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Do not go gentle into that good night
Old age should burn and rave at close of day 
Rage rage against the dying of the lightRage rage against the dying of the light

--Dylan Thomas







R ’ C l i ThRao’s Complaints: Then

ThenThen
 What good are expressive 

and ambitious planning p g
paradigms when we have so 
little scalability? 
 Need to work on search Need to work on search 

control
 Need benchmarks to measure 

progressprogress

1991



We have figured out how to scale synthesis..
Scalability was the big bottle-neck…
We have figured out how to scale synthesis..

 Before, planning 
algorithms could

Problem is Search Control!!!

algorithms could 
synthesize about 6 
– 10 action plans in 
minutesminutes

 Significant scale-
up in the last 
decade
 Now, we can 

synthesize 100

Realistic encodings 
of Munich airport!

synthesize 100 
action plans in 
seconds.

The primary revolution in planning in the recent years has been 
methods to scale up plan synthesis



..and we have done our fair bit…
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R ’ C l i Th & NRao’s Complaints: Then & Now

Then NowThen
 What good are expressive 

and ambitious planning 

Now
 What good are scalable 

planners if all they want to p g
paradigms when we have so 
little scalability? 
 Need to work on search

p y
do is stack blocks all the 
way to the moon? 
 Streetlight effect Need to work on search 

control
 Need benchmarks to measure 

progress

 Streetlight effect

 There should be more to 
planning than combinatorial progress
search!

I love planning man. It is just search! 
A graduate student in a Taverna in Thessaloniki during ICAPS 2009



I'd rather learn from one bird how to sing 
than teach ten thousand stars 

how not to dance 
ee cummings



Lecture Overview…
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On Using Our Hammers Wisely
Make things as simple as possible, 
but not simplerOn Using Our Hammers Wisely

 Classical Planners have justifiably become our 
h Thi i l GOOD NEWS

-Attributed to Einstein

hammers… This is mostly GOOD NEWS
 We want to coax all other planning problems into 

formats that will allow us to maximally utilize theformats that will allow us to maximally utilize the 
progress made in scaling up classical planning

 ..But, we need to be careful, lest we lose the 
essence of the expressive planning problems during 
the coaxing (compilation)

 Some examplesSome examples..
 Cost-based Planning (-cost trap)
 Temporal Planning  (Required Concurrency)p g ( q y)
 Stochastic Planning (Biased Determinizations)
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Partial Satisfaction/Over-Subscription Planning/ p g

 Traditional planning problems
 Find the (lowest cost) plan that satisfies all the given goals( ) p g g

 PSP Planning
 Find the highest utility plan given the resource constraints

 Goals have utilities and actions have costsGoals have utilities and actions have costs

 …arises naturally in many real world planning scenarios
 MARS rovers attempting to maximize scientific return, given resource 

constraints
 UAVs attempting to maximize reconnaisance returns, given fuel etc 

constraints
 Logistics problems resource constraints

 … due to a variety of reasons
 Constraints on agent’s resources
 Conflicting goals

 With complex inter-dependencies between goal utilities

 Soft constraints
 Limited time

[AAAI 2004; ICAPS 2005; IJCAI 2005; IJCAI 2007; 
ICAPS 2007; CP 2007]



Classical vs. Partial Satisfaction 
Planning (PSP)

Classical Planning Partial Satisfaction PlanningClassical Planning
• Initial state
• Set of goals

A ti

Partial Satisfaction Planning
• Initial state
• Goals with differing utilities

A ti ith diff i t• Actions

Find a plan that achieves all goals

• Actions with differing costs

Find a plan with highest net benefitFind a plan that achieves all goals

(prefer plans with fewer actions)

Find a plan with highest net benefit
(cumulative utility – cumulative cost)

(best plan may not achieve all the goals)

1/19

Preferences and PSP in Planning
Benton, Baier, Kambhampati (AAAI 2010 Tutorial)



How to Leverage Modern Heuristic How to Leverage Modern Heuristic 
Search PlannersSearch PlannersSearch PlannersSearch Planners

Perform
Goal

Selection
Cost-based

Problem

b d

Select

Yes

Net Benefit
Planning

Cost-based
classical planners

Examples:

Net benefit-based
planners

Examples:
Goals

No

Planning 
Problem LAMA

Set-additive FF
HSP
Upwards

Gamer
SapaPS

SPUDS
BBOP-LP

*
0

Compile
Goals

No Net Benefit
Planning
Problem

Upwards BBOP LP
HSP*

p

Yes

Perform
Compilation

Cost-based
Problem

6/10/2011 AAAI 2010 Tutorial: Preferences and Partial Satisfaction in Planning 42



Surrogate Search to avoid -cost trapsSurrogate Search to avoid  cost traps
• Most planners use A* search variants • Solution to -cost trap is to guide A* 

h ith t l ti• A* is susceptible to -cost traps
– is the ratio of the lowest to 

highest cost action
– Would be small if there is large

search with a surrogate evaluation 
function that:

– has a significantly higher 
– ..and is cost (objective) focused Would be small if there is large 

cost variance (which is usually the 
case in planning domains—e.g. 
cost of boarding vs. flying)
In such cases A*’s propensity to

( j )
• One idea is to go with size-based

evaluation function as the surrogate
– This one has but is not 

particularly well focused on the– In such cases, A s propensity to 
conflate discovery and optimality 
proof proves to be its undoing

• Consider an optimal solution 
t d th 10 d th d

particularly well-focused on the 
objective

• Surprisingly, surrogate search 
with it it does significantly 
b tt th di t t b dat depth 10 and the second 

best at depth 1000
– This pathology has been noticed 

[e.g. LAMA], but the cause (-cost 

better than direct cost-based 
search

• A better alternative is to consider cost 
sensitive size-based evaluation 

trap wasn’t) leading to ad hoc 
stop gaps

function (which estimates the size of 
the cheapest path through the current 
state)



Lecture Overview…Lecture Overview…

 How to use our  How to go beyond pure 
hammers wisely
 Lessons from 

inference over 
complete models: A 
call for model-lite

 Partial Satisfaction 
Planning 

 Temporal Planning 

call for model lite
planning
 How to handle 

incomplete domain
 Stochastic Planning 

 How to be skeptical of 
b h k

incomplete domain 
models?

 How to handle 
incomplete preferenceour benchmarks

 (Lack of) Temporal 
Benchmarks

incomplete preference 
models?

 How to handle 
incomplete objectBenchmarks

 (Lack of) Relational 
Benchmarks

incomplete object 
models (open worlds)



Temporal Planning

Introduction

Temporal Planning

Pl i t l name [duration]

start-pre end-preover-pre
M - match

 Plan-space is natural
 Zeno, IxTET etc.

 Desire to exploit classical 

name [duration]

start-eff end-eff

M

L - light
F - fuse

p
planning progress
 Extended planning graph [TGP]
 State-space?

light-match [8]
ML L

Lp
 Problem: Infinite number of time 

points

 Decision Epochs

fix-fuse [4]
F

 Restrict start times to events
 Competition winners
 Reachability heuristicsy



Short matches

!!!

Short matches

 No epoch available No epoch available
 “middle of nowhere”

 Decision Epoch 
Planning isPlanning is 
incomplete!



Short matches

!!!

Short matches

 No epoch available No epoch available
 “middle of nowhere”

 Decision Epoch 
Planning isPlanning is 
incomplete!



Troubling Questions

Overview

Troubling Questions

 What do/should the IPCs  Can Decision Epoch /
measure?

p
Planning be fixed?

Essence of Temporal Planning
 Required Concurrency

 No.
 But!

 Temporally Simple
 Temporally Expressive

But! 
 DEP+

 “Less” incomplete

≈ Classical
≈ Harder

 TEMPO
 Reachability heuristics



Required Concurrency

Essence of Temporal Planning

Required Concurrency

 Temporally Simple LanguagesTemporally Simple Languages
 Concurrency never  necessary
 but can be exploited for quality…but can be exploited for quality

 Temporally Expressive Languages
C if bl h th t Can specify problems such that 
concurrency is needed



Temporal Action Languages

Essence of Temporal Planning

Temporal Action Languages

Start-pre End-preOver-pre
eo,s,

esLname [duration]

Start pre End-preOver pre

es,
Start-eff End-eff

Over pre
o
eLname [duration]

Over-pre

e
End-eff



Essence of Temporal Planning

s eo
A [d]

s e

eo,s,
es,L



Temporal Action Languages

Essence of Temporal Planning

Temporal Action Languages

 Temporally Simple
A [d]

s eo

 Rescheduling is possible
 MIPS, SGPlan, LPG, …

 Sequential planning is complete

A [d]

s e
eo,s,

es,L
 Sequential planning is complete –

“optimal” ?
 TGP, yes
 In general, yes

 Temporally Expressive
 L s LeL Le L sL s,e



No Temporal Gap  Classical + Scheduling

Essence of Temporal Planning

No Temporal Gap  Classical + Scheduling

A

B *

A *

C*

D*

 Forbidding temporal gap implies
 All effects at one time pre

C*

All effects at one time
 Before-conditions meet effects
 After-conditions meet effects

 Unique transition per action

A [d] *
eff

 Unique transition per action

 Theorem: Every concurrent plan is an Theorem: Every concurrent plan is an 
O(n) rescheduling of a sequential plan
 And vice versa



Wow!

!!!

Wow!

 Temporally Simple Temporally Simple 
Classical + Scheduling

 Winners incomplete for all 
Temporally Expressive LanguagesTemporally Expressive Languages

 Most/all benchmarks are classical!



Decision Epoch Planning: DEP

Salvaging DEP

Decision Epoch Planning: DEP

 Only start actions after events A [3]

GG 
 Choose
 Start an action

21 GG 

B [2]

2G
 Advance epoch

T ll Si l

2G

 Temporally Simple
 Complete, suboptimal

 Temporally Expressive Temporally Expressive
 Incomplete, suboptimal light-match [8]

ML L

M

L
fix-fuse [4]

L

F



Generalized DEP: DEP+

Salvaging DEP

Generalized DEP: DEP+

 Also end actions after events
 Choose
 Start an action

E d ti

A [3]

21 GG 

 End an action
 Advance epoch

B [2]

2G

 Temporally Simple
 Complete, optimalp , p

 Temporally Expressive
 Incomplete, suboptimal



State of the Art: Incomplete or Slow

!!!

State of the Art: Incomplete or Slow

 Metric-FF, MIPS, SGPlan, SAPA, TP4, , , , , ,
TPG, HSP*, ...
 Guarantees only for temporally simple 

languages
 Can solve some concurrent problems

Li ht t h b t t h t t h Light-match, but not short-match
 Difficult to detect

 ZENO IxTeT VHPOP LPGP ZENO, IxTeT, VHPOP, LPGP, ...
 Complete
 Slow Slow



Interleaving-Space: TEMPO

Salvaging State-space Temporal Planning

Interleaving Space: TEMPO

 Delay dispatch decisions until afterwards
 Choose
 Start an action
 End an action

light match

 End an action
 Make a scheduling decision

 Solve temporal constraints

fix fuse

 Temporally Simple
 Complete Optimal

fix

li ht Complete, Optimal
 Temporally Expressive
 Complete, Optimal

fix light

fusefix light

matchfusefix light
[Colin planner]



ConclusionsConclusions

 Required concurrency is the  essence of temporal 
planning
 Otherwise classical planner + O(n) scheduling 

sufficessuffices
 Simple test for required concurrency: Temporal gap 

 Decision epoch planning is fundamentally 
incomplete
 But DEP+ may solve most real-world problems

 Complete state space temporal planning: TEMPO Complete state-space temporal planning: TEMPO
 Allows leveraging of state-based reachability

heuristics
 !!!!! Lesson: Be wary of the temptation of

efficiency at the expense of 
essence of expressive planning
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Probabilistic Planning
( l i t d)(goal-oriented)

Action
Maximize Goal Achievement

I

Left 
Outcomes 
are more

Probabilistic
Outcome

Time 1

I
A1 A2

are more 
likely

A1 A2 A1 A2 A1 A2 A1 A2

Time 2

A1 A2 A1 A2 A1 A2 A1 A2

Action Dead End
Goal State

69

State



How to compete?
Off-line policy generation Online action selection

Policy Computation Exec Select e
x Select e

x Select e
x Select e

x

Off-line policy generation
• First compute the whole policy

– Get the initial state
– Compute the optimal policy 

Online action selection
• Loop

– Compute the best action p p p y
given the initial state and the 
goals

• Then just execute the policy
– Loop

p
for the current state

– execute it
– get the new statep

• Do action recommended by the 
policy

• Get the next state
– Until reaching goal state

P  C  i i  ll 

get the new state
• Pros: Provides fast first 

response
• Pros: Can anticipate all 

problems;
• Cons: May take too much time 

to start executing

• Cons: May paint itself 
into a corner..

g



DeterminizationsDeterminizations
• Determinizations allow us a way to 

l it l i l l iexploit classical planning 
technology
– Most-likely outcome determinization

• Inadmissible
• e.g. if only path to goal relies on less 

likely outcome of an action
All outcomes determinization– All outcomes determinization

• Admissible, but not very informed
• e.g. Very unlikely action leads you 

straight to goalstraight to goal
– Hindsight Optimization

• Sample determinizations..
– The sampling (rather than a staticThe sampling (rather than a static 

process) determines what effects an 
action has at each time step



FF-Replan

• Simple replanner
• Determinizes the probabilistic problemDeterminizes the probabilistic problem
• Solves for a plan in the determinized 

problemproblem

a2

a3
a4

G
a5

S G
a1 a2 a3 a4

a2

S G



All Outcome ReplanningAll Outcome Replanning 
(FFRA) 

ICAPS-07

Eff t A ti Eff t

A ti

Effect 
1Probability1

Action
1

Effect 
1

Action

Effect 
2

Probability2 Action
2

Effect 
22 2 2
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1st IPPC & Post-Mortem1 IPPC & Post Mortem..
IPPC Competitors Results and Post-mortemIPPC Competitors
• Most IPPC competitors used 

different approaches for offline 
policy generation.

Results and Post-mortem
• To everyone’s surprise, the 

replanning approach wound 
up winning the competition.

• One group implemented a 
simple online “replanning” 
approach in addition to offline 
policy generation

up winning the competition.
• Lots of hand-wringing 

ensued..
– May be we should require that 

h l ll ll– Determinize the probabilistic 
problem 

• Most-likely  vs. All-outcomes
– Loop

• Get the state S; Call a classical 

y q
the planners really really use 
probabilities?

– May be the domains should 
somehow be made 

• Get the state S; Call a classical 
planner (e.g. FF) with [S,G] as the 
problem

• Execute the first action of the plan

U t   h  h  

“probabilistically interesting”? 
• Current understanding:

– The “replanning” approach is 
just a degenerate case of hind-• Umpteen reasons why such an 

approach should do quite badly..
just a degenerate case of hind-
sight optimization



Hindsight Optimization
(O li C i f VHS )(Online Computation of VHS )

• Pick action a with highest Q(s,a,H) where
Q( H)  R( )  T( ’)V*( ’ H 1)

• VHS overestimates V*
– Q(s,a,H) = R(s,a) + T(s,a,s’)V*(s’,H-1)

• Compute V* by sampling 
– H-horizon future FH for M = [S,A,T,R]

• Mapping of state, action and time (h<H) 
to a state

• Why?
– Intuitively, because VHS can 

assume that it can use 
different policies in different to a state

– S × A × h → S
• Common-random number (correlated) vs. 

independent futures..
• Time-independent vs. Time-dependent 

futures

different policies in different 
futures; while V* needs to 
pick one policy that works 
best (in expectation) in all 
f t

• Value of a policy π for FH

– R(s,FH, π)
• V*(s,H) =  max EF

H [ R(s,FH,π) ]

futures.
• But then, VFFRa overestimates VHS

– Viewed in terms of J*, VHS is 
a more informed admissible V (s,H)   maxπ EF [ R(s,F ,π) ]

– But this is still too hard to compute..
– Let’s swap max and expectation

• VHS(s,H) = EF
H [maxπ R(s,FH,π)]

– maxπ R(s,FH-1,π) is approximated by FF plan

a more informed admissible 
heuristic..

axπ (s, ,π) s app ox ated by  p a

82



Relaxations for Stochastic 
Pl iPlanning

• Determinizations can also be used as a basis ete at o s ca  a so be used as a bas s 
for heuristics to initialize the V for value 
iteration  [mGPT; GOTH etc]

• Heuristics come from relaxation
• We can relax along two separate dimensions:

– Relax –ve interactions
• Consider +ve interactions alone using relaxed planning 

graphsgraphs
– Relax uncertainty

• Consider determinizations
– Or a combination of both!



Dimensions of Relaxation
SAS RP
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On Being Skeptical About our BenchmarksOn Being Skeptical About our Benchmarks 

 Progress in planning in the old days was hampered by lack 
of common benchmarks
 The arguments of expressiveness with no guarantees of 

comparative efficiencycomparative efficiency..
 Thanks to IPC competitions, we have a huge chest of 

benchmarks.. But they pose their own problems
 Arguments of efficiency with little heed to 

expressiveness. Undivided benchmarks can themselves 
inhibit progressinhibit progress

 Examples
 Temporal Planning benchmarks indirectly inhibitedTemporal Planning benchmarks indirectly inhibited 

work on expressive temporal planners
 Most benchmarks inhibited work on lifted planners
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Temporal Benchmarks in IPCTemporal Benchmarks in IPC
• We saw that Required • Benchmarks must notWe saw that Required 

Concurrency is a 
hallmark of temporal 

Benchmarks must not 
require (much) 
concurrency

planning
• We saw that DEP 

• How much?
– None at all

planners are 
incomplete for 
problems needing RC

• How do we show it?
– Use temporal gap?

problems needing RC 
• But, DEP planners 

“won” temporal

• Problem: “every” 
action has temporal 

won  temporal 
planning track…

gap



Solution: Decompile temporal gapSolution: Decompile temporal gap

 (navigate ?rover ?alpha ?omega)(navigate ?rover ?alpha ?omega)
 Pre: (at start (at ?rover ?alpha))
 Eff: (andEff: (and 
 (at start (not (at ?rover ?alpha))) 
 (at end (at ?rover ?omega)))( ( g )))

 (navigate ?rover ?alpha ?omega)
 (over all (=> (at ?rover) ?alpha ?omega)) (over all (=> (at ?rover) ?alpha ?omega))

Then we can show thatThen, we can show that 
benchmarks never require concurrency!



Benchmarks never require concurrency 
(e cept d e to modeling b gs)(except due to modeling bugs)

 Durative change on m.v. fluents is safe(:durative-action navigateDurative change on m.v. fluents is safe
 Unbounded resources are safe
 “The Perils of Discrete Resource Models”

:parameters (?x - rover ?y - waypoint ?z - waypoint)
:duration (= ?duration 5) 
:condition (and 

( t t t ( t ? ? )) MV Fl t

;;(at ?x - rover ?y - waypoint) 
(at ?x - rover ) - waypoint 

 The Perils of Discrete Resource Models  
 ICAPS workshop on IPC

 A few special cases

;;(at start (at ?x ?y)) ;; MV Fluent
;;(at start (>= (energy ?x) 8)) ;; Resource Consumption 
(over all (can_traverse ?x ?y ?z)) 
(at start (available ?x)) A few special cases
 (at end (calibrated ?c ?r))

(at start (available ?x)) 
(over all (visible ?y ?z)) ) 

:effect (and 
;;(at start (decrease (energy ?x) 8)) ;; Resource Consumption
 Document…
 http://rakaposhi.eas.asu.edu/is-benchmarks.html

;;(at start (decrease (energy ?x) 8)) ;; Resource Consumption
(over all (consume (energy ?x) 8)) ;; Resource Consumption 
;;(at start (not (at ?x ?y))) ;; MV Fluent 
;;(at end (at ?x ?z)))) ;; MV Fluent ;;( ( )))) ;;
(over all (-> (at ?x) ?y ?z)) ;; MV Fluent 

)) 



Real world required concurrencyReal world required concurrency

 (and(and 
(lifted bowl-left) 
(lifted bowl-right))(lifted bowl right))

 Spray-oil (during milling)
H t b k ( hil ddi h i l ) Heat-beaker (while adding chemicals)
 Ventilate-room (while drying glue)
 …

In other words benchmarks inhibitedIn other words, benchmarks inhibited 
progress on temporal planning…



Lessons for the CompetitionLessons for the Competition

 Competitors tune for the benchmarksp
 Most of the competitors simplify to TGP

 Either required concurrency is importantqu d o u y po a
 Benchmarks should test it

 Or it isn’tOr it isn t
 Language should be inherently sequential

 PDDL spec. highlights light-matchPDDL spec. highlights light match
 RC occurs in the real world
 Might need processes continuous effects Might need processes, continuous effects



Lecture Overview…Lecture Overview…

 How to use our  How to go beyond pure 
hammers wisely
 Lessons from 

inference over 
complete models: A 
call for model-lite

 Partial Satisfaction 
Planning 

 Temporal Planning 

call for model lite
planning
 How to handle 

incomplete domain
 Stochastic Planning 

 How to be skeptical of 
b h k

incomplete domain 
models?

 How to handle 
incomplete preferenceour benchmarks

 (Lack of) Temporal 
Benchmarks

incomplete preference 
models?

 How to handle 
incomplete objectBenchmarks

 (Lack of) Relational 
Benchmarks

incomplete object 
models (open worlds)



The representational  roller-coaster in CSE 
471471

relational

First-order

FOPC
f ti

FOPC Sit. Calc.

propositional/
(factored)

relational

CSP Prop logic Bayes Nets

w.o. functions

Decision
trees

atomic State-space
search MDPs Min-max

Semester time 
The plot shows the various topics we discussed this semester, and the representational level at which we discussed 
them. At the minimum we need to understand every task at the atomic representation level. Once we figure out how to 
do something at atomic level, we  always strive to do it at higher (propositional, relational, first-order) levels for g y g (p p )
efficiency and compactness. 
During the course we may not discuss certain tasks at  higher representation levels either because of lack of time, or 
because there simply doesn’t yet exist undergraduate level understanding of that topic at higher levels of 
representation..



(Lack) of Relational Benchmarks(Lack) of Relational Benchmarks
 Pre-1995, most planners were 

“relational”
 Solution: Develop effective 

solutions for “lifted planning”relational
 That is, they would search 

in the space of partially 
instantiated plans

solutions for lifted planning
 Regression and Partial Order 

Planners can be easily lifted 
(and were lifted)
 B t th tl linstantiated plans

 Post-Graphplan, all planners 
search in the space of ground 
plans (propositional level)

 But they are currently slower 
than ground state search 

 What is the resistance? 
 I am doing fine onplans (propositional level)

 So what? 
 Planners can be easily 

defeated by a profusion of

I am doing fine on 
benchmarks!
 Why fix what is not 

broken?defeated by a profusion of 
irrelevant objects and 
actions

broken?
 But what if bench marks are 

not realistic?

The parallel to temporal planning is not a coincidence
Effective temporal planning requires lifting time (precedence constraints)
Effective relational planning may require lifting binding (partial instantiation)



Plan Space Search

Then it was cruelly

Plan Space Search

Then it was cruelly
UnPOPped

Th d tiThe good times
return with Re(vived)POP

January 18, 2007 IJCAI'07 Tutorial T12 131
In the beginning it was all POP.



(Lack) of Relational Benchmarks(Lack) of Relational Benchmarks
 Pre-1995, most planners were 

“relational”
 Solution: Develop effective 

solutions for “lifted planning”relational
 That is, they would search 

in the space of partially 
instantiated plans

solutions for lifted planning
 Regression and Partial Order 

Planners can be easily lifted 
(and were lifted)
 B t th tl linstantiated plans

 Post-Graphplan, all planners 
search in the space of ground 
plans (propositional level)

 But they are currently slower 
than ground state search 

 What is the resistance? 
 I am doing fine onplans (propositional level)

 So what? 
 Planners can be easily 

defeated by a profusion of

I am doing fine on 
benchmarks!
 Why fix what is not 

broken?defeated by a profusion of 
irrelevant objects and 
actions

broken?
 But what if benchmarks are 

not realistic?

The parallel to temporal planning is not a coincidence
Effective temporal planning requires lifting time (precedence constraints)
Effective relational planning will require lifting binding (partial instantiation)
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PG Heuristics for Partial Order Planning
 Distance heuristics to estimate 

t f ti ll d d l

PG Heuristics for Partial Order Planning

cost of partially ordered plans 
(and to select flaws)
 If we ignore negative 

interactions, then the set of S0

S1

S3p
g1

g2

q1

S
S5,

open conditions can be seen as 
a regression state

 Mutexes used to detect 
i di t fli t i ti l

S2 ~p

g2g2q 
r

Sinf

S4

indirect conflicts in partial 
plans
 A step threatens a link if there 

is a mutex between the link Si Sj

p
is a mutex between the link 
condition and the steps’ effect 
or precondition

 Post disjunctive 
d d

Sk

q

r

January 18, 2007 IJCAI'07 Tutorial T12 139

precedences and use 
propagation to simplify

kjik SSSS
rpmutexorqpmutexif

 
),(),(



Lecture Overview…Lecture Overview…

 How to use our  How to go beyond pure 
hammers wisely
 Lessons from 

inference over 
complete models: A 
call for model-lite

 Partial Satisfaction 
Planning 

 Temporal Planning 

call for model lite
planning
 How to handle 

incomplete domain
 Stochastic Planning 

 How to be skeptical of 
b h k

incomplete domain 
models?

 How to handle 
incomplete preferenceour benchmarks

 (Lack of) Temporal 
Benchmarks

incomplete preference 
models?

 How to handle 
incomplete objectBenchmarks

 (Lack of) Relational 
Benchmarks

incomplete object 
models (open worlds)



Assumption: Complete Models
Complete Action Descriptions

Assumption: Complete Models
Complete Action Descriptions (fallible domain writers)

On Going Beyond 
Pure Inference 
Over Complete Models

Fully Specified Preferences
All objects in the world known up front
One-shot planning

Allows planning to be a pure inference problem

Fully Specified Preferences    (indecisive users)
All objects in the world known up front  (open worlds)
One-shot planning (continual revision)

Planning is no longer a pure inference problem 

Traditional Planning

Allows planning to be a pure inference problem
 But humans in the loop can ruin a really a perfect day 

FF-HOP [2008]

Planning is no longer a pure inference problem 

Traditional Planning FF-HOP [2008]

Underlying System Dynamics
SAPA [2003] POND  [2006]

[AAAI 2010; IJCAI 2009; IJCAI 2007,AAAI 2007]

Effective ways to handle the more expressive planning problems by 
exploiting the deterministic planning technology 



Model-lite PlanningModel lite Planning

• We need (frame)work for planning that canWe need (frame)work for planning that can 
get by with incomplete and evolving 
domain models. 
– I want to convince you that there are 

interesting research challenges in doing this. 
• Disclaimers

– I am not arguing against model-intensive 
l iplanning
• We won’t push NASA to send a Rover up to Mars 

without doing our best to get as good a model as g g g
possible



Model-lite is Back to the FutureModel lite is Back to the Future

• Interest in model-lite planning is quite oldInterest in model lite planning is quite old 
(but has been subverted..)

Originally HTN planning (a la NOAH) was– Originally, HTN planning (a la NOAH) was 
supposed to allow incomplete models of 
lower-level actions..

– Originally, Case-based planning was 
supposed to be a theory of slapping together pp y pp g g
plans without knowing their full causal models



Model-Lite Planning is 
Pl i i h i l d lPlanning with incomplete models

• “incomplete” “not enough domain.. incomplete   not enough domain 
knowledge to verify correctness/optimality”

• How incomplete is incomplete?• How incomplete is incomplete?
• Missing a couple of 

di i / ff ?
• Knowing no more 

h I/O ? preconditions/effects?than I/O types?



Challenge: Planning Support for 
Sh ll D i M d lShallow Domain Models

• Provide planning support that exploits the shallow model p g pp p
available

• Idea: Explore wider variety of domain knowledge that 
can either be easily specified interactively orcan either be easily specified interactively or 
learned/mined. E.g. 

• I/O type specifications (e.g. Woogle)
• Task Dependencies (e.g. workflow specifications)as epe de c es (e g o o spec cat o s)

– Qn: Can these be compiled down to a common substrate?
• Types of planning support that can be provided with 

such knowledgesuch knowledge
– Critiquing plans in mixed-initiative scenarios
– Detecting incorrectness (as against verifying correctness)



Model-Lite Planning is 
Pl i i h i l d lPlanning with incomplete models

• “incomplete” “not enough domain.. incomplete   not enough domain 
knowledge to verify correctness/optimality”

• How incomplete is incomplete?• How incomplete is incomplete?
• Missing a couple of 

di i / ff ?
• Knowing no more 

h I/O ? preconditions/effects?than I/O types?



Challenges of Model-Lite Planning
(A i D i M d l )(Approximate Domain Models)

1. Circumscribing the incompletenessg p
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution conceptsp g pp p p

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts• Can adapt existing planners toward these solution concepts
4. Life-long Planning/Learning to reduce incompleteness

– Commitment-sensitive Replanning
L i f h( ) h h i i l i d l• Learning preferences h(.) through interactions; learning model 
conditions through execution 

• [ Tutorial on Learning in Planning AI MAG 2003; Learning 
preferences as HTNs IJCAI 2009; ICAPS 2009]preferences as HTNs IJCAI 2009; ICAPS 2009]



There are known e e a e o
knowns; there are 
things we know that we g
know. There are known 
unknowns; that is to ;
say, there are things 
that we now know we 
don’t know. But there 
are also unknown 
unknowns; there are 
things we do not know g
we don’t know.



Challenges of Model-Lite PlanningChallenges of Model Lite Planning

1. Circumscribing the incompletenessg p
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution conceptsp g pp p p

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts• Can adapt existing planners toward these solution concepts
4. Life-long Planning/Learning to reduce incompleteness

– Commitment-sensitive Replanning
L i f h( ) h h i i l i d l• Learning preferences h(.) through interactions; learning model 
conditions through execution 

• [ Tutorial on Learning in Planning AI MAG 2003; Learning 
preferences as HTNs IJCAI 2009; ICAPS 2009]T h P blpreferences as HTNs IJCAI 2009; ICAPS 2009]Tough Problems



Our ContributionsOur Contributions

• Preference incompletenessPreference incompleteness
– Unknown Preferences [IJCAI 2007]

Partially known Preferences [IJCAI 2009]– Partially known  Preferences [IJCAI 2009]

• Model incompleteness
– Robust plan generation [ICAPS Wkshp 2010]

• World/Object incompleteness
– OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 

Model-Lite Planning



Preferences in Planning – Traditional 
View
 Classical Model: “Closed world” assumption p

about user preferences. 
 All preferences assumed to be fully 

specified/available Full Knowledge

Two possibilities
If  f  ifi d th   i  

Full Knowledge
of Preferences

 If no preferences specified —then user is 
assumed to be indifferent. Any single feasible 
plan considered acceptable. 

 If preferences/objectives are specified, find a plan 
that is optimal w.r.t. specified objectives.

Either way, solution is a single plan
159159



Human in the Loop: Unknown &  
Partially Known Preferences 

160160



U k f i

Google-inspired?

Unknown preferences occur in
search engine queries
How do they handle them?

Diversify the results…!
--Return answers that are 

closest to the query, and
f th t f h thare farthest from each other

--Distance Metrics



Handling Unknown &  Partially 
Known Preferences 
 Unknown preferences

F  ll  k    
 Partially known

W   k  th t   For all we know, user may 
care about every thing -- the 
flight carrier, the arrival 
and departure times, the 
type of flight, the airport, 

 We may know that user 
cares only about makespan 
and cost. But we don’t know 
how she combines them..

 Returning a diverse set of yp g , p ,
time of travel and cost of 
travel…

 Best choice is to return a 
diverse set of plans [IJCAI 
2007]

 Returning a diverse set of 
plans may not be enough
 They may not differ on the 

attributes of relevance..
 Focus on spanning the pareto 2007]

 Distance measures between 
plans

Focus on spanning the pareto 
set.. [IJCAI 2009]

Domain Independent Approaches 
for Finding Diverse Plans

Biplav Srivastava Subbarao Kambhampati
IBM India Research Lab Arizona State University
sbiplav@in.ibm.com rao@asu.edu

Tuan A. Nguyen Minh Binh Do
University of Natural Sciences Palo Alto Research Center

Jan 09, 2007 Domain Independent Approaches for Finding Diverse Plans 1

University of Natural Sciences Palo Alto Research Center
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Alfonso Gerevini Ivan Serina
University of Brescia University of Brescia
gerevini@ing.unibs.it serina@ing.unibs.it

IJCAI 2007, Hyderabad, India

(6 Authors from 3 continents, 4 countries, 5 institutions)

162162



Generating Diverse Plans
 dDISTANTkSET

 Given a distance measure (.,.), and a 
parameter k, find k plans for solving the 
problem that have guaranteed minimum 
pair wise distance d among them in Generating Diverse Plans 

 Formalized notions of bases 
for plan distance measures

pair-wise distance d among them in 
terms of (.,.)

for plan distance measures
 Proposed adaptation to 

existing representative, 
state of the art  planning 

Distance Measures

 In what terms should we measure 
distances between two plans?
 The actions that are used in the plan?
 The behaviors exhibited by the plans?
 The roles played by the actions in the plan?state-of-the-art, planning 

algorithms to search for 
diverse plans

Sh d h

p y y p
 Choice may depend on

 The ultimate use of the plans
 E.g. Should a plan P and a non-minimal 

variant of P be considered similar or different?
 What is the source of plans and how much is 

accessible? 
 E.g. do we have access to domain theory or 

just action names?

 Showed that using action-
based distance results in plans 
that are likely to be also 
diverse with respect to •Action based 

Compute by Set-difference

p1,
p2,
p3

g1,
g2,
g3

A1

A2

<g1,g2,g3>

Initial State Goal State

diverse with respect to 
behavior and causal structure

 LPG can scale-up well to large 
problems with the proposed 

•Action-based 
comparison: S1-1, S1-2 
are similar, both 
dissimilar to S1-3; with 
another basis for 
computation, all can be 
seen as different 
•State-based comparison: 
S1-1 different from S1-2 

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3> <g1,g2,p3>

<g1,g2,g3>

A3
<p1,p2,p3>

Plan S1-1

problems with the proposed 
changes 

[IJCAI 2007]

and S1-3; S1-2 and S1-3 
are similar
•Causal-link comparison: 
S1-1 and S1-2 are 
similar, both diverse from 
S1-3

Plan S1-2

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-3



Compute by Set-difference A1
Initial State Goal State

•Action-based 

p1,
p2,
p3

g1,
g2,
g3

A2

<g1,g2,g3>

Action based 
comparison: S1-1, S1-2 
are similar, both 
dissimilar to S1-3; with 

A3
<p1,p2,p3>

Plan S1-1
;

another basis for 
computation, all can be 
seen as different 

p1,
p2,
p3

g1,
g2,
g3

A1 A2 A3

<g1,p2,p3>
<g1,g2,p3>

•State-based comparison: 
S1-1 different from S1-2 
and S1-3; S1-2 and S1-3 
are similar

<p1,p2,p3>

<g1,g2,g3>

Plan S1-2
Plan Kernels

are similar
•Causal-link comparison: 
S1-1 and S1-2 are 
similar  both diverse from 

p1,
p2,
p3

g1,
g2,
g3

A1 A2’ A3’

<g1 p2 p3>
<g1,g2,p3>similar, both diverse from 

S1-3
<p1,p2,p3>

<g1,p2,p3>

<g1,g2,g3>

Plan S1-3



S l ti A hSolution Approaches

P ibl  h Possible approaches
 [Parallel] Search simultaneously for k solutions 

which are bounded by given distance d
 [Greedy] Search solutions one after another with 

each solution constraining subsequent search

 Explored in
 CSP-based GP-CSP classical planner

 Relative ease of enforcing diversity with different g y
bases for distance functions

 Heuristic-based LPG metric-temporal planner
 Scalability of proposed solutions



E l i ith LPGExploring with LPG

• Details of changes to LPG in the paper
• Looking for:Looking for:

• How large a problem can be solved easily
• Large sets of diverse plans in complex domains

can be found relatively easily 
I t f • Impact of 
•  = 3 gives better results

• Can randomization mechanisms in LPG give
better result?
• Distance measure needed to get diversity 

effectively



Generating Diverse Plans with Local Searchg

LPG d l  109 b LPG d l  211 bLPG-d solves 109 comb.
Avg. time = 162.8 sec
Avg. distance = 0.68
Includes d<0.4,k=10; d=0.95,k=2

LPG-d solves 211 comb.
Avg. time = 12.1 sec
Avg. distance = 0.69

LPG-d solves 225 comb.
Avg. time = 64.1 sec
Avg. distance = 0.88



Unknown &  Partially Known 
Preferences 
 Unknown preferences

F  ll  k    
 Partially known

W   k  th t   For all we know, user may 
care about every thing -- the 
flight carrier, the arrival 
and departure times, the 
type of flight, the airport, 

 We may know that user 
cares only about makespan 
and cost. But we don’t know 
how she combines them..

 Returning a diverse set of yp g , p ,
time of travel and cost of 
travel…

 Best choice is to return a 
diverse set of plans [IJCAI 
2007]

 Returning a diverse set of 
plans may not be enough
 They may not differ on the 

attributes of relevance..
 Focus on spanning the pareto 2007]

 Distance measures between 
plans

Focus on spanning the pareto 
set..

Domain Independent Approaches 
for Finding Diverse Plans

Biplav Srivastava Subbarao Kambhampati
IBM India Research Lab Arizona State University
sbiplav@in.ibm.com rao@asu.edu

Tuan A. Nguyen Minh Binh Do
University of Natural Sciences Palo Alto Research Center
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Modeling Partially Known Objectives
 The user is interested in minimizing two objectives  The user is interested in minimizing two objectives 

(say makespan and execution cost of plan p: time(p), 
cost(p).)

 The quality of plan p is given by cost function:

 represents the trade-off between two competing 
])1,0[()(cos)1()(),(  wptwptimewwpf

]10[w represents the trade off between two competing 
objectives.

 w is unknown, but the belief distribution w, h(w), is 
d t  b  k

]1,0[w

assumed to be known
 (if no special information is available, assume uniform 

distribution).
 Objective: find a representative set of non-dominated 

plans                minimizing expected value of            
w r t h(w)

),( wpfkPP ||,
w.r.t h(w)
 Represented by Integrated Convex Preference (ICP) 

measure developed in OR community (Carlyle, 2003).

173173



Handling Partially Known 
Preferences 

 View it as a Multi-objective optimization
 Return the Pareto optimal set of plans

(and let the user select from among them)( g )
 Two problems

 [Computational] Computing the full pareto set can be 
too costlytoo costly

 [Comprehensional] Lay users may suffer information 
overload when presented with a large set of plans to 
choose fromchoose from

 Solution: Return k representative plans from the 
Pareto Set
 Challenge 1: How to define “representative” robustly?  Challenge 1: How to define representative  robustly? 
 Challenge 2: How to generate representative set of 

plans efficiently?

174174



Measuring Representativeness: ICP
])1,0[()(cos)1()(),(  wptwptimewwpf

3 representative plans
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Measuring Representativeness: ICP
 Set of plans  kpppP ...,,, 21p

 Makespan and execution cost of plan 
 Each plan      gives the best cost for all

 kppp ...,,, 21

ip  ii www ,1
ii ppi ctp ,:

 The belief distribution of

 kjwpfp j
Pp

i ...,,1,0|),(minarg 


)(whw The belief distribution of
 The expected value of plan set P

).(, whw

177177



Handling Partial Preferences using 
ICP 
Problem Statement:  Solution Approaches:
 Given 

 the objectives Oi, 
 the vector w for convex 

 Sampling: Sample k
values of w, and 
approximate the optimal 
plan for each value  combination of Oi

 the distribution h(w) of 
w, 

R t   t f k l  

plan for each value. 
 ICP-Sequential: Drive 

the search to find plans 
that will improve ICP

 Return a set of k plans 
with the minimum ICP 
value.  

 Hybrid: Start with 
Sampling, and then 
improve the seed set 
with ICP-Sequentialwith ICP Sequential

 [Baseline]: Find k
diverse plans using the 
distance measures from 
[IJCAI 2007]  [IJCAI 2007] paper; 
LPG-Speed.
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Summary of Incomplete Preferences
 Unrealistic to assume complete 

knowledge of user preferences
 Our previous work [IJCAI 2007] 

 We can learn to improve 
the preference model by 
revising the h(w) after 

 f  it ti  considered the case where no
knowledge is available. This 
paper focuses on cases where 
partial knowledge is available

every few iterations 
(through user interaction)

partial knowledge is available
 For ease of computation and 

comprehension, we need the ability 
to generate a representative set of Revisingg p
plans from the pareto set
 ICP measure to capture 

representativeness

Revising 
distribution 
h(w) over 
iterations
(Bayesian

 A spectrum of approaches for 
generating plan sets with good 
ICP measure

(Bayesian
learning..)

182182



LEARNING PLAN PREFERENCES

 Pbus: Getin(bus, source), Buyticket(bus), Getout(bus, dest) 2

From Observed Executions
bus ( , ), y ( ), ( , )

 Ptrain: Buyticket(train), Getin(train, source), Getout(train, dest) 8
 Phike: Hitchhike(source, dest) 0

HitchhikeHitchhike
? No way!

[IJCAI 2009]



LEARNING USER PLAN PREFERENCES 
OBFUSCATED BY FEASIBILITY CONSTRAINTS

 Rescale observed plans Input Plans:
 Undo the filtering caused 

by feasibility constraints
 Base learner

Pplane *  3

Ptrain   *  5

*
 Acquires true user 

preferences based on 
adjusted plan 

Pbus *  6

frequencies

Rescaled Plans:
User Preference Model

Pplane * 12

Ptrain   *  4

Pb * 1

Base 
Learner

IJCAI ‘09 Pbus   1IJCAI 09

[ICAPS 2009]



Our Contributions
Preference incompletenessp

Unknown Preferences [IJCAI 2007]
Partially known  Preferences [IJCAI 2009]

M d l i lModel incompleteness
Robust plan generation [ICAPS Wkshp 2010]

World/Object incompletenessWorld/Object incompleteness
OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 



Planning with partial domain models:
MotivationMotivation

• Planning, in traditional 
perspective assumes a completely

• Domain modeling is a laborious, 
error‐prone task

perspective, assumes a completely 
specified domain model

– We know exactly the 
conditions and effects of action

– So much so that there is a 
Knowledge Engineering track for 
ICP

– Action descriptions have to be seenconditions and effects of action 
execution

– Stochastic models  also assume 
completeness (“known”

Action descriptions have to be seen 
as “nominal”
– May have missing preconditions 

and effects…
S ti th d i d lcompleteness ( known  

probabilities)
– Sometimes, the domain modeler 

may be able to annotate the action 
with sources of incompleteness
– Possible preconditions/effects

Can the planner exploit such partialCan the planner exploit such partial 
knowledge?



Deterministic Partial Domain Models
• We consider planning with deterministic, but incompletely 

specified domain model

• Each action a is associated with possible precond and effects 
(in addition to the normal precond/eff):

P P( ) [ ] f i i h i h d d d i– PreP(a) [p]: set of propositions that amight depend on during 
execution

– AddP(a) [p]: : set of propositions that amight add after 
executionexecution

– DelP(a) [p]: : set of propositions that amight delete after 
execution

a

p1

p1
–

p2

Example: An action a that is 
known to depend on p1, add p4 
and delete p3. In addition, it might 
have p3 as its precondition might

p3 p3

p4

–have p3 as its precondition, might 
add p2 and might delete p1 after 
execution.



More on AnnotationsMore on Annotations

• We will focus on how to handle the possibleWe will focus on how to handle the possible 
precond/effect annotations on the ground 
actionsactions…

• But they  are  more likely specified at the 
“schema” levelschema  level
– All groundings of an action schema will thus have 
the same possible preconds/effectsthe same possible preconds/effects

– We can support “friendly” syntax to specify 
exceptionsexceptions 

• E.g. that the annotations hold only for specific variable 
bindings



Solution Concept: Robust Plans
S l ti t• Solution concept:

– Robust plan
– Plan is highly robust if executable in 

l b f lik l didlarge number of most‐likely candidate 
models

• Robustness measure
S t f did t d i d l S– Set of candidate domain models S
(consistent with the given 
deterministic partial domain model D)

– A complete but unknown domainA complete but unknown domain 
model D*

• Can be any model in S

 Number of candidate models with 
which the plan succeeds

R b t l 3/8 
a

aaaK )(DelP)(AddP)(PreP Robustness value: 3/8

Easily generalized to consider model likelihood



Assessing Plan Robustness
• Number of candidate models: • Approximate methods:• Number of candidate models: 

exponentially large. Computing 
robustness of a given plan is 
hard!!!

E t d i t

• Approximate methods:

– Invoke approximatemodel 
counting approach

A i t d t– Exact and approximate 
assessment.

• Exact methods:
– (Weighted) Model‐counting 

– Approximate and propagate 
action robustness

• Can be used in generating 
rob st plansapproach: 

• Construct logical formulas 
representing causal‐proof (Mali & 
Kambhampati 1999) for plan 
correctness

robust plans

• Invoke an exact model counting 
approach

“If p1 is realized 
as a delete effect 
of a1, then it 
must be anmust be an 
additive effect of 
a2.”



Generating Robust Plans

• Compilation approach: Compile into a 
(Probabilistic) Conformant Planning
problem
– One “unobservable” variable per each 

possible effect/precondition

• Significant initial state uncertainty

– Can adapt a probabilistic conformant 
planner such as  POND [JAIR, 2006; AIJ 
2008]

• Direct approach: Bias a planner’s• Direct approach: Bias a planner’s 
search towards more robust plans
– Heuristically assess the robustness of 

partial planspartial plans

• Need to use the (approximate) 
robustness assessment procedures

[See work by Weber & Bryce 2011]

[Workshops of ICAPS 2010; AAAI 2011]

[See work by Weber & Bryce, 2011] 



Our ContributionsOur Contributions

• Preference incompletenessPreference incompleteness
– Unknown Preferences [IJCAI 2007]

Partially known Preferences [IJCAI 2009]– Partially known  Preferences [IJCAI 2009]

• Model incompleteness
– Robust plan generation [ICAPS Wkshp 2010]

• World/Object incompleteness
– OWQG [IROS 2009; BTAMP 2009; AAAI 2010] 



CognitiveUrban Search and RescueUrban Search and Rescue g
Science

U ba  Sea c  a d escueU ba  Sea c  a d escue

• Human-Robot team

• Robot starts the beginning
f h h llof the hallway

• Human is giving higher
level knowledgeg

• Hard Goal: Reach the end 
of the hallway
W d d l  i  • Wounded people are in 
rooms

• Soft Goal: Report locations 

195

p
of wounded people



CognitivePlanning Support for USARPlanning Support for USAR g
Science

a g Suppo t o  USa g Suppo t o  US

• Good News:  Some aspects of existing Good News:  Some aspects of existing 
planning technology are very relevant 

• Partial Satisfaction
• Replanning & Execution Monitoring

• Bad News:  Incomplete Model / Open World
– Unknown objects 

• Don’t know where injured people are

G l  ifi d i   f  h– Goals specified in terms of them
• If  the robot finds an injured person, it should report 

their location …

196



How do you make a deterministic 
closed-world planner believe in 
opportunities sans guarantees?

Open World Quantified Goals
Partial Satisfaction Planning (PSP)

Sensing and Replanning

Planner Robot

CLOSED WORLD OPEN WORLDCLOSED WORLD OPEN WORLD

Under Sensing Limited Sensing Over Sensing

197

Under Sensing
Closed World Model

g
Planner guides robot 

in a limited way

g
Robot senses its way 

through the world



CognitiveHandling Open WorldHandling Open World g
Science

Handling Open WorldHandling Open World

• Extreme CasesExtreme Cases
– If  the robot assumes “closed world”, it will just go 

to the end of the corridorto the end of the corridor.

– If  the robot insists on “closing” the model before 
doing planning, it will do over-sensing.doing planning, it will do over sensing.

• Need a way of combining sensing and 
planningplanning
– Information on unknown objects

Goals conditioned on these objects– Goals conditioned on these objects

198



Cognitive

Open World Quantified Open World Quantified 
G l (O QG )G l (O QG )

g
ScienceGoals (OWQGs)Goals (OWQGs)

• Goals that allow for the specification of Goals that allow for the specification of 
additional information

To take advantage of opportunities – To take advantage of opportunities 

(:open (forall ?r – room
(sense ?p – person 

Quantified Object(s)
Sensed Object(sense ?p – person 

(looked_for ?p ?r)
(and (has_property ?p wounded)

(in ?p ?r))

Sensed Object
Closure Condition

Quantified Facts
( p ))

(:goal 
(and (reported ?p wounded ?r) 
[100] - soft))))

Quantified Goal

199



OWQGs as Conditional RewardsQ
Robot needs to
sense wounded peoplesense wounded people
before reporting them

Planner has to deal with open world

Naïve idea: Ask Robot to look
C diti l G l b il d

everywhere (high sensing cost)

Need to sense for those conditional goals

Conditional Goals can be compiled
down when the world model is complete

--Need to sense for those conditional goals
whose antecedents are likely to hold

[AAAI, 2010; IROS 2009; BTAMP 2009]



CognitivePlanning with OWQGsPlanning with OWQGs g
Science

Planning with OWQGsPlanning with OWQGs
• Bias the planner’s model

• Endow the planner with an optimistic view
– Assume existence of objects and facts that may 

lead to rewarding goals
• e.g. the presence of an injured human in a room

– Create runtime objects

– Add to the planner’s database of ground objects

• Plans are generated over this reconfigured 
potential search space

201



Cognitive

ReplanningReplanning andand
E ti  M it iE ti  M it i

g
ScienceExecution MonitoringExecution Monitoring

S i  i  i  • Sensing is expensive …
• Cannot be done at every step

• Planner needs to direct the architecture on:
• when to sense

• what to sense for

• Planning to sense in a goal-directed mannerg g
• Output all actions up to (and including) any 

action that results in “closing” the worldg
– Obtaining information about unknown objects
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Challenges of Model-Lite PlanningChallenges of Model Lite Planning

1. Circumscribing the incompletenessg p
• Preference components; possible precond/effect annotations; 

OWQG
2. Developing the appropriate solution conceptsp g pp p p

• Diverse plans; Robust plans; Partial sensing plans
3. Developing planners capable of synthesizing them 

• Can adapt existing planners toward these solution concepts• Can adapt existing planners toward these solution concepts
4. Life Long Planing/Learning to reduce incompleteness

• Learning preferences h(.) through interactions; learning model 
conditions through executionconditions through execution 

• [ Tutorial on Learning in Planning AI MAG 2003; Learning 
preferences as HTNs IJCAI 2009; ICAPS 2009]



Partial Solutions for Model-Lite Planning

1. Circumscribing the incompleteness
Can exploit

Deterministic
Planning technology!g p

• Preference components; possible precond/effect annotations; 
OWQG

2. Developing the appropriate solution concepts

g gy

p g pp p p
• Diverse plans; Robust plans; Partial sensing plans

3. Developing planners capable of synthesizing them 
• Can adapt existing planners toward these solution concepts• Can adapt existing planners toward these solution concepts

4. Life Long Planning/Learning to reduce incompleteness
• Learning preferences h(.) through interactions; learning model 

conditions through executionconditions through execution
• [ Tutorial on Learning in Planning AI MAG 2003; Learning 

preferences as HTNs IJCAI 2009; ICAPS 2009]

Model-Lite Planning:
Planning is more than pure inference over completely specified models!



Lecture Overview…
I'd rather learn from one bird how to sing 
than teach ten thousand stars Lecture Overview…

 How to use our  How to go beyond pure 

how not to dance 
ee cummings

hammers wisely
 Lessons from 

inference over 
complete models: A 
call for model-lite

 Partial Satisfaction 
Planning 

 Temporal Planning 

call for model lite
planning
 How to handle 

incomplete domain
 Stochastic Planning 

 How to be skeptical of 
b h k

incomplete domain 
models?

 How to handle 
incomplete preferenceour benchmarks

 (Lack of) Temporal 
Benchmarks

incomplete preference 
models?

 How to handle 
incomplete objectBenchmarks

 (Lack of) Relational 
Benchmarks

incomplete object 
models (open worlds)





Imagine going                   of PlanningI g g g g

Imagine there's no Landmarks
It's eas  if o  tIt's easy if you try
No benchmarks below us
Above us only blai
Imagine all the planners

Imagine  there’s no models
I wonder if you can
No need for preferences or groundings

Planning for real

Imagine there's no state
It isn't hard to do

A diversity of  plans
Imagine all the planners
Living life incomplete 

It isn t hard to do
Nothing to regress or relax
And no cost guidance too
Imagine all the planners

You may say that I'm a whiner
But I'm not the only one
I hope someday you'll join us

Lifting all the worlds

You may say that I'm a whiner
But I'm not the only one

And the ICAPS will be more fun

But I m not the only one
I hope someday you'll join us
And the ICAPS will be more fun


