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International Summer School on Al Planning

September 28 - October 1, 2000
Coral Beach Hotel. Cyprus

A Unifying and Brand-Name-Free Introduction to Planning

Although planning is one of the oldest research areas of Al, recent years have brought
many dramatic advances in both its theory and practice. On the theory side, we now
understand the deep connections between Al planning, heuristic search, constraint
satisfaction, logic and operations research. On the practical side, we have effective
ways of capturing and using domain-specific control knowledge, and have planners
that are capable of synthesizing plans with hundred or more actions in minutes. These
are undoubtedly exciting times for planning research. For newcomers to the field,
however, all this excitement does present special problems of trying to figure out
foundational ideas scattered among a welter of brand-name algorithms.
The school s aimed at D students and yous acadenmic researchers. The a1m of my lecture(s) will be to provide a comprehensive overview of the field,
placing both the traditional ideas and the recent advances in a unified perspective. |
D1 Hector Geffne. (Caiverit Simon Botivar, venemery  W1L1 1801te and present a brandname-free collection of foundational ideas underlying
Heurisie Scarch Flanning: Models, Heuristis. and Alzoritemsth o 0]1d and new crops of planning algorithms. I will then discuss how these can be
 lauming vifh e wd rsomes mixed and matched to develop planning algorithms offering a broad spectrum of
tradeoffs.
While my initial emphasis will be on planning algorithms for deterministic domains, I
will also briefly discuss the extensions of the essential ideas to domains with metric
and temporal constraints, partially observable states as well as stochastic dynamics.
[The lectures should be accessible to anyone with basic computer science and Al
background.

Participants included
Carmel Domshlak
Jorg Hoffmann
Julie Porteous
Malte Helmert
Michael Brenner

planning a realistically usable tool for complex problem-solving.

Lecturers & Topics of the School

Prof. Subbarao Kambhampati (Arizona State University, USA)
A Unifving and Brand-Name-Free Introduction to Plannin;

Dr. Derek Long (University of Durham, UK)
Pre-processing and Domain Analvsis

Prof. Dana Nau (University of Maryland, USA)
Ordered Task Decomposition: Theory and Applications

Prof. Bernhard Nebel (University of Freiburg, Germany)
Computational Complexity of Planning and Expressiveness of

Dr. Paolo Traverso (IRST-ITC, Italy)
Planning as model checking

Preliminary material for the course will be available at URL
rakaposhi.eas.asu.edu/planning-tutorial.

The Summer School will be held in the beautiful seaside environment of t
hitp://www.coral. com.cy

Location of the School
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L a Lecture Notes for CSES71 (F10) - -
——— fectrenotes http://rakaposhi.eas.asu.edu/cse571

Course Wiki 1. Introduction
o L1 Audio of [Aug 23 2010] ( vew  new Video of the lectre video (4gb) Iitroduction to the course expectations; plus bulk of the time reviewing CSE471.

2. (Deterministic) Planning (Here is a tutorial on landmark heuristics)

Argasy o L2 Audio of [Aug 25. 2010] ( tew Hew Video of the lecture video (4gb) Trends in Al Start of Planning: different kinds of planning; atomic account of classical planning and its mitations: propositional account--
STRIPS representation: Progression.

o L3 Audio of [Aug 30. 2010] ( mew rew Video of the lecture part 1 (4gb) part 2 (1gb) STRIPS representation--=ADL representation; conditional and quantified effects and compiling them into canonical
representation. Issues on handling multi-valed fluents (state variables); Progression; Regression; blind-search tradeoffs.

o L4 Audio of [Sep 1st. 2010] ( Hew  neW Video of the lecture part 1 (4gb) part 2 (1gb) Different ways of proving the correctness of plans. Causal proof and plan-space (partial order) planning. Discussion of the partial
order planning algorithm. Observations on flaw selection heuristics etc. Discussion on handling conditional effects in regression and plan-space planning. Discussion on handling lifted (partially specified} actions in
regression and partial order planning.

o L5 Audio of [Sep 8th. 2010] ( vew new Video of the lecture part 1 (4gb) part 2 (1gb) Reachability analysis and planning graph heuristics. Understanding planning graph as an optimistic projection of reachability.
h_level h_sum_ h max and h_{relaxed-plan} heuristics. Relaxed plan extraction (and how it becomes hard with mutual exclusions).

o L6 Audio of [Sep 13th. 2010] ( vew new Video of the lecture part 1 (4gb) part 2 {1gb) Heuristics vs. search strategies; PG heuristics for progression vs. regression; progression vs. regression--can the balance have
something to do with ergodicity of the benchmark domains? backchaining as a meta-idea with multiple realizations.

o L7 Audio of [Sep 15th. 2010] ( Hew Hew Video of the lecture part 1 (4gb) part 2 {1gb) Negative nteractions and the idea of capturing them with level-specific n-ary mutexes; static mutex identification rules and which
of them are minimally required: mutex propagation rules for binary mutexes. mutexes, memos and graphplan completeness theorem. Converting plan extraction from planning graph into a SAT problem.

© L8 Audio of [Sep 20th. 2010] ( new new Video of the lecture part 1 (4gb) part 2 (1gb) Majority of the class on compiling bounded length planning into SAT and CSP. Planning graph compilation first, followed by the
more general view of encodings coming from lines of proof of correctness. State-based vs. causal-proof encodings. Planning graph encoding as explanatory frame-axiom encoding with mutex propagation. Use of
negative interactions in planning graph heuristics (and the adjusted sum heuristic); using planning graph heuristics in partial-order planning.

o L9 Audio of [Sep 22nd. 2010] ( tew  rew Video of the lecture part 1 (4gb) part 2 (1gb) Majority of the class on landmark heuristics (using Richter/Karpas ICAPS 2010 tutorial), with digressions into causal-graph
heuristic (used in Fast Downward). and cost-propagation on planning graphs (used in cost-based landmark analysis). Final 10 minites are devoted to motivating the atomic model for stochastic worlds and general
reward structures.

Related Courses

3. MDPs

o L10 Audio of [Sep 27th. 2010] ( #ew new Video of the lecture part 1 (4gb) part 2 (1gb) Markov Decision Processes; background, terminology, motivations

o L11 Audio of [Sep 29th. 2010] ( #ew HeW Video of the lecture part 1 (4gb) part 2 (1gb) Computing the value of a policy. Optimal policy construction for finite-horizon MDPs. Relations between finite-horizon MDPs
and bounded length planning. Brief discussion of indefinite horizon problems--and their need for sink (absorbing) states. Infinite horizon problems--and how discount factor affects the convergence rate. The idea of
infinite horizon MDP value iteration as just a "repeat until" version of the finite horizon MDP value iteration (where the until condition checks that the max-norm difference between two iterations is less than epsilon) L
L12 Audio of [Oct 4th 2010] ( vew rew Video of the lecture part 1 (4gb) part 2 (1eb) Infinite horizon MDP value iteration; understanding bellman update as a contraction operator, greedy policy for a given vale
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5. Planning in Belief-space
o L16 Audio of [Oct 18th 2010] ( wew new Video of the lecture part 1 (4gb) part 2 (1sb) Handling state uncertainty--the road map; atomic model with and without stochastic uncertainty; belief states; applying actions
to belief states (and why action preconditions can get in the way); why stochastic uncertainty--which is additional knowledge-- seems to increase the difficulty of the problem by exploding the belief space; two ways of '
reducing state uncertainty--with causal actions and with observational ones (and realizing that in general we can have actions that have both casual and observational effects); observation model; how observations
partition the state space--and how the number of partitions corresponds to the degree of observability (the notion of idf of the observation). State estimation and planning problems in belief-space. For planning, the i
difference between conformant and contingent planning; the difference between full vs. limited contingency planning.
o L17 Audio of [Oct 18th. 2010] ( new rew Video of the lecture part 1 (4gb) part 2 (1gb) Discussion of factored approaches for belief-space planning; discussion on BDDs and BDD-based planning; progression and
regression for conformant planning; sensing actions; progression in the presence of sensing actions; heuristics for conformant planning--all-states determinization; labelled uncertainty graphs.
L18 Audio of [Oct 25th. 2010] ( new  rew Video of the lecture part 1 (4gb) part 2 {1gb) Part 1: Discussion of heuristics for belief-space planning; the idea of state interactions (in addition to action interactions). The
merged: unioned and LUG planning graphs. The notion of cross-world mutexes and how that leads to CGP (conformant graphplan): a litfle on heuristics for sensing actions.

)

6. POMDPs
o L18 Contd: Part 2: POMDPS start. The model. The non-markovian nature of decisions based on observations and the need for observation history. Two ways of compacily representing the observation history--as
belief-space and as a policy represented by a finite-state controller. The depressing complexity results on POMDPS.
o L19 Audio of [Oct 27th. 2010]  mew new Video of the lecture part 1 (4gb) part 2 (1gb) POMDP discussion continued. Formally showing that POMDP is an MDP in the belief space. Discussion of the value iteration
for finite horizon POMDP. Ideas for improving the complexity of value iteration.
o L20 Audio of [Nov 1st 2010] { vew  new Video of the lecture part 1 (4gb) part 2 (15b) Approximating POMDP wvalue finction (with FOMDP one as the upper bound and NOMDP one as the lower bound). Online
approaches for POMDP. (Comparing POMDP online search to non-deterministic belief space search with observations).

7. Remforcement L earning

o L21 Audio of [Nov 3rd. 2010] ( tew  HeW Video of the lecture part 1 {4gb) part 2 (1gb) Reinforcement learning--the problem. the dimentions of RL algorithms. Passive RL with montecarlo. Passive RL with ADP.
Generalization in RL. Model correctness/completeness considerations and notions of robustness.
L22 Audio of [Nov 8th. 2010] ( new new Video of the lecture part 1 (4gb) part 2 (1gh) Active learning, exploration policies; GLIE policies: model-free learning--Temporal difference leaming: Q-learning; SARSA
and on- vs. off- policy learning.

L23 Audio of [Nov 10th. 2010] ( mew new Video of the lecture part 1 (4gb) part 2 (1gb) Monte-carlo vs. Temporal difference learning; and the idea of TD(lambda). Generalizationi in RL; basics of feature functions +

)

]
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Reflections on the Planning Summer School

Lots ol us, although coming from areas as diverse  tunately, Derek didn't say that anvone has al-

REPORT
—‘ ready done it (thoneh Tosat throneh that course

as natural anenace ceneration and koowledes

ren better, |

I s s cognitive scientist, so when | received
an c-mail advertising an AL Sunnner School in
Planning, my first thought was “I know Al is
still kicking awd sereaming, but 1 thought plan-
Well,

il they re disappearing to Cyprus, they're doing

ning at least had disappeared quictly.”

something right, T then thought, and the lecture
titles gave thal tmpression as well, A Unilving
and Brand-name-Tree Introduction”™ is something
which hardly any field can promise, and “Cone-
plexity™ has always been a dirty word 1o most
of AL With these courses, two on hearisties (v
arcal, and another by the Bridge programming
genins Dana Naw, the School looked well attrac-

tive.

Figure 1: In a lectu

The courses delivered «
harao  Kambhampati

sented a unifving view ol planning as succes-
sively refining a search space, quickly introduoe-
ing and absorbing forward-, backward-. method-
level-, and a host of other planning technigues.
Hector Geflner ("Hector hearistic”) spoke on the
A henristic which generalises wuch of Graph-
Plan awd slayvs dragons in polyonomial time. The
courses then ventured out of blocks-world, re-
lating other subjects and solving real problems.
Bernhard Nebel (Ccomplexity Nebel™)
what “polynomial time” means in a crash conrse

cxplained

on complexity theory (complete with notes oceo-
pying a large chunk of NPSPACE]. Derek Long

Do not go gentle into that good night
Old age should burn and rave at close of day
= Rage rage against the dying of the light

wnd who want

Authe

(“domain Derek™) reinforced the '1”_"'“"“ were
plexity by giving an casy, Funilia hi::i}-l[ial.\;i[]*l[:hl
lem in an abstact vocabulary (w \_ o

. reat working
nearly intractable to do by han ta come, jus!
he explored ways ol pre-process

Dana Nau |

continued the gospel of

¢ four days in
! \
domain knowledge. L art inthis

Dana™) leas and con-
o bring back

planning, taking the theory ol (h
o which taps

composition and applving it to pr
Mz

turned us to the world of theo

. e andd Sub-
thing called the real-world. .
: ’.[lll CUTA AT,
sing Ordered

cutirely so, and reviewed techn anent world-
ning with common things like resc g s

Finally, Paolo Traverso encoded

leneveld Institute [

meoand Reasoning, Division of

Repre-

s and con-
--Dylan Thomas bring back
to Ldinburgh, but there 1s one 1mage which tops
them all, the ideal of academia: Dana and Sub-
barao standing ankle-deep in the Mediterranean,
in the same spot for an hour, discussing Ordered
Task Decomposition and the Refinement world-

view against the backdrop of a setting sun.
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Rao’s Complaints: Then

Then

= What good are expressive
and ambitious planning
paradigms when we have so
little scalability?

= Need to work on search
control

= Need benchmarks to measure
progress

[...] Search is usually given little attention in this field, relegated to a footnote
about how “Backtracking was used when the heuristics didn’t work.”
Drew McDermott 1991




Scalability was the big bottle-neck...

We have figured out how to scale synthesis..
| Problem is Search Control!!!

10000 —
: ' P~
- BefOIje’ plannmg . " ""*‘:';G";.ff Zi
algorithms could jooo | Triom =
synthesize about 6 | S
— 10 action plans in 100 | o
minutes o
. . g 10
= Significant scale- ol g1 Tl s
up in the last el
decade ' * Realistic encodings |
ol p f Munich ai o
m NOW, we can S of Munich airport! |
synthesize 100 u_m%’ l l
o . L] 10 15 20 25 30 25 40 45 50
action plans 1n sk .
seconds.

The primary revolution in planning in the recent years has been
methods to scale up plan synthesis




and we have done our faip bit...

The
Autom

Outstanding Disse

Me

“Integer Programmin

Original Photo: Wiadyslaw Sojka
Licence: Crealive Commons Attribution ShareAlike 3.0

International Confoline_. <
Automated Planning and Schedi ‘

2010 Influential Paper Awa
Honorable Mention

Presented to
Minh B. Do and Subbarao Kambhz
for their AIPS 2000 paper

“Solving Planning-Graph by
Compiling it into CSP”

D thesis
May 15, 2010 ICAPS Inc. Pri .?f .
Toronto, ON, Canada Enrico Giup s

a. b

under Uncertainty”

b President




S0, Rao should be happy..
Right?

Wrong!
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Pendulum Swing

Rao’s Complaints: Then & Now J N\

Then Now e
= What good are expressive = What good are scalable
and ambitious planning planners if all they want to
paradigms when we have so do is stack blocks all the
little scalability? way to the moon?
= Need to work on search = Streetlight effect
control

= There should be more to
planning than combinatorial

search!
[...] Search is usually given little attention in this field, relegated to a footnote
about how “Backtracking was used when the heuristics didn’t work.”
Drew McDermott [26, p. 413]

= Need benchmarks to measure
progress

[ Love planning man. (t is just search!
A graduate student tn a Taverna in Thessalonikl during ICAPS 2009
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[Lecture Overview...

= How to use our
hammers wisely

*= How to be skeptical of
our benchmarks

1'd vather learn from one bird how to sing
ﬂwan ’(eac‘\ ten ﬂwusand stars
how not to dance

ee cummings

* How to go beyond pure
inference over
complete models: A
call for model-lite
planning
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1'd rather leamn from one bird how to sing

LeCture OVerVieW . e e than teach ten thousand stars

how net to dance

ee cummings

* How to go beyond pure
inference over
complete models: A
call for model-lite
planning

= How to handle
incomplete domain

= How to use our
hammers wisely

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

models?
*= How to be skeptical of = How to handle
our benchmarks ﬁg‘(’lgls’;ete preference
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks
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Make thi Ings as smwp!e as posst ,

On Using Our Hammers Wisely b smie

-Attributed to Cinstein

= (lassical Planners have justifiably become our
hammers... This 1s mostly GOOD NEWS

= We want to coax all other planning problems into
formats that will allow us to maximally utilize the
progress made 1n scaling up classical planning

= _But, we need to be careful, lest we lose the
essence of the expressive planning problems during
the coaxing (compilation)

= Some examples..
= Cost-based Planning (e-cost trap)
* Temporal Planning (Required Concurrency)
= Stochastic Planning (Biased Determinizations)
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1'd rather leamn from one bird how to sing

LeCture OVerVieW . e e than teach ten thousand stars

how net to dance

ee cummings

= How to use our = How to go beyond pure

hammers wisely inference over
complete models: A

call for model-lite
planning

= How to handle
incomplete domain

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

models?
*= How to be skeptical of = How to handle
our benchmarks meomplete preference
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks



Optimization Metrics

Multi-objective

Highest net-benefit

Cheapest plan
Shortest plan

Any (feasible) Plan

[AAAI 2004; ICAPS 2005
IJCAI 2005; IJCAI 2007]

wditional Planning

(]

© £ L PO P
Q¥ o~ WK o
<@ <@ P >

Underlying System Dynamics

v



Partial Satisfaction/Over-Subscription Planning

Traditional planning problems
Find the (lowest cost) plan that satisfies a//the given goals

PSP Planning

Find the highest utility plan given the resource constraints
Goals have utilities and actions have costs
...arises naturally in many real world planning scenarios

MARS rovers attempting to maximize scientific return, given resource
constraints

UAVs attempting to maximize reconnaisance returns, given fuel etc
constraints

Logistics problems resource constraints
... due to a variety of reasons
Constraints on agent’s resources

Conflicting goals
With complex inter-dependencies between goal utilities

Soft constraints [AAAI 2004: ICAPS 2005 1JCAI 2005 1JCAI 2007;
Limited time ICAPS 2007; CP 2007]



Classical vs. Partial Satisfaction
Planning (PSP)

Classical Planning Partial Satisfaction Planning
e Initial state  Initial state
e Set of goals « Goals with differing utilities
e Actions » Actions with differing costs

Find a plan that achieves all goals | Find a plan with highest net benefit
(cumulative utility — cumulative cost)

(prefer plans with fewer actions) (best plan may not achieve all the goals)

Preferences and PSP in Planning
Benton, Baier, Kambhampati (AAAI 2010 Tutorial)

1/19




How to Leverage Modern Heuristic
Search Planners

Perform

Goal
Selection

Net Benefi
Planning Select
Problem Goals

Compile
Goals

Perform
Compilation

Cost-based /
Problem

/

Net Benefit /

Cost-based Net benefit-based
classical planners planners
Examples: Examples:
LAMA Gamer
Set-additive FF SapaPs
HSP, SPUDS

0
Upwards BBO*P-LP

HSP

p

Planning

Problem /

Cost-based /

Problem /

/

6/10/2011 AAAI 2010 Tutorial: Preferences and Partial Satisfaction in Planning 42



Most planners use A* search variants
A* is susceptible to e-cost traps

— ¢ is the ratio of the lowest to
highest cost action

— Would be small if there is large
cost variance (which is usually the
case in planning domains—e.q.
cost of boarding vs. flying)

— In such cases, A*'s propensity to
conflate discovery and optimality
proof proves to be its undoing

« Consider an optimal solution
at depth 10 and the second
best at depth 1000

— This pathology has been noticed
[e.g. LAMA], but the cause (e-cost
trap wasn’t) leading to ad hoc
stop gaps

Surrogate Search to avoid s-cost traps

Solution to e-cost trap is to guide A*
search with a surrogate evaluation
function that:

— has a significantly higher ¢
— ..and is cost (objective) focused

One idea is to go with size-based
evaluation function as the surrogate

— This one has e=1 but is not
particularly well-focused on the
objective

» Surprisingly, surrogate search
with it it does significantly
better than direct cost-based
search

A better alternative is to consider cost
sensitive size-based evaluation
function (which estimates the size of
the cheapest path through the current
state)
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[Lecture Overview...

= How to use our = How to go beyond pure

hammers wisely inference over
complete models: A

call for model-lite
planning

= How to handle
incomplete domain

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

models?
*= How to be skeptical of = How to handle
our benchmarks ﬁg‘(’lgls’;ete preference
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks
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Temporal Planning

start-pre over-pre end-pre

: name [duration] M - match
= Plan-space Is natural L - light
start-eff end-eff

= Zeno, IXTET etc. F - fuse
= Desire to exploit classical M

planning progress light-match [8]

= Extended planning graph [TGP] L . —LA-M

= State-space? :

= Problem: Infinite number of time fix-fuse [4]
points \ F

= Decision Epochs

= Restrict start times to events
*@=). - Competition winners
@ = Reachability heuristics




B 7 [ ARIZONA STATE e W N1 T EE G T
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L | :
icfuse ! = No epoch available
: light-match = “middle of howhere”
L Mal

= Decision Epoch
Planning is
incomplete!

Iight-match
L "Ml

fix-fuse

light-match
L "M oL
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Troubling Questions

= What do/should the IPCs = Can Decision Epoch

measure? Planning be fixed?
Essence of Temporal Planning = No.
= Required Concurrency = But!

= Temporally Simple = Classical . pepy
= Temporally Expressive = Harder . “Less” incomplete

= TEMPO

= Reachability heuristics
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G Anas, WASH NG TON Essence of Temporal Planning

Required Concurrency

= Temporally Simple Languages
= Concurrency never necessary
= ...but can be exploited for quality

= Temporally Expressive Languages

= Can specify problems such that
concurrency is needed
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Temporal Action Languages

Start-pre  Over-pre  End-pre

S, O, €
name [duration] I—) I_ S @
Start-eff End-eff |

Over-pre

name [duration] |— I_

End-eff
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= Temporally Simple
Rescheduling is possible
= MIPS, SGPlan, LPG,

= Sequential planning is complete —
“optimal” ?

= TGP, yes
= In general, yes
= Temporally Expressive

. S e
L S, e Le L S
= Temporal Gap
= Before-condition and effect
= After-condition and effect
= Two effects
= Temporally Simple =
No Temporal Gap



ARIZONA STATE

Ol ST G Essence of Temporal Planning

No Temporal Gap = Classical + Scheduling

B x
A x

x D
* C

= Forbidding temporal gap implies
= All effects at one time
= Before-conditions meet effects
= After-conditions meet effects

= Unique transition per action

pre
A[d] x
eff

= Theorem: Every concurrent plan is an
O(n) rescheduling of a sequential plan
= And vice versa
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Wow!

= Temporally Simple =
Classical + Scheduling

= Winners incomplete for all
Temporally Expressive Languages

= Most/all benchmarks are classical!
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Decision Epoch Planning: DEP
= Only start actions after events AL3] -
VAN
= Choose
= Start an action it g
= Advance epoch ,
| | fix-fuse I-I
: F
= Temporally Simple W
= Complete, suboptimal ! L MeL
= Temporally Expressive M
= Incomplete, suboptimal light-match [8]
~ — L I_ —|L/\—|M
A B
fix-fuse [4]
a b F
AB




ediel UNIVERSITY WASH | NE; TURY

Generalized DEP: DEP+

A B ARIZONA STATE P VN E R B AN

Salvaging DEP

= Also end actions after events
= Choose

= Start an action

= End an action

= Advance epoch

A [3]

GG,

B [2]

= Temporally Simple

= Complete, optimal
= Temporally Expressive
= Incomplete, suboptimal

R,AGANG,

B [H]

R, ARy AG,

C[1]
G. AnG,
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State of the Art: Incomplete or Slow

= Metric-FF, MIPS, SGPlan, SAPA, TP4,
TPG, HSP*, ...

= Guarantees only for temporally simple
languages

= Can solve some concurrent problems

= Light-match, but not short-match
= Difficult to detect

« ZENO, IxTeT, VHPOP, LPGP, ...

= Complete
= Slow
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Interleaving-Space: TEMPO

= Delay dispatch decisions until afterwards

= Ch
: gtce)lfte an action

: End an action | N w w

= Solve temporal constraints

- n

L
= Temporally Simple fixfuse |
= Complete, Optimal Mo
= Temporally Expressive T L'
= Complete, Optimal B

P o e

[Colin planner]
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Conclusions

Required concurrency is the essence of temporal

planning

= Otherwise classical planner + O(n) scheduling

suffices

= Simple test for required concurrency: Temporal gap
Decision epoch planning is fundamentally

incomplete

= But DEP+ may solve most real-world problems

Complete state-space temporal planning: TEMPO
= Allows leveraging of state-based reachability

heuristics

Lesson: Be wary of the temptation of
efficiency at the expense of
essence of expressive planning
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[Lecture Overview...

= How to use our = How to go beyond pure

hammers wisely inference over
complete models: A
call for model-lite
planning

= How to handle

incomplete domain
models?

= How to handle
incomplete preference

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

= How to be skeptical o
our benchmarks

models?
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks



Probabillistic Planning

(goal-oriented)

L eft :
. . Action
Outcomes Maximize Goal Achievement
are more |
likely A1l A2 Probabilistic
Outcome
A A
Al A2 Al A2 Al A2 Al A2
A A A A A A A A
o o ® O
A Action o Dead End

State ® Goal State

69



How to compete?

Policy Computation Exec

Off-line policy generation

First compute the whole policy
— Get the initial state

— Compute the optimal polic
given the initial state and the
goals

Then just execute the policy
— Loop
* Do action recommended by the
policy
* Get the next state
— Until reaching goal state

Pros: Can anticipate all
problems;

Cons: May take too much time
to start executing

] ] ] X

Online action selection

 Loop

— Compute the best action
for the current state

— execute it
— get the new state

e Pros: Provides fast first
response

* Cons: May paint itself
Into a corner..



Determinizations

* Determinizations allow us a way to
exploit classical planning
technology

— Most-likely outcome determinization N &
 Inadmissible . 2
» e.g. if only path to goal relies on less :
Ilkely outcome of an action Al A2 Al A2 Al A2 Al A2
— All outcomes determinization A 42 & 4 £ 4 4+ 2
» Admissible, but not very informed o6 & - S8 00 e
» e.g. Very unlikely action leads you
straight to goal
— Hindsight Optimization
o Sample determinizations..

— The sampling (rather than a static
process) determines what effects an
action has at each time step



FF-Replan

o Simple replanner
* Determinizes the probabilistic problem

e Solves for a plan INn the determinized
problem

o/@<@/@\@




All Outcome Replanning

(FFR,)

Probability,

Probability,



1st IPPC & Post-Mortem..

IPPC Competitors

Most IPPC competitors used
different approaches for offline
policy generation.

One group implemented a
simple online “replanning”
approach in addition to offline
policy generation

— Determinize the probabilistic

problem
¢ Most-likely vs. All-outcomes
— Loop

* Get the state S; Call a classical
planner (e.g. FF) with [S,G] as the
problem

» Execute the first action of the plan

Umpteen reasons why such an

approach should do quite badly..

Results and Post-mortem

To everyone’s surprise, the
replanning a}ﬁlproach wound
up winning the competition.

Lots of hand-wringing
ensued..

— May be we should require that
the planners really really use
probabilities?

— May be the domains should
somehow be made
“probabilistically interesting”?

Current understanding:

— The “replanning” approach is
just a degenerate case of hind-
sight optimization



Hindsight Optimization
(Online Computation of V)

Pick action a with highest Q(s,a,H) where ¢ VHS gyerestimates V*
— Q(s,a,H) =R(s,a) + 2T(s,a,s")V*(s’ H-1) Why?
Compute V* by sampling
— H-horizon future FH for M = [S,A,T,R]
« Mapping of state, action and time (h<H)

— Intuitively, because VH5 can
assume that it can use

to a state different policies in different
- S x Axh—S§ futures; while V* needs to
Common-random number (correlated) vs. . .
independent futures.. ( ) pICk qne pOhCy t.hat ‘:VOI'kS
Time-independent vs. Time-dependent best (1n expectatlon) in all
futures
futures.
Value of a policy = for FH e But then, VffR2 gverestimates V!5
— R(s,FH, m) — Viewed in terms of J*, VHS jg
V*(s,H) = max, Eg" [ R(s,F,m) | a more informed admissible
— But this is still too hard to compute.. heuristic..

— Let’s swap max and expectation
VH5(s,H) = EgH [max, R(s,FH,n)]
—  max, R(s,FH L) is approximated by FF plan

82



Relaxations for Stochastic
Planning

e Determinizations can also be used as a basis

for heuristics to initialize the V for value
iteration [mGPT; GOTH etc]

e Heuristics come from relaxation

* We can relax along two separate dimensions:

— Relax -ve interactions
» Consider +ve interactions alone using relaxed planning

graphs
— Relax uncertainty
o Consider determinizations

— Or a combination of both!



L JONORG

Increasing consideration >

Dimensions of Relaxation

Uncertainty
Ml |None  [Some  |Full
5 None Relaxed Plan McLUG
&  Some SAS RP
3
2 & Full FF/LPG Limited
© & width Stoch
= : ’
% Planning
Y
g3 4
e
) Limited width
> ° °
= stochastic planning
o10)
U
Z

! 2 FF

Uncertainty \ McLUG
Relaxed Plan Heuristic
FF-Replan
McLUG
FE/LPG Reducing Uncertainty h=0
Limited width Bound the number of stochastic

stochastic planning? outcomes = Stochastic “width”
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= How to use our * How to go beyond pure

hammers wisely inference over
complete models: A

call for model-lite
planning

= How to handle
incomplete domain
models?

= How to handle
incomplete preference

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning
» How to be skeptical o

our benchmarks

models?
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks



A B ARIZONA STATE

il LINIVERSITY

On Being Skeptical About our Benchmarks

= Progress in planning in the old days was hampered by lack
of common benchmarks

* The arguments of expressiveness with no guarantees of
comparative efficiency..

* Thanks to IPC competitions, we have a huge chest of
benchmarks.. But they pose their own problems

= Arguments of efficiency with little heed to
expressiveness. Undivided benchmarks can themselves
inhibit progress
= Examples

* Temporal Planning benchmarks indirectly inhibited
work on expressive temporal planners

* Most benchmarks inhibited work on lifted planners
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[Lecture Overview...

= How to use our * How to go beyond pure

hammers wisely inference over
complete models: A

call for model-lite
planning

= How to handle
incomplete domain
models?

= How to be skeptical of = How to handle

our benchmarks incomplete preference
models?

" (Lack of) Temporal = How to handle
Benchmarks incomplete object

= (Lack of) Relational models (open worlds)
Benchmarks

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning




Temporal Benchmarks in IPC

 We saw that Required
Concurrency is a
hallmark of temporal
planning

 We saw that DEP
planners are
iIncomplete for
problems needing RC

« But, DEP planners
“won” temporal
planning track...

Benchmarks must not
require (much)
concurrency

How much?

— None at all

How do we show it?
— Use temporal gap?
Problem: “every”
action has temporal

gap
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Solution: Decompile temporal gap

= (navigate ?rover ?alpha ?omega)
= Pre: (at start (at ?rover ?alpha))
= Eff: (and

= (at start (not (at ?rover ?alpha)))
= (at end (at ?rover ?omega)))

= (navigate ?rover ?alpha ?omega)
= (over all (=> (at ?rover) ?alpha ?omega))

Then, we can show that
benchmarks never require concurrency!
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Benchmarks never require concurrency
(except due to modeling bugs)

(:durative-action navigate
:parameters (?X - rover ?y - waypoint ?z - waypoint)

:duration (= ?duration 5) ;;(at ?x - rover ?y - waypoint)
:condition (and (at ?x - rover ) - waypoint

»(at start (at ?x ?y)) ;; MV Fluent
;»(at start (>= (energy ?x) 8)) ;; Resource Consumption
(over all (can_traverse ?x ?y ?z))
(at start (available ?x))
(over all (visible ?y ?2)) )

:effect (and
;»(at start (decrease (energy ?x) 8)) ;; Resource Consumption
(over all (consume (energy ?x) 8)) ;; Resource Consumption
»»(at start (not (at ?x ?y))) ;; MV Fluent
(@t end (at ?x ?z)))) ;; MV Fluent
(over all (-> (at ?x) ?y ?z)) ;; MV Fluent

)
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Real world required concurrency

= (and
(lifted bowl-left)
(lifted bowl-right))

= Spray-oil (during milling)
= Heat-beaker (while adding chemicals)
= Ventilate-room (while drying glue)

In other words, benchmarks inhibited
progress on temporal planning...
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Lessons for the Competition

= Competitors tune for the benchmarks
= Most of the competitors simplify to TGP

= Either required concurrency is important
= Benchmarks should test it

= Oritisn't
= Language should be inherently sequential
= PDDL spec. highlights light-match

= RC occurs in the real world
= Might need processes, continuous effects
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complete models: A

call for model-lite
planning

= How to handle
incomplete domain
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= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

models?
*= How to be skeptical of = How to handle
our benchmarks ﬁggﬁgete preference
= (Lack of) Temporal « How to handle
Benchmarks incomplete object

models (open worlds)

» (Lack of) Relational
Benchmarks




The representational roller-coaster in CSE
471

First-order
) FO
relational w.oy functions Z
0 .
propositional
(factored)

atomic Stat
search Min-max

v

Semester time =

The plot shows the various topics we discussed this semester, and the representational level at which we discussed
them. At the minimum we need to understand every task at the atomic representation level. Once we figure out how to
do something at atomic level, we always strive to do it at higher (propositional, relational, first-order) levels for
efficiency and compactness.

During the course we may not discuss certain tasks at higher representation levels either because of lack of time, or

because there simply doesn’t yet exist undergraduate level understanding of that topic at higher levels of
representation..
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(Lack) of Relational Benchmarks

" Pre-1995, most planners were
“relational”

= That 1s, they would search
in the space of partially
instantiated plans

= Post-Graphplan, all planners
search in the space of ground
plans (propositional level)
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The good times
return with Re(vived)POP

RS RT J E
T — & -

In the beginning 1t was all POP.

January 18, 2007 [IJCAT'07 Tutorial T12 131
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(Lack) of Relational Benchmarks

" Pre-1995, most planners were = Solution: Develop effective
“relational” solutions for “lifted planning”
= That is, they would search = Regression and Partial Order

Planners can be easily lifted
(and were lifted)

But they are currently slower

in the space of partially
instantiated plans

= Post-Graphplan, all planners than ground state search
search in the space of ground " What is the resistance?
plans (propositional level) = [ am doing fine on
=  So what? benchmarks!
= Planners can be easily = Why fix what 1s not
defeated by a profusion of broken?
irrelevant objects and = But what if benchmarks are
actions not realistic?
The parallel to temporal planning is not a coincidence
Effective temporal planning requires lifting time (precedence constraints)
Effective relational planning will require lifting binding (partial instantiation)
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PG Heuristics for Partial Order Planning

= Distance heuristics to estimate
cost of partially ordered plans
(and to select flaws)

™ * If we ignore negative

) % interactions, then the set of
open conditions can be seen as

a regression state

Mutexes used to detect
indirect conflicts in partial
plans

= A step threatens a link if there
is a mutex between the link

condition and the steps’ effect
or precondition

= Post disjunctive
precedences and use _
propagation to simplify if mutex(p,q)or mutex(p,r)

January 18, 2007 [JCAT'07 Tutorial T12 S =S Vv S§; <5, 139
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[Lecture Overview...

= How to use our
hammers wisely

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning
= How to be skeptical of
our benchmarks

= (Lack of) Temporal
Benchmarks

= (Lack of) Relational
Benchmarks

* How to go beyond pure

inference over
complete models: A
call for model-lite
planning

= How to handle
incomplete domain
models?

= How to handle
incomplete preference
models?

= How to handle
incomplete object
models (open worlds)




On Going Beyond

Pure Inference Assumption: Complete Models

Over Complete Models - Compiete Action Descriptions (fallible domain writers)
2> Fully.Specified Preferences (indecisive users)
- All-ebjectsin the world known up front (open worlds)
- One=shetpianning (continual revision)

Planning is no longer a pure inference problem ®

® But humans in the loop can ruin a really a perfect day ®

Traditional Planning FF-HOP [2008]
096 2 /

. N N X
O €O
¢ QI L Y
S S & & ¢
‘ KD KD eo

Underlying System Dynamics
SAPA [2003] POND [2006]

Effective ways to handle the more expressive planning problems by
exploiting the deterministic planning technology



Model-lite Planning

* We need (frame)work for planning that can

get by with incomplete and evolving
domain models.

— | want to convince you that there are
Interesting research challenges in doing this.

e Disclaimers

— | am not arguing against model-intensive
planning

 We won’t push NASA to send a Rover up to Mars

without doing our best to get as good a model as
possible



Model-lite Is Back to the Future

 Interest in model-lite planning is quite old
(but has been subverted..)

— QOriginally, HTN planning (a la NOAH) was
supposed to allow incomplete models of
lower-level actions..

— Originally, Case-based planning was
supposed to be a theory of slapping together
plans without knowing their full causal models



Model-Lite Planning is
Planning with incomplete models

e .“Incomplete” = “not enough domain
knowledge to verify correctness/optimality”

 How incomplete Is incomplete?

e Knowing no more * Missing a couple of
than 1/O types? preconditions/effects?
g:?;;g&g Plan Critiquing / Retrieval mgzacggfr:ieonr:
sEREE {{ R |
)7 Approximate  p
No Model Models Models

Models
Increasing degree of Completeness Sf'dam



Challenge: Planning Support for
Shallow Domain Models

 Provide planning support that exploits the shallow model
avallable

« |dea: Explore wider variety of domain knowledge that
can either be easily specified interactively or
learned/mined. E.qg.

» |/O type specifications (e.g. Woogle)
« Task Dependencies (e.g. workflow specifications)
— Qn: Can these be compiled down to a common substrate?

o Types of planning support that can be provided with
such knowledge
— Critiquing plans in mixed-initiative scenarios
— Detecting incorrectness (as against verifying correctness)

Planning L Plan creation
Support Plan Critiquing / Retrieval

-
B )

No Model Models

___________________________




Model-Lite Planning is
Planning with incomplete models

e .“Incomplete” = “not enough domain
knowledge to verify correctness/optimality”

 How incomplete Is incomplete?

e Knowing no more * Missing a couple of
than 1/O types? preconditions/effects?
g:?;;g&g Plan Critiquing / Retrieval mgzacggfr:ieonr:
sEREE {{ R |
)7 Approximate  p
No Model Models Models

Models
Increasing degree of Completeness Sf'dam



Challenges of Model-Lite Planning

(Approximate Domain Models)

Circumscribing the incompleteness

Developing the appropriate solution concepts
Developing planners capable of synthesizing them

Life-long Planning/Learning to reduce incompleteness
Commitment-sensitive Replanning



There are known
knowns; there are
things we know that we
know. There are known
unknowns; that Is to
say, there are things

that we now know we
don’t know. But there
are also unknown
unknowns; there are
things we do not know
we don’t know.




Challenges of Model-Lite Planning

1. Circumscribing the incompleteness

2. Developing the appropriate solution concepts
3. Developing planners capable of synthesizing them

4. Life-long Planning/Learning to reduce incompleteness
— Commitment-sensitive Replanning

% Tough Problems




Our Contributions

— Unknown Preferences [IJCAI 2007]

* Preference incompleteness <

— Partially known Preferences [IJCAI 2009]
 Model incompleteness
— Robust plan generation [ICAPS Wkshp 2010]

 World/Object incompleteness
— OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

Model-Lite Planning

L\ S~/



Preferences in Planning — Traditional
View

Classical Model: “Closed world” assumption
about user preferences.

All preferences assumed to be fully
specified/available Full Knowledge

of Preferences
Two possibilities

If no preferences specified —then user 1s
assumed to be indifferent. Any single feasible
plan considered acceptable.

If preferences/objectives are specified, find a plan
that 1s optimal w.r.t. specified objectives.

Either way, solution is a single plan



Human in the Loop: Unknown &
Partially Known Preferences
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Google-inspired?

Unknown preferences occur in
search engine queries
->How do they handle them?

Diversify the results...!
--Return answers that are -
closest to the query, and
are farthest from each other
--Distance Metrics
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Handling Unknown & Partially
Known Preferences

Unknown preferences

For all we know, user may
care about every thing -- the
flight carrier, the arrival
and departure times, the
type of flight, the airport,
time of travel and cost of
travel...

Best choice 1s to return a
diverse set of plans [IJCAI
2007]

o Distance measures between
plans

Domain Independent Approaches
for Finding Diverse Plans

(6 Authors from 3 continents, 4 countries, 5 institutions)




Generating Diverse Plans

o Formalized notions of bases
for plan distance measures

o Proposed adaptation to
existing representative,
state-of-the-art, planning
algorithms to search for
diverse plans

Showed that using action-
based distance results in plans
that are likely to be also
diverse with respect to
behavior and causal structure

LPG can scale-up well to large
problems with the proposed
changes

[IICAI 2007]

o dDISTANTKSET

Given a distance measure 46(.,.), and a
parameter k, find k plans for solving the
problem that have guaranteed minimum
pair-wise distance d among them in
terms of 8(.,.)

Distance Measures

o In what terms should we measure
distances between two plans?

The actions that are used in the plan?

The behaviors exhibited by the plans?

The roles played by the actions in the plan?
o Choice may depend on

The ultimate use of the plans

o E.g. Should a plan P and a non-minimal
variant of P be considered similar or different?
What is the source of plans and how much is
accessible?

o E.g. do we have access to domain theory or
just action names?

iti Goal State
Compute by Set-difference Initial State .

O <g1,02,03>
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Compute by Set-difference

eAction-based
comparison: S1-1, S1-2
are similar, both
dissimilar to S1-3; with
another basis for
computation, all can be
seen as different

eState-based comparison:

S1-1 different from S1-2
and S1-3; S1-2 and S1-3
are similar

eCausal-link comparison:
S1-1 and S1-2 are
similar, both diverse from
S1-3

Initial State Goal State

Al
<gl1,92,03>

N
»

\’/

<pl,p2,p3>

Plan S1-1

Al A2 A3
—0—0—-0 —
<gl,p2,p3> <g1,92,p3>

<g1,92,93>

<pl,p2,p3>

Plan Kernels
Plan S1-2

Al A A
—0—0—0
<g1,p2,p3> <g1,92,p3>

<g1,92,93>

<pl,p2,p3>

Plan S1-3



Solution Approaches

o Possible approaches

[Parallel] Search simultaneously for k solutions
which are bounded by given distance d

[Greedy] Search solutions one after another with
each solution constraining subsequent search

o Explored in

CSP-based GP-CSP classical planner

o Relative ease of enforcing diversity with different
bases for distance functions

Heuristic-based LPG metric-temporal planner
o Scalability of proposed solutions



Exploring with LPG

. 51_5| |5'_-5|,;|
6'“ I:\.ISI".':-'u SJ = | _i: + : 3 I"'
TSI IS IS 1S5
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e Details of changes to LPG in the paper
e Looking for:
e How large a problem can be solved easily
e Large sets of diverse plans in complex domains
can be found relatively easily
e Impact of y
e y = 3 gives better results
e Can randomization mechanisms in LPG give
better result?
e Distance measure needed to get diversity
effectively



Generating Diverse Plans with Local Search
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Figure 2: Performance of LPG-d (CPU-tume and plan distance) for there problems in DriverLog-Time, Satellite-Strips
and Storage-Propositiconal.

LPG-d solves 109 comb. LPG-d solves 211 comb.
Avg. time = 162.8 sec Avg. time = 12.1 sec
Avg. distance = 0.68 Avg. distance = 0.69
Includes d<0.4,k=10; d=0.95,k=2

LPG-d solves 225 comb.
Avg. time = 64.1 sec
Avg. distance = 0.88



Unknown & Partially Known
references

o Partially known

»  We may know that user
cares only about makespan
and cost. But we don’t know
how she combines them..

o Returning a diverse set of
plans may not be enough

o They may not differ on the
attributes of relevance..

» Focus on spanning the pareto
set..

Fsu vk

PLANNING WITH
PARTIAL PREFERENCE
® MODELS

Tuan A. Nguyen Minh B. Do

CSE, Arizona State University Palo Alto Research Center

Subbars

Biplay 5

APPrO&c: ico 1ot v iy mrveroe 1 o



Modeling Partially Known Objectives

The user 1s interested in minimizing two objectives
(say makespan and execution cost of plan p: time(p),

cost(p).)
The quality of plan p is given by cost function:
f(p,w)=w x time(p)+(1—-w)xcost(p) (we[0,1])

w €[0,1] represents the trade-off between two competing
objectives.



cost
' ®. 0

Handling Partially Known e
Lo,
Preferences 8 o Partose

0 . time
View it as a Multi-objective optimization

Return the Pareto optimal set of plans
(and let the user select from among them)

Two problems
[Computational] Computing the full pareto set can be
too costly

[Comprehensional] Lay users may suffer information
overload when presented with a large set of plans to

choose from
Solution: Return & representative plans from the
Pareto Set

Challenge 1: How to define “representative” robustly?

Challenge 2: How to generate representative set of
plans efficiently?



Measuring Representativeness: ICP
f(p,w)=w x time(p)+(1—w)xcost(p) (we[0,1])

ko
ICP(P) = Z/ h{w)(w < t,, +(1—w)xe,, Jdw
i—1 Y wia

cost |
h(W)f\ ‘u‘ i‘ L\‘-.‘ o
\\\ . “\\ O -
) Jo] ™. o
1 “\\\. *
\\‘ . II|.
0 1 w 0 tiFne
(No knowledge about w)
A
cost _
h(w)f\ ‘.‘ i\‘-ﬁ O
Y \".,. O
2 O
— Je] ™. ©
'\\h . \‘
0 05 1 w 0 time

(Fast plan seems better)




Measuring Representativeness: ICP

Set of plans P:{ B> Pas---5 B }

Makespan and execution cost of plan ]; thi , C 0.

Each plan); gives the best cost for all We [W W ]

I—1° "7

o :argmin{ f(p,w;)[]=0,1..,k }

peP

The belief distribution of w, h(w).
The expected value of plan set P

L3

k .
ICP(P) = f(w)(w=<t, +(1—w)xec,, )dw
X J X A i / i
i—1 '3

Ui _q



Handling Partial Preferences using
ICP

Problem Statement: Solution Approaches:
Given Sampling: Sample &
the objectives O, values of w, and

approximate the optimal
plan for each value.

ICP-Sequential: Drive
the search to find plans

the vector w for convex
combination of O,

the distribution A(w) of

w, that will improve ICP
Return a set of k plans Hybrid: Start with
with the minimum ICP Sampling, and then
value. improve the seed set

with ICP-Sequential

[Baseline]: Find &
diverse plans using the
distance measures from

[IJCAI 2007] paper;
LPG-Speed.



Summary of Incomplete Preferences

Unrealistic to assume complete
knowledge of user preferences

Our previous work [IJCAI 2007]
considered the case where no
knowledge 1s available. This
paper focuses on cases where
partial knowledge 1s available

For ease of computation and
comprehension, we need the ability
to generate a representative set of
plans from the pareto set

ICP measure to capture
representativeness

A spectrum of approaches for
generating plan sets with good
ICP measure

We can learn to improve
the preference model by
revising the h(w) after
every few iterations
(through user interaction)

h(w)

Revising
distribution
2 h(w) over
iterations
(Bayesian
learning..)




LEARNING PLAN PREFERENCES
From Observed Executions

= P, Getin(bus, source), Buyticket(bus), Getout(bus, dest) 2
r' P.....: Buyticket(train), Getin(train, source), Getout(train, dest) 8
" P Hitchhike(source, dest) 0

Travel(source,dest)
Gobybug{source,dest) GobyTrainisource,dest)

Gelin(bus,source) Buyticket(bus) Getout(bus,dest) Buyticket(train)  Getin(train,source

Hitchhike
Hitchhike{source,dest). 0o © ? No WaY!

Getout(train,dest)

[IJCAI 2009]



LEARNING USER PLAN PREFERENCES
OBFUSCATED BY FEASIBILITY CONSTRAINTS

Rescale observed plans

Undo the filtering caused
by feasibility constraints

Base learner

Acquires true user
preferences based on
adjusted plan
frequencies

User Preference Model

S

m Base
"t f\ <: Learner
") 1D¢ f';;'\\

IJCAI ‘09

o)
A

Getin Buyticket Getout Buyticket Getin Getout

<

Input Plans:
I:)plane* 3 .
I:)train *5 O

I:)bus * 6 O

: 1

Rescaled Plans:

I:)plane *12 ‘
| Q

P
I:)bus *1 O

train

[ICAPS 2009]



Our Contributions

Preference incompleteness
Unknown Preferences [IJCAI 2007]
Partially known Preferences [IJCAI 2009]

Model incompleteness
Robust plan generation [ICAPS Wkshp 2010]

World/Object incompleteness
OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

There are known
knowns; there are
things we know that we
know. There are known
unknowns; that is to
say, there are things
that we now know we
don’t know. But there
are also unknown
unknowns; there are
things we do not know
we don’t know.




Planning with partial domain models:
Motivation

Planning, in traditional
perspective, assumes a completely
specified domain model

— We know exactly the
conditions and effects of action
execution

— Stochastic models also assume
completeness (“known”
probabilities)

{:actlion plck-up
:parametars (7obl)
:preconditlion (and (olear 7obl)
{on-takle 7obl)
(arm-empty)
{block Pobl))
teffact
{and (not (on-table ?Pobl))
(not {(clear 7obl))
{not {(arm-empty)}
{holding Fobl)))

Domain modeling is a laborious,
error-prone task

— So much so that there is a
Knowledge Engineering track for
ICP

— Action descriptions have to be seen

|II

as “nomina

— May have missing preconditions
and effects...

Sometimes, the domain modeler
may be able to annotate the action
with sources of incompleteness

— Possible preconditions/effects

Can the planner exploit such partial
knowledge?



Deterministic Partial Domain Models

e We consider planning with deterministic, but incompletely
specified domain model

e Each action a is associated with possible precond and effects
(in addition to the normal precond/eff):

— PreP(a) [p]: set of propositions that a might depend on during

execution

— AddP(a) [p]: : set of propositions that a might add after
execution

— DelP(a) [p]: : set of propositions that a might delete after
execution

Example: An action a that is

known to depend on p1, add p4 pl

and delete p3. In addition, it might

have p3 as its precondition, might o
add p2 and might delete p1 after
execution. p4




More on Annotations

e We will focus on how to handle the possible

precond/effect annotations on the ground
actions...

e But they are more likely specified at the
“schema” level

— All groundings of an action schema will thus have
the same possible preconds/effects

— We can support “friendly” syntax to specify
exceptions

e E.g. that the annotations hold only for specific variable
bindings



Solution Concept: Robust Plans

Solution concept:

— Robust plan

— Plan is highly robust if executable in
large number of most-likely candidate
models

Robustness measure

— Set of candidate domain models S
(consistent with the given
deterministic partial domain model D)

— A complete but unknown domain
model D*

e Can be any modelin$S

Il

21{

R(m)

ILT| Number of candidate models with
which the plan succeeds

K =) PreP(a)+AddP(a)+DelP(a)

Po

4

1\./02.

s (2)
.*)f%-' .-"'
_.f
;
/
_,‘
‘-.. ;. "‘ﬂb
vy Y
Py Dy ()
state s (initial state) states, state s, (goal state)
Candidate models of plan 1 213 4 5 6 7 8
a, relieson p, yes | yes | yes | yes no no no no
a, deletes p, yes | ves | no | no | ves | yes | no no
a, adds p. yes | no | yes | no | ves | no [ ves no
Plan status fail | fail | fail | fail |succeed| fail |succeed|succeed
Legend

precondition | 4 |— additive effect [ @} ==+ ggzistli?ffeffect @ pis true

possible
precondition

-_.

_©" delete effect '@' ggfesiy:ﬁect

o
tpipis false

Robustness value: 3/8

Easily generalized to consider model likelihood
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Dy

state s (initial state)

-.I.

Assessing Plan Robustness

Number of candidate models:
exponentially large. Computing
robustness of a given plan is
hard!!!

— Exact and approximate
assessment.

Exact methods:

— (Weighted) Model-counting
approach:
e Construct logical formulas
representing causal-proof (Mali &

Kambhampati 1999) for plan
correctness

* Invoke an exact model counting
approach

———————————————— 1 « . .
: ; “If plis realized

: as a delete effect

 of a1, then it
must be an
additive effect of
a2’

-y
MUY
' P3a
\.-'

states, state s, ( goal state)

Approximate methods:

— Invoke approximate model
counting approach

— Approximate and propagate
action robustness

e (Can be used in generating
robust plans

®

???%

@)

MN%

@)

MN%

) S—

1. Approximating
and propagating
robustness to the
goal state

2. Aggregate
robustness of goal
propositions (i.e.
plan robustness)



Generating Robust Plans

Compilation approach: Compile into a
(Probabilistic) Conformant Planning
problem

— One “unobservable” variable per each
possible effect/precondition

e Significant initial state uncertainty

— Can adapt a probabilistic conformant
planner such as POND [JAIR, 2006; AlJ
2008]

Direct approach: Bias a planner’s
search towards more robust plans

— Heuristically assess the robustness of
partial plans

* Need to use the (approximate)
robustness assessment procedures

[See work by Weber & Bryce, 2011]

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

l

Compute h(h,} for
PPDPL Random Walk Length Auto Auto/Manual
e # of Particlc
Problem Collect Belief States : .
On Random Walk
. ims i Manual
Grounding & g.;.oprom_n: ”; B?I‘:EF‘ A
Pre-processing tates with Particles

ch, A, b, G, t>,:

CUDD ADD
Representation

Beliel
Space

A* Search
Engine

IPP Planning
Graph

Relaxed
Plan
Extraction

Fig. 6. POND architecture.

Initial Current
state state

0 = hoio .

Successor Relaxed plans are
states used to evaluate
successor states

[Workshops of ICAPS 2010; AAAI 2011]



Our Contributions

 Preference incompleteness
— Unknown Preferences [IJCAI 2007]
— Partially known Preferences [IJCAI 2009]

e Model incompleteness
— Robust plan generation [ICAPS Wkshp 2010]

e World/Object incompleteness -
— OWQG [IROS 2009; BTAMP 2009; AAAI 2010]




Urban Search and Rescue rrr

SC|ence

e Human-Robot team

e Robot starts the beginning
of the hallway

 Human is giving higher
level knowledge

e Hard Goal: Reach the end
of the hallway

 Wounded people are in
rooms

e Soft Goal: Report locations
of wounded people

195



| e
Planning Support for USAR E,rr

Science

e Good News: Some aspects of existing
planning technology are very relevant

 Partial Satisfaction
* Replanning & Execution Monitoring

* Bad News: Incomplete Model / Open World

— Unknown objects
e Don’t know where injured people are
— Goals specified in terms of them

e If the robot finds an injured person, it should report
their location ...



How do you make a deterministic
closed-world planner believe in
opportunities sans guarantees?

Open World Quantified Goals

Partial Satisfaction Planning (PSP)
Sensing and Replanning

Plnner

Robot
CLOSED WORLD OPEN WORLD
Under Sensin Limited Sensing Over Sensing
Closed World M (?d el Planner guides robot Robot senses its way
in a limited way through the world




Handling Open World

e Extreme Cases

— If the robot assumes “closed world”, it will just go
to the end of the corridor.

— If the robot insists on “closing” the model before
doing planning, it will do over-sensing.

e Need a way of combining sensing and
planning
— Information on unknown objects

— Goals conditioned on these objects



Open World Quantified 'rrf

Cognitive

Goals (OWQGS) W

e Goals that allow for the specification of
additional information

— To take advantage of opportunities

(:open (forall ?r — room Quantified Object(s)

(sense ?p - person Sensed Object
(looked_for ?p ?r) Closure Condition
(and (has_property 7p Wounded)}Quantified =
(in 7p ?r))
(:goal

(and (reported 7p wounded 7r) ]’Quantified Goal
[100] - soft))))



OWQGs as Conditional Rewards

Robot needs to

sense wounded people |
before reporting them Lo
Planner has to deal with open worldmp_lm

Naive idea: Ask Robot to look -~ .
i i Conditional Goals can be compiled
everywhere (high sensing cost)  down when the world model is complete

--Need to sense for those conditional goals
whose antecedents are likely to hold

G. — arg max Ep.gB(G, U [g; \ P|) — S(QE)

GLCGe.
[AAAI, 2010; IROS 2009; BTAMP 2009]



| e
Planning with OWQGs E,rr

Science

e Bias the planner’s model
 Endow the planner with an optimistic view

— Assume existence of objects and facts that may
lead to rewarding goals

e ¢.2. the presence of an injured human in a room
— Create runtime objects
— Add to the planner’s database of ground objects

e Plans are generated over this reconfigured
potential search space




|
Replanning and f
Execution Monitoring v

* Sensing is exXpensive ...

e Cannot be done at every step

e Planner needs to direct the architecture on:
e when to sense

 what to sense for

e Planning to sense in a goal-directed manner

e Qutput all actions up to (and including) any
action that results in “closing” the world

— Obtaining information about unknown objects



Challenges of Model-Lite Planning

1. Circumscribing the incompleteness

2. Developing the appropriate solution concepts
3. Developing planners capable of synthesizing them

4. Life Long Planing/Learning to reduce incompleteness



Can exploit

: _ : Deterministic
1. Circumscribing the incompletenes

. Preference components; possible prece
OWQG

2. Developing the appropriate solution concepts

. Diverse plans; Robust plans; Partial sensing plans

3. Developing planners capable of synthesizing them
« Can adapt existing planners toward these solution concepts

4. Life Long Planning/Learning to reduce incompleteness
« Learning preferences h(.) through interactions; learning model
conditions through execution

e [ Tutorial on Learning in Planning Al MAG 2003; Learning
preferences as HTNs IJCAI 2009; ICAPS 2009]

Model-Lite Planning:
Planning is more than pure inference over completely specified models!



ARIZONA STATE

UNIVERSITY

1'd rather leamn from one bird how to sing

LeCture OverVieW . e e than teach ten thousand stars

‘wow not to Jance

ee cummings

= How to use our = How to go beyond pure

hammers wisely inference over
complete models: A

call for model-lite
planning

= How to handle
incomplete domain

= [essons from

= Partial Satisfaction
Planning

= Temporal Planning
= Stochastic Planning

models?
= How to be skeptical of = How to handle
our benchmarks Egzgls’;ete preference
= (Lack of) Temporal « How to handle
Benchmarks incomplete object
= (Lack of) Relational models (open worlds)

Benchmarks



3 ARIZONA STATE ARIZONA STATE
O

UNIVERSITY UNIVERSITY

Make things as simple as pessble,

On Using Our Hammers Wisely v sl On Being Skeptical About our Benchmarks

~Fitributed to Einsteln

= (lassical Planners have justifiably become our
hammers... This is mostly GOOD NEWS

= We want to coax all other planning problems into
formats that will allow us to maximally utilize the
progress made in scaling up classical planning

= Progress in planning in the old days was hampered by lack
of common benchmarks

# The arguments of expressiveness with no guarantees of
comparative efficiency..

® Thanks to IPC competitions, we have a huge chest of

* ..But, we need to be careful, lest we lose the benchmarks.. But they pose their own problems

cssence of the expressive planning problems during

. oo = Arguments of efficiency with little heed to
the coaxing (compilation) .

expressi\'encs& Undivided benchmarks can themselves
[ ] 'S ] T
Some examplcs“ inhibit progress

= Cost-based Planning (e-cost trap) = Examples

* Temporal Planning  (Required Concurrency) = Temporal Planning benchmarks indirectly inhibited

= Stochastic Planning (Biased Determinizations) work on expressive temporal planners

= Most benchmarks inhibited work on lifted planners

On Going Beyond

Pure [nference Assumption: Complete Models

S Canpets. Models —> Comptete Action Descriptions (fallible domain writers)
2> FullSpecified Preferences (indecisive users)

> Allebjectsn the world known up front (open worlds)

—0ne-shotPlanning (continual revision)
Planningis no longer a pure inference problem @

@ But humans in the loop can ruin a really a perfect day @

Traditional Planning FF-HOP [2008]
%° /'

> A &
e Q& ¥ @
& 0 o
o

' Underlying System Dynamics
SAPA [2003] POND [2006]

Effective ways to handle the more expressive planning problems by
exploiting the deterministic planning technology




ARIZONA STATE
UNIVERSITY

of gffcmnz'nj

Imagine there's no Landmarks
It's easy if you try

No benchmarks below us Imagine there’s no models
Above us only blai | wonder if you can
Imagine all the planners No need for preferences or groundings
Planning for real A diversity of plans

Imagine all the planners
Imagine there's no state Living life incomplete
It isn't hard to do
Nothing to regress or relax You may say that I'm a whiner
And no cost guidance too But I'm not the only one
Imagine all the planners | hope someday you'll join us
Lifting all the worlds And the ICAPS will be more fun

You may say that I'm a whiner
But I'm not the only one

| hope someday you'll join us
And the ICAPS will be more fun




