Robust Model-based Execution (1) :
Coordination and Dynamic Scheduling

Contributions:
Patrick Conrad
Sahnnon Dong
Andreas Hofmann

Robert Morris

i o 4 Prof Brian Williams, MIT
icola Muscettola
e 4 ; ACAI| Summer School on

David Smith Tt Automated Planning and Scheduling
s June 7th, 201 |

courtesy of JPL

Readings

N=h=

Model-based Emhedded & Robotic Systems

Ill. e 2
I l Massachusetts Institute of Technology TCSAIL

Google “MIT OCW 16.412 Cognitive Robotics”
mers.csail.mit.edu, click “Publications”
Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, 49, pp. 61-95,1991.

Muscettola, N., P. Morris and I. Tsamardinos, “Reformulating Temporal Plans for Efficient Execution.” Intl
Conf. on Knowledge Representation and Reasoning (KRR), 1998.

Shah, J.; Stedl, J.;Williams, B.; and Robertson, P. 2007. A Fast Incremental Algorithm for Maintaining
Dispatchability of Partially Controllable Plans.

P. Morris, N. Muscettola and T Vidal,” Dynamic Control of Plans with Temporal Uncertainty,” in Proc. Int.
Joint Conf. on Al, 2001.

. Léauté and B. C. Williams, "Coordinating Agile Systems Through the Model-based Execution of
Temporal Plans," Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05),
Pittsburgh, PA, July 2005, pp. 114-120.

A. G. Hofmann and B. C. Williams, "Exploiting Spatial and Temporal Flexiblity for Plan Execution of
Hybrid, Under- Actuated Systems," Proceedings of the 21st National Conference on Artficial Intelligence,
Boston, MA, July 2006, pp. 948-955.

Tsamardinos, |.; Pollack, M.; and Ganchev, P. 2001. Flexible dispatch of disjunctive plans. In 6th
European Conference on Planning, 417—-422.

P. Conrad, J. Shah and B. Williams, “Flexible Execution of Plans with Choice,” Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS 09), Thessaloniki, Greece,

September 20009.

Julie Shah, Patrick Conrad, and Brian C. Williams, "Fast Distributed Multi-agent Plan Execution with

DP/namic Task Assignment and Scheduling," Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 09), Thessaloniki, Greece, September 2009.

Robust, Model-based Execution (1):
n=r= _ Coordination and Dynamic Scheduling

 Robust, model-based execution of time critical tasks.
— Case Study: Remote Agent.
— Case Study: Personal Transport System.

* Task coordination through dynamic scheduling.

* Task coordination for under-actuated systems.

* Task coordination for multi-robot systems.

i 3 G
" Massachusetts Institute of Technology TCSAIL

Time Critical Tasks

l=ih=

Model-based Emhedded & Robotic Systems

RO
I" l l Massachusetts Institute of Technology 4

Time Critical Tasks

N=h=

Model-based Emhedded & Robotic Systems

Massachusetts Institute of Technology

An effective Scrub Nurse:

works hand-to-hand, face-to-face with surgeon,
assesses and anticipates needs of surgeon,
provides assistance and tools in order of need,
responds quickly to changing circumstances,

responds quickly to surgeon’s cues and requests.

[Shah and Will{ﬂys]

TCSAIL

Model-based Execution

l=ih=

Model-based Emhedded & Robotic Systems

The development of autonomous systems that robustly
perform complex tasks.

* Goal-directed: Tasks described qualitatively in terms of time-
evolved goals.

* Real-time Decisions: Tasks executed using real-time decision
making algorithms, based on observations.

* Model-based: Operates on heterogeneous models of the robot,
user and environment.

l RO
l I l l Massachusetts Institute of Technology 6

Remote Agent Experiment on
Deep Space One

courtesy of JPL

l=ih=

Model-based Emhedded & Robotic Systems

1/16/11

Loss of Mars Observer, early 90°s

copyright Brian C. Williams

RO
I'l I l Massachusetts Institute of Technology 8

* |

ks
1/16/11

Autonomy Demonstration
m=r= on Simulated Cassini Probe

!
- 1/16/11

Remote Agent on Deep Space One

l=ih=

Model-based Emhedded & Robotic Systems

Goals

Remote Agent

Mission

Executive
Manager

Planner/

Scheduler Diagnosis
& Repair

1. Commanded by giving goals

2. Reasoned from
commonsense models

3. Closed loop on goals

- -
I'I I l Massachusetts Institute of Technology 11

[Williams & Nayak, AAAI 95;
Musccttola et al,Al] 00] .,

CCCCC

Goal: Set engine to thrusting for lhr...

!IHIIT=IH_E\§I 0 & Robotic §

Reconfigures Modes

i, Reconfigures Modes i Estimates Modes . -

CCCCC

Approach: Model-based Programming and Execution

l=ih=

Model-based Emhedded & Robotic Systems

— An embedded programming language
clevated to operations on hidden state, and

— A language executive that achieves robustness by
reasoning over constraint-based models.

Today: Coordination and dynamic scheduling.

Wednesday: Model-based programming with hidden state.

RO
lll l l Massachusetts Institute of Technology 1 3

ﬁg& Model-based Execution has been MERS
csait applied to a diverse set of robotic systems.

- |
|

UREROSNE
LLLTTE
150931y

=TT

@%ﬁ A Robot Air Taxi Driver #érs

‘P.'aldcr-. Lynn

Meds :
-
NN

Newlon©

W althamm

| e,
Storm Area S
’\:Iincc10\vn

Truro

;-Attlcboro
v_.Pawtuckcl
o O) :
vidence Eastham
ranstcnu
Yarmouth
Port oot
S © Sy
Warwick Fall River Yanear A
Chatham

Nows

ﬁ;@ X Plane Simulation of Personal
IR Transportation System (PTS)

MERS

Movie M!?

Robust, Model-based Execution (1):
n=r= _ Coordination and Dynamic Scheduling

Robust, model-based execution of time critical tasks.

Task coordination through dynamic scheduling.
— Representing plans and temporal relationships.
— Scheduling based on decomposability.
— Dynamic scheduling.

— Dynamic scheduling with models of uncertainty.

Task coordination for under-actuated systems.

Task coordination for multi-robot systems.

18

i 18 G
" Massachusetts Institute of Technology TCSAIL

_— Robust Program and Plan Execution

Model-based Emhedded & Robotic Systems

imageScienceTargets(Rover1, Rover2)

{Parallel

{Sequence
[5,10] Rover1.goto(p4);
[5,10] Rover1.goto(p5);
[2,5] R¢ver1.imageTargets();
[5,10] Rover1.goto(p3);

5,10] Rover2.goto(p3);

in RMPL [williams et al]

Start @ > @ @ End
; Rover1.goto(p4) Rover1.goto(p5) Rover1.imageTargets Rover1.goto(p3)
o ‘9@

/

@ O O Q 6

Rover2.goto(p1) Rover2.imageTargets Rover2.goto(p2) Rover2.goto(p3)

Agents adapt to temporal disturbances in a coordinated manner
by scheduling the start of activities on the fly.

i 19
" Massachusetts Institute of Technology TCSAIL

To Execute a Temporal Plan

Schedule Off-line Schedule Online

|. Describe Temporal Plan |. Describe Temporal Plan
2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

offline

online

4. Execute Plan

4. Dynamically Schedule Pla

i 20 8
Il massachusetts Institute of Technology TCsAIL

Outline: To Execute a Temporal Plan

!Idllrzlll_i\% il & Robotic System

Part | : Schedule Off-line Part II: Schedule Online

|. Describe Temporal Plan |. Describe Temporal Plan

2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

online

4. Execute Plan 4. Dynamically Execute Plan

RO
g
lll] Massachusetts Institute of Technology 21 *chiA‘] L

Describe Temporal Plan

N=h=

Model-based Emhedded & Robotic Systems

* Activities to perform

* Relationships among activities

/[Remove NH3 Shunt]4’[Vent NH3 Shunt & Stow]—’[Release Loop A Tray]

[Egress/ Setup

Configure Vent Tools]_’[Fluid Caps]—’[SFU Reconfig]_’[Release Loop B Tray]

~—
Il = =
~t

e W
lll I l Massachusetts Institute of Technology 22 gcg;:l L

Time Lines

l=ih=

Model-based Emhedded & Robotic Systems

Example: Deep Space One Remote Agent Experiment

Timer
Idk
|
SEP &gk contained_by
dle Sdg I1dl¢ $¥e
contained_by : |
| — contained_b |
Accum thl‘l.ls I
Bo da 2 A (0 da
I equals quats I
- |
SEPActlo{ s :
Standby Thrust Standby Thrust Thrust | Thrust Standby
: Start_Up Shut_Down Start_Up (@ta. edgb Sh@ :
Attitude | Tve) |
| Pok

l RO
l I l l Masgachusetts Institute of Technology

23

CCCCC

Temporal Plan Networks

l=ih=

Model-based Emhedded & Robotic Systems

Nested Compositions: gﬁ i\.
\. @ " @

(non-deterministic programs)

* Activity \

e ° s
equence [Kim, Williams, Abramson, |JCAIO |]

 Parallel N

e Choice

e With Time

RO
lll l l Massachusetts Institute of Technology 24

Qualitative State Plans

l=ih=

Model-based Emhedded & Robotic Systems

00:00 Go to x,,y,

00:20 Go to x,,y,
00:40 Go to x;,y,

04:10 Goto x,,y,

Command script

RO
lll l l Massachusetts Institute of Technology

25

Leaute & Williams, AAAI 05

ke

Qualitative State Plans

l=ih=

Model-based Emhedded & Robotic Systems

RO
I" l l Massachusetts Institute of Technology

“Remain in mapping region for at least
100s, then remain in bloom region for at
least 50s, then return to pickup region.

Avoid obstacles at all times”
Qualitative State Plan

;

Model-based Executive

26

Leaute & Williams, AAAI 05

T CSAIL

Qualitative State Plans

Hllllﬂl based EITIIIEIIIIGII & Robotic Systems

A temporal plan whose activities impose constraints on system state.

[0,300]

d [50, 70] i
: aln in-
@ |
\ N /h.
[Remain in [safe region] }
- P YPPEERREET .
“Remain in bloom region for between 50

and 70 seconds. Afterwards, rer‘ﬁa‘g"n n
mapping region for bez‘ween 40S and, 5 OS

at all times. Complete the mission wzthm
300s™

Approach Frame as Model-Predictive Control 7
using Mixed Logic or Integer / Linear Programming |
rﬁ"_ﬂ t

. Leaute & Williams, AAAI 05
i 27 B,

Massachusetts Institute of Technology

Temporal Relationships

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

Qualitative Temporal Relations [Allen 83]

Y met-by X
Y overlapped-by X

Y contains X

Y started-by X

Y finished-by X

Xequals Y - Y equals X

X disjoint Y

e
Illll Massachusetts Institute of Technology 28

CCCCC

Temporal Relationships

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

Simplify by reducing interval relations to
relations on timepoints.

Start Activity A End Activity A

- a5
Ill ' ' Massachusetts Institute of Technology 29 TCSAIL

Temporal Relationships

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

Qualitative Temporal Relationships as timepoint inequalities

0,i
Xbvefore v [N N %< (COTHY
ey ooy
Y- < X*and X <Y*
Y- < X and X* <Y*
X =Y and X* <Y*
X <Y and X* =Y*

Xequals Y - X =Y and X* =Y*

X disjoint Y X*<Y orY*<X

i o
Illll Massachusetts Institute of Technology e

Metric Temporal Relations

!nld!lﬁeld_i\m%eﬂ & Robotic Systems

Add Metric Information:

« Going to the store takes at least 10 min and at
most 30 min.

[10min, 30min]

* Bread should be eaten within one day of baking.

v | 1 i

I - -
I '" Massachusetts Institute of Technology 3 1

CCCCC

Metric Temporal Relations

!nld!lﬁeld_i\m%en & Robotic Systems

Add Metric Information: inequalities =» interval constraints

« Going to the store takes at least 10 min and at

most 30 min.
[10,30]
e 10 < [G*-G] <30
Start Going to Store End Going to Store

* Bread should be eaten within one day of baking.

End Bake Bread Start Eat Bread

lll Il massachusetts Institute of Technology 32 *cjsiiu L

Temporal Relations Described by a STN

l=ih=

Model-based Emhedded & Robotic Systems

* Simple Temporal Network

* variables X|,...X, representing
timepoints with real-valued
domains,

* binary constraints of the form:

(Xk _Xi>e[aik’bik]

— called links.

Sufficient to represent:
e all Allen relations but 1...
* simple metric constraints

RO
I" l l Massachusetts Institute of Technology 33

[Dechter, Meiri, Pearl 91]

Can’t represent:
* Disjoint activities

CCCCC

Temporal Relations Described by a TCN

l=ih=

Model-based Emhedded & Robotic Systems

* Temporal Constraint Network [Pechter, Meirl, Pearl 311

(TCN) [, u TV [l u,]V... V]I u.]

* Extends STN by allowing multiple @ =®

intervals for each binary constraint
(link):

(Xk - X,)EP({[aikabik]| Qg Sbik})

Supports: [5, 71V [10, 1] %
*Multiple time windows for accomplishing an @ @
activity.

Different methods of accomplishing an activity.

RO
l'l l l Massachusetts Institute of Technology 34

Temporal Relations Described by a DTN

l=ih=

Model-based Emhedded & Robotic Systems

* Disjunctive Temporal Network (DTN)

* Extends TCN by allowing non-binary constraints.

Activities of Mars Rover: Drill (D) , Image (I), Send Data (S)

[0, inf] [5, 10] [0, inf] [4, 5]
@ =@ Drill =@ =@ Send data @
|
[|5’|5] ”’J\\\ [O,Inf]
@*’ Image\

[1, 1]
Drilling causes vibration.
Image cannot occur 2<D*"-I"<inf
* during the last two minutes before drilling, or OR

| <I--D*<inf

* during the first minute after drilling ends.

RO
I" l l Massachusetts Institute of Technology 35

CCCCC

- A Hierarchy of Temporal Relations

Model-based Emhedded & Robotic Systems

DTN -non-binary constraints

-multiple intervals in constraints

- binary constraints
TCN !

-multiple intervals

STN

- binary constraints

-simple intervals

Tsamardinos, Pollack, M. Ganchev, ECP 01]
[Shah, Conrad, Williams ICAPS 09]
[Conrad,Shah, Williams ICAPS 09]

I I I l Massachusetts Institute of Technology 36 tcs ;\‘Vu L

Outline: To Execute a Temporal Plan

!IHIIT=IH_E\§I 0 & Robotic §

Part | : Schedule Off-line

110 G- 111]

|. Describe Temporal Plan A
091 O 2]

s

2. Test Consistency

3. Schedule Plan

online

4. Execute Plan

RO ~1
lll I l Massachusetts Institute of Technology 37 rJCJS—:I L

Consistency of an STN

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

Input: An STN <X, C> where C, = <<X,, X><a,b>>

110]_@)-[11]
A

091 (€ 22]

CY

Output: True iff there exists an assignment to
X satisfying C.

ir 38 igiH
" Massachusetts Institute of Technology TCSAIL

L Map STN to Distance (D-)Graph

Model-based Emhedded & Robotic Systems

Constraint Graph Distance Graph

 Upperbound mapped to outgoing, non-negative arc.
 Lowerbound mapped to incoming, negative arc.

[Dechter, Meiri, Pearl 91]

- o
lll Il massachusetts Institute of Technology 39 :c/jsﬁfu L

Check D-Graph Consistency

!nld!lﬁeld_i\m%en & Robotic Systems

« consistent iff d-graph has no negative cycles.

* Detect by computing shortest path from one node to all other
nodes.
« Single Source Shortest Path (SSSP).

Example of inconsistent constraint:

—p G ®

Constraint Graph Distance Graph

- o
||I Il massachusetts Institute of Technology 40 chsiku L

Outline: To Execute a Temporal Plan

!IHIIT=IH_E\§I 0 & Robotic §

Part | : Schedule Off-line

110 G- 111]

|. Describe Temporal Plan A
091 O 2]

2. Test Consistency

3.Schedule Plan \ |

offline

online

4. Execute Plan

[Dechter, Meiri, Pearl 91]

RO
lll] Massachusetts Institute of Technology 41 Lc SAIL

Scheduling

l=ih=

Model-based Emhedded & Robotic Systems

[40,50]

[10,20] [30,40]

[60,70]
ldea: Expose Implicit Constraints of STN =» Schedule

* |nput: STN
* Output: “Decomposable” (Implied) STN
Algorithm: All-Pairs-Shortest-Path (APSP) of D-graph (Floyd-Warshall).

RO
lll l l Massachusetts Institute of Technology 42

Scheduling without Search:
N=is Solution by Decomposition

Model-based Emhedded & Robotic Systems

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.
Key ideas

* Incrementally tighten feasible intervals,
as commitments are made. [40,50]

 Perform on demand.

[10,20] [30,40]

[20,30]

[40,50]

[60,70]

RO
lll l l Massachusetts Institute of Technology 43

Scheduling without Search:
N=is Solution by Decomposition

Model-based Emhedded & Robotic Systems

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.
Key ideas

* Incrementally tighten feasible intervals,
as commitments are made. [40,50]

 Perform on demand.

. Select value for X0

[40,50]

[60,70]

RO
lll l l Massachusetts Institute of Technology 44

Scheduling without Search:
N=is Solution by Decomposition

Model-based Emhedded & Robotic Systems

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.
Key ideas

* Incrementally tighten feasible intervals,
as commitments are made. [40,50]

 Perform on demand.

1 Select value for X0 [10,20]

[10,20] [30,40]

. Select value for Ls,
consistent with X0

[40,50]

[60,70]

l RO
l I l l Massachusetts Institute of Technology 45

Scheduling without Search:
N=is Solution by Decomposition

Model-based Emhedded & Robotic Systems

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.
Key ideas

* Incrementally tighten feasible intervals,
as commitments are made. [40,50]

 Perform on demand.

[45,50]

. Select value for X0

. Select value for Ls,
consistent with X0

. Select value for Le,
consistent with X0, Ls

[40,50]

[60,70]

RO
lll l l Massachusetts Institute of Technology 46

Scheduling without Search:
N=is Solution by Decomposition

Model-based Emhedded & Robotic Systems

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.
Key ideas

* Incrementally tighten feasible intervals,
as commitments are made. [40,50]

 Perform on demand.

. Select value for X0

. Select value for Ls,
consistent with X0

. Select value for Le,
consistent with X0, Ls

[40,50]

[60,70]

l RO
l I l l Massachusetts Institute of Technology 47

To Execute a Temporal Plan

Part | . Schedule Off-line D Graph
[1,10] 9 1,1] \
|. Describe Temporal Plan @ O~ 4\/
[0.9] 122
2.Test Consistency \/ - Detect negative loops
4 (SSSP).
3. Schedule Plan \/ - APSP + Decomposition.
b _ _offline_
online

4. Execute Plan

RO
Alrag
lllll Massachusetts Institute of Technology 48 1'ch,t{] L

To Execute a Temporal Plan

l=ih=

Model-based Emhedded & Robotic Systems

Part | : Schedule Off-line Problem: delays and fluctuations in task

duration can cause plan failure.

|. Describe Temporal Plan .
Observation: temporal plans leave

room to adapt.

2. Test Consistency

Flexible Execution adapts through
dynamic scheduling [Muscettola et al]

— Assign time to event when
3. Schedule Plan exocuted.

— Guarantee that all constraints will
___________________________ be satisfied.

online _ schedule with low latency through
4. Execute Plan pre-compilation.

RO
lll l l Massachusetts Institute of Technology 49

To Execute a Temporal Plan

!IHIIT=IH_E\§I 0 & Robotic §

Part | : Schedule Off-line Part ll: Schedule Online

|. Describe Temporal Plan |. Describe Temporal Plan

2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

offline

online

4. Execute Plan

4. Dynamically Execute Plan

l RO
l I l l Massachusetts Institute of Technology 50

Multi-Robot Teamwork

Model-based Emhedded & Robotic Systems

e Off-nominal

* Partner adapts
in response to
teammate’s
failure.

CCCCC

51

Ill' e
Il massachusetts Institute of Technology

To Execute a Temporal Plan

l=ih=

Model-based Emhedded & Robotic Systems

[Muscettola, Morris, Tsamardinos KR98] Part II: Schedule Online

[110] (3)-L0,1]
@A |. Describe Temporal Plan

09 (S22

2. Test Consistency

(&1
(A "'] © 3. Reformulate Plan
[0,9]

t=3
6\0) Oy
[1,1]
0,91 ()
t=2

l RO
l I l l Massachusetts Institute of Technology 52

Dynamic Scheduling by Decomposition?

!nld!lﬁeld_i\m%en & Robotic Sy

Consider a Simple Example

Select executable timepoint and assign [2,11]
’

Propagate assignment to neighbors

- r .‘f‘— £l
lllll Massachusetts Institute of Technology 53 li—‘A‘rl L

Dynamic Scheduling by Decomposition?

!IHIIT=IH_E\§I 0 & Robotic §

Consider a Simple Example

Select executable timepoint and assign [2,11]
’

Propagate assignment to neighbors

RO ~1
lll I l Massachusetts Institute of Technology 54 rJCJS—:I L

l=ih=

Model-based Emhedded & Robotic Systems

Consider a Simple Example Uh oh!
C must be
* Select executable timepoint and assign [2,11] executed at t =2 in

* Propagate assignment to neighbors the past!

t=0 (D) [4, 4]

RO
l'l l l Massachusetts Institute of Technology 25

l=ih=

Model-based Emhedded & Robotic Systems

 How can we fix it?
— Assignments must monotonically increase in value
— Must respect induced orderings

12,11]

[4, 4]

l RO
l ' I l Massachusetts Institute of Technology 56

Dispatching Execution Controller

l=ih=

Model-based Emhedded & Robotic Systems

* How can we fix it?

— Assignments must monotonically increase in value

— Must respect induced orderings

 Execute an event when enabled and active

— A is enabled — Predecessors of A are scheduled.

— A is active — Current time is within bound of A

— Ais a predecessor of B if BA has
negative weight, (A - B < [-])
hence A + [+] <B.

iy &
l I" Massachusetts Institute of Technology 57 /b1

CCCCC

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E(nabled) =Time points w/o predecessors E = {A} Predecessors:
. S(cheduled) = {} A none
(cheduled) = S={) B AC
Repeat: C A
D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors

5. Add to E, all immediate neighbors that
become enabled

* TPx enabled if all +Ib edges
starting at TPv have their
destination in S.

- i
||I I l Massachusetts Institute of Technology 58 L

CCCCC

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={} Predecessors:
. S = {} A none
S:{A@t:O} B AC
Repeat: C A
D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

- - W
lll Il Massachusetts Institute of Technology 59 all sl

CCCCC

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={} Predecessors:
. S = {} A none
S:{A@t:O} B AC
Repeat: C A
D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

[0,10]

- o
||I Il massachusetts Institute of Technology 60 chsiku L

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={C} (notB,D) Predecessors:
. S = {} ’ A none
S:{A@t:O} B AC
Repeat: C A
D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

[0,10]

e W
lll Il massachusetts Institute of Technology 61 gcg;:l L

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={} Predecessors:
. S = {} A none
S = {A @ t=0 B AC
Repeat: C A

C@t:]} D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

e W
lll Il massachusetts Institute of Technology 62 allais]

CCCCC

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={} Predecessors:
. S = {} A none
S = {A @ t=0 B AC
Repeat: C A

C@t:]} D ABC

l. Wait until current time has advanced
such that some TP in E is active.

2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

- o
||I Il massachusetts Institute of Technology 63 chsiku L

STN Dispatching

!nld!lﬁeld_i\m%en & Robotic Systems
Initially:
. E = Time points w/o predecessors E={} Predecessors:
. S = {} A none
S = {A @ t=0 B AC
Repeat: C A

))) = D ABC
| Wait until current time has advanced C@t=1;

such that some TP in E is active.
2. Set TP’s execution time to current time.
3. Add TP to S.

Propagate time of execution to TP’s
immediate neighbors.

5. Add to E, all immediate neighbors that
become enabled.

* TPx enabled if all +Ib edges
starting at TPx have their
destination in S.

- o
||I Il massachusetts Institute of Technology 64 chsiku L

Part |I: Schedule Online

Outline: To Execute a Temporal Plan

|. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

4. Dynamically Execute Plan

RO
lll l l Massachusetts Institute of Technology

65

19 (o)-11)
®

09 (S22

(B)11
))
091 (S
offline
online 9 BP=
» N
[0,9]
t=2

¥¥¥¥¥¥

Issues In Flexible Execution

!nld!lﬁeld_i\m%en & Robotic Systems

 How do we minimize execution latency?
— ldentify and remove redundant edges.

[2,11]

[1,1]

& 2.2] k@

C C

- Two dispatchable forms with equivalent results.

RO
lll l l Massachusetts Institute of Technology 66

CCCCC

Temporal Reasoning with Uncertainty

Loc 1 .
Rover 1 o /_.- w X
Loc 2 Loc 4

aTT
[1,2] =Q [2,6]
. [2,17]
[1.2 Arrive at Arrive at Loc. 3 End Search &
Loc. 1 & Begin search Restart Traverse

Begi . S / i
T;%grsem [L,11] 'O [2,4] 18] s

Arrive at Arrive at Loc. 4 End Search &
Loc. 2 & Begin search Restart Traverse

Simple Temporal Network with Uncertainty (STNU).

RO
lll I l Massachusetts Institute of Technology 67

Definition of STNU

!IHIIT=IH_E\§I 0 & Robotic §

STNU is equivalent to a family of STNs (projections), one for
each allowed assignment to uncontrolled durations.

[2, 4]

[1,2]
D
3, 6]
1,21 . [22] [3, 3]

3@7@ 3@7@
[3, 6] [3, 6]

RO
lll l l Massachusetts Institute of Technology 68

[1, 2] [4, 4]

~._[3. 6] ;

To Execute a Temporal Plan with Uncertainty

!:ﬂ!lEGIﬂ_E\MEIGH & Robotic Systems

|. Describe Temporal Plan w Uncertainty

2. Test Consistency & Controllability

3. Reformulate for Execution

4. Execute

RO
Al
I"" Massachusetts Institute of Technology 69 15;&] L

Queries about STNUs

N=h=

Model-based Emhedded & Robotic Systems

e |sthe STNU consistent?

— Exists an assignment to executable time points consistent with some
outcomes for uncontrollable durations.

* |sthe STNU conftrollable?

— Exists assignments to executable time points
consistent with all outcomes for uncontrollable durations.

— Strong Controllability
« Assignment can be generated a priori.

— Dynamic Controllability

« Assignment can be generated online,
given observations of past uncontrollable durations.

[Morris, Muscettola, Vidal IJCAI 01]

e M’T
lll I l Massachusetts Institute of Technology 70 —CsAlL

Dynamic Scheduling through Dispatchable Execution

l=ih=

Model-based Emhedded & Robotic Systems

Temporal \\:
PITn 4 ﬁ
Reformulate i
—
R B offline
online

Observations of

Dispatcher bast events

'
Generate dynamic
schedule
- A h
I'I " Massachusetts Institute of Technology 71 L'iCASFAl L

Agh Operating JPL’s e

ceatt Athlete Lunar Rover

Commanded through time-stamped sequences,
similar to Spirit and Opportunity.

CSAIL

Reactive Model-based

Programming Language (RMPL)

Write Common
sense 1mstructions

MERS

method run ()
{
[1s,200s] sequence {
prepare limb(6) to attach gripper
human voice commands the limb
attach gripper to limb
prepare limp to pick up rock with gripper

parallel {
sequence {
human voice command the limb
close gripper on rock
2
sequence {
limb5 prepare limb (5) to receive bin
human voice commands the limb
¥
2

position rock over bin with gripper
ready bin for rock

load rock in bin

store bin for transport

Reactive Model-based
Programming Language (RMPL)

method run ()

[1s,200s] sequence {
prepare limb(6) to attach gripper
human voice commands the limb
attach gripper to limb
prepare limp to pick up rock with gripper

parallel {
sequence { H
Puman voice command th Compile to Temporal Plan Network
close gripper on rock
s’equence {
limb5 prepare limb (5) to receive bin
human voice commands the limb
h
b

position rock over bin with gripper
ready bin for rock

load rock in bin

store bin for transport

}
}
[Ib1,ub1] [Ib2,ub2] [Ib3,ub3] [Ib4,ub4]
limb6 prepare to human voice limb6 attach limb6 prepare to
attach gripper command limb6 gripper pick up rock

[Ib5,ub5] [Ib6,ub6]
human voice limb6 close
command limb6 gripper on rock

[Ib7,ub7] [Ib8,ub8]
Limb5 prepare to human voice
receive bin command limb5

[1b9,ub9] [Ib10,ub10] [Ib11,ub11] [Ib12,ub12]

limb6 position limb5 ready bin limb6 load rock limb5 store bin
rock over bin for rock in bin for transport

MERS

Demonstrate Learns tubes of valid
actions by example trajectories

MERS

CSAIL

Collaborate with
Verbal commands

Athlete Demonstration — July, 2009

Robust, Model-based Execution (1):
csait Coordination and Dynamic Scheduling

MERS

Robust, model-based execution of time critical tasks.

e ml

e

e

T'as!
I'as]

T'as]

K COOTIC

K coord

1nation through dynamic scheduling.

ination for under-actuated systems.

K coord

ination for multi-robot systems.

77

Dynamic Plan Execution for
Under-actuated Systems

[Hofmann, Williams AAAIO6]

Example: Describe Walking Tasks with Qualitative Poses

[Muybridge, 1955] Depicted gaits as sequences of distinct qualitative poses

:> Specify as temporal plan over qualitative states

Supported by NASA

Qualitative State Plan

Muybridge

\ [t_Ib, t_ub] . finish
J >
ecml
. left left cm=cm
I n p Ut . lf =9 toe-off heel-strike
Qualitative Lot C\ . H
Foot _| / B IfEl2
State Plan - ont I
7'f erl /Eae-off hheel-stnke
Foot > ' L rf er '\u
rf €rl

\ﬁg% Traditional biped control MERS
CSAIL]
tracks a reference trajectory

Optimal Trajectory

Initial State

@E& Executive achieves robustness by utilizingmers
“**""the flexibility of the Qualitative State Plan

Optimal Trajectory
Goal State Set

l\ .

Initial State

Executive achieves compliance by precomputing
all feasible trajectories, not just one!

Optimal Trajectory
Goal State Set

l\ .

Initial State

Initial State Set _
Trajectory Set

Feasible trajectories must
go through goal regions 1

1 1 r r 12
’ t
[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

fwd

lat

d*cM (M,
CP=CM - (r%()

[Hofmann & Williams, AAAI 06; ICAPS 06]

Feasible trajectories must
go through goal regions

Compile Time:
* Construct all feasible

trajectories (Flow Tubes).
* Learn tubes from examples.

fwd

12
[0,1.5]
| . | . t
- -
[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

CP=CM -

d*cm M,
dr (K)

[Hofmann & Williams, AAAI 06; ICAPS 06]

Feasible trajectories must
go through goal regions. 1 ’

11 r

[0,1.5]
Compile Time: R \ —

* Construct all feasible | oo oS nea koS 00d
trajectories (Flow Tubes).
 Learn tubes from examples.

Dynamics couples |,
through center of mass

* Construct all feasible
schedules for goals. X =

d*CM (M
cP=cm -3 (tatK)

[Hofmann & Williams, AAAI 06; ICAPS 06]

Agh Robustness Requires
Temporal Synchronization

Disturbance without . Disturbance with

temporal coordination temporal coordination

) ERS

CSAIL

T

Execution:

1. Select enabled tube.

2. Schedule goal arrival.

3. Execute control policy until goal achieved.

[Hofmann & Williams, AAAI 06; ICAPS 06]

) ERS

CSAIL
o Disturl?)ance :
R T At displaces s e
: trajectory ’
1 '
Execution:

1. Select enabled tube.

2. Schedule goal arrival.

3. Execute control policy until goal achieved.

4. If displaced from tube, adjust control parameters or schedule.

[Hofmann & Williams, AAAI 06; ICAPS 06]

>
Disturbance
L displaces |
R e ~trajectory —
: H H >

< . .

Execution:

1.

2.
3.
4

Select enabled tube.

Schedule goal arrival.

Execute control policy until goal achieved.

If displaced from tube, adjust control parameters or schedule.

e May require synchronization with other activities.

e If unschedulable, switch plan. [Hofmann & Williams, AAAI 06; ICAPS 06]

@%%L Compliance Results MERS

1 1 1 ’ ;
0 02 0.4 06 08 1

Lateral CM with push disturbance
-Blue —40N
- Green—-35N
- Black — 25N
- Red - Max allowed
displacement

Robust, Model-based Execution (1): MERS

csair Coordination and Dynamic SCthllliIlg

Robust, model-based execution of time critical tasks.

e ml

e Task coordination through dynamic scheduling.

s

» Task coordination for under-actuated systems.

e

* Task coordination for multi-robot systems.

92

@%ﬁu A Good Human Teammate "2

An effective Scrub Nurse:

« works hand-to-hand, face-to-face with surgeon,
« assesses and anticipates needs of surgeon,

— provides tools and assistance in order needed,
« responds quickly to changing circumstances,
« responds quickly to surgeon’s cues and requests. [Shah Ph D MIT]

To Execute a Temporal Plan

!:d!lﬁeld_i\mglen & Robotic Systems
Pa rt I I : SCh ed u Ie On I I ne DTN -non-binary constraints
-multiple intervals in constraints
. - binary constraintg
|. Describe Temporal Plan TCN multiple intervals
STN
. - binary constraints
2. Test Consistency simple intervas
3. Reformulate Exploit:
* Handling of Uncertainty
offline (STNU,TPNU, TCNU, DTNU).
_____________“___________F_ ° HandlingofChoice
oniine (TPN,TCN, DTN)
4. Dynamically Execute Tsamardinos, Pollack, M. Ganchev, ECP 01]
[Shah, Conrad, Williams ICAPS 09]
[Conrad,Shah, Williams ICAPS 09]
— fiks
I"l l Massachusetts Institute of Technology 94 @cj;j L

Multi-Robot Teamwork

N=hS

Model-based Embedded & Robotic Systems

Swap black striped ball \

* Right Robot picks up and
offers ball.

* Robots perform hand-to-hand

swap.

)

-

Swap red striped ball \

* Left Robot picks up and offers
ball.

Agents choose and

schedule activities

* Robots perform hand-to-hand

swap.

[(Someone) Remove one ball from red bin]

Remove one ball from red bin

&

Remove one ball from blue bin

Remove one ball from red bin

Remove one ball from pink bin

| A A . . A

Y P

Remove one ball from green bin

(O L2BIVRID S~ 05

tﬁnis

CSAIL

Multi-Robot Teamwork

e Off-nominal

* Partner adaptsin
response to
teammate’s
failure.

I L L]
l l" Massachusetts Institute of Technology CSAIL

Leader & Assistant

PENS.

Assistant waits to see what Leader will do before acting.

Assistant

Idea: model leader durations and assignments as uncontrollable (TP

L L]
|I| ' ' Massachusetts Institute of Technology
CSAIL

@Eﬁ Model-based Execution MERS

CSAIL

The development of autonomous systems that robustly
perform complex tasks.

* Goal-directed: Tasks described qualitatively in terms of time-
evolved goals.

» Real-time Decisions: Tasks executed using real-time decision
making algorithms, based on observations.

e Model-based: Operates on heterogeneous models of the robot,
user and environment.

Robust Model-based Execution (l1) :
Model-based Programming with Hidden State,

Contributions:
Sueng Chung
Johan de Kleer
Vineet Gupta
Mitch Ingham

Oliver Martin Prof Brian Williams, MIT

Pandu Nayak L ACAI Summer School on

Robert Gagno £ § Automated Planning and
G Scheduling

June 8th, 2011
courtesy of JPL

CSAIL

e Readings MERS

* Google “‘MIT OCW 16.412 Cognitive Robotics”
« mers.csail.mit.edu, click “Publications”

« Williams, B. C. et al., “Model-based Programming of Intelligent Embedded Systems and
Robotic Explorers," Proceedings of the IEEE 91, no. 1, Special Issue on Modeling and
Design of Embedded Software, pp. 212-237, 2003.

« B. C. Williams, M. Ingham, S. Chung, P. Elliott, and M. Hofbaur,"Model-based
Programming of Fault-Aware Systems," Al Magazine, vol. 24, no. 4, pp. 61-75, 2004.

« B. C. Williams, and R. Ragno, "Conflict-directed A* and its Role in Model-based
Embedded Systems," Special Issue on Theory and Applications of Satisfiability Testing,
Journal of Discrete Applied Math, January 2003.

» J. deKleer and B. C. Williams, "Diagnosing Multiple Faults," Artificial Intelligence,
32:100-117, 1987.

* Martin, O., B. C. Williams and M. Ingham, "Diagnosis as Approximate Belief State
Enumeration for Probabilistic Concurrent Constraint Automata", in Proceedings of the
Twentieth National Conference on Artificial Intelligence, Pittsburgh, PA, July 2005.

* Brian C. Williams and P. Pandurang Nayak, "A Reactive Planner for a Model-based
Executive," in Proceedings of the International Joint Conference on Artificial
Intelligence, 1997, pp. 1178-85.

« L. Blackmore, S. Funiak, and B. C. Williams, “A Combined Stochastic and Greedy
Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode
Transitions,” Journal of Robotic and Autonomous Systems, July, 2007.

Approach: Model-based Programming and Execution

— An embedded programming language
elevated to operations on hidden state, and

— A language executive that achieves robustness
by reasoning over constraint-based models.

Today: Coordination and dynamic scheduling.
Wednesday: Model-based programming with hidden state.

Robust, Model-based Execution (2):

MERS
csait Model-based Programming w Hidden States ©

* Model-based programming and execution.

» Control sequencing.

* Mode estimation.

* Mode reconfiguration and reactive planning.

MERS

e Mars Polar Lander Failure

Leading Diagnosis:
* Legs deployed during descent.

* Noise spike on leg sensors
latched by software monitors.

* Laser altimeter registers 50ft.

» Begins polling leg monitors to
determine touch down.

 Latched noise spike read as
touchdown.

* Engine shutdown at ~50ft.

. B

| Programmers are overwhelmed
Model-based Programming: by the bookkeeping of reasoning
Programming of fault-aware systems about unlikely hidden states

Systems that reason and

Fault Aware Systems: h
coordinate on the fly from models

Mission Storyboards

. . MERS
CsAlL Specity Evolving States
switch to
B inertial nav

- ———
-—-—
-
-
-
-

Mission Storyboards
csAlL Specify Evolving States

MERS

rotate to entry-orient
& hold attitude

= 7

Ju
R 2

@% Like Storyboards, Model-based Programs

MERS

csait Specify The Evolution of Abstract States

Embedded programs evolve actions
by interacting with plant sensors
and actuators:

» Read sensors

» Set actuators

Embedded Program

Obs Cntrl

S
Plant

Programmer maps between state
and sensors/actuators.

Model-based programs evolve
abstract states through direct
interaction:

 Read abstract state

* Write abstract state

Model-based
Embedded Program
4

S’
Model-based Executive
Obs | - _Cnrl
S
Plant

Model-based executive maps
between state and sensors/actuators.

Model-based Programming s

CSAIL of a Saturn Orbiter
Turn camera off and
engine on Orbitlnsert():

‘ ‘ do-watching (EngineA = Thrusting OR
EngineB = Thrusting)
parallel {
EngineA = Standby;
EngineB = Standby;
Camera = Off;
do-watching (EngineA = Failed)
when-donext (EngineA = Standby) AND
Camera = Off)
EngineA EngineB EngineA = Thrusting;
when-donext (EngineA = Failed AND
EngineB = Standby AND
]L/ Camera = Off)

EngineB = Thrusting}

Science Camera

The program assigns EngineA = Thrusting,
and the model-based executive

Oxidizer tank Fuel tank
Q Q £ 5 3 3
=] EEERELE;

Deduces that ‘g Plans actions ‘%

thrust is off, and to open
the engine is healthy six valves

Deduces that a valve

‘ failed - stuck closed
Prog: EngineB = Thrusting

*,,**ié ®-,

| |

T¥ ¥ Determines that valves TS EF EX
on the backup engine B
will achieve thrust, and

plans needed actions.

@ Plant Model.:
csa1 L Probabilistic Constraint Automata (PCA)

component modes...

described by finite domain constraints on variables...
guarded deterministic and probabilistic transitions

cost / reward & prior distribution

Engine Model Camera Model

(thrust = zero) AND Lk

. Off (power_in = zero) AND Ov Ov
(power_in = zero) (shutter = closed) Off

(thrust = zero) AND cmd md Failed
(power_in = nominal) 2 kv

Standby
standby- 0
(thrust = full) AND emd 0.01 v
(power_in = nominal) ?Zw;r;ig = nzjm'nal) AND On 20 v
Firing 2 Ly e e
one per component ... operating concurrently 1

[Williams & Nayak 95, Williams et al. 01]

£ Modeling Reactive Behavior MRS

CSAIL
Design Features RMPL constructs:
e state constraints e ¢[s]
e conditional execution e Ifc[s]nextA
e preemption * Unless c[s] next A
e full concurrency c AB
e [teration Always A
e Flexible time e [lLu]A
e Reward e Choose with reward
e Probability * Choose with probability

A generalization of TCC combinators

[Saraswat, Gupta, et al.] 12

June 5, 2011

Orbitinsert()::

RMP

parallel {

Open

Open

EngineB = Firing}

do-watching (EngineA = Firing OR

EngineB = Firing)

EngineA = Standby;

EngineB = Standby;

Camera = Off;

do-watching (EngineA = Failed)
when-donext (EngineA = Standby AND

Camera = Off)
EngineA = Firing;

when-donext (EngineA = Failed AND

EngineB = Standby AND
Camera = Off)

4 Un-
known

Closg

Stuck
closed

\ 0.01

Titan Model-based Executive

State estimates State goals

Observations Commands

inflow iff outflow

Plant

RMPL Model-based Program

Executes concurrently
Preempts

Asserts and queries states
Chooses based on reward

Titan Model-based Executive

State estimates State goals

g

AT
> ; "
Pla

Fire backup
engine

Valve fails
stuck closed

Mode Estimate (Belief State)

\ least cost reachable
First Action | goal state

/Optimal CSP:

arg min f(x)

s.t. C(x) 1s satisfiable

D(x) 1s unsatisfiable

\l

/

/arg min P,(YI Obs)

o

érvations

State estimates

State goals

=

s.t. W(X,Y) A O(m’) is consistent

/

=7
Plant s

arg max R (Y)
s.t. ¥(X,Y) entails G(X,Y)
s.t. W(X,Y) is consistent
\S.t. Y is reachable -

Variants on Probabilistic Constraint Automata
define a Family of RMPL Languages

Engine Model Camera Model

(thrust = zero) AND : Off ov 0v
(power_in = zero) Off O (power _in = zero)

off-

AND
standby- (shutter = closed) ('
cmd
2 kv cmd

0.01
—_—
standb 0.01 Failed
(thrust = zero) AND an = >
(power _in = nominal) y O tu;;%ﬁ' turnon-
standby- fire- cmd ol
cmd cmd T) :
il 0.01 0v (power_in = nominal)
20 v

(thrust = full) AND AND
(power_in = nominal) (shutter = open)

Firing

On

e Complex, discrete behaviors

* modeled through concurrency, hierarchy and timed transitions.
 Anomalies and uncertainty

* modeled by probabilistic transitions
* Physical interactions

e modeled by discrete and continuous constraints

Robust, Model-based Execution (2):
diza i

MERS
csa1L Model-based Programming w Hidden States

* Model-based programming and execution.
* Control sequencing.
* Mode estimation.

* Mode reconfiguration and reactive planning.

17

Orbitlnsert()::
do-watching (EngineA = Firing OR

RMI EngineB = Firing) Titan Model-based Executive

parallel {
EngineA = Standby;
EngineB = Standby;
Camera = Off;
do-watching (EngineA = Failed)

when-donext (EngineA = Standby AND
Camera = Off)

EngineA = Firing;

hen-d (EngineA = Failed AND C t l S
T =i ontrol Sequencer
Camera = Off)
EngineB = Firing}

State estimates State goals

System Model

Deductive Controller

Commands
b 18

Observations
June 5, 2011 Plant

Map RMPL to

csar. Hierarchical Constraint Automaton
MAINTAIN (EAR OR EBR)
Orbitlnsert():: —>
do-watching (EngineA = Firing OR
EngineB = Firing)
parallel {
EngineA = Standby; ‘
EngineB = Standby;
Camera = Off;
do-watching (EngineA = Failed) N MAINTAIN (EAF)
EAS AND CO
when-donext (EngineA = Standby AND ()
Camera = Off)
EngineA = Firing; EAS AND CO
when-donext (EngineA = Failed AND
EngineB = Standby AND (EAF AND EBS AND CO)
Camera = Off)
EngineB = Firing}
EAF AND EBS
AND CO
June 5, 2011 19

Executing Deterministic HCA

Given marking:

e Mark start locations of all newly marked composite
locations.

June 5, 2011

Executing Deterministic HCA

Given marking:

e Mark start locations of all newly marked composite
locations.

June 5, 2011

Executing Deterministic HCA

Given marking:

e Mark start locations of all newly marked composite
locations.

June 5, 2011

Executing Deterministic HCA

Given marking:

e Mark start locations of all newly marked composite
locations.

e Achieve goal constraints 0 of marked locations
(mode reconfiguration).

June 5, 2011

Executing Deterministic HCA

0 ={c.e}

d estimated

Given marking:

e Mark start locations of all newly marked composite
locations.

e Achieve goal constraints 0 of marked locations
(mode reconfiguration).

 Find enabled transitions of marked locations,
using model and observations (mode estimation).

Executing Deterministic HCA

Given marking:

Mark start locations of all newly marked composite
locations.

Achieve goal constraints 0 of marked locations
(mode reconfiguration).

Find enabled transitions of marked locations,
using model and observations (mode estimation).

Take enabled transitions.

Executing Deterministic HCA

Given marking:

Mark start locations of all newly marked composite
locations.

Achieve goal constraints 0 of marked locations
(mode reconfiguration).

Find enabled transitions of marked locations,
using model and observations (mode estimation).

Take enabled transitions.

Executing Deterministic HCA

Given marking:

Mark start locations of all newly marked composite
locations.

Achieve goal constraints 0 of marked locations
(mode reconfiguration).

Find enabled transitions of marked locations,
using model and observations (mode estimation).

Take enabled transitions.

Executing Deterministic HCA

Given marking:

Mark start locations of all newly marked composite
locations.

Achieve goal constraints 0 of marked locations
(mode reconfiguration).

Find enabled transitions of marked locations,
using model and observations (mode estimation).

Take enabled transitions.

Orbitlnsert()::

(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

(parallel

(EngineA = Standby)
(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND

(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

System Model

(EngineB = Firing))))

(EngineB = Standby) AND
(Camera = Off))

Stuck

0.01 closed

inflow iff outflow

State estimates

Observations

Plant

Optimal CSP:

Titan Model-based Executive

State goals

arg min f(x)

s.t. C(x) is satisfiable

D(x) is unsatisﬁable/

Robust, Model-based Execution (2):
Model-based Programming w Hidden States

Model-based programming and execution.
Control sequencing.
Mode estimation.

— Estimates and kernels.

— By divide and conquer (GDE).

— Likely estimates (Conflict-directed A*).

— Estimating probabilistic constraint automata

Mode reconfiguration and reactive planning.

31

MERS

CSAIL

* |

| ﬂ11'|.'.l|-:| "-' :_r_u._:ﬂ'
..-.E_“_:i;._ﬁ "_E Issues:

L

-------- - » Hidden failures
* Novel failures
1/16/11 copyright Brian C. Williams ° Multiple faults

Model-based Diagnosis

Input: Observations of a system with symptomatic behavior,
and a model © of the system.

Output: Diagnoses that account for the symptoms.

e

1/16/11

1

1
1
0

=

0

X

A2

|rn U|C')

Y

=)

A3

Z

X2

copyright Brian C. Williams

/

5

—

\

1
0

o

\

\

/

e I

Symptom

How Should Diagnoses
Account for Novel Symptoms?

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make
no presumption about faulty component behavior.

1 A N 1 . '/’1\\‘ Symptom
o,
1 BL 0 X1 AN
1 €1
— 1A2 Y
D
0 x2|—= 1 [deKleer & Brown, 83]
1 E__|A3 // [Davis, 84]

|Geneserth, 84]

1/16/11 copyright Brian C. Williams

Multiple Faults: Identify all Combinations
of Consistent “ Unknown Modes

And(1): 1
= G(1):

Out(i) = In1(i) AND In2(i) 1

= U(1): No Constraint 1

0

1

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}

« (Candidate: Assignment of G or U to each component.

X1

A

Al
BL
C :AZ
D
E A3

X2

10/25/10 copyright Brian Williams, 2000-10

36

Multiple Faults: Identify all Combinations
of Consistent “ Unknown Modes

And(1): 1 A Al x !
= G(1): | | | . B - F O
Out(1) = Inl1(1) AND In2(1) = 5
= U(i): No Constraint = - Y
, D — G
1
1 E A3 Z
Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}
« (Candidate: Assignment of G or U to each component.
« Diagnosis: Candidate consistent with model and observations.

10/25/10 copyright Brian Williams, 2000-10

37

Incorporating (Failure) Modes:
Mode Estimation

Sherlock
[de Kleer & Williams, IJCAI 89]

0. Ppo X Ppo Y Jpo .0

Inverter(1):

* G(): Out(i) = not(In(i))

* S1(): Out(i) = 1 .-)

« S0(): Out(i) = 0 SO atés unknown.
: e Explains.

« U(1):

Nominal, Fault and Unknown Modes

10/25/10 copyright Brian Williams, 2000-10 38

Summary: Mode Estimation

Input:
= Mode, State, Observation Variables: X,Y, OcY
= (QObs = assignment to O

= Model: ®(X,Y) = components + structure
And(1): A
: I — a1 1
G(1): X —
Out(i) =Inl1() AND In2(i) | B a (£ O
U(1): No Constraint { C % v 0
 All component behaviors are associated with 0 D[. __ G
modes. 1
* All components have “unknown Mode” U, | E A3 Z
whose assignment is never mentioned in any
constraint.

Output: All mode estimates:
Mg s ={X € D, 13Y € Dyst Obs A D(X,Y)}

10/25/10 copyright Brian Williams, 2000-10 41

Compact Encoding: Partial Diagnoses

VA=
Partial Diagnosis 1 S X[’
c|l~ __[,0
{A1=U, A2=U, X2=U} , ol 2 | G
1 E_ |3 Z I
Partial Diagnosis: Extensions (Diagnoses):
A partial mode assignment M, {Al=U, A2=U, A3=G, X1=G, X2=U}

{A1=U, A2=U, A3=G, X1=U, X2=U}
{A1=U, A2=U, A3=U, X1=G, X2=U}
{A1=U, A2=U, A3=U, X1=U, X2=U}

that “removes all symptoms.”
e All full extensions of M are diagnoses.
e @ A Obs is consistent.

e Mentails ® A Obs. (implicant)

10/25/10 copyright Brian Williams, 2000-10 43

Compact Encoding: Kernel Diagnoses

A ?
| - Xl F O
B Bl
Kernel Diagnosis 1 X1
cl= v 0
{A2=U, X2=U} ol o -
0 —_—
1
| E A3 Z

Partial Diagnosis:
A partial mode assignment M, that removes all symptoms.

* M entails ® A Obs. (implicant)
Kernel Diagnosis:
A partial diagnosis K, no subset of which is a partial diagnosis.

* K is a prime implicant of @ A Obs.

44

Robust, Model-based Execution (2):
Model-based Programming w Hidden States

* Model-based programming and execution.
* Control sequencing.
* Mode estimation.

— Estimates and kernels.

— By divide and conquer (GDE).

— Likely estimates (Conflict-directed A*).

— Estimating probabilistic constraint automata

* Mode reconfiguration and reactive planning.

46

Modes Estimation by
Divide and Conquer

Gi1ven model ® and observations Obs,

1. Find all symptoms. 1 conflict

2. Diagnose each symptom separately " Recognition
(each generates a conflict). _

3. Merge diagnoses Candidate
(set covering — kernel diagnoses). Generation

General Diagnostic Engine
[de Kleer & Williams, 87]

1/16/11 copyright Brian C. Williams

Conflicts Explain How to
Remove Symptoms

> 1 -
| A — N Symptom
X -
gy i
Ly
0 D - X2 G
1 E A3 Z

Symptom:
F is observed 0O, but predicted to be 1 if A1, A2 and X1 are okay.

Conflict 1: {A1=G, A2=G, X1=G} is inconsistent.
— One of A1, A2 or X1 must be broken.

Conflict: An inconsistent partial assignment to mode variables X.

10/25/10 copyright Brian Williams, 2000-10 48

Second Contlict

Conflicting modes aren’ t always
upstream from symptom.

Symptom: G 1s observed 1, but predicted 0.
Conflict 2: {A1=G, A3=G, X1=G, X2=G} 1s inconsistent.

— One of A1, A3, X1 or X2 must be broken.

10/25/10 copyright Brian Williams, 2000-10 49

Summary: Conflicts

A 1
1 :i X
p B "
g
0 2 i
| E_A3 7

Conflict: A partial mode assignment M that 1s
inconsistent with the model and observations.

Properties:
o ®AObs implies ~M

® Every superset of a conflict is a conflict.

* Only need conflicts that are minimal under subset.

10/25/10 copyright Brian Williams, 2000-10

Conflict Recognition: Propagating Environments

1 {A1=G} .
1{} X Conflict 1
A L — - pmm NS S oy — - |
Al / 1 {A1=G,A2=G X1=G}
N FO{}
X1
1{} —
C " 1{A1=G X1=G}
Bl Y 0{A 0{A:f=G}
1{} / 1{}
A A3 \ G 0 {A1=G,A3=G X1=G,X2=G}
-~ - - s s — -
1 {A3=G} .
General Diagnostic Engine v/ Conflict 2

[de Kleer & Williams, 87]

1/16/11 copyright Brian C. Williams

Candidate Generation:
From Conftlicts to Constituen?t Kernels

A — VIR ;] A 7
Al X | | 7 E 0
5 — 1 F\0 | B X1 | —
C] — — Y
1 — A2 Y 1 DJ— G
D G 0 — ? 1
0 —J— X2 1 : p—
1 E 4
| E A3 Z | — A3

Constituent Kernel: An assignment a that “resolves” one conflict C..
Conflict: {A1=G, A3=G, X1=G, X2=G}.
Constituent Kernels: {A1=U,A3=U, X1=U, X2=U}

“resolves” = prevents conflict C; from being true.

= entails not C..

= alternative value of variable mentioned in conflict.

10/25/10 copyright Brian Williams, 2000-10 53

Candidate Generation:
From Conftlicts to Kerqels

p— - A ()
A 1 ——
Al X | 1 7 F o
] — R0 , B [—=
| S 0 C
< A2 Y 1 b= Y
D || — G
D G 0 —H ?
0 —J— X2 1 p—
1 E Z
| E A3 v I — A3

Constituent Kernel: An assignment a that “resolves” one conflict C..

Kernel: Minimal set of assignments A that “resolves” all conflicts C.

= Pick constituent from each conflict using minimal set covering.

{A2=U, X2=U} resolves {A1=G, A3=G, X1=G, X2=G}, and
{A2=U, X2=U} resolves {A1=G, A2=G, X1=G}.

10/25/10 copyright Brian Williams, 2000-10 55

Candidate Generation:
Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1=U, A2=U, X1=U} constituents of Conflict 1.

{A1=U, A3=U, X1=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses =

“Smallest” sets of modes that remove all conflicts.

1/16/11 copyright Brian C. Williams

Candidate Generation:
Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1EU, A2=U, X1=U} constituents of Conflict 1.

{AN=U, A3=U, X1=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses = {Al=U} 1. Compute cross product.

2. Remove supersets.
* Old subset New.
 New subset Old.

“Smallest” sets of modes that remove all conflicts.

1/16/11 copyright Brian C. Williams

Candidate Generation:
Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{Al1=lJ, A2=U, X1=U} constituents of Conflict 1.

{Al= constituents of Conflict 2.

; 1. Compute cross product.
{A1=U} 2. Remove supersets.
 OId subset New.
* New subset Old.

“Smallest” sets of modes that remove all conflicts.

1/16/11 copyright Brian C. Williams

Candidate Generation:
Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1=U, A2=U, X1=U} constituents of Conflict 1.
{A1=U, A3=U, X1=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses = {X1=U} 1. Compute cross product.
{A2=U, X2=U} 2. Remove supersets.
{A2=U, A3=U} * Old subset New.
(A1=U} * New subset Old.

“Smallest” sets of modes that remove all conflicts.

1/16/11 copyright Brian C. Williams

Robust, Model-based Execution (2):
Model-based Programming w Hidden States

Model-based programming and execution.
Control sequencing.
Mode estimation.

— Estimates and kernels.

— By divide and conquer (GDE).

— Likely estimates (Conflict-directed A*).

— Estimating probabilistic constraint automata

Mode reconfiguration and reactive planning.

61

Due to the unknown mode, there tends to be an
exponential number of mode estimates.

Candidates with Candidates with

UNKNOWN failure KNOWN failure
modes modes U

Fault models alone don’t help.

But most mode estimates represent a small fraction of the
probability density space.

‘ Most of the density space may be represented by
enumerating the few most likely modes P(X | Obs.)

1/16/11 copyright Brian C. Williams

Simple Probabilistic
Mode Estimation

Input:

« Mode X, State Y and Observation O variables with finite domains.
 Model O(X;Y).

* (Observations obs.

* Prior distribution P(X.) for each component 1.

Output:
 P(X |obs) Posterior, given observations.

1/16/11 copyright Brian C. Williams

P(X lobs) = oP(obs | X)P(X)

* Assume modes are a priori independent:

P(X) = | [P(X)

X, EX

* Assume consistent observations™ are equally likely
for a given mode assignment: * or consistent models

0 if ® Aobs A X is inconsistent
P(obs| X) =-

1/n elsen= Hobsi |D Aobs, A X 18 consistent}‘

1/16/11 copyright Brian C. Williams

Mode Estimation as
Conflict-directed Best First Search

MERS

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Generate most likely hypothesis.
—> 2. Test hypothesis.
3. If inconsistent, learn reason for inconsistency
(a conflict).
— 4. Use conflicts to leap over similarly infeasible options

to next best hypothesis.

1/16/11 copyright Brian C. Williams

Compare Most Likely Hypothesis to Observations

=
=

Helium tank

¥_}'l' X
=
I

Oxidizer tank Fuel tank

Flow, = zero . T . __+—— Pressure,= nominal

Pressure; = nominal *

Main
Engines

Acceleration = zero

It 1s most likely that all components are okay.
10/26/10 66

Isolate Conflicting Information

2 *ee' @

Helium tank
Oxidizer tank Q E Fuel tank
Flow ;= zero %

Main
Engines

The red component modes conflict with the model and observations.
10/26/10 67

Leap to the Next Most

that Resolves t

Likely Hypothesis
he Conflict

=

*se @

Helium tank

Oxidizer tank Q E Fuel tank

Flow ;= zero %
¥ * ¥

Main
Engines

The next hypothesis must remove the conflict.

10/26/10

68

New Hypothesis Exposes Additional Conflicts

=
= Lo @
=

Helium tank

Oxidizer tank Q Fuel tank
Pressure; = nominal «—— Pressure,= nominal

O
O*O Y £

Engines

Another conflict, try removing both.
10/26/10 69

s I p |

Acceleration = zero

Final Hypothesis Resolves all Conflicts

=
= Lo @
=

Helium tank

Oxidizer tank Q Fuel tank

Pressure; = nominal «—— Pressure,= nominal
—_— | p 1

Flow, = zero * * Flow, = positive
B ¥ 5 g

—

Main

. Engines
Acceleration = zero

Implementation: Optimal CSPs and Conflict-directed A*.
10/26/10 70

Constraint Satisfaction Problem

CSP = <Y, D,,C>
— variables Y, with domain D,,.
— Constraints C: D, — {True, False}.

Problem: Find Y in Dy s.t. C(Y).

2/16/11 copyright Brian C. Williams

71

Optimal CSP

Input: <X, g, CSP>
— X are decision variables with domain Dy.
— g: Dy — J is a utility function.
— CSP over variables <X;Y>.

Output: Find leading arg max g(X)
X € Dy

s.t. Y €Dy . C(X;Y).

=» g() is a multi-attribute utility function that is
preferentially independent.

=» Encode C in propositional state logic.

2/16/11 copyright Brian C. Williams

72

Mode Estimation

Find leading arg max aP(obs | X) nP(X)
X € Dy X X

s.t.AY €Dy . XADPX,Y)Aobs.

2/16/11 copyright Brian C. Williams

Probabilities for Boolean Polycell

N -
1 Al X o
1 B — X1 ——
1 Y T a Y

0 2 x2| —E 1
| E A3 //

* Assume independent failures.
* Assign P such that:

— Pxiig>> Pxiy
o Psingle > Pdouble
o PA2=U = PA1=U > PA3=U > PXIZU = PX2=U

2/16/11 copyright Brian C. Williams

Mutual Preferential Independence (MPI)
Example: Mode Estimation

Our preference for the assignment of one variable 1s
independent of the assignments to the other variables.

If A1 =G 1s more likely than A1 =U,
Then
{Al=G,A2=G,A3=U, X1 =G, X2=G}

1s preferred to

{Al=U,A2=G, A3 =1, X1 =G, X2 =G}.

2/16/11 copyright Brian C. Williams 75

N

Increasing
Cost

2/16/11

Infeasible

copyright Brian C. Williams

Feasible

76

Conflict-directed A*

N

Increasing
Cost

2/16/11

O

Infeasible
O
© Feasible

copyright Brian C. Williams

77

Conflict-directed A*
.

Increasing
nfeasible
O O O
O O O

Feasible

2/16/11 copyright Brian C. Williams

Conflict-directed A*
.

Increasing

nicasioic

o O O

© ° e Feasible

2/16/11 copyright Brian C. Williams

Conflict-directed A*

N\

Increasing
Cost

2/16/11

copyright Brian C. Williams

Feasible

80

Conflict-directed A*

N\

Increasing
Cost

2/16/11

copyright Brian C. Williams

Feasible

81

Conflict-directed A*
N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

€ J01JU0)

2/16/11 copyright Brian C. Williams 82

Conflict-directed A*
N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

€ JO1Ju0)

2/16/11 copyright Brian C. Williams 83

Conflict-directed A*

 Each feasible subregion described by a kernel assignment.

= Approach: Use conflicts to search for kernel assignment
containing the best cost candidate.

Increasing
Cost :
Contflict 1
Conflict 2
® Kernel 3 Kernel 1
=
=
w :
Keérnel 2
2/16/11 copyright Brian C. Williams

85

Extracting a Kernel’s Best State

{A2=U}

B

Al1=? A A2=U A A3=? A X1=? A X2=7
B

Al1=G A A2=U A A3=G A X1=G A X2=G

Idea: Select best value for each unassigned variable.

2/16/11 copyright Brian C. Williams

87

Example: First Iteration

1

S =
‘m cpwr

1

Al X

F 0
- X1
A2 Y
— 2] —6 1
A3 7

e (Conflicts / Constituent Kernels

— none

 Best Kernel:

-

 Best Candidate:
— Al=G A A2=G A A3=G A X1=G A X2=G

2/16/11

copyright Brian C. Williams

88

Test: A1=G A A2=G A A3=G A X1=G A X2=G

A 7z
L a1 x! RN
B q_E0
1 X1 .
C 0 / -
1 =4 |A2 Yy
D [G
0 — X2 1
, E A3 7

o Extract Conflict and Constituent Kernels:
— [A1=G A A2=G A X1=@]

i B
Al=U v A2=U v X1=U

2/16/11 copyright Brian C. Williams

Second Iteration

A 1
Pyi-c>> Pxiy 1]3_—)67
Psingle >> P jouble ! C_ 0
Parry > Pty > (1) - J-L;ii
Py3-v > Pxi—y > Pxoy I s I

=

A3 Z

e (Conflicts = Constituent Kernels
— {Al=U, A2=U, X1=U}

* Best Kernel:

- {A2=U} (Why?)
» Best Candidate:

— A1=G A A2=U A A3=G A X1=G a X2=G

2/16/11 copyright Brian C. Williams

90

Test: A1=G A A2=U A A3=G A X1=G A X2=G

1 A 1
AT L: 0
v F

1 B 1 X1 ;
RS S— /0

D I
0 - X2 q 1

> 1 \._/

1 E A3 Z

o Extract Conflict and Constituent Kernels:
- [A1=G A A3=G A X1=G A X2=@]

i B
Al=U v A3=U v X1=U v X2=U

2/16/11 copyright Brian C. Williams

Third Iteration

A 1
Pii-¢>> Pxi—y 1 #
Psingle > l)double 1 C__I— 1
Py > Par-u > Pas-u 1 1:: I o
> Py > Pxay 0

.

e (Conflicts = Constituent Kernels
— {Al=U, A2=U, X1=U}
— {Al=U, A3=U, X1=U, X2=U}
e Best Kernel:
— {Al1=U}
 Best Candidate:
— Al=U A A2=G A A3=G A X1=G A X2=G

2/16/11 copyright Brian C. Williams

92

Test: A1=U A A2=G A A3=G A X1=G A X2=G

S =

e (Consistent!

2/16/11

A 0
—

- «— X
B
C 0 ﬁi
= | A2 Y
D —>

- X2
> 1

E A3 Z

copyright Brian C. Williams

93

Generating The Best Kernel of The Known Conflicts

Constituent Kernels
? 'l

A2=U {X1=U, A1=U,A2=U)

{X1=U, X2=U,
X1= A3=U A1=U, A3=U}
X2=U \M1=U
@
X1=U Al1=U Al1=U A X2=U A2=U A A3=U
Insights:

» Kernels found by minimal set covering.
* Minimal set covering is an instance of breadth first search.

2/16/11 copyright Brian C. Williams 94

Generating The Best Kernel of The Known Conflicts

Constituent Kernels

Best - 15t Iteration @

{X1=U, A1=U, A2=U}

{X1=U, X2=U,
Best - 24 Jteration A1=U, A3=U}

© Best — 3" Iteration

Xi=U
l)single > l)double

Insights:

 Kernels found by minimal set covering

* Minimal set covering is an instance of breadth first search.

=» To find the best kernel, expand tree in best first order. > Pxa-y

P> Prr—u
> Pys-u> Pxi—y

2/16/11 95
copyright Brian C. Williams

With and Without Conflicts

Performance:

Problem Constraint-based | Conflict-directed A* Mean CD-CB Ratio
Parameters A* (no conflicts)
Dom | Dec | Clau | Clau | Nodes Queue Nodes Queue | Conflicts Nodes Queue
Size | vars | -ses | -se Expande | Size Expand | Size used Expanded Size
Ingth | d
5(10| 10 5 683 | 1,230 3.3 6.3 1.2 4.5% 5.6%
5(10| 30 5| 2,360 | 3,490 8.1 17.9 3.2 2.4% 3.5%
5| 10| 30 5 4,270 6,260| 12.0| 41.3 26| 0.83% | 1.1%
10| 10| 10 6 3,790| 13,400 5.7| 16.0 1.6 2.0% 1.0%
10| 10| 30 6 1,430 5,130 9.7 944 4.2 4.6% 5.8%
10| 10| 50 6 929 | 4,060 6.0 27.3 2.3 3.5% 3.9%
5(20| 10) 109 149 42| 7.2 1.6]113.0% |13.0%
5| 20| 30) 333 434 6.4 9.2 2.2 6.0% 5.4%
5| 20| 50) 149 197 54| 7.2 2.0(12.0% |11.0%
2/16/11 copyright Brian C. Williams 96

Robust, Model-based Execution (2):
Model-based Programming w Hidden States

Model-based programming and execution.
Control sequencing.
Mode estimation.

— Estimates and kernels.
— By divide and conquer (GDE).
— Likely estimates (Conflict-directed A*).

— Estimating probabilistic constraint automata |

Mode reconfiguration and reactive planning.

98

@E& Mode Estimation as Belief State
CSAIL Update for Concurrent PCA

MERS

*Assigns a value to each variable
(e.g.,3,000 vars).

*Consistent with all state
constraints (e.g., 12,000).

*A set of concurrent transitions, one per
automata (e.g., 80).

*Previous & Next states consistent with
source & target of transitions

1. Infer most likely mode trajectories.
2. Infer distribution on likely mode assignments.

e Hidden Markov Model =r

CSAIL

« S, M, Q : Finite States, Actions & Observations

* T(s,u,s’): State transition function
T:SxM —TII(S)

* O(s’,u,0): Observation function
0:SxM —TI1(Q)

« B™1(S): Belief state at time t.
P(St+1 | 0<O,t>, “<O’t>)

June 5, 2011 100

e HMM Belief State Update =

CSAIL

Propagate Dynamics:

P(s t-|—1‘0<0,t> <0ty —
t+1 _
Z (P(s+ \S@,M) (t‘0<0,t>7u<0,t 1>)>
3%68“ Y 1 '
T bt t+1
. . 3
Update Based on Observations: :%
P(sit1|p<0t+1> Iu<o >y — q

l 1 1\
P(t+ |0<O t>,,u<0 t>) P(Ot—|—1|8t—|—)

t+1 t+1
Zs’?+1est+1P(7;+ 0<0:t> <0, t>)P(Ot—I—1|Si+)
1

6/5/11 101

e PCCA as HMMs D

ngi odel Camera Model
zero) ANI ov Off 0 0
r0))ff /(f;;f)erjn = zero) v v
, off- stan dby- shutter = closed) m J,Dl} &)
FCE emd iled
(thrust = zero) AND —0.01- 11€ I
(;mwe:'_in = nominal) tandby L O turnoff- turnoi-
standby-fire- . . md ¢ 0.01
(thrust = full) AND cmd d 0.01 0v /g;:]»;f,er_m = nominal)
(power_in = nominal) . shutter = opeu) 20v
Firing 2y
rAY
A\

 PCCA encodes HMM compactly
using concurrency and constraints.

» State abstracted to modes.
Assume:

* Transitions only permitted on modes.

* Transitions are conditionally independent.

 For each time t,
all consistent assignments are equally likely.

June 5, 2011 102

Fallls]

CSAIL

Approximating The Belief State

MERS

Best-first Trajectory Enumeration (BFTE):

[Williams and Nayak, AAAI-96][Kurien and Nayak, AAAI-00]

[Williams et al., IEEE "03]

> >
0.4
@ @
A N \n\’_‘ agn0-2

» Best-first State Enumeration (BFSE):
[Martin, Williams and Ingham, AAAI-05]

— Improv accuracy through compact encoding.

— Accuracy improves runtime!

Earth Observing One
103

Robust, Model-based Execution (2):
Model-based Programming w Hidden States

Model-based programming and execution.
Control sequencing.
Mode estimation.

Mode reconfiguration and reactive planning.

106

Al MERS
cs a1 L Model-based Program Model-based Executive

Control Program

Executes concurrently

Preempts
Queries (hidden) states
Asserts (hidden) state

State estimates State goals

System Model

open

Stuck

Commands
closed

A

inflow = outflow = () 107

222 DS 1 Attitude Control System MRS

CSAIL

Deep Space One Attitude Control System

AT

z facing thrusters x facing thrusters

iiii diid

Select reachable modes that together achieve goals.

E 2. Send commands to reconfigure modes.
- . by turning on device drivers,
Z * by repairing bus controllers,

. by sending commands,

. by powering down devices. ..
108

25 Mode Reconfiguration MERS

Max likelihood assumption:

The most likely state Configuration
is the true state. Goal

Goal State

State
Estimate
(Current)

Command

Model-based Programming of Intelligent Embedded Systems and Robotic Explorers
[Williams et al., IEEE’ 03]

Reactive Planner for a Model-based Executive
[Williams & Nayak, IJCAI 97] 109

Goal Interpretation
csaire via Conflict Learning

Goal: Achieve Thrust

7
LK
iR

A conflict is a partial assignment to mode variables that
prevents the goal (entails the negation of the goal). 110

3
EX £ o
B

Reactive Planning:

CenlL Engineered systems tend not to have loops MERS
[Williams, Nayak IJCAI97] y—
B
ous Driver Valve
Computer Control
B
Terminal
Driver Valve
Driver —
demd,, » Valve

=> Work conjunctive goals upstream G from outputs to inputs. Wht?

— Define: Causal Graph G of compiled transition system S
* vertices are state variables.
* edge from v, to v; if vj’ s transition is conditioned on v;.

— Requirement: The causal graph is acyclic. 111

SAIL

% Compile models to goal-directed policies MERS

Goal State
% On idle cmd = off
»
c cmd = on idle
o
S Rteasslte- cmd =reset cmd = off

NACALlve Tldallllllg

112
112

[Williams, Nayak, IJCAI 97]

Goal State
9 : driver = on
8 Open idle cmd = close
N :
- driver = on dle
§ cmd = open
S failed failed

Reactive Planning

2L Plan by passing sub-goals up causal graph YERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = off, Valve = open

Driver ? Valve 1
E > ¢
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Open idle 31:1‘(‘1’9; :I:SI;
Off cmd = on idle Closed glf:ge: :p(:; idle
Resettable cmd = reset cmd = off Stuck fail fail

113

2L Plan by passing sub-goals up causal graph YERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = off, Valve = open

Driver 7 Valve 1
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Open idle
Off cmd = on idle Closed g;:(‘ie: :p(:; idle
Resettable | ¢md = reset cmd = off Stuck fail fail

114

2L Plan by passing sub-goals up causal graph YERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = off, Valve = open

Driver 7 Valve 1
Send: ‘
cmd = on '
Goal Goal
Current On Off Current Open Closed

On idle cmd = off Open idle
@ idl driver = on {dl
Off 1dle Closed cmd = open 1cle

Resettable cmd = reset cmd = off StUCk fail fail

115

2L Plan by passing sub-goals up causal graph YERS

CSAIL

osed

Goal: Driver = off, Valve =

Current: Failed
Resettable Valve 1
Send: ‘
cmd = on
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Open idle g;::ie: :l(?sll
. driver = on)
Off cmd = on idle Closed cmd = open idle
Resettable cmd = reset cmd = off StUCk fail fail

116

2L Plan by passing sub-goals up causal graph MERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = resettable, Valve = open

Driver 7 Valve 1
Send . ;X
cmd = reset
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Op en idle
Off cmd = on idle Closed 31::(‘1’9: :p(:; idle
Resettable cmd = off Stuck fail fail

117

2L Plan by passing sub-goals up causal graph YERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = on, Valve = open

Driver 7 Valve 1
Send . :X
cmd = close
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Op en idle *
Off cmd = on idle Closed glf:gei :p‘::l idle
Resettable cmd = reset cmd = off Stuck fail fail

118

2L Plan by passing sub-goals up causal graph YERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = on, Valve = closed

Driver 7 Valve 1
Send ‘
cmd = off
Goal Goal
Current On Off Current Open Closed
on | e Open | e | drveron
Off cmd = on idle Closed g;:(‘ie: :p(:; idle

Resettable cmd = reset cmd = off Stuck fail fail

119

145 Plan by passing sub-goals up causal graph MERS

CSAIL

Goal: Driver = off, Valve = closed

Current: Driver = off, Valve = closed

Driver 7 Valve 1
B i
Goal Goal
Current On Off Current Open Closed
On idle cmd = off Open idle 31:1‘(‘1’3; :l(?sll
Off cmd = on idle Closed glf:ge: :p(:; idle
Resettable | ¢md = reset cmd = off Stuck fail fail

120

RMPL Model-based Program Titan Model-based Executive

Control Program

Executes concurrently
Preempts

Queries (hidden) states
Asserts (hidden) state

State estimates State goals

System Model

) Un-
Open X N known
Open
Stuck
Closed @ e closed Commands
inflow iff outflow <

A Variants on Proba.bilistic Constraint AutomaﬁER S
csart define a Family of RMPL Languages

Engine Model Camera Model

(thrust = zero) AND : Off ov 0v
(power_in = zero) Off O (power _in = zero)

off-

AND
standby- (shutter = closed) ('
cmd
2 kv cmd

0.01
—_—
standb 0.01 Failed
(thrust = zero) AND an = >
(power _in = nominal) y O tu;;%ﬁ' turnon-
standby- fire- cmd ol
cmd cmd T) :
il 0.01 0v (power_in = nominal)
20 v

(thrust = full) AND AND
(power_in = nominal) (shutter = open)

Firing

On

e Complex, discrete behaviors

* modeled through concurrency, hierarchy and timed transitions.
 Anomalies and uncertainty

* modeled by probabilistic transitions
* Physical interactions

e modeled by discrete and continuous constraints

Approach: Model-based Programming and Execution

— An embedded programming language
elevated to operations on hidden state and choice

— A language executive that achieves robustness by
reasoning over constraint-based models.

Tuesday: Coordination and dynamic scheduling.
Wednesday: Model-based programming with hidden state.

