed inverted trees as well ...

Can we push further with fixed in-degree?
~ Various alternative generalizations of polytrees.

[BD03] For DP singly connected causal graphs,
NP-complete starting (at most) in-degree 6.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Wrapping-up the Tango of BDR and Causal Graphs

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

From BDR to FDR

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

And that is with binary variables only.
What about general finite domains?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

FDR and Causal Graph Topology

PlanGen looks bad

Forks ; NP-complete [DD01]

Inverted Forks ; NP-complete [DD01]

Chains ; NP-complete [GJ07]

~ Can we expect for any good news?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

FDR and Causal Graph Topology

PlanGen looks bad

Forks ; NP-complete [DD01]

Inverted Forks ; NP-complete [DD01]

Chains ; NP-complete [GJ07]

~ Can we expect for any good news?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

FDR and Causal Graph Topology
No, we can’t.

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of
planning tasks Π with CG(Π) ∈ C.

If the size of all connected components in graphs of C is
bounded by a constant, then PlanGen for ΠC is
polynomial-time solvable.

Otherwise, PlanExt for ΠC is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT)

Why “unless W[1] ⊆ nu-FPT” and not, say, “unless P = NP”?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

FDR and Causal Graph Topology
No, we can’t.

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of
planning tasks Π with CG(Π) ∈ C.

If the size of all connected components in graphs of C is
bounded by a constant, then PlanGen for ΠC is
polynomial-time solvable.

Otherwise, PlanExt for ΠC is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT)

Why “unless W[1] ⊆ nu-FPT” and not, say, “unless P = NP”?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Situation Assessment

1 Looking at out benchmarks, natural state variables tend to
be non-binary, and even parametric (wrt domain).

2 With binary state variables, we get messy causal graphs.

3 With finite-domain state variables, causal graph is
irrelevant.

4 Q: Have we wasted our time?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Situation Assessment

1 Looking at out benchmarks, natural state variables tend to
be non-binary, and even parametric (wrt domain).

2 With binary state variables, we get messy causal graphs.

3 With finite-domain state variables, causal graph is
irrelevant.

4 Q: Have we wasted our time? Maybe. Maybe not.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

Possible directions from here

Look for a different abstraction (later)

Look for additional constraints on top of the causal graph
(now)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Causal Graph and Reversibility

Definition (reversibility)

Π is reversible if for any state s reachable from the initial state,
the initial state can be reached from s.

Feature present in many benchmark domains!

Membership test (?)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Causal Graph and Reversibility

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of
reversible planning tasks Π with CG(Π) ∈ C.

If the size of all strongly connected components in graphs
of C is bounded by a constant, then PlanGen for ΠC is
polynomial-time solvable (under succinct plan
representation).

Otherwise, PlanExt for ΠC is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Causal Graph and Reversibility

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of
reversible planning tasks Π with CG(Π) ∈ C.

If the size of all strongly connected components in graphs
of C is bounded by a constant, then PlanGen for ΠC is
polynomial-time solvable (under succinct plan
representation).

Otherwise, PlanExt for ΠC is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT)

The algorithm for the tractable case is easy (right?)

Why and what is this “under succinct plan
representation”?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Causal Graph and Reversibility

Theorem (Chen & Gimenez classification [CG08])

Let C be a set of directed graphs, and ΠC be the class of
reversible planning tasks Π with CG(Π) ∈ C.

If the size of all strongly connected components in graphs
of C is bounded by a constant, then PlanGen for ΠC is
polynomial-time solvable (under succinct plan
representation).

Otherwise, PlanExt for ΠC is not polynomial-time
decidable (unless W[1] ⊆ nu-FPT)

Already exploited in embedded planning! [WN97]

Inspired the original “causal graph heuristic” of Fast
Downward. [H05]

Close connection to HTN planning.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

Possible directions from here

Look for a different abstraction (later)

Look for additional constraints on top of the causal graph

Complex state-space properties (e.g., reversibility)
Simple state-space properties? (What is simple?)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

Reminder: PlanGen looks bad

Chains ; NP-complete

Forks ; NP-complete

Inverted Forks ; NP-complete

Note: all three are easy for BDR!
What about non-binary, yet still small, O(1), domains?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

The Journey Continues!

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

Reminder: PlanGen looks bad

Chains ; NP-complete

Forks ; NP-complete

Inverted Forks ; NP-complete

Note: all three are easy for BDR!
What about non-binary, yet still small, O(1), domains?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

~ Was it worth it? Why should we care? Where is practice?

curiosity (and with that, de facto judgements are
problematic)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Back to Chains

What happens with chain-structured tasks if |dom(v)| = O(1)
for all vars?

2001/DD |dom(v) = 3| 7→ Optimal plans can be
exponentially long

2002/BD |dom(v)| = 2 7→ Polynomial-time solvable

2007/GJ |dom(v)| = Θ(|V |) 7→ NP-complete

2008/GJ |dom(v)| = 7 7→ NP-complete

2009/GJ |dom(v)| = 5 7→ NP-complete

~ Was it worth it? Why should we care? Where is practice?

curiosity

distilling “sources of complexity”
(to know what precisely should be avoided)

something else (TBP)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Tractable Cases of Planning with Forks
[KD08]

Theorem (forks)

PlanMinGen for fork structured problems with root r ∈ V is
polynomial time solvable if

(i) |dom(r)| = 2, or

(ii) for all v ∈ V , we have |dom(v)| = O(1),

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root
r ∈ V is polynomial time solvable if |dom(r)| = O(1).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Theorem (inverted forks)

Theorem (inverted forks)

PlanMinGen for inverted fork structured problems with root
r ∈ V is polynomial time solvable if |dom(r)| = O(1).

Proof sketch (Construction)

(1) Create all Θ(dd) cycle-free paths from s0[r] to G[r] in
DTG(r,Π).

(2) For each u ∈ pred(r), and each x, y ∈ dom(u), compute
the cost-minimal path from x to y in DTG(u,Π).

(3) For each path in DTG(r,Π) generated in step (1),
construct a plan for Π based on that path for r, and the
shortest paths computed in (2).

(4) Take minimal cost plan from (3).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Putting things together

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

What about tasks with (some) domains of size O(1)?

Chains ; NP-complete for dom(v) > 4. Open for 3 and 4.

Forks ; P for dom(r) = 2, and for dom(v) = O(1).

Inverted Forks ; P for dom(r) = O(1)

Can we use these results in practice?
Let us step aside and recall abstraction heuristics.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Putting things together

Major conclusion so far

Causal graphs are too coarse to provide an effective
tractability-oriented abstraction

What about tasks with (some) domains of size O(1)?

Chains ; NP-complete for dom(v) > 4. Open for 3 and 4.

Forks ; P for dom(r) = 2, and for dom(v) = O(1).

Inverted Forks ; P for dom(r) = O(1)

Can we use these results in practice?
Let us step aside and recall abstraction heuristics.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Abstracting a transition system

Abstracting a transition system means dropping some
distinctions between states, while preserving the transition
behaviour as much as possible.

An abstraction of a transition system T is defined by an
abstraction mapping α that defines which states of T
should be distinguished and which ones should not.

From T and α, we compute an abstract transition system
T ′ which is similar to T , but smaller.

The abstract goal distances (goal distances in T ′) are used
as heuristic estimates for goal distances in T .

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Computing the abstract transition system

Given T and α, how do we compute T ′?
Requirement

We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T ′) should never
overestimate h∗(s) (in the concrete state space T).

An easy way to achieve this is to ensure that all solutions in T
also exist in T ′:

If s is a goal state in T , then α(s) is a goal state in T ′.
If T has a transition from s to t, then T ′ has a transition
from α(s) to α(t).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for α:

1 For a given state s, the abstract state α(s) must be
efficiently computable.

2 For a given abstract state α(s), the abstract goal distance
h∗(α(s)) must be efficiently computable.

Canonical approach: explicit abstractions

pattern database heuristics

merge-and-shrink abstractions

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Limitations of Explicit Abstractions

Both PDBs and merge-and-shrink are explicit abstractions:
abstract spaces are searched exhaustively

PDBs dimensionality = O(1), size of the abstract space is O(1)
M&S dimensionality = Θ(|V |), size of the abstract space is O(1)

; (often/potentially) price in heuristic accuracy in long-run

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Structural Abstraction Heuristics: Main Idea

Objective (departing from PDBs)

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

, can our islands of tractability help us here?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Here Come the Forks!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Mixing Causal-Graph & Variable-Domain
Decompositions

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

{ΠGf
v

,ΠG if
v

}v∈V

CG(Π)

ΠGf
c1

ΠG if
p1

Π

φc1,i : dom(c1) !→ {0, 1} φ′

p1,i : dom(p1) !→ {0, . . . , k}

ΠG if

p1,i
ΠGf

c1,i

+ ensuring proper action cost partitioning

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning / Logistics-00
Expanded nodes

h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning / Logistics-00
Expanded nodes and Time

h∗ HHH105 hF hFI + opt
nodes time nodes time nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning / Logistics-00
Shall we redefine the notion of success?...

h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 21 20.82
02 19 20 0.04 20 10.4 20 20.36
03 15 16 0.05 16 5.18 16 10.85
04 27 28 0.33 28 22.81 28 47.42
05 17 18 0.34 18 11.72 18 21.63
06 8 9 0.33 9 2.99 9 8.89
07 25 26 1.11 26 26.88 26 53.81
08 14 15 1.12 15 10.37 15 21.19
09 25 26 1.14 26 27.78 26 51.52
10 36 37 4.55 37 426.07 37 973.46
11 44 2460 4.65 1689 14259.8 45 1355.23
12 31 32 6.5 32 374.48 32 876.9
13 44 7514 6.84 45 702.29 45 1621.74
14 36 37 8.94 37 474.8 37 1153.85
15 30 31 8.84 31 448.86 31 1052.46
16 45 29319 17.35 46 3517.25 46 7635.96
17 42 1561610 45.61 43 3297.69 43 7192.51
18 48 199428 24.95 49 10014.3
19 60 61 15625.5
20 42 6095 24.9 43 4325.45 43 9470.85
21 68 69 22928.4

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Causal graph
journey

BDR

FDR

Between BDR
and FDR

Implicit
Abstractions

Heuristic
Ensembles

Tractability &
System Design

What next?

Planning / Logistics-00
No. Implicit abstraction databases!

h∗ HHH105 hF hFI + opt
nodes time nodes time ♠ nodes time

01 20 21 0.05 21 10.49 0.27 21 20.82
02 19 20 0.04 20 10.4 0.27 20 20.36
03 15 16 0.05 16 5.18 0.27 16 10.85
04 27 28 0.33 28 22.81 0.33 28 47.42
05 17 18 0.34 18 11.72 0.33 18 21.63
06 8 9 0.33 9 2.99 0.33 9 8.89
07 25 26 1.11 26 26.88 0.41 26 53.81
08 14 15 1.12 15 10.37 0.43 15 21.19
09 25 26 1.14 26 27.78 0.41 26 51.52
10 36 37 4.55 37 426.07 3.96 37 973.46
11 44 2460 4.65 1689 14259.8 4.25 45 1355.23
12 31 32 6.5 32 374.48 4.68 32 876.9
13 44 7514 6.84 45 702.29 4.63 45 1621.74
14 36 37 8.94 37 474.8 5.12 37 1153.85
15 30 31 8.84 31 448.86 5.12 31 1052.46
16 45 29319 17.35 46 3517.25 24.73 46 7635.96
17 42 1561610 45.61 43 3297.69 24.13 43 7192.51
18 48 199428 24.95 697 24.73 49 10014.3
19 60 21959 33.61 61 15625.5
20 42 6095 24.9 43 4325.45 29.61 43 9470.85
21 68 106534 61.54 69 22928.4

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Looking around

Tractable fragments are ...

1 rare, but still exist

2 key to heuristic engineering

3 based on very different sets of restrictions

Given a problem to solve, how shall we choose between

1 different heuristics/fragments?

2 different instances of a single heuristic/fragment?

It is generally not necessary to commit to a single
heuristic/fragment.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Looking around

Tractable fragments are ...

1 rare, but still exist

2 key to heuristic engineering

3 based on very different sets of restrictions

Given a problem to solve, how shall we choose between

1 different heuristics/fragments?

2 different instances of a single heuristic/fragment?

It is generally not necessary to commit to a single
heuristic/fragment.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Combining multiple admissible heuristics

Maximizing several heuristics:

By computing the maximum of several admissible
heuristics, we obtain another admissible heuristic which
dominates the component heuristics.

Adding several heuristics:

In some cases, we can even compute the sum of individual
estimates and still stay admissible.

Summation often leads to much higher estimates than
maximization, so it is important to understand when it is
admissible.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥∑k
i=1 costi(o) for all operators o, then∑k

i=1 hi is an admissible heuristic for Π.

Observations

Generalizes action counting orthogonality

No idea what partition is better? ; Uniform partition?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥∑k
i=1 costi(o) for all operators o, then∑k

i=1 hi is an admissible heuristic for Π.

Observations

Generalizes action counting orthogonality

No idea what partition is better? ; Uniform partition?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Additive sets of heuristics

Theorem (action cost partitioning)

Let Π,Π1, . . . ,Πk be planning tasks, identical except for the
operator costs cost, cost1, . . . , costk. Let {hi}ki=1 be a set of
arbitrary admissible heuristic functions for {Πi}ki=1, respectively.

If holds cost(o) ≥∑k
i=1 costi(o) for all operators o, then∑k

i=1 hi is an admissible heuristic for Π.

Observations

Generalizes action counting orthogonality

No idea what partition is better? ; Uniform partition?

Still, how to choose among the alternative cost partitions?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Optimal action cost partitioning for abstractions

Problem statement

Given

1 a (costs attached) transition system T ,

2 a set of (costs attached) abstractions {Ti}ki=1 of T with
abstraction mappings {αi}ki=1, respectively, and

3 a state s in T ,

determine optimal additive heuristic for T on the basis of
{Ti}ki=1, that is

hopt(s) = max
{costi}

k∑

i=1

h∗i (αi(s)).

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Problems on the way

Optimal additive heuristic for T on the basis of {Ti}ki=1

hopt(s) = max
{costi}

k∑

i=1

h∗i (αi(s)).

Challenges

1 Infinite space of alternative choices {costi}ki=1

2 The optimal choice is state-dependent

3 The process is fully unsupervised

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

The LP trick

Main Idea

Instead of, given an action cost partition {costi}ki=1,
independently searching each abstraction Ti using
dynamic programming

1 compile SSSP problem over each Ti into a linear program
Li with action costs being free variables

2 combine L1, . . . ,Lk with additivity constraints
cost(o) ≥∑k

i=1 costi(a)
3 solution of the joint LP ; hopt(s)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

The LP trick

Main Idea

Instead of, given an action cost partition {costi}ki=1,
independently searching each abstraction Ti using
dynamic programming

1 compile SSSP problem over each Ti into a linear program
Li with action costs being free variables

2 combine L1, . . . ,Lk with additivity constraints
cost(o) ≥∑k

i=1 costi(a)
3 solution of the joint LP ; hopt(s)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Single-Source Shortest Paths: LP Formulation

LP formulation

Given: digraph G = (N,E), source node v ∈ N
LP variables: d(v′) ; shortest-path length from v to v′

LP:

max
~d(·)

∑

v′

d(v′)

s.t. d(v) = 0
d(v′′) ≤ d(v′) + w(v′, v′′), ∀(v′, v′′) ∈ E

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Step 1: Compile each SSSP over Ti into Li

LP formulation

Given: abstraction Ti, state s of concrete system T
LP variables: {d(s′) | s′ ∈ Si} ∪ {d(Gi)} ∪ {cost(o, i)}
LP:

max d(Gi)

s.t.





d(s′) ≤ d(s′′) + cost(o, i), ∀〈s′, o, s′′〉 ∈ Ti
d(s′) = 0, s′ = αi(s)
d(Gi) ≤ d(s′), s′ ∈ G(i)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Step 2: Properly combine {Li}ki=1

LP formulation

Given: abstractions {Ti}ki=1 state s of T
LP variables:

⋃k
i=1{d(s′) | s′ ∈ Si} ∪ {d(Gi)} ∪ {cost(o, i)}

LP:

max
k∑

i=1

d(Gi)

s.t. ∀i





d(s′) ≤ d(s′′) + cost(o, i), ∀〈s′, o, s′′〉 ∈ Ti
d(s′) = 0, s′ = αi(s)
d(Gi) ≤ d(s′), s′ ∈ G(i)

∀o ∈ O : cost(o) ≥
k∑

i=1

cost(o, i)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough
; requires (surprising) relation between polyhedron and
planning problem

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough

Works as above for

projection and variable-domain abstraction (PDB)
heuristics
constrained PDBs heuristics (Haslum et al., 2005)
merge-and-shrink abstractions (Helmert et al., 2007)

Suitable poly-size LPs Li exist also for

fork-decomposition heuristics
tree-COP reducible fragments of tractable cost-optimal
planning (from Katz & D, 2007)
...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Optimizing Action-Cost Partitioning:
Generalization

General theory of LP-optimizable ensembles
of additive heuristic functions

Warning: Any reduction to LP is not enough

Works as above for

projection and variable-domain abstraction (PDB)
heuristics
constrained PDBs heuristics (Haslum et al., 2005)
merge-and-shrink abstractions (Helmert et al., 2007)

Suitable poly-size LPs Li exist also for

fork-decomposition heuristics
tree-COP reducible fragments of tractable cost-optimal
planning (from Katz & D, 2007)
...

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

LP for Inverted Forks (1)
Given: problem Π, state s, goal G

Variables

−→x = {h∗} ∪
⋃

v∈V ′\{r},
ϑ,ϑ′∈dom(v)

{d(v, ϑ, ϑ′)}.

d(v, ϑ, ϑ′) ; cost of the cheapest sequence of actions
affecting v that changes its value from ϑ to ϑ′

Objective

max {h∗}

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

LP for Inverted Forks (2)
Given: problem Π, state s, goal G

Constraints (I)

For each simple path 〈a1 · . . . · am〉 from s[r] to G[r] in
DTG(r,Π),

h∗ ≤
X

v∈V \{r}

d(v, s0[v], s1[v])+

mX
i=1

0@C(ai) +
X

v∈V ′\{r}

d(v, si[v], si+1[v])

1A
where

si[v] =

8>>><>>>:
s[v], i = 0

G[v], i = m + 1, and G[v] is specified

pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified

si−1[v], otherwise

Semantics: The cost of solving the problem is not greater than the cost of

any cycle-free path of r plus sums of costs of reaching the prevail

conditions of actions on this path and reaching the goal afterwards.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

LP for Inverted Forks (3)
Given: problem Π, state s, goal G

Constraints (II)

For each v ∈ V \ {r}, ϑ ∈ dom(v),

d(v, ϑ, ϑ) = 0

For each v-changing action a ∈ A,

d(v, ϑ, post(a)[v]) ≤ d(v, ϑ, pre(a)[v]) + C(a)

Semantics: Shortest-path constraints.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Planning for Automated Control

We have discussed composing islands of tractability within
heuristics

Next: composing islands of tractability in industrial
systems

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Motivation

Observations

Automated planning is generally hard

Bing (27/5/2011)

“automated planning” 11M

“ai planning” 18M

“strips planning” 73M

“classical planning” 85M

“multi[-]agent planning”

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Motivation

Observations

Automated planning is generally hard

Bing (27/5/2011)

“automated planning” 11M

“ai planning” 18M

“strips planning” 73M

“classical planning” 85M

“multi[-]agent planning” 110M

Paradox?

Yes (you cannot lose weight by eating more)
Not necessarily, if these works assume
some sort of simple agents (plus something else)
Formal analysis?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Motivation

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Classical benchmark for “single-agent” planning

Classic example of a distributed system ; vehicle = agent

(Informal) Question

Can we exploit the fact that the domain describes a naturally
distributed system to make planning more efficient?

(Ultimate) Answer

YES, we can solve distributed components independently

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Motivation

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Classical benchmark for “single-agent” planning

Classic example of a distributed system ; vehicle = agent

(Informal) Question

Can we exploit the fact that the domain describes a naturally
distributed system to make planning more efficient?

(Ultimate) Answer

YES, we can solve distributed components independently

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Basic Motivation/Intuition
k-agents MA Systems (Logistics domain example)

Fully decoupled

Vehicles are a priori responsible for different packages

Same as planning k times for a single agent
; linear time-complexity growth

(exp(k) time-complexity reduction)

Fully coupled

Vehicles have to move the same packages and maybe coordinate on

loads/unloads

Same as planning for a single “k-times larger” agent
; exp(k) time-complexity growth

(no reduction in time-complexity)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Basic Motivation/Intuition
k-agents MA Systems (Logistics domain example)

Fully decoupled

Same as planning k times for a single agent
; linear time-complexity growth

(exp(k) time-complexity reduction)

Fully coupled

Same as planning for a single “k-times larger” agent
; exp(k) time-complexity growth

(no reduction in time-complexity)

Loosely coupled

Somewhere in between depending on the “level” of coupling?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

“Loose Coupling” is a Loose Concept

Questions

1 How to measure the coupling level of a MA system?

2 Is there an algorithm that
1 can handle any “coupling level”, yet
2 is guaranteed to benefit from lower “coupling level”

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

How to measure coupling of a MA system?
Multiagent = Distributed = Modular = ...

~ Let us use this illustration to establish intuitions. Ideas?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Next

Formal measure of coupling level by a combination of
1 a measure of a MA system’s inherent coupling level
2 a measure of a problem’s coupling level

An algorithm that scales

exponentially with coupling level
polynomially with the number of agents

Based on a very simple model
; a minimal extension of FDR to MA systems

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Agent Actions

Logistics planning

Deliver packages using vehicles (trucks, airplanes, ships)
operating in/between different countries/regions/cities

Actions move(v, from, to), load(p, v, at), unload(p, v, at)
Agents: vehicles

Vehicle agent actions:
moving it, loading into it, unloading from it

From FDR to MA-FDR

Everything is the same, except that
actions are partitioned between the agents

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Centralized Planning for MA Systems
Problem Statement

Our Focus Here

Input Planning problem for a set of k collaborative
agents

Question To what extent is planning for such a MA system
harder than solving individual planning problems
of each of the agents in isolation?

Approach Theoretical. Try to formulate an algorithm that is
tractable under reasonable conditions.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Centralized Planning for MA Systems

Our Focus Here

Input Planning problem for a set of k collaborative
agents

Question To what extent is planning for such a MA system
harder than solving individual planning problems
of each of the agents in isolation?

Approach Theoretical. Try to formulate an algorithm that is
tractable under reasonable conditions.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Solving MA-FDR Problems

Standard Approaches

1 Compile into a single-agent FDR problem

/ Lose all structure and obtain k-times larger “agent”
/ Worst-case complexity exponential in description size or

shortest plan (depending on search strategy)

2 Try to solve as much as possible locally and compose the
resulting individual agent plans

/ What can we say about it?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Solving MA-FDR Problems

Standard Approaches

1 Compile into a single-agent FDR problem

/ Lose all structure and obtain k-times larger “agent”
/ Worst-case complexity exponential in description size or

shortest plan (depending on search strategy)

2 Try to solve as much as possible locally and compose the
resulting individual agent plans

/ What can we say about it?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Ideas

A New Graphical Model

Potential (positive and negative) interactions between the
agents’ individual abilities (= actions)

System coupling-level

Define an interaction graph of the system

Nodes = agents

Edges = agents may need (coordinate with) each other

Parameter ω ; tree-width of interaction graph

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Ideas

A New Graphical Model

Potential (positive and negative) interactions between the
agents’ individual abilities (= actions)

System coupling-level

Parameter ω ; tree-width of interaction graph

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Ideas

System coupling-level

Parameter ω ; tree-width of interaction graph

Problem coupling-level

Some problems require more coordination than others!

Parameter δ ; minmax number of times a single agent needs
some other agent to do something for it

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Ideas

System coupling-level

Parameter ω ; tree-width of interaction graph

Problem coupling-level

Parameter δ ; minmax number of times a single agent needs
some other agent to do something for it

Algorithm

Fix the agents’ commitments to each other
; careful selection of language matters!

Let each agent independently plan “in-between”
commitments

Use iterative deepening to extend the number of per-agent
commitments if needed

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

A Closer Look at Agent Actions

Private vs. Non-Private

Private affect and depend only on that agent

Non-Private all the rest

Logistic planning

Move actions are private
(influence and influenced only by vehicle location)

Loading into/unloading from a vehicle is non-private
; unless the package location is private to the vehicle!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

A Closer Look at Agent Subplans

Private vs. Non-Private

Private affect and depend only on that agent

Non-Private all the rest

global plan

local plan

local plan from inside

non-private actions in the plan ; coordination points

arbitrarily long sequences of private actions between
adjacent non-private actions

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Example: Logistics

Logistics

imagine vehicles moving on a large map

each vehicle has a service region

; between each load/unload action, there are multiple move
actions by the vehicle

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Idea

“Algorithm”

1 Find a good choice of coordination points

2 Solve k local planning problems over the private actions of
the agents only

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Idea

“Algorithm”

1 Find a good choice of coordination points

Iterative deepening on δ — # of coord-points per agent
For each choice of δ

Define a CSP whose solutions are consistent assignments
to the coordination points

2 Solve k local planning problems over the private actions

ID

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Main Idea

“Algorithm”

1 Find a good choice of coordination points
2 Solve k local planning problems over the private actions

purely independent phase ; unary constraints
can be reduced to regular FDR planning

ID

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Complexity

The complexity is derived from

1 number of agents (k)

2 complexity of local planning (M)

3 number of “coordination” CSPs we have to solve (; δ)

4 solving each “coordination” CSP (?)

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Complexity

The complexity is derived from

1 number of agents (k)

2 complexity of local planning (M)

3 number of “coordination” CSPs we have to solve (; δ)

4 solving each “coordination” CSP

O (k · (exp (ωδ + ω + δ) +M · exp (δ))

M = complexity of planning for a focused module

=? tractable

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Complexity

The complexity is derived from

1 number of agents (k)

2 complexity of local planning (M)

3 number of “coordination” CSPs we have to solve (; δ)

4 solving each “coordination” CSP

O (k · (exp (ωδ + ω + δ) +M · exp (δ))

M = complexity of planning for a focused module

=? tractable

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Intermediate Summary

Formal measure of coupling level by a combination of

δ problem-specific #times an agent needs assistance
ω the inherent coupling level of the system

Planning complexity polynomial in the number of agents
(for fixed coupling level)

“Coordination complexity” is not affected by the length
of the local plans

Generating fully distributed algorithm conceptually easy

Use distributed CSP
Local planning is already distributed

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Practice and Extensions

1 Can we really exploit these theoretical guarantees
in practice?

2 Can we say something intelligent for self-interested agents?

3 Can we improve the theoretical upper bound?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Practice and Extensions

1 Can we really exploit these theoretical guarantees
in practice?

Nissim, Brafman, & Domshlak. A General, Fully
Distributed Multi-Agent Planning Algorithm.
AAMAS-2010.

2 Can we say something intelligent for self-interested agents?

3 Can we improve the theoretical upper bound?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Practice and Extensions

1 Can we really exploit these theoretical guarantees
in practice?

Nissim, Brafman, & Domshlak. A General, Fully
Distributed Multi-Agent Planning Algorithm.
AAMAS-2010.

2 Can we say something intelligent for self-interested
agents?

Brafman, Domshlak, Engel, & Tennenholtz. Planning
Games. IJCAI-2009.
Brafman, Domshlak, Engel, & Tennenholtz. Transferable
Utility Planning Games. AAAI-2010.

3 Can we improve the theoretical upper bound?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

Practice and Extensions

1 Can we really exploit these theoretical guarantees
in practice?

Nissim, Brafman, & Domshlak. A General, Fully
Distributed Multi-Agent Planning Algorithm.
AAMAS-2010.

2 Can we say something intelligent for self-interested
agents?

Brafman, Domshlak, Engel, & Tennenholtz. Planning
Games. IJCAI-2009.
Brafman, Domshlak, Engel, & Tennenholtz. Transferable
Utility Planning Games. AAAI-2010.

3 Can we improve the theoretical upper bound?

Remains open question.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

Agents Coupling

Complexity

What next?

What this talk is about?

1 What this talk is [not] about

2 Preliminaries

3 Search for/with tractability I: Syntax

4 Search for/with tractability II: Structure

5 Bridging between the islands I: Heuristic ensembles

6 Bridging between the islands II: Systems of systems

7 What next?

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

What next?
This is just a short list of obvious things

1 Some fascinating problems are still open

what happens with chain causal graphs and ternary
domains?!

2 Novel combinations of syntax and structure and ???.

action k-dependence [KD08,GJ09]

3 Novel graphical/??? structures.

interaction networks [CG10]
refinements of causal graph [BD08]

4 CT in more complex formalisms?

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AIPS-2002.

5 Exploitation of CT in modular/hierarchical/??? systems.

6 New algorithmic ideas for domain-independent heuristics!

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Syntactic properties and planning complexity

T. Bylander. The computational complexity of
propositional STRIPS planning. AIJ, 1994.

K. Erol, D. S. Nau, & V. S. Subrahmanian. Complexity,
decidability and undecidability results for
domain-independent planning. AIJ, 1995.

C. Bäckström, & B. Nebel. Complexity results for SAS+

planning. Computational Intelligence, 1995.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Mixed syntactic/structural restrictions

M. Katz, & C. Domshlak. New Islands of Tractability of
Cost-Optimal Planning. JAIR, 2008.

O. Giménez, & A. Jonsson. The Influence of
k-Dependence on the Complexity of Planning.
ICAPS-2009.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Structural properties and planning complexity

P. Jonsson, & C. Bäckström. State-variable planning
under structural restrictions: Algorithms and complexity.
AIJ, 1998.

P. Jonsson, & C. Bäckström. Tractable plan existence
does not imply tractable plan generation. Annals of Math.
and AI, 1998.

C. Domshlak, & Y. Dinitz. Multi-agent off-line
coordination: Structure and complexity. ECP-2001.

R. I. Brafman, & C. Domshlak. Structure and complexity
in planning with unary operators. JAIR, 2003.

M. Katz, & C. Domshlak. New Islands of Tractability of
Cost-Optimal Planning. JAIR, 2008.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Structural properties and planning complexity

H. Chen, & Omer Giménez. Causal graphs and
structurally restricted planning. J. of Comp. and System
Sciences, 2010.

O. Giménez, & A. Jonsson. The complexity of planning
problems with simple causal graphs. JAIR, 2008.

O. Giménez, & A. Jonsson. Planning over chain causal
graphs for variables with domains of size 5 is NP-hard.
JAIR, 2009.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Mixed syntactic/structural restrictions

M. Katz, & C. Domshlak. New Islands of Tractability of
Cost-Optimal Planning. JAIR, 2008.

O. Giménez, & A. Jonsson. The Influence of
k-Dependence on the Complexity of Planning.
ICAPS-2009.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Heuristic Ensembles

M. Katz, & C. Domshlak. Optimal admissible composition
of abstraction heuristics. AIJ, 2010.

M. Helmert, & C. Domshlak. Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway?.
ICAPS-2010.

Introduction

Preliminaries

Syntactic
fragments

Structural
fragments

Heuristic
Ensembles

Tractability &
System Design

What next?

Plan-space properties and planning complexity

H. Chen, & O. Giménez. Act local, think global: Width
notions for tractable planning. ICAPS-2007.

R. I. Brafman, & C. Domshlak. Factored planning: How,
When, and When Not. AAAI-2006.

R. I. Brafman, & C. Domshlak. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems.
ICAPS-2008.

	Introduction
	Preliminaries
	Deterministic planning
	Complexity classes
	HSP

	Syntactic fragments
	Structural fragments
	Causal graph journey
	Implicit Abstractions

	Heuristic Ensembles
	Tractability & System Design
	Agents Coupling
	Complexity

	What next?

