
Heuristics for Domain-Independent Planning

1. Introduction

Emil Keyder Silvia Richter

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 1 / 24

Planning as Search

Heuristics

Problem Representation

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 2 / 24

Contents

1. Introduction

2. Delete Relaxation Heuristics

3. Critical Path Heuristics

4. Context-Enhanced Additive Heuristic

5. Landmark Heuristics

6. Abstraction Heuristics

7. Final Comments

We try to give a general overview with the basic ideas and intuitions for
different heuristics

See references for details

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 3 / 24

Planning as Search

Planning as Heuristic Search

Successful and robust

� Top four planners in the satisficing track of IPC6

� Several top planners in the optimal track

� Many well-performing planners from previous competitions

Standardized framework

� Mix and match heuristics and search techniques

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 4 / 24

Planning as Search

Heuristic Search Planning

We characterize planning as a search problem

Given a directed graph G = �V ,E �, where
� V is a finite set of vertices

� E is a set of directed edges �t, h�, t, h ∈ V

a search problem P is defined by:

� An initial vertex v0 ∈ V

� goal vertices VG ⊆ V

� A cost function cost : E → R+

0

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 5 / 24

Planning as Search

Search Problems

A solution is a sequence of edges π = �e0, . . . , en� that forms a path from
v0 to some vg ∈ VG

An optimal solution is a path with minimum total cost, where the cost of
a path is given by the sum of its edge costs:

cost(π) =
�

e∈π
cost(e)

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 6 / 24

Planning as Search

Classical planning as a search problem

� Set of states S – The vertices of the graph

� Initial state s0 ∈ S

� A function G (s) that tells us whether a state is a goal

� Planning operators O – The edges of the graph

� Applicable operators A(s) ⊆ O in state s

� Transition function app: S × O → S ,
defined for s ∈ S , o ∈ A(s)

� Non-negative operator costs cost(o) ∈ R+

0

Edges in graph determined by A and app

Solutions are plans

Solutions of minimum cost are optimal plans

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 7 / 24

Planning as Search

Solving Search Problems

Brute-force approach: Systematically explore full graph

Uniform-cost search, Dijkstra

� Starting from v0, explore reachable vertices until vg ∈ G is found

Heuristics help by:

� Delaying or ruling out the exploration of unpromising regions of the
graph

� Guiding the search towards promising regions of the graph

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 8 / 24

Heuristics

Heuristics: What are they?

Heuristics are functions h : V �→ R+

0
that estimate cost of path to a goal

node

Definition

h∗(v) is the cost of the lowest-cost path from v to some v � ∈ VG

h∗(v) → optimal solution in linear time
� Intractable to compute in general, but useful comparison point

Objective : get as close as possible to h∗

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 9 / 24

Heuristics

Heuristics: Admissibility

Definition

A heuristic h is admissible if for all s ∈ S : h(s) ≤ h∗(s)

Intuition: Heuristic is optimistic

� Never overestimates

Among admissible estimates h1 h2, the higher the better

� h∗ is an upper bound, so larger estimates are more exact

� A∗ expands fewer nodes when using higher admissible estimates1

1almost always, caveats apply
Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 10 / 24

Heuristics

Maximum of Admissible Heuristics

Maximum of admissible heuristics

Let h1, h2 be two admissible heuristics. Note that

h1(s) ≤ h∗(s) ∧ h2(s) ≤ h∗(s) =⇒ max(h1(s), h2(s)) ≤ h∗(s)

The maximum of two admissible heuristics is a
more informed admissible heuristic

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 11 / 24

Heuristics

Sum of Admissible Heuristics

Sum of two admissible heuristics not in general admissible
� h∗ + h∗ > h∗

But, consider two admissible estimates for length of ICAPS:

� h1: ≥ 2 days, because the workshops last 2 days

� h2: ≥ 3 days, because the main conference lasts 3 days

� We can infer that ICAPS lasts ≥ 5 days

Why? No “overlap” between the estimates.

Under certain conditions, the sum of two admissible heuristics
is an admissible heuristic

We say that a set H of such heuristics is additive

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 12 / 24

Heuristics

Additive Admissible Heuristics: Action Partitioning

Simple criterion for admissible additivity: Count cost of each action in at
most one heuristic.

Given a task Π and a set of operators Oi ⊆ O, define the problem ΠOi

that is identical except

cost�(o) =

�
cost(o) if o ∈ Oi

0 if o �∈ Oi

Action partitioning

An action partitioning is a set of problems ΠO1
, . . . ,ΠOn

resulting from a
partitioning of the actions O of a planning task into disjoint sets
O1, . . . ,On.

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 13 / 24

Heuristics

Additive Admissible Heuristics: Action Partitioning

Additivity of action partitioning

Let Π1, . . . ,Πn be an action partitioning and let hΠi
be an admissible

estimate of the cost of Πi . Then the sum of the heuristics hΠi
is

admissible:

n�

i=0

hΠi
(s) ≤ h∗(s)

Proof sketch

Optimal plan for Π is also plan for each ΠOi
, and the summed cost of

these plans is h∗. Admissible estimates must therefore sum to less than h∗.

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 14 / 24

Heuristics

Additive Admissible Heuristics: Cost Partitioning

Action partitioning assigns the full cost of each operator to one problem,
and zero to the others

Instead, distribute the cost of each action among different problems
� Ensure total across problems sums to at most cost of action

Cost partitioning

A cost partitioning of Π is a set of problems Π0, . . . ,Πn that differ from Π
only in operator costs, that satisfy

n�

i=0

costi (o) ≤ cost(o)

where costi (o) is the cost of o in Πi ,

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 15 / 24

Heuristics

Additive Admissible Heuristics: Cost Partitioning

Additivity of cost partitioning

Let Π0, . . . ,Πn be a cost partitioning of Π and let hΠ0
, . . . , hΠn

be
admissible estimates for the costs of Π0, . . . ,Πn. Then the sum of the
heuristics hΠi

is admissible:

n�

i=0

hΠi
(s) ≤ h∗(s)

Proof sketch

Optimal plan for Π is also plan for each ΠOi
, and the summed cost of

these plans is h∗. Admissible estimates must therefore sum to less than h∗.

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 16 / 24

Heuristics

Heuristics: Consistency

Definition

A heuristic h is consistent if sg ∈ G =⇒ h(sg) = 0 and for all s ∈ S and
edge (s, s �):

h(s) ≤ cost(s, s �) + h(s �)

Intuition: A transition with cost c cannot decrease h by more than c

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 17 / 24

Heuristics

Some properties

Consistency implies admissibility

� s, o s.t. app(s, o) = sg ∈ G , h(s) > h∗(s) would violate consistency

� Induction on number of steps to goal

Admissible heuristics with A∗ and variants compute optimal solutions

� By the time we consider sg ∈ G , we have already considered all s that
might be cheaper

Consistent heuristics with A∗ guarantee optimal behaviour

� Never expand same state twice

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 18 / 24

Heuristics

Planning as Heuristic Search

Idea: Search the state space using a heuristic

What kind of heuristic?

� Admissible for optimal solution, no guarantees required otherwise

� Efficiently computable
� In practice, low order polynomial

Tradeoff between informativeness and computational effort

� Evaluate few states at high computational cost, vs.

� Evaluate many states at low computational cost

Hard to tell a priori whether computational effort will pay off

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 19 / 24

Problem Representation

A Logistics Problem Example

Heuristics are obtained from factored representations of states:

� Set V of variables

� Domain Dv of values for each variable v

Freiburg Brisbane

Nancy

DHL p1

Figure: Deliver p1 from Brisbane to Nancy.

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 20 / 24

Problem Representation

STRIPS

Boolean variables:

� Dtruck-at-Freiburg = {true, false}

Definition (strips task)

A strips task Π = �F , s0,G ,O, cost� is defined by:

F A set of fluents/facts (boolean variables)

s0 The initial state, s0 ⊆ F

G The goal description, G ⊆ F

O The actions/operators, defined by tuples
�pre(o), add(o), del(o)�, each ⊆ F

cost A function O → R+

0

� States are sets of fluents that have value true

� State space is potentially exponential: O(2|F |)

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 21 / 24

Problem Representation

SAS
+

Finite-domain variables:

� Dloc-truck = {Freiburg, Nancy, Brisbane}

Definition (SAS
+
task)

An SAS+ task Π = �V , s0,G ,O, cost� is defined by:

V A set of variables, each with associated domain Dv

s0 The initial state, a full variable assignment

G a partial variable assignment

O The actions/operators, defined by tuples �pre(o), eff(o)�,
each a partial variable assignment

cost A function O → R+

0

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 22 / 24

Problem Representation

SAS
+
continued

� A full variable assignment assigns to each v ∈ V a value d ∈ Dv and
represents a state

� A partial variable assignment assigns values to a subset C ⊆ V

� Sometimes refer to assignments (v = d) for v ∈ V , d ∈ Dv as
fluents/facts

� State space:
�

v∈V |Dv |

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 23 / 24

Problem Representation

Translation from STRIPS to SAS
+

Easy to translate automatically from strips to SAS+

Idea: Make a graph with node set F , and edges between any two fluents
that cannot occur in the same state

� Example: �truck-at-Freiburg, truck-at-Brisbane, truck-at-Nancy�

Cliques in graph represent finite-domain variables

Replace n boolean variables with a single n-valued variable

� More efficient representation – n vs. 2n configurations

Emil Keyder, Silvia Richter Heuristics: 1. Introduction June 2011 24 / 24

Heuristics for Domain-Independent Planning

2. The Delete Relaxation

Emil Keyder Silvia Richter

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 1 / 49

The Delete Relaxation
Definition
Sources of Difficulty in Π+

hmax & hadd

The Max Heuristic hmax

The Additive Heuristic hadd

Computation

Relaxed Plan Heuristics
The FF Heuristic hFF

Relaxed Plans with Cost-Sensitive Best Supporters
The Set-Additive Heuristic haddset

Beyond the Independence Assumption

Conclusions

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 2 / 49

Π
+

Definition

Relaxations

Relaxations are less constrained versions of problems

� They are therefore easier to solve

Idea: Solve relaxed problem and use cost of solution as h

� If we solve relaxation optimally, admissibility is guaranteed

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 3 / 49

Π
+

Definition

The Delete Relaxation Π
+

Assumption: Variables can hold multiple values at the same time, and
they retain all values they ever had

� When something is achieved, it stays achieved

⇒
move-right

h+ = h∗(Π+) is admissible

� Any solution to Π is a solution to Π+ as well

� The converse is not true, as in Π, a fluent may have to be made true
more than once

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 4 / 49

Π
+

Definition

The Delete Relaxation Π
+
– Formalization

In STRIPS, remove delete lists:

Definition

Given a STRIPS problem Π = �F , s0,G ,O, cost�, its delete relaxation is
given by Π+ = �F , s0,G ,O �, cost�, where

O
� = {�Pre(o),Add(o), ∅� | o ∈ O}

� |s| increases with each action

� Stratification of fluents by first level at
which they can be achieved

s0

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 5 / 49

Π
+

Definition

The Delete Relaxation Π
+

Plan existence for Π+ is easy

� Use all applicable operators until goal achieved or no further fluents
can be added

� Naive algorithm: at most |F | iterations, with O(|O|) work per
iteration

Optimal solution to P+ is NP-hard

� Why?

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 6 / 49

Π
+

Π
+

Difficulty

Simplifying Π
+

Ideally, |s0| = |Pre(o)| = |Add(o)| = |G | = 1

� Shortest path problem on graph with V = F , E = O

� polynomial in F and E

� |F | is small, so easily solvable

Question: Does there exist a Π+� equivalent to Π+ with this property?
Answer: Almost (except for |Pre(o)|)

Theorem

For any Π+, there exists an equivalent problem Π+�
such that |s �

0
| = 1,

|G �| = 1, and |Add(o)| = 1 for all o ∈ O �

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 7 / 49

Π
+

Π
+

Difficulty

Simplifying Π
+

s0

⇒

a30(0)

s�0
a10(0)

a20(0)

A start state with size |s0| = n can be replaced with:

� A new start state containing a single newly-introduced fluent: s �
0
=

{f }
� A set of n zero-cost actions: O0 = {�{f }, {si}, ∅� | si ∈ s0}

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 8 / 49

Π
+

Π
+

Difficulty

Simplifying Π
+

a(c)

⇒

a�3(0)

faa�(c)

a�1(0)

a�2(0)

An action o with |Add(o)| = n can be replaced with:

� A new fluent fo , representing that the action has been executed

� An action o � = �Pre(o), fo , ∅� with cost(o �) = cost(o)

� A set of n zero-cost actions: O � = {�{fo}, {oi}, ∅� | oi ∈ Add(o)}

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 9 / 49

Π
+

Π
+

Difficulty

Simplifying Π
+

And |G |?
G

⇒

End(0)

G�

A goal with size |G | = n can be replaced with:

� A new goal with a single newly-introduced fluent: G � = {g}
� A single action End = �G , g , ∅�

→ This introduces an action with |G | preconditions

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 10 / 49

Π
+

Π
+

Difficulty

Π
+
as a graph problem

Fundamental difficulty: Estimating costs of sets of fluents

Special cases of Π+ are well-known graph problems in which
nodes → fluents, edges → actions

� |G | = |Pre(o)| = 1 → Shortest Path P

� |G | > 1, |Pre(o)| = 1 → Directed Steiner Tree NP-hard

� |Pre(o)| > 1 → Optimal Directed Hyperpath NP-hard

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 11 / 49

Π
+

Π
+

Difficulty

Approximating h+

Several heuristics defined in terms of method used to estimate the costs of
these sets

To be optimal, must take into account interactions between plans for
fluents in set
� Intractable in general

Instead, make the independence assumption:

Independence Assumption

The (cost of) the best plan for a set of fluents P can be estimated as a
function of the (costs of) the best plans for each fluent p ∈ P

Suboptimal, but makes the problem tractable

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 12 / 49

Π
+

Π
+

Difficulty

Polynomial Approximation Approaches

Theorem

For any set of fluents P ⊆ F ,

max
p∈P

h
+(p) ≤ h

+(P) ≤
�

p∈P
h
+(p)

1. Prove a minimum cost for any solution
� Lower bound, admissible heuristic for optimal planning

2. Find a solution to Π+ with no guarantees of optimality
� Upper bound, inadmissible heuristic for satisficing planning

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 13 / 49

h
max

& h
add

h
max

The Max Heuristic hmax

An admissible heuristic that gives a lower bound on h+ (Bonet & Geffner,
2001)

Intuition: Estimates cost of a set as the cost of the most expensive fluent
in set:

h
max(P ; s) = max

p∈P
h
max(p; s)

Drawbacks:

� Loose lower bound, uninformative

hmax is an instance of a family of heuristics – more on this later

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 14 / 49

h
max

& h
add

h
max

The Max Heuristic hmax

h
max(s) = h

max(G ; s)

h
max(P ; s) = max

p∈P
h
max(p; s)

h
max(p; s) =

�
0 if p ∈ s

min
{o|p∈add(o)}

[cost(o) + h
max(pre(o); s)] otherwise

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 15 / 49

h
max

& h
add

h
add

The Additive Heuristic hadd

First practical domain-independent planning heuristic for satisficing
planning (Bonet & Geffner, 2001)

Intuition: Estimates cost of a set as the sum of the costs of the elements:

h
add(G) =

�

g∈G
h
add(g)

Assumes no positive interactions

� Inadmissible, so not useful for optimal planning

� Better than hmax for satisficing planning

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 16 / 49

h
max

& h
add

h
add

The Additive Heuristic hadd

h
add(s) = h

add(G ; s)

h
add(P ; s) =

�

p∈P
h
add(p; s)

h
add(p; s) =






0 if p ∈ s

min
{o|p∈add(o)}

�
cost(o) + h

add(pre(o); s)
�

otherwise

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 17 / 49

h
max

& h
add

Computation

Computation

Equations give properties of estimates, not how to calculate them

Basic idea: value iteration

� Start with rough estimates (e.g. 0,∞), do updates

Methods differ principally in choice of update ordering:

1. Label-correcting methods

� Arbitrary action choice
� Multiple updates per fluent

2. Dijkstra method

� Updates placed in priority queue
� Single update per fluent

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 18 / 49

h
max

& h
add

Computation

Computation

function h(G ; s) begin
for p ∈ F do /* initialization */

if p ∈ s then h(p) = 0 else h(p) = ∞
end
repeat

a = chooseAction()

for q ∈ Add(a) do
if h(a; s) < h(q; s) then

h(q; s) = h(a; s)
endif

end
until fixpoint
return h(G ; s)

end

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 19 / 49

h
max

& h
add

Computation

Example: Label correcting method

a

0

b2
c

5

d

4
1

e

4
1

g

0

Initialization step

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 20 / 49

h
max

& h
add

Computation

Example: Label correcting method

a b

2

2
c

7

5

d

8

4
1

e

84
1

g

8/16
0

0 + max(hmax(d), hmax(e)) = 0 + 8 = 8

0 + (hadd(d) + h
add(e)) = 0 + 8 + 8 = 16

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 21 / 49

h
max

& h
add

Computation

Example: Label correcting method

a b

2

2
c

7

5

d

6

4
1

e

64
1

g

0

Label correction - cheaper estimates for fluents d and e

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 22 / 49

h
max

& h
add

Computation

Example: Label correcting method

a b

2

2
c

7

5

d

6

4
1

e

64
1

g

6/12
0

Label correction - cheaper estimates for fluent g

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 23 / 49

h
max

& h
add

Computation

Example: Generalized Dijkstra method

a

0

b2
c

7

5

d

4
1

e

4
1

g

0

Initialization step

← Priority
b(2)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 24 / 49

h
max

& h
add

Computation

Example: Generalized Dijkstra method

a

0

b

2

2
c

7

5

d

4
1

e

4
1

g

0

← Priority
d(6) e(6) c(7)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 25 / 49

h
max

& h
add

Computation

Example: Generalized Dijkstra method

a

0

b

2

2
c

7

5

d

6

4
1

e

64
1

g

0

g has priority 6 when computing hmax

� would have priority 12 when computing hadd

← Priority
g(6) c(7)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 26 / 49

h
max

& h
add

Computation

Example: Generalized Dijkstra method

a

0

b

2

2
c

7

5

d

6

4
1

e

64
1

g

60

Can stop when all goals are reached – Generalized Dijkstra guarantees single
update, so goal costs won’t decrease

← Priority
c(7)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 27 / 49

h
max

& h
add

Computation

Comments

Generalized Dijkstra performs single update per fluent

� Slower due to overhead from priority queue

In practice, Generalized Bellman-Ford often used

� However, GD + incremental computation shown to give speedup
(Liu, Koenig, and Furcy, 2002)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 28 / 49

h
max

& h
add

Computation

Problems with hadd

a b2
c

5

d

4
1

e

4
1

g

0

Figure: h+(G) = 2 + 5 + 1 + 1 + 0 = 9

hadd(G) = 12 – What are the sources of error?

1. Overcounting – Easier to address
� a → b counted twice

2. Independence assumption
� hadd(d , e) = hadd(d) + hadd(e) – not optimal

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 29 / 49

Relaxed Plan Heuristics

Relaxed Plan Heuristics

Idea: Find explicit plan π+ for Π+, h = cost(π+)

� Incrementally construct plan with no duplicates

� No overcounting

� Suboptimal, not admissible

Relies on the idea of best supporters

� Best supporter of fluent p is action chosen to make p true

First used in FF with relaxed planning graphs (Hoffmann and Nebel, 2001)

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 30 / 49

Relaxed Plan Heuristics h
FF

Relaxed Planning Graph

� Tool to graphically represent heuristic computation
� Layer i contains facts achievable with i layer parallel plan

a b2
c

5

d

4
1

e

4
1

g
0

c

a

b

G

e

d

c

a

b

G

e

d

c

a

b

e

d

c

G

a

b

G

e

d

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 31 / 49

Relaxed Plan Heuristics h
FF

The FF Heuristic

Construct relaxed plan by starting from goal, choose supporter for each
fluent at first layer in which it appears

d

a

b

G

e

d

c

a

b

G

e

c

a

b

e

d

c

G

a

b

G

e

d

c

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 32 / 49

Relaxed Plan Heuristics h
FF

hFF Relaxed Plan

a b2
c

5

d

4
1

e

4
1

g

0

Figure: Plan computed by hFF

h
add(s) = 12

h
FF(s) = c(π) = {�a → b�, �b → d�, �b → e�, �d , e → g�} = 10

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 33 / 49

Relaxed Plan Heuristics h
FF

Relaxed Plan Heuristics - Benefits

Generate an explicit plan π whose cost is the heuristic value, rather than
just a numeric estimate

Advantages:

� Explicit representation of plan – no overcounting!

� Helpful actions: Operators likely to lead to better state
� Used by search algorithms to generate/evaluate fewer nodes

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 34 / 49

Relaxed Plan Heuristics π(h
add

) & π(h
max

)

Relaxed Planning Graphs and hmax

When all actions cost 1, the relaxed planning graph level of a fact is equal
to its hmax estimate

If p ∈ s:

� hmax(p) = 0

� rpg-level(p) = 0

else:

� hmax(p) = min
a∈O(p)

(1 + hmax(Pre(a)))

� rpg-level(p) = min
a∈O(p)

(1 + rpg-level(Pre(a)))

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 35 / 49

Relaxed Plan Heuristics π(h
add

) & π(h
max

)

Relaxed Plans from hmax
, hadd, etc.

hFF uses uniform cost hmax supporters + plan extraction algorithm

Drawback: Uniform cost hmax not cost-sensitive

Solution: Cost-sensitive heuristic to choose best supporter (Keyder &
Geffner, 2008, others) . . .

op(s) = argmin
{o|p∈add(o)}

cost(o) + h(pre(o); s)

. . . combined with generic plan extraction algorithm

� Construct π+ by collecting the best supporters recursively backwards
from the goal . . .

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 36 / 49

Relaxed Plan Heuristics π(h
add

) & π(h
max

)

Relaxed Plan Extraction Algorithm

Input: A state s

Input: A best supporter function op

function π(G ; s) begin
π+ ← ∅
supported ← s

goals ← G

while to-support �= ∅ do
Remove a fluent p from goals

if p �∈ supported then
π+ ← π+ ∪ {op(s)} supported ← supported ∪ add(op(s))
goals ← goals ∪ (Pre(op(s)) \ supported)

endif
end
return π+

end

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 37 / 49

Relaxed Plan Heuristics π(h
add

) & π(h
max

)

Relaxed Plans

. . . and estimate the cost of a state s as the cost of π+(s):

h(s) = Cost(π+(s)) =
�

o∈π+(s)

cost(o)

Results in cost-sensitive heuristic with no overcounting

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 38 / 49

Relaxed Plan Heuristics h
add

set

The Set-Additive Heuristic haddset

Different method for computing relaxed plans, sometimes with higher
quality (Keyder & Geffner, 2008)

Idea: Instead of costs, propagate the supports themselves

� For each fluent, maintain explicit relaxed plan

� Obtain plan for set as union of plans for each

� Seeds for computation are also sets:

π(p; s) =

�
{} if p ∈ s

undefined otherwise

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 39 / 49

Relaxed Plan Heuristics h
add

set

The Set-Additive Heuristic haddset

h
add

set (s) = Cost(π(G ; s))

π(P ; s) =
�

p∈P
π(p; s)

where

π(p; s) =

�
{} if p ∈ s

π(op(s); s) otherwise

Cost(π) =
�

a∈π
cost(a)

op(s) = argmin
{o|p∈add(o)}



Cost({o} ∪
�

q∈pre(o)

π(q; s))





Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 40 / 49

Relaxed Plan Heuristics h
add

set

The Set-Additive Heuristic haddset

Intuition: Estimate the cost of sets considering overlap between plans for
individual fluents

� Potentially better estimates

Drawback: ∪ operation expensive compared to cheaper
�

or max
operation

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 41 / 49

Relaxed Plan Heuristics h
add

set

Example: hadd

a

b

4

c

4

0

d

4

0

e
6

g

0

0

hadd counts cost of transition a → b twice when computing cost of upper
path, leading to goal cost of 8

� Therefore chooses suboptimal lower path of cost 6

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 42 / 49

Relaxed Plan Heuristics h
add

set

Example: haddset Computation

a

0 b

4

4

c

4

0

d

4

0

e
6

g

4

0

0

Initialization

π(a) {}
π(b) undefined

π(c) undefined

π(d) undefined

π(e) undefined

π(g) undefined

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 43 / 49

Relaxed Plan Heuristics h
add

set

Example: haddset Computation

a

0 b

4

4

c

4

0

d

4

0

e
6

g

4

0

0

a → b counted only once when taking union of plans

π(a) {}
π(b) {a → b}
π(c) {a → b, b → c}
π(d) {a → b, b → d}
π(e) undefined

π(g) {a → b, b → c , b → d , cd → g}

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 44 / 49

Relaxed Plan Heuristics h
add

set

a

b

4

c

0

d0

e
6

g

0

0

Figure: cost(πadd
set) = 4

Computing relaxed plans for each fluent allows detection of shared cost

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 45 / 49

Relaxed Plan Heuristics Independence

Remaining issues

Relaxed-plan heuristics solve the overcounting issue by computing an
explicit relaxed plan with no duplicate actions

Independence assumption issues remain

cost(π∗) = 9

a b2
c

5

d
4

1

e
4

1
g

0

vs.

cost(πadd) = cost(πmax) = 10

a b2
c

5

d
4

1

e
4

1
g

0

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 46 / 49

Relaxed Plan Heuristics Independence

The Steiner Tree Problem

The Steiner Tree Problem

Given a graph G = �V ,E � and a set of terminal nodes T ⊆ V , find a
minimum-cost tree S that spans all t ∈ T

When T = V , this is the tractable Minimum Spanning Tree (MST)
problem

Otherwise, equivalent to finding best set of non-terminal nodes P to span,
known as Steiner Points

� Steiner Tree is then MST over P ∪ T

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 47 / 49

Relaxed Plan Heuristics Independence

Improving Steiner Trees

The Steiner Tree heuristic

Exploits parallels between Steiner trees and relaxed plans, and MST
property of Steiner trees, to obtain an improvement algorithm for relaxed
plans (Keyder & Geffner, 2009)

Start with a suboptimal relaxed plan, and attempt to get a better one

General idea:

1. Remove a partial plan π� from the relaxed plan

2. Try to find a new partial plan π�� with lower cost that makes it whole
again

Intuition: Make relaxed plan closer to MST

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 48 / 49

Conclusions

Conclusions

� The optimal delete relaxation heuristic h+ is admissible and
informative, but calculating it is NP-hard

� Sub-optimal solutions have proven to be effective heuristics for
satisficing planning

� hadd suffers from two problems:
1. Overcounting of actions when combining estimates

2. The independence assumption

� Overcounting problem can be solved with relaxed-plan heuristics
� Cost-sensitive best supporters

� Steiner Tree heuristic is an attempt at improving estimates obtained
with the independence assumption

Emil Keyder, Silvia Richter Heuristics: 2. Delete Relaxation June 2011 49 / 49

Heuristics for Domain-Independent Planning

3. Critical Path Heuristics

Emil Keyder Silvia Richter

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 1 / 13

hmax= h1

hm Heuristics

The Πm Compilation

Summary

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 2 / 13

hmax
= h1

hmax
= h1

hmax estimates cost of set P as max cost of any p ∈ P :

h
max(P ; s) = max

p∈P
h
max(p; s)

Alternatively:

h
1(P ; s) = max

P�⊆P∧|P�|≤1

h
1(P �; s)

Idea: Generalize to arbitrary m

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 3 / 13

hm Heuristics

hm Heuristics

Consider subsets of P of size m:

h
m(P ; s) = max

P�⊆P∧|P�|≤m
h
m(P �; s)

Estimate cost of P as most expensive subset of size m or less (Haslum &
Geffner, 2000)

Question: How can a set of fluents P � of size m be made true?

Two ways:

1. {a | P � ⊆ add(a)}
2. {a | P � ∩ add(a) �= ∅ ∧ P � ∩ del(a) = ∅}

hm heuristics take into account delete information

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 4 / 13

hm Heuristics

Example

Consider the action a : {p, s} → {r ,¬s}

{p, q, s} {p, q, r}a

� a always makes {p, r} true

� a makes {q, r} true if q is true when it is applied

� a never makes any {P � | s ∈ P �} true

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 5 / 13

hm Heuristics

Formalizing hm: Regression

For a set of fluents P s.t. |P | ≤ m, the regression of P through a is:

R(P , a) = (P \ add(a)) ∪ pre(a)

and is defined when:

� P ∩ del(a) = ∅
� P ∩ add(a) �= ∅

Intuition: To make all fluents in P true with a, what would have to be
true in the state in which a is applied?

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 6 / 13

hm Heuristics

Formalizing hm: Equations

h
m(s) = h

m(G ; s)

h
m(P ; s) =






0 if P ⊆ s

mina(cost(a) + hm(R(P , a); s) if |P | ≤ m)
maxP�⊂P∧|P�|≤m hm(P �; s) otherwise

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 7 / 13

hm Heuristics

Computation and Use

Can be computed with label-correcting or generalized Dijkstra method

� Initialization: hm(P) = 0 if P ⊆ s, ∞ otherwise

Computation is polynomial for fixed m, exponential in m in general

� Number of subsets of size ≤ m is O(|F |m)
� Polynomial can still be very expensive

Too slow to compute in every state

� Used in backwards search

� And to compute mutexes

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 8 / 13

hm Heuristics

Mutexes

The h2 heuristic is commonly used to compute mutexes

� h2({p, q}; s0) = ∞ =⇒ p and q are mutex

� Mutexes give finite-domain variables

Mutex detection is sound but not complete (for fixed m)

� Assume h3({p, q, r}) = ∞, but h2({p, q}), h2({p, r}), h2({q, r}) are
all finite.

� If the only action making {s, t} true has precondition {p, q, r},
h2({s, t}) is finite, but s and t are mutex.

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 9 / 13

hm Heuristics

Properties

For large enough m, hm = h∗

� In the worst case need m = |F |

h+ and hm are both admissible heuristics, but incomparable

� hm is not a delete relaxation heuristic

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 10 / 13

The Π
m

Compilation

The Π
m
Compilation

The Πm task is a planning task that encodes hm information (Haslum,
2009)

� Fluents of Πm are sets of fluents in Π

� One operator in Π → many operators in Πm, each with different
context
� Fluents that were true in addition to pre(a) when a was applied

� Consider deletes when constructing Πm actions

Key properties:

� h1(Πm) = hm(Π)

� No deletes in Πm

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 11 / 13

The Π
m

Compilation

Formal Definition

Definition (Π
m
)

Given a strips task Π = �F , s0,G ,O, cost�, its Πm compilation is given by
a strips task Πm = �Fm, sm

0
,Gm,Om, cost�, where

Fm = {πC | C ⊆ F ∧ |C | ≤ m}, sm
0

and Gm are defined analogously, and

O
m = {oC | o ∈ O ∧ C ∈ contexts(o)}

where

contexts(o) = {C ∈ F
m−1 | C ∩ add(o) = C ∩ del(o) = ∅}

pre(oC) = {πC | C ⊆ (pre(o) ∪ C) ∧ |C | ≤ m}
add(oC) = {πC | C ⊆ (add(o) ∪ C) ∧ |C | ≤ m}
del(oC) = ∅

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 12 / 13

Summary

Conclusions

� hm heuristics are admissible estimates obtained by considering critical
paths

� hm heuristics take deletes into account, and are incomparable to h+

� Their computation is polynomial for fixed m, but exponential in m in
general

� As m → |F |, hm(s) → h∗(s)

Emil Keyder, Silvia Richter Heuristics: 3. Critical Path June 2011 13 / 13

Heuristics for Domain-Independent Planning
4. The Context-Enhanced Additive Heuristic

Emil Keyder Silvia Richter

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 1 / 17

Background

hcea Equations

Conclusions

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 2 / 17

Background

Background

hcea (Helmert & Geffner, 2008) is a reformulation of an earlier heuristic,
hCG (Helmert, 2004)

� Replaces algorithm with recursive equations, clarifying connection to
hadd

� Removes limitations on problem structure

hcea is defined in terms of finite-domain variables (SAS+)

Intuition: To achieve values for a set of variables, achieve one of them
first
� Compute cost of the other variables considering side effects of
achieving the first one

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 3 / 17

Background

hadd in SAS+

hadd can be written for SAS+problems as follows:

h
add(G ; s) =

�

x∈G
h
add(x ; xs)

h
add(x | xs) =






0 if x = xs

min
o:z→x

�
cost(o) +

�

xi∈z
h
add(xi | xi s)

�
if x �= xs

where o : z → x is an action that assigns x and has z as a precondition,
and xs is the value of the variable of x in s.

Idea of hcea: Take into account side effects by evaluating precondition xi

in a state s � that is different from s

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 4 / 17

Background

hadd in SAS+

hadd can be written for SAS+problems as follows:

h
add(G ; s) =

�

x∈G
h
add(x ; xs)

h
add(x | xs) =






0 if x = xs

min
o:z→x

�
cost(o) +

�

xi∈z
h
add(xi | xi s�)

�
if x �= xs

where o : z → x is an action that assigns x and has z as a precondition,
and xs is the value of the variable of x in s.

Idea of hcea: Take into account side effects by evaluating precondition xi

in a state s � that is different from s

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 5 / 17

hcea Equations

hcea

h
cea(x | x �) =






0 if x = x �

min
o:x ��,z→x

�
cost(o) + h

cea(x �� | x �)

+
�

xi∈z
h
cea(xi | x �i)] if x �= x �

hcea considers pre(o) in two parts:

� The value x ��, defined on the same variable as x

� z , the rest of the precondition

x
� −→ . . . −→ x

�� o−→ x

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 6 / 17

hcea Equations

hcea

h
cea(x | x �) =






0 if x = x �

min
o:x ��,z→x

�
cost(o) + h

cea(x �� | x �)

+
�

xi∈z
h
cea(xi | x �i)] if x �= x �

The cost of achieving the preconditions is expressed as the heuristic cost of
achieving x �� . . .

x
� −→ . . . −→ x

�� o−→ x

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 7 / 17

hcea Equations

hcea

h
cea(x | x �) =






0 if x = x �

min
o:x ��,z→x

�
cost(o) + h

cea(x �� | x �)

+
�

xi∈z
h
cea(xi | x �i)] if x �= x �

. . . plus the heuristic cost of achieving the other preconditions from their
values x �i that result from achieving x ��

The values x �i are the values in the projected state s(x �� | x �)

Assumption: x �� is achieved first – The pivot condition

x
� −→ . . . −→ x

�� o−→ x

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 8 / 17

hcea Equations

How to Compute s(x �� | x �)

Equations defining hcea and s(x �� | x �) are mutually recursive

Let o : x ���, z � → x ��, y1, . . . , yn be the operator that results in minimum hcea

value for x ��

� Similar to best supporters in Π+

Notation: s[x �] denotes s “overridden” with x �

s(x �� | x �) =
�
s[x �] if x �� = x �

s(x ��� | x �)[z �][x ��, y1, . . . , yn] if x �� �= x �

x � . . . −→ x ���
o−→ x �� −→ x

s . . . −→ s(x ��� | x �) o−→ s(x �� | x �) −→ s(x | x �)

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 9 / 17

hcea Equations

How to Compute s(x �� | x �)

The state s(x �� | x �) is defined recursively beginning from s(x ��� | x �)...
... and updated with pre(o) \ {x ���} = z � ...
� known to be true, since precondition of o
... and finally with eff(o) = x �� ∪ {y1, . . . , yn}
� known to be true, since effect of o

s(x �� | x �) =
�
s[x �] if x �� = x �

s(x ��� | x �)[z �][x ��, y1, . . . , yn] if x �� �= x �

x � . . . −→ x ���
o−→ x �� −→ x

s . . . −→ s(x ��� | x �) o−→ s(x �� | x �) −→ s(x | x �)

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 10 / 17

hcea Equations

hcea

The value of hcea for the set of goals G is the same as hadd:

h
cea(s) =

�

x∈G
h
cea(x | xs)

Sum costs of achieving goal value for each variable in the goal given its
value xs in s

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 11 / 17

hcea Equations

Example: Computation of hcea

Let Π = �V ,O, s0,G , cost� be an SAS+problem with

V X = {x0, . . . , xn}
Y = {true, false}

O a : {¬y} → {y} bi : {y , xi} → {¬y , xi+1}
s0 {x0, y}
G {xn}

cost c(a) = c(bi) = 1

The optimal plan is then

π∗ = �b0, a, . . . , a, bn−1�

containing n × bi + (n − 1)× a = 2n − 1 actions

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 12 / 17

hcea Equations

Example: Computation of hcea

x0
b0−→ . . .

bn−2−−−→ xn−1

bn−1−−−→ xn

What is the value of s(xi | x0)?

s(x0 | x0) = s = {x0, y}

s(x1 | x0) =s(x0 | x0)[pre(b0)][eff(b0)]
{x0, y}[pre(b0)][eff(b0)]
{x0, y}[eff(b0)]
{x1,¬y}

General case: s(xi | x0) = {xi ,¬y}

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 13 / 17

hcea Equations

Example: Computation of hcea

What is the value of hcea(xi | x0)?

h
cea(x0 | x0) = 0

h
cea(x1 | x0) = c(b0) + h

cea(x0 | x0) + h
cea(y | ys(x0|x0))

= 1 + 0 + 0

h
cea(xi | x0) = c(bi−1) + h

cea(x0 | xi−1) + h
cea(y | ys(xi−1|x0))

= c(bi−1) + h
cea(x0 | xi−1) + h

cea(y | y{x0,¬y})
= c(bi−1) + h

cea(x0 | xi−1) + h
cea(y | ¬y)

= 1 + h
cea(x0 | xi−1) + 1

Since s(xi−1 | x0) = {xi−1,¬y}, y evaluated from value ¬y

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 14 / 17

hcea Equations

Example: Computation of hcea

We have:

h
cea(x1 | x0) = 1

h
cea(xn | x0) = h

cea(xn−1 | x0) + 2

hcea gives optimal solution to this problem:

h
cea(xn | x0) = 2(n − 1) + 1 = 2n − 1

h
cea(s) = h

∗(s)

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 15 / 17

Conclusions

Observations

Depends on finite-domain variables

� With boolean variables, equivalent to hadd

x
� −→ . . . −→ x

��(false) −→ x(true)

Must be the case that x � = x �� = false, so s(x ��|x �) = s

Preserves information about changes in a single variable from s

. . .+
�

xi∈z
h
cea(xi | x �i)

Fixed order in which preconditions are assumed to be achieved
� Always achieve value of same variable first

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 16 / 17

Conclusions

Conclusions

Can be more informative than h+

� But not in general comparable

Possible improvements:

� Consider precedences in the preconditions (Cai, Hoffmann, &
Helmert, 2009)

� Consider projected states that differ from s in a bounded number of
variables rather than a single one

Emil Keyder, Silvia Richter Heuristics: X. hcea June 2011 17 / 17

Heuristics for Domain-Independent Planning
5. Landmark Heuristics

Emil Keyder Silvia Richter

Based partially on slides by Erez Karpas

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 1 / 52

What Landmarks Are
Landmarks
Landmark Orderings
Complexity

Landmark Discovery
Theory
Backchaining
Forward Propagation & Declarative Characterization
Πm Landmarks
Orderings

Landmark-Counting Heuristics
The LAMA Heuristic h

LM

The Admissible Landmark Heuristic h
LA

The Landmark Cut Heuristic
Idea
Example

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 2 / 52

What Landmarks Are Landmarks

Landmarks

A landmark is a property of every plan for a planning task

1. Propositional landmark: a formula φ over the set of fluents
� φ is made true in some state during the execution of any plan

2. Action landmark: a formula ψ over the set of actions
� ψ is made true by any plan interpreted as a truth assignment to its set
of actions

Landmarks can be (partially) ordered

Some landmarks and orderings can be discovered automatically
� Mostly restricted to single fact/action landmarks or simple formulas
(disjunctions/conjunctions)

Landmarks are used in some state-of-the-art heuristics

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 3 / 52

What Landmarks Are Landmarks

Example Planning Problem - Logistics

A

B C

Do

t

E
p

o-at-B

o-in-t

o-at-E

t-at-B

t-at-C

o-at-Cp-at-C

o-in-p

Partial landmarks
graph

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 4 / 52

What Landmarks Are Landmarks

Landmarks from Other Landmarks

Propositional landmarks imply action landmarks
� A single fact landmark p implies the disjunctive action landmark

�

{a|p∈add(a)}
a

Action landmarks imply propositional landmarks
� A single action landmark a implies the propositional landmarks

�

p∈pre(a)

p and
�

p∈add(a)

p

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 5 / 52

What Landmarks Are Landmark Orderings

Types of Landmark Orderings

Sound landmark orderings
� Guaranteed to hold
� No pruning of search space since automatically satisfied

Unsound landmark orderings
� Additional constraints on plans
� May rule out valid solutions
� However, likely to hold and can save effort in planning

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 6 / 52

What Landmarks Are Landmark Orderings

Sound Landmark Orderings

Natural ordering A → B

� A always true some time before B becomes true

Necessary ordering A →n B

� A always true immediately before B becomes true

Greedy-necessary ordering A →gn B

� A true immediately before B becomes true for the first time

Note that A →n B =⇒ A →gn B =⇒ A → B

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 7 / 52

What Landmarks Are Landmark Orderings

Reasonable Orderings

� Not sound - not guaranteed to hold in all plans
� Reasonable ordering A →r B, iff given B was achieved before A, any plan

must delete B on the way to A, and re-achieve B

B � ¬B � A � B =⇒ A →r B

� Initial state landmarks can be reasonably ordered after other landmarks
(e. g., if they must be made false and true again)

� This can never happen with sound orderings

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 8 / 52

What Landmarks Are Complexity

Landmark Complexity

Basic Result: Everything is PSPACE-complete

� Deciding if a propositional formula is a landmark is PSPACE-complete
� Proof Sketch: Same problem as deciding if the problem without
actions that achieve this fact is unsolvable

� Deciding if there is a natural / necessary / greedy-necessary / reasonable
ordering between two landmarks is PSPACE-complete

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 9 / 52

Landmark Discovery Theory

Landmark Discovery in Theory

Theory

A is a fact landmark ⇐⇒ πA is unsolvable

where πA is a π with all actions that make A true removed

The delete relaxation π+
A

is unsolvable =⇒ πA is unsolvable
� This can be used to obtain delete-relaxation landmarks
� But more efficient methods exist

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 10 / 52

Landmark Discovery Backchaining

Landmark Discovery I: Backchaining

Alternative: Find landmarks and orderings by backchaining (Hoffmann et
al. 2004, Porteous & Cresswell 2002)

� Every goal is a landmark
� If B is a landmark and all actions that achieve B

share A as precondition, then
� A is a landmark
� A →n B

Useful restriction: consider only the case where B is
achieved for the first time � find more landmarks (and
A →gn B)

o-at-B

o-in-t

o-at-E

t-at-B

t-at-C

o-at-Co-at-Cp-at-C

o-in-po-in-p

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 11 / 52

Landmark Discovery Backchaining

Landmark Discovery I: Backchaining (ctd.)

PSPACE-complete to find first achievers
� over-approximation by building relaxed planning
graph for π �

B

� This graph contains no actions that add B

� Any action applicable in this graph can possibly
be executed before B first becomes true �
possible first achievers

o-at-B

o-in-t

o-at-E

t-at-B

t-at-C

o-at-Cp-at-C

o-in-p

Additionally, if C not in the graph and C later proven to be a landmark,
introduce B → C

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 12 / 52

Landmark Discovery Backchaining

Landmark Discovery I: Backchaining (ctd.)

Disjunctive landmarks also possible,
e.g., (o-in-p1 ∨ o-in-p2):

� If B is a landmark and all actions that (first)
achieve B have A or C as a precondition, then
A∨C is a landmark

� Generalises to any number of disjuncts
� Large number of possible disjunctive landmarks

� must be restricted

o-at-B

o-in-t

o-at-E

t-at-B

t-at-C

o-at-Cp-at-C

o-in-p

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 13 / 52

Landmark Discovery Backchaining

Landmark Discovery I: Backchaining (ctd.)

Pro:
� Finds disjunctive landmarks as well as facts

Con:
� No criterion for which backchaining is complete for Π+

� Requires arbitrary limits e. g. on size/form of disjunctions

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 14 / 52

Landmark Discovery Forward Propagation & Declarative Characterization

Landmark Discovery II: Forward Propagation

Find landmarks by forward propagation in relaxed planning graph (Zhu &
Givan 2003)

� Finds all causal delete-relaxation landmarks in polynomial time
(where causal means: appearing in preconditions for actions)

� Propagate information on necessary predecessors
� Label each fact node with itself
� Propagate labels along arcs

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 15 / 52

Landmark Discovery Forward Propagation & Declarative Characterization

Landmark Discovery II (ctd.)

Actions (numbers): propagate union over labels on preconditions
— all preconditions are necessary
Facts (letters): propagate intersection over labels on achievers
— only what’s necessary for all achievers is necessary for a fact

a
a

1

2

3

a

a

a

b

c

d

a,b

a,c

a,d

4

5

6

a,b

a,c,d

a,d

e

f

g

a,b,e

a,c,d,f

a,g

No-ops and repeated
nodes not shown

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 16 / 52

Landmark Discovery Forward Propagation & Declarative Characterization

Landmark Discovery II (ctd.)

� Goal nodes in final layer: labels are landmarks
� A → B if A forms part of the label for B in the final layer
� A →gn B if A is precondition for all possible first achievers of B

� Possible first achievers of B are achievers that do not have B in their label
(Keyder, Richter & Helmert 2010)

Advanced version of this method counts re-occurrences of landmarks

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 17 / 52

Landmark Discovery Forward Propagation & Declarative Characterization

Landmark Discovery II: Complete Equations

The Zhu & Givan method can be seen as computing the fixpoint solution to a
set of equations (Keyder et al.,2010):

LM(G) =
�

g∈G

LM(g)

LM(p) =

�
{p} if p ∈ I

{p}∪
�

{a|p∈add(a)} LM(a) otherwise

LM(a) ={a}∪
�

p∈pre(a)

LM(p)

Advantages:
� Declarative definition
� No reliance on relaxed planning graph

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 18 / 52

Landmark Discovery Πm Landmarks

Landmark Discovery IIa: Πm Landmarks

Landmark-detection methods for Π+ can be applied to any problem without
delete effects
� This includes the Πm compilation
Recall that fluents of Πm are subsets of F of size ≤ m

Fact landmarks found for Πm then correspond to conjunctive landmarks for Π
that take into account delete information

Any method for Π+ landmark finding can be applied to Πm

� Equations guarantee completeness for conjunctive landmarks as m → |F |

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 19 / 52

Landmark Discovery Πm Landmarks

Πm Landmarks Example

A

B C

A

B

C

Non-trivial Π+ fact landmarks:

clear B →gn holding B

(Some) Π2 Landmarks:

(clear B∧holding A)→gn (clear B∧ontable A)→gn

(holding B∧ontable A)→gn (on B C∧ontable A)→gn

(on B C∧holding A)
Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 20 / 52

Landmark Discovery Orderings

Finding Orderings

Natural and (greedy-)necessary orderings are found along with landmarks

� A is a landmark for B: A → B

� A is a precondition for all achievers a of B that do not have B as a
landmark: A →gn B

If reasonable orderings used, they are computed in a post-processing step.

� Not discussed here
� See landmark tutorial from ICAPS 2010

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 21 / 52

Landmark Discovery Orderings

Other Methods for Landmark Finding

Find landmarks via domain transition graphs (Richter et al. 2008)
� Not discussed here
� See landmark tutorial from ICAPS 2010

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 22 / 52

Landmark-Counting Heuristics

Using Landmarks

� Some landmarks and orderings can be discovered efficiently
� So what can we do once we have these landmarks?

� Previous use as subgoals for search control (Hoffmann et al., 2004)
� Here, we focus on use for deriving heuristic estimates
� Next section assumes landmarks are computed once for initial state
� Recomputing for every state would be more informative but costly

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 23 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Using Landmarks for Heuristic Estimates

� The number of landmarks that still need to be achieved is a heuristic
estimate (Richter and Westphal 2010)

� Used by LAMA - winner of the IPC-2008 sequential satisficing track
� Inadmissible heuristic, because an action may achieve more than one

landmark

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 24 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Path-Dependency

� Suppose we are in state s. Did we achieve landmark A yet?
� Example: did we achieve holding(B)?

A
C

B

� There is no way to tell just by looking at s

� Achieved landmarks are a function of path, not state
� In contrast to previously discussed heuristics, this one is
path-dependent.

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 25 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

The LAMA Heuristic

� The landmarks that still need to be achieved after reaching state s via
path π are

L(s,π) = (L\Accepted(s,π))∪ReqAgain(s,π)

� L is the set of all (discovered) landmarks
� Accepted(s,π)⊂ L is the set of accepted landmarks
� ReqAgain(s,π)⊆ Accepted(s,π) is the set of required again landmarks -

landmarks that must be achieved again

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 26 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Accepted Landmarks

� A landmark A is first accepted by path π in state s if
� all predecessors of A in the landmark graph have been accepted, and
� A becomes true in s

� Once a landmark has been accepted, it remains accepted

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 27 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Required Again Landmarks

� A landmark A is required again by path π in state s if:
false-goal A is false in s and is a goal, or

open-prerequisite A is false in s and is a greedy-necessary predecessor
of some landmark B that is not accepted

� It’s also possible to use (Buffet and Hoffmann, 2010):
doomed-goal A is true in s and is a goal, but one of its greedy-necessary

successors was not accepted, and is inconsistent with A

� Unsound rule:
required-ancestor is the transitive closure of open-prerequisite

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 28 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Using Landmarks as Subgoals - Sussman Example

� Consider the following blocks problem (“The Sussman Anomaly”)

� Initial State
� Goal: on-A-B, on-B-C

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 29 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Accepted and Required Again Landmarks - Example

� In the Sussman anomaly, after performing: Pickup-B, Stack-B-C,
Unstack-B-C, Putdown-B, Unstack-C-A, Putdown-C

A C B

ot-A on-C-A clr-C h-e ot-B clr-B

clr-A hld-B

hld-A

on-B-C on-A-B

� on-B-C is a false-goal, and so it is required again

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 30 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Problems With Reasonable Orderings

� Heuristic value of a goal state may be non-zero
(if the plan found does not obey all reasonable orderings, and
consequently not all landmarks are accepted).
Solution: explicitely test states for goal condition

� The definition of reasonable orderings allows an ordering A →r B if A and
B become true simultaneously.
Two solutions:

� Accept a landmark if it has been made true at the same time as its
predecessor (Buffet and Hoffmann, 2010)

� Modify the definition of reasonable orderings to disallow such orderings

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 31 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Multi-path Dependence

s0

s

g

π1π2 I achieved AI did not achieve A

I need to achieve A

� Suppose state s was reached by paths π1,π2

� Suppose π1 achieved landmark A and π2 did not
� Then A needs to be achieved after state s

� Proof: A is a landmark, therefore it needs to be true in all plans, including
plans that start with π2

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 32 / 52

Landmark-Counting Heuristics The LAMA Heuristic h
LM

Fusing Data from Multiple Paths

� Improvement to path-dependent landmark heuristics (Karpas and
Domshlak, 2009)

� Suppose P is a set of paths from s0 to a state s. Define

L(s,P) = (L\Accepted(s,P))∪ReqAgain(s,P)

where
� Accepted(s,P) =

�
π∈P Accepted(s,π)

� ReqAgain(s,P)⊆ Accepted(s,P) is specified as before by s and the
various rules

� L(s,P) is the set of landmarks that we know still needs to be achieved
after reaching state s via the paths in P

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 33 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Admissible Heuristic Estimates

� LAMA’s heuristic h
LM: the number of landmarks that still need to be

achieved
� h

LM is inadmissible - a single action can achieve multiple landmarks
� Example: hand-empty and on-A-B can both be achieved by stack-A-B

� Admissible heuristic: assign a cost to each landmark, sum over the costs
of landmarks (Karpas and Domshlak, 2009)

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 34 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Ensuring Admissibility

� Actions share their cost between all the landmarks they achieve

∀o ∈ O : ∑
B∈L(o|s,P)

cost(o,B)≤ cost(o)

cost(o,B): cost “assigned” by action o to B

L(o|s,P): the set of landmarks achieved by o

� The cost of a landmark is the minimum cost assigned to it by any action
� Then

h
L(s,π) := cost(L(s,π)) = ∑

B∈L(s,π)
cost(B)

is admissible

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 35 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Cost Sharing - How?

� How to share action costs between landmarks?
� Easy answer: uniform cost sharing - each action shares its cost equally

between the landmarks it achieves

cost(o,B) =
cost(o)

|L(o|s,π)|

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 36 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Uniform Cost Sharing

� Advantage: Easy and fast to compute
� Disadvantage: can be much worse than the optimal cost partitioning

� Example: all actions cost 1 – uniform cost sharing

q

p1

p2

p3

p4

a1

a2

a3

a4

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

min(0.5,0.5,0.5,0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

h
L = 2.5

uniform h
L = 2.5

0

10

1

0

1

0

1

min(0,0,0,0)=0

min(1)=1

min(1)=1

min(1)=1

min(1)=1

h
L = 4

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 37 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Uniform Cost Sharing

� Advantage: Easy and fast to compute
� Disadvantage: can be much worse than the optimal cost partitioning

� Example: all actions cost 1 – optimal cost sharing

q

p1

p2

p3

p4

a1

a2

a3

a4

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

min(0.5,0.5,0.5,0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

min(0.5)=0.5

h
L = 2.5

uniform h
L = 2.5

0

10

1

0

1

0

1

min(0,0,0,0)=0

min(1)=1

min(1)=1

min(1)=1

min(1)=1

h
L = 4

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 38 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Optimal Cost Sharing

� The good news: the optimal cost partitioning is poly-time to compute
� The constraints for admissibility are linear, and can be used in a Linear

Program (LP)
� Objective: maximize the sum of landmark costs
� The solution to the LP gives us the optimal cost partitioning

� The bad news: poly-time can still take a long time

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 39 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

How can we do better?

So far:
� Uniform cost sharing is easy to compute, but suboptimal
� Optimal cost sharing takes a long time to compute

Q: How can we get better heuristic estimates that don’t take a long time to
compute?

A: Exploit additional information - action landmarks

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 40 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Using Action Landmarks - by Example

q

p1

p2

p3

p4

a1

a2

a3

a4

p2

p3

p4

a1

a2

a3

a4

1

1

1

1

Uniform Cost Sharing

min(1)=1

min(1)=1

min(1)=1

h
LA = 4

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 41 / 52

Landmark-Counting Heuristics The Admissible Landmark Heuristic h
LA

Summary

� Landmarks describe the implicit structure of a planning task
� Can be used to derive admissible and inadmissible landmark-counting

heuristics
� These heuristics are path-dependent

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 42 / 52

The Landmark Cut Heuristic Idea

The Landmark Cut Heuristic

A landmark heuristic that is not path-dependent

� Computes landmarks for each state rather than once
� New way of finding landmarks
� Very accurate admissible approximation of h

+

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 43 / 52

The Landmark Cut Heuristic Idea

The Landmark Cut Heuristic (cont.)

Idea (Helmert & Domshlak, 2009):
� Use critical paths (from h

max computation) to find disjunctive action
landmarks

� Extract landmarks iteratively, subtracting their cost from h
max estimates

� Cost of each landmark := cost of cheapest action in landmark
� Heuristic value := sum over all landmark costs

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 44 / 52

The Landmark Cut Heuristic Idea

The Landmark Cut Heuristic (cont.)

Computation in a nutshell:

1. Compute h
max costs for all facts

2. Reduce goals and preconditions to singleton sets in a way that preserves
h

max

3. Replace all multi-effect operators by a set of unary operators in a way that
preserves h

max

4. Compute the justification graph for the resulting task,
where h

max values are shortest distances

5. Compute a cut in the justification graph that separates before-goal zone
from goal zone.

6. The cut corresponds to one disjunctive action landmark in the result
Extract it through cost partitioning

7. Start from the beginning until h
max values are 0

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 45 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example

Transport object from A to B, by truck or by teleportation
(Partial) RPG:

initial facts goal

o-at-A

t-at-A

o-in-t

t-at-B

o-at-B

load-o-t
1

drive-t
1

unload-o
1

teleport-o

5

Optimal: load, drive, unload � cost = 3
Suboptimal: teleport � cost = 5

h
LM = h

LA = 1
h

max = 2
h
+ = h

LM-cut = 3

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 46 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example (cont.)

1. Compute h
max costs for all facts

2. Reduce goals and preconditions to singleton sets in a way that preserves
h

max

3. Replace all multi-effect operators by a set of unary operators in a way that
preserves h

max

o-at-A

0

t-at-A

0

o-in-t

1

t-at-B

1

o-at-B

2

load-o-t
1

drive-t
1

unload-o
1

teleport-o

5

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 47 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example (cont.)

4. Compute the justification graph for the resulting task,
where h

max values are shortest distances

5. Compute a cut in the justification graph that separates before-goal zone
from goal zone.

o-at-A

0

t-at-A

0

o-in-t

1

t-at-B

1

o-at-B

2

load-o-t
1

drive-t
1

unload-o
1

teleport-o

5

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 48 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example (cont.)

7. The cut corresponds to a disjunctive action landmark in the result
� teleport-o ∨ unload-o
Extract it through cost partitioning

8. Start from the beginning until h
max values are 0

o-at-A

0

t-at-A

0

o-in-t

1

t-at-B

1

o-at-B

1

load-o-t
1

drive-t
1

unload-o
0

teleport-o

4

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 49 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example (cont.)

Landmarks = {teleport-o∨unload-o,

teleport-o∨ load-o-t}

,

teleport-o∨drive-t}
h

LM-cut = 3

o-at-A

0

t-at-A

0

o-in-t

0

t-at-B

1

o-at-B

1

load-o-t
0

drive-t
1

unload-o
0

0

teleport-o

3

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 50 / 52

The Landmark Cut Heuristic Example

h
LM-cut Example (cont.)

Landmarks = {teleport-o∨unload-o,

teleport-o∨ load-o-t,

teleport-o∨drive-t}
h

LM-cut = 3

o-at-A

0

t-at-A

0

o-in-t

t-at-B

0

o-at-B

0

load-o-t
0

drive-t
0

unload-o
0

0

teleport-o

3

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 51 / 52

The Landmark Cut Heuristic Example

Conclusion

� Clever, heuristically guided way of discovering landmarks
� h

LM-cut approximates h
+ very closely

� Landmarks are computed per state, not per task
� more expensive than other landmark heuristics

� Accuracy can be improved (at further computational expense) using
hitting sets (Bonet & Helmert, 2010)

1. Run procedure multiple times to get different (possibly overlapping)
disjunctive landmarks

2. Compute a set of actions that hits each disjunction

� Optimal hitting set NP-hard, approximate

Emil Keyder, Silvia Richter Heuristics: 5. Landmark Heuristics June 2011 52 / 52

Heuristics for Domain-Independent Planning
6. Abstraction Heuristics

Emil Keyder Silvia Richter

Based on slides by Carmel Domshlak and Malte Helmert

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 1 / 36

Introduction
Transition Systems
Abstractions

Pattern Database Heuristics
Introduction
Examples
Multiple & Additive Patterns
Finding Good Patterns

Merge-and-Shrink Heuristics
Introduction
Merging
Shrinking
Generic Algorithm
Theoretical Properties

Structural Pattern Heuristics

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 2 / 36

Introduction Transition Systems

Motivation

Like delete-relaxation heuristics, abstraction heuristics are derived from a
simplification of the task.

But here, we simplify the search space directly, rather than via the
operators.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 3 / 36

Introduction Transition Systems

Transition Systems

Definition (transition system)

A transition system is a 5-tuple T = �S , L,T , I ,G � where
� S is a finite set of states (the state space),

� L is a finite set of (transition) labels,

� T ⊆ S × L× S is the transition relation,

� I ∈ S is the initial state, and

� G ⊆ S is the set of goal states.

We say that T has the transition �s, l , s �� if �s, l , s �� ∈ T .

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 4 / 36

Introduction Transition Systems

Transition Systems of SAS+ Planning Tasks

Definition (transition system of an SAS+ planning task)

Let Π = �V , s0,G ,O, cost� be an SAS+ planning task. The transition
system of Π, in symbols T (Π), is the transition system
T (Π) = �S �, L�,T �, I �,G ��, where

� S � is the set of states over V ,

� L� = O,

� T � = {�s �, o �, t �� ∈ S � × L� × S � | app(s �, o �) = t �},
� I � = s0, and

� G � = {s � ∈ S � | s � |= G}.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 5 / 36

Introduction Transition Systems

Example Task: One Package, Two Trucks

Example (one package, two trucks)

Consider a Logistics task with

� Two locations: L, R; two trucks: A, B; one package p

� Package can be at locations or in trucks: Dp = {L,R,A,B}
Trucks can be at the locations: DtA = DtB = {L,R}

� Init state: package at L, both trucks at R

� Goal: package at R
� Operators for pickup, drop and move

� pickupi,j : pickup the package with truck i at location j

� dropi,j analogously
� movei,j,j� : move truck i from location j to j �

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 6 / 36

Introduction Transition Systems

Transition System of Example Task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

LRR: package is at L, truck A is at R, and truck B is at R
Transition labels not shown.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 7 / 36

Introduction Abstractions

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions between
states, while preserving the transition behaviour as much as possible.

� An abstraction of a transition system T is defined by an abstraction
mapping α that defines which states of T should be distinguished and
which ones should not.
� s, t not distinguished if α(s) = α(t)

� From T and α, we compute an abstract transition system T � which is
similar to T , but smaller.

The abstract goal distances (goal distances in T �) are used as heuristic
estimates for goal distances in T :

h
α(s,T) = h

∗(α(s),T �)

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 8 / 36

Introduction Abstractions

Abstraction: Example

concrete transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 9 / 36

Introduction Abstractions

Abstraction: Example

abstract transition system

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Note: Most arcs represent many parallel transitions. hα(LRR) = 3

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 10 / 36

Introduction Abstractions

Consistency of Abstraction Heuristics

Theorem (consistency and admissibility of hA,α)

Let Π be an SAS
+
planning task, and let T � be an abstraction of T (Π)

with abstraction mapping α.
Then hα is admissible and consistent.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 11 / 36

Introduction Abstractions

Informativeness vs. Efficiency Tradeoff

� How to come up with a suitable abstraction mapping α?
� Conflicting goals for abstractions:

� we want to obtain an informative heuristic, but
� want it to be efficiently computable (both abstract state α(s) and

h∗(α(s)))

� Combinations of several abstractions possible

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 12 / 36

Introduction Abstractions

Automatically Deriving Good Abstractions

Abstraction heuristics for planning: main research problem
Automatically derive effective abstraction heuristics
for planning tasks.

So far, success in three directions:

� pattern database heuristics (Culberson & Schaeffer, 1996)

� merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)

� structural patterns (Katz & Domshlak, 2008)

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 13 / 36

PDBs Introduction

Pattern Database Heuristics Informally

Pattern databases: informally
A pattern database (PDB) heuristic is an abstraction heuristic where

� some aspects of the task are represented in the abstraction with
perfect precision, while

� all other aspects of the task are not represented at all.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 14 / 36

PDBs Introduction

Projections

PDBs: abstraction mappings are projections to certain state variables.

Definition (projections)

Let Π be an SAS+ planning task with variable set V and state set S . Let
P ⊆ V , and let S � be the set of states over P .

The projection πP : S → S � is defined as πP(s) := s|P
(with s|P(v) := s(v) for all v ∈ P).

We call P the pattern of the projection πP .

In other words, πP maps two states s1 and s2 to the same abstract state iff
they agree on all variables in P .

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 15 / 36

PDBs Examples

Example: Transition System

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations as before

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 16 / 36

PDBs Examples

Example: Projection

Abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h
{package}(LRR) = 2

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 17 / 36

PDBs Examples

Example: Projection (2)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h
{package,truck A}(LRR) = 2

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 18 / 36

PDBs Multiple PDBs

Pattern Collections

Space requirements for pattern databases grow exponentially with number
of state variables in pattern.
� Not practical for larger planning tasks.

Instead use collections of smaller patterns.

� Max of PDB heuristics is admissible (general property)

� Preferable to use sum when possible

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 19 / 36

PDBs Multiple PDBs

Criterion for Additive Patterns

Simple criterion for admissible additivity: Count cost of each action in at
most one heuristic.

� Can add heuristic estimates from two patterns if no operator affects
variables in both

Can find maximal additive subsets of a set of patterns

For a collection of patterns P, the max of these sums is the canonical
heuristic function for P
→ Most informative admissible heuristic we can derive from P

Can do better with cost partitioning

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 20 / 36

PDBs Finding Good Patterns

How Do We Come Up with Good Patterns?

� The biggest practical problem when applying pattern databases to
planning is to find a good pattern collection in a domain-independent
way.

� Most promising approach: search in the space of possible pattern
collections (prior to actual planning)

Algorithm of Haslum, Helmert, Bonet, Botea & Koenig (2007)

� Hill-climbing search in space of possible pattern collections

� Start from all singleton patterns {{v} | v ∈ V }
� Neighbors of collection P: P ∪ {P ∪ {v}}

for some P ∈ P and v /∈ P

� Evaluation of a pattern collection P:
� Randomly sample heuristic for some states
� Use search effort formula (Korf, Reid & Edelkamp, 2001)

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 21 / 36

Merge-and-Shrink Heuristics Introduction

Beyond Pattern Databases

Major limitation of PDBs: patterns must be small

Consider Logistics example with N trucks, M locations (still one package):

� If package �∈ P , h = 0

� If any truck �∈ P , h ≤ 2

P must include all variables to improve over P � = {package}

Merge-and-shrink (M&S) abstractions are a
proper generalization of pattern databases.

� They can do everything that pattern databases can do (modulo
polynomial extra effort)

� They can do some things that pattern databases cannot

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 22 / 36

Merge-and-Shrink Heuristics Introduction

Merge-and-Shrink Abstractions: Main Idea

Main idea of M&S abstractions
(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

Do this with a sequence of

1. Merge steps – add a new variable to the abstraction

2. Shrink steps – reduce abstraction size by fusing abstract states

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 23 / 36

Merge-and-Shrink Heuristics Merging

M&S Abstractions: Key Insights

Key insights:

1. Information of two transition systems A and A� can be combined
(without loss) by a simple graph-theoretic operation, synchronized
product A⊗A�

2. The complete state space of a planning task can be recovered using
only atomic projections:

�

v∈V
πv is isomorphic to πV .

� build fine-grained abstractions from coarse ones

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 24 / 36

Merge-and-Shrink Heuristics Merging

Running Example: Explanations

� We abbreviate operator names as in these examples:
� MALR: move truck A from left to right
� DAR: drop package from truck A at right location
� PBL: pick up package with truck B at left location

� We abbreviate parallel arcs with commas and wildcards (�) in the
labels as in these examples:

� PAL, DAL: two parallel arcs labeled PAL and DAL
� MA��: two parallel arcs labeled MALR and MARL

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 25 / 36

Merge-and-Shrink Heuristics Merging

Running Example: Atomic Projection for Package

T π{package} :

L

A

B

R

M���
PA

L

DA
L

M���

DAR
PAR

M���

PB
R

DB
R

M���

DBL

PBL

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 26 / 36

Merge-and-Shrink Heuristics Merging

Running Example: Atomic Projection for Truck A

T π{truck A} :

L R

PAL,DAL,MB��,
PB�,DB�

MALR

MARL

PAR,DAR,MB��,
PB�,DB�

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 27 / 36

Merge-and-Shrink Heuristics Merging

Merging: Synchronized Product

T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

D
A
L

D
A
R

PA
R

P
B
RD

B
R

D
B
L

P
B
L

PBL

D
BL

DB
R

PB
R

MB�� MB��

MB�� MB��

MB�� MB��

MB�� MB��

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 28 / 36

Merge-and-Shrink Heuristics Shrinking

M&S Abstractions: Key Insights

Key insights:

1. Information of two abstractions A and A� of the same transition
system can be combined by a simple graph-theoretic operation
(synchronized product A⊗A�).

2. The complete state space of a planning task can be recovered using
only atomic projections:

�

v∈V
πv is isomorphic to πV .

� build fine-grained abstractions from coarse ones

3. When intermediate results become too big, we can shrink them by
fusing some abstract states.

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 29 / 36

Merge-and-Shrink Heuristics Shrinking

Shrinking

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

D
A
L

D
A
RPA

R

P
B
RD

B
R

D
B
L

P
B
L

PBL

D
BL

DB
R

PB
R

MB�� MB��

MB�� MB��

MB�� MB��

MB�� MB��

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 30 / 36

Merge-and-Shrink Heuristics Shrinking

Shrinking

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

D
A
L

D
A
RPA

R

P
B
RD

B
R

D
B
L

P
B
L

PBL

D
BL

DB
R

PB
R

MB�� MB��

MB�� MB��

MB�� MB��

MB�� MB��

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 31 / 36

Merge-and-Shrink Heuristics Shrinking

Shrinking

LL LR

AL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PA
L

D
A
L

D
A
RP

A
R

P
B
RD

B
R

D
B
L

P
B
L

PBL

D
BL

DB
R

PB
R

MB��

MB�� MB��

MB��

MB��

M���

MB��

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 32 / 36

Merge-and-Shrink Heuristics Generic Algorithm

Computing M&S Abstractions

Generic abstraction computation algorithm
abs := all atomic projections πv (v ∈ V).
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N

abs := abs \ {A1,A2} ∪ {A1 ⊗A2}
return the remaining abstraction

N: parameter bounding number of abstract states

Questions for practical implementation:

� Which abstractions to select? � merging strategy

� How to shrink an abstraction? � shrinking strategy

� How to choose N?

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 33 / 36

Merge-and-Shrink Heuristics Theoretical Properties

Theoretical Properties

� PDB heuristics are merge-and-shrink abstractions without shrink steps

� representational power is at least as large as that of PDB heuristics

� In fact, representational power is strictly greater than that of PDB
heuristics (demonstrated on some planning domains)

� However, specialized PDB algorithms are faster than the generic
M&S algorithm

� And we do not generally know merging/shrinking strategies that will
ensure superiority of M&S heuristics in practice

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 34 / 36

Structural Pattern Heuristics

Limitation of Explicit Abstractions

No tricks: abstract spaces are searched exhaustively

� must keep abstract spaces of fixed size

� (often) price in heuristic accuracy in long-run

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 35 / 36

Structural Pattern Heuristics

Structural Abstraction Heuristics: Main Idea

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, but

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How
Abstracting Π by an instance of a tractable fragment of cost-optimal
planning
� Fork Decomposition (Katz & Domshlak, 2008): decompose causal
graph of task into fragments with single root/sink variable (and use
further tricks)

Details: Carmel Domshlak’s lecture in this summer school

Emil Keyder, Silvia Richter Heuristics: 6. Abstraction Heuristics June 2011 36 / 36

Heuristics for Domain-Independent Planning
7. Final Comments

Emil Keyder Silvia Richter

Based partially on slides by Carmel Domshlak and Malte Helmert

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 1 / 7

Satisficing Planning
Beyond Heuristics

Optimal Planning

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 2 / 7

Connecting the Pieces

� We have seen a number of heuristics in this tutorial,
for satisficing and optimal planning

� Now the big question is:

Which ones work best?
And what’s there beyond heuristics to improve planning-by-search?

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 3 / 7

Satisficing Planning

Satisficing vs. Optimal Planning

Satisficing and optimal planning are much more different from each other
than it appears at a superficial glance.

� Optimal planning entails proving that there is no better solution

� As a consequence, A∗-based planning requires exponential effort in
most domains even with almost perfect heuristics (Helmert & Röger,
2008).

� Not so for satisficing planning, where just finding a solution is enough

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 4 / 7

Satisficing Planning Beyond Heuristics

Satisficing Planning: Beyond Heuristics

� Because satisficing planners do not need to prove optimality, they can
use drastic search control strategies

� These often make a larger difference in performance
than the choice of heuristic function (Richter & Helmert, 2009)

Examples:

� helpful actions (FF: Hoffmann & Nebel, 2001)

� relaxed plan macros (YAHSP: Vidal, 2004)

� preferred operators (Fast Downward, LAMA: Helmert, 2006)

� alternating multi-queue search (Fast Downward, LAMA: Helmert &
Röger, 2010)

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 5 / 7

Satisficing Planning Beyond Heuristics

Satisficing Planning: Conclusion

� Satisficing heuristics with good coverage (given limited time) are e. g.
the FF heuristic and the context-enhanced additive heuristic,
whereas the additive heuristic and inadmissible landmark-counting (by
themselves) are less strong

� Picture less clear when measuring quality in addition to coverage (�
question of trade-off),
in particular when planning with action costs

E. g. cost-insensitive variant of FF heuristic dominates cost-sensitive
one in terms of the IPC 2008 criterion (Richter & Westphal, 2010)

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 6 / 7

Optimal Planning

Optimal Planning: Conclusion

� Landmark heuristics like hLA and hLM-cut shown to outperform
additive hmax and abstraction heuristics like PDBs and M&S (under
typical competition conditions)

� Theoretical results show M&S has the power to be more informative
than PDBs and landmark heuristics, while additive hmax ∼ landmarks
(Helmert & Domshlak, 2009)

� But worth keeping in mind that higher accuracy does not necessarily
pay off when time is limited

Emil Keyder, Silvia Richter Heuristics: 7. Final Comments June 2011 7 / 7

Heuristics for Domain-Independent Planning

References

Emil Keyder Silvia Richter

Based partially on slides by Carmel Domshlak and Malte Helmert

ICAPS 2011 Summer School on Automated Planning and Scheduling

June 2011

Emil Keyder, Silvia Richter Heuristics: References June 2011 1 / 21

About This List

� This list is meant to be focused, not comprehensive

� It is a somewhat subjective mix of papers we consider important and
relevant to the tutorial topic

� Relevant papers might be missing because we forgot about them or
do not know them

Emil Keyder, Silvia Richter Heuristics: References June 2011 2 / 21

References: Past Tutorials

Carmel Domshlak and Malte Helmert
Planning as Heuristic Search
ICAPS 2009 Summer School.
Focus on admissible heuristics, basis of several parts of this tutorial.

Emil Keyder and Blai Bonet.
Heuristics for Classical Planning (With Costs).
ICAPS 2009 tutorial.
Emphasis on inadmissible heuristics based on delete relaxation.

Erez Karpas and Silvia Richter.
Landmarks - Definitions, Discovery Methods and Uses.
ICAPS 2010 tutorial.
Basis of the first landmark part of this tutorial.

Emil Keyder, Silvia Richter Heuristics: References June 2011 3 / 21

References: Delete Relaxation

Blai Bonet and Héctor Geffner.
Planning as Heuristic Search.
Artificial Intelligence 129(1):5–33, 2001.
A foundational paper on planning as heuristic search.
Introduces max heuristic and additive heuristic.

Jörg Hoffmann and Bernhard Nebel.
The FF Planning System: Fast Plan Generation Through Heuristic
Search.
JAIR 14:253–302, 2001.
Introduces FF and the FF heuristic.

Emil Keyder, Silvia Richter Heuristics: References June 2011 4 / 21

References: Delete Relaxation (ctd.)

Emil Keyder and Héctor Geffner.
Heuristics for Planning with Action Costs Revisited.
Proc. ECAI 2008, pp. 588–592, 2008.
Introduces cost-sensitive FF/additive and set-additive heuristics.

Emil Keyder and Héctor Geffner.
Trees of Shortest Paths vs. Steiner Trees: Understanding and
Improving Delete Relaxation Heuristics.
Proc. IJCAI 2009, pp. 1734–1739, 2009.
Introduces Steiner tree heuristic, improving the accuracy of
inadmissible delete relaxation heuristics.

Emil Keyder, Silvia Richter Heuristics: References June 2011 5 / 21

References: Delete Relaxation (ctd.)

Yaxin Liu, Sven Koenig and David Furcy.
Speeding Up the Calculation of Heuristics for Heuristic Search-Based
Planning.
Proc. AAAI 2002, pp. 484–491, 2002.
Discussion of different methods for computing delete relaxation
heuristics.

Emil Keyder, Silvia Richter Heuristics: References June 2011 6 / 21

References: Landmarks

Jörg Hoffmann, Julie Porteous and Laura Sebastia.
Ordered Landmarks in Planning.
JAIR 22:215–278, 2004.
Journal version of the first landmarks paper.

Silvia Richter and Matthias Westphal.
The LAMA Planner: Guiding Cost-Based Anytime Planning with
Landmarks.
JAIR 2010, pp. 127–177, 2010.
Describes the landmark-counting heuristic and compares cost-sensitive
vs. cost-insensitive variants of the FF heuristic.

Erez Karpas and Carmel Domshlak.
Cost-Optimal Planning with Landmarks.
Proc. IJCAI 2009, pp. 1728–1733, 2009.
Introduces admissible landmark heuristics based on cost partitioning.

Emil Keyder, Silvia Richter Heuristics: References June 2011 7 / 21

References: Landmarks (ctd.)

Emil Keyder, Silvia Richter, and Malte Helmert.
Sound and Complete Landmarks for AND/OR Graphs.
Proc. ECAI 2010, pp. 335–340, 2010.
Complete landmark finding and landmarks beyond the delete
relaxation.

Malte Helmert and Carmel Domshlak.
Landmarks, Critical Paths and Abstractions: What’s the Difference
Anyway?
Proc. ICAPS 2009, pp. 162–169, 2009
Introduces the landmark cut heuristic.

Blai Bonet and Malte Helmert.
Strengthening Landmark Heuristics via Hitting Sets.
Proc. ECAI 2010, pp. 329–334, 2010.
Improving the accuracy of the landmark cut heuristic.

Emil Keyder, Silvia Richter Heuristics: References June 2011 8 / 21

References: Critical Path

Patrik Haslum and Hector Geffner
Admissible Heuristics for Optimal Planning.
Proc. AIPS 2000, pp. 140–149, 2000.
Introduces critical path heuristics.

Patrik Haslum
hm(P) = h1(Pm): Alternative Characterisations of the Generalisation
From hmax to hm.
Proc. ICAPS 2009, pp. 354–357, 2009.
Introduces Pm compilation.

Emil Keyder, Silvia Richter Heuristics: References June 2011 9 / 21

References: Pattern Databases

Stefan Edelkamp.
Planning with Pattern Databases.
Proc. ECP 2001, pp. 13–24, 2001.
First paper on planning with pattern databases.

Stefan Edelkamp.
Symbolic Pattern Databases in Heuristic Search Planning.
Proc. AIPS 2002, pp. 274–283, 2002.
Uses BDDs to store pattern databases more compactly.

Emil Keyder, Silvia Richter Heuristics: References June 2011 10 / 21

References: Pattern Databases (ctd.)

Patrik Haslum, Blai Bonet and Héctor Geffner.
New Admissible Heuristics for Domain-Independent Planning.
Proc. AAAI 2005, pp. 1163–1168, 2005.
Introduces constrained PDBs.
First pattern selection methods based on heuristic quality.

Stefan Edelkamp.
Automated Creation of Pattern Database Search Heuristics.
Proc. MoChArt 2006, pp. 121–135, 2007.
First search-based pattern selection method.

Emil Keyder, Silvia Richter Heuristics: References June 2011 11 / 21

References: Pattern Databases (ctd.)

Patrik Haslum, Malte Helmert, Adi Botea, Blai Bonet and Sven
Koenig.
Domain-Independent Construction of Pattern Database Heuristics for
Cost-Optimal Planning.
Proc. AAAI 2007, pp. 1007–1012, 2007.
Introduces canonical heuristic for pattern collections.
Search-based pattern selection based on Korf, Reid & Edelkamp’s
theory.

Marcel Ball and Robert C. Holte.
The Compression Power of Symbolic Pattern Databases.
Proc. ICAPS 2008, pp. 2–11, 2008.
Detailed empirical analysis showing benefits of symbolic BDDs over
explicit-state BDDs.

Emil Keyder, Silvia Richter Heuristics: References June 2011 12 / 21

References: Merge & Shrink

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions
(for model-checking).

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.

Emil Keyder, Silvia Richter Heuristics: References June 2011 13 / 21

References: Merge & Shrink (ctd.)

Raz Nissim, Jörg Hoffmann, and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time: On Bisimulation
and Merge-and-Shrink Abstraction in Optimal Planning.
Proc. IJCAI 2011, 2011.
New stragies for computing merge-and-shrink abstractions.

Emil Keyder, Silvia Richter Heuristics: References June 2011 14 / 21

References: Structural Patterns

Michael Katz and Carmel Domshlak.
Structural Patterns Heuristics via Fork Decomposition.
Proc. ICAPS 2008, pp. 182–189, 2008.
Introduces structural-pattern abstractions, and studies
fork-decomposition structural patterns.

Michael Katz and Carmel Domshlak.
Structural-Pattern Databases.
Proc. ICAPS 2009, pp. 186–193, 2009.
Introduces structural-pattern databases, making the idea of
fork-decomposition practical.

Carmel Domshlak, Michael Katz and Sagi Lefler
When Abstractions Met Landmarks
Proc. ICAPS 2010, pp. 50–56, 2010.
Improving abstraction heuristics with landmark information.

Emil Keyder, Silvia Richter Heuristics: References June 2011 15 / 21

References: Causal Graph Heuristics

Malte Helmert.
A Planning Heuristic Based on Causal Graph Analysis.
Proc. ICAPS 2004, pp. 161–170, 2004.
Introduces causal graph heuristic.

Malte Helmert and Héctor Geffner.
Unifying the Causal Graph and Additive Heuristics.
Proc. ICAPS 2008, pp. 140–147, 2008.
Introduces context-enhanced additive heuristic, combining the features
of the causal graph and additive heuristics.

Dunbo Cai, Jörg Hoffmann and Malte Helmert
Enhancing the Context-Enhanced Additive Heuristic with Precedence
Constraints
Proc. ICAPS 2009, 2009.
Explores precedence relations in the context enhanced additive
heuristic.

Emil Keyder, Silvia Richter Heuristics: References June 2011 16 / 21

References: Heuristic Performance

Malte Helmert and Gabriele Röger.
How Good is Almost Perfect?
Proc. AAAI 2008, pp. 944–949, 2008.
Shows that optimal planning is hard even with almost perfect
heuristics differing from h∗ by an additive constant.

Malte Helmert and Robert Mattmüller.
Accuracy of Admissible Heuristic Functions in Selected Planning
Domains.
Proc. AAAI 2008, pp. 938–943, 2008.
Introduces asymptotic accuracy of admissible heuristics.

Emil Keyder, Silvia Richter Heuristics: References June 2011 17 / 21

References: Search Enhancements

Jörg Hoffmann and Bernhard Nebel.
The FF Planning System: Fast Plan Generation Through Heuristic
Search.
JAIR 14:253–302, 2001.
Introduces relaxed plans and helpful action pruning.

Vincent Vidal.
A Lookahead Strategy for Heuristic Search Planning.
In Proc. ICAPS 2004, pp. 150–159, 2004.
Takes helpful actions further with relaxed plan macros.

Malte Helmert.
The Fast Downward Planning System.
JAIR 26:191–246, 2006.
Introduces preferred operators, alternating multi-queue search, and
delayed evaluation for systematic best-first search algorithms.

Emil Keyder, Silvia Richter Heuristics: References June 2011 18 / 21

References: Search Enhancements (ctd.)

Silvia Richter and Malte Helmert.
Preferred Operators and Deferred Evaluation in Satisficing Planning.
Proc. ICAPS 2009, pp. 273–280, 2009.
Empirical evaluation of various strategies for preferred operators.

Gabriele Röger and Malte Helmert.
The More, the Merrier: Combining Heuristic Estimators for Satisficing
Planning.
Proc. ICAPS 2010, pp. 246–249, 2010.
Empirical evaluation of various strategies for combining several
heuristics.

Emil Keyder, Silvia Richter Heuristics: References June 2011 19 / 21

References: Heuristic Analysis & Comparison (ctd.)

Michael Katz and Carmel Domshlak.
Optimal Additive Composition of Abstraction-based Admissible
Heuristics.
Proc. ICAPS 2008, pp. 174–181, 2008.
Introduces action cost partitioning, and proves tractability of optimal
partitions for (numerous types of) abstractions.

Malte Helmert and Carmel Domshlak.
Landmarks, Critical Paths and Abstractions: What’s the Difference
Anyway?
Proc. ICAPS 2009, pp. 162–169, 2009.
Uses cost partitioning to prove formal compilability results between
various classes of heuristics.

Emil Keyder, Silvia Richter Heuristics: References June 2011 20 / 21

References: Heuristic Analysis & Comparison

Jörg Hoffmann.
Where Ignoring Delete Lists Works, Part II: Causal Graphs
Proc. ICAPS 2011, 2011.
Automated analysis of delete-relaxation heuristics on different
domains.

Emil Keyder, Silvia Richter Heuristics: References June 2011 21 / 21

	Planning as Search
	Heuristics
	Problem Representation

