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Robust, Model-based Execution (1):  

Coordination and Dynamic Scheduling 

•! Robust, model-based execution of time critical tasks. 

–! Case Study: Remote Agent. 

–! Case Study: Personal Transport System. 

•! Task coordination through dynamic scheduling. 

•! Task coordination for under-actuated systems. 

•! Task coordination for multi-robot systems. 
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Time Critical Tasks!
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An effective Scrub Nurse: 

•! works hand-to-hand, face-to-face with surgeon, 

•! assesses and anticipates needs of surgeon, 

•! provides assistance and tools in order of need, 

•! responds quickly to changing circumstances, 

•! responds quickly to surgeon’s cues and requests. 

Time Critical Tasks!

[Shah and Williams]!
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Model-based Execution 

The development of autonomous systems that robustly 

perform complex tasks.  

•! Goal-directed: Tasks described qualitatively in terms of time-

evolved goals. 

•! Real-time Decisions: Tasks executed using real-time decision 

making algorithms, based on observations.  

•! Model-based: Operates on heterogeneous models of the robot, 

user and environment. 
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Remote Agent Experiment on 

Deep Space One 

1/16/11 copyright Brian C. Williams 
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Loss of Mars Observer, early 90’s 

1/16/11 copyright Brian C. Williams 
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1/16/11 copyright Brian C. Williams 
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Autonomy Demonstration 

on Simulated Cassini Probe 

1/16/11 copyright Brian C. Williams 
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Remote Agent on Deep Space One 

1.! Commanded by giving goals 

2.! Reasoned from  
commonsense models  

3.! Closed loop on goals 

Goals!

Diagnosis 

& Repair!

Mission 

Manager!
Executive!

Planner/!

Scheduler!

Remote Agent!

[Williams & Nayak, AAAI 95; !
 Muscettola et al, AIJ 00]!11!Brian Williams, Fall  

10!
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Goal: Set engine to thrusting for 1hr...       

Exec: determines that valves on!
engine B will achieve thrust, "
and plans needed actions.!

Deduces that a valve !
failed - stuck closed!

Plans actions!
to open!
six valves!

Fuel tank!Oxidizer tank!

Deduces that!
thrust is off, and "
the engine is healthy!

Estimates Modes 

Estimates Modes Reconfigures Modes 

Reconfigures Modes 

A new Goal: !
Sets engine B to thrust, !
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Approach: Model-based Programming and Execution 

–!An embedded programming language  

elevated to operations on hidden state, and  

–!A language executive that achieves robustness by 

reasoning over constraint-based models. 
 

Today: Coordination and dynamic scheduling. 

Wednesday: Model-based programming with hidden state. 



Model-based Execution has been  

applied to a diverse set of robotic systems. 



Courtesy Boeing 



A Robot Air Taxi Driver!

16!

Destination!

Alternatives!

Point of interest!

Joint with Boeing!



X Plane Simulation of Personal 

Transportation System (PTS)!

17!Movie M?!
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Robust, Model-based Execution (1):  

Coordination and Dynamic Scheduling 

•! Robust, model-based execution of time critical tasks. 

•! Task coordination through dynamic scheduling. 

–! Representing plans and temporal relationships. 

–! Scheduling based on decomposability. 

–! Dynamic scheduling. 

–! Dynamic scheduling with models of uncertainty. 

•! Task coordination for under-actuated systems. 

•! Task coordination for multi-robot systems. 
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Robust Program and Plan Execution 

Start End 
Rover1.goto(p4) 

Rover2.goto(p1) 

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3) 

Rover2.goto(p2) Rover2.imageTargets Rover2.goto(p3) 

imageScienceTargets(Rover1, Rover2)  
{Parallel 

   {Sequence 

   [5,10] Rover1.goto(p4);  

        [5,10] Rover1.goto(p5);  
        [2,5] Rover1.imageTargets();  

        [5,10] Rover1.goto(p3); 

   }, 

   {Sequence 

   [5,10] Rover2.goto(p1); 

   [5,10]Rover2.imageTargets(); 
        [2,5] Rover2.goto(p2); 

       [5,10] Rover2.goto(p3); 

   } 

} 

p1 

p2 
p3 

p4 

p5 
1 

2 

[5,10] [5,10] [2,5] [5,10] 

[5,10] [5,10] [2,5] [5,10] 

Agents adapt to temporal disturbances in a coordinated manner 

by scheduling the start of activities on the fly. 

in RMPL [williams et al]!
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To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Schedule Off-line     Schedule Online 

!

4. Dynamically Schedule Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!
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Outline: To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line     Part II: Schedule Online 

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

!

!
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Describe Temporal Plan!
!

!

•!  Activities to perform!

•! Relationships among activities!

Egress/ Setup 

Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray 

Configure Vent Tools Fluid Caps SFU Reconfig Release Loop B Tray 

t = tmax 
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Time Lines!
!

Example: Deep Space One Remote Agent Experiment!

Max_Thrust Idle Idle 

Poke 

Timer 

Attitude 

Accum thrust 

SEP Action 

SEP_Segment 

Th_Seg 

contained_by"

equals" equals"
meets"

meets"

contained_by"

Start_Up Start_Up 
Shut_Down Shut_Down 

Thr_Boundary 

Thrust Thrust Thrust Thrust Standby Standby Standby 

Th_Sega Th_Seg Th_Seg Idle_Seg Idle_Seg 

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary 

contained_by"

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc) 

contained_by"

Th_Seg 
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Nested Compositions:!

(non-deterministic programs)!

•! Activity!

•! Sequence!

•! Parallel!

•! Choice!

•! With Time!

Temporal Plan Networks!

!"#"$!"
#"
$

!"
#"
$ !!"#"$

% &'()('*+ ,!-#.$

!"
#"
$

"#

!"#"$

!"#"$

!"#/$

$%

& '

%&'()('*% ,-0#1$

% &'()('*2 ,!.#1$

( ) * +

%&'()('*3,!-#.$

, -

!"
#"
$

!"#"$

!"#"$

!"
#"
$

.

!"#/$

p1 

p2 

p4 

p5 
1 

2 

[Kim, Williams, Abramson, IJCAI01]!
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Qualitative State Plans 

Command script 

00:00 Go to x1,y1 

00:20 Go to x2,y2 

00:40 Go to x3,y3 

! 

04:10 Go to xn,yn 

Plant 

Commands 

Leaute & Williams, AAAI 05 
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Qualitative State Plans 

 

Model-based Executive 

Observations Commands 

“Remain in mapping region for at least 

100s, then remain in bloom region for at 

least 50s, then return to pickup region. 

Avoid obstacles at all times” 
Qualitative State Plan 

Plant 

Leaute & Williams, AAAI 05 
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Qualitative State Plans 

Remain in [safe region] 

Remain in 
[bloom region] 

e1 e5 

Remain in 
[mapping region] e2 e3 e4 

End in 
[pickup region] 

[50,70] [40,50] 

[0,300] 

Obstacle 1 

Obstacle 2 

Mapping 

Region 

Bloom 

Region 
Pickup 

Region 

“Remain in bloom region for between 50 

and 70 seconds. Afterwards, remain in 

mapping region for between 40s and 50s. 

End in the pickup region. Avoid obstacles 

at all times. Complete the mission within 

300s” 

Approach: Frame as Model-Predictive Control!
using Mixed Logic or Integer / Linear Programming.!

Leaute & Williams, AAAI 05 

A temporal plan whose activities impose constraints on system state.!
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Temporal Relationships!
!

Qualitative Temporal Relations [Allen 83]!

!

Y!

X! Y!

X! Y!

X! Y!

Y!X!

Y!X!

Y! X!

X!

X before Y   

X meets Y   

X overlaps Y  

X during Y   

X starts Y   

X finishes Y   

X equals Y   

Y after X   

Y met-by X   

Y overlapped-by X   

Y contains X   

Y started-by X   

Y finished-by X   

Y equals X   

X disjoint Y   
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Temporal Relationships!
!

Simplify by reducing interval relations to "
 relations on timepoints.!

Activity A!

Start Activity A!

A-! A+!

End Activity A!
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Temporal Relationships!
!

Qualitative Temporal Relationships as timepoint inequalities!

!

Y!

X! Y!

X! Y!

X! Y!

Y!X!

Y!X!

Y! X!

X!

X before Y   

X meets Y   

X overlaps Y  

X during Y   

X starts Y   

X finishes Y   

X equals Y   

X+ < Y-    

X+ = Y-    

Y- < X+ and X- < Y+ !

Y- < X- and X+ < Y+ !

X- = Y- and X+ < Y+ !

X- < Y- and X+ = Y+ !

X- = Y- and X+ = Y+ !

X disjoint Y   X+ < Y- or Y+ < X- !

Y-!X+!
[0,inf]!

Y-!
[0,0]!

X+!
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Metric Temporal Relations!
!

Add Metric Information:!

•! Going to the store takes at least 10 min and at 
most 30 min. 

 

 

•! Bread should be eaten within one day of baking. 

Activity: Going to the store!

[10min, 30min]!

Activity: Bake Bread!
[0d, 1d]!

Activity: Eat Bread!
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Metric Temporal Relations!
!

Add Metric Information: inequalities ! interval constraints!

•! Going to the store takes at least 10 min and at 
most 30 min. 

 

 

•! Bread should be eaten within one day of baking. 

Start Going to Store!

G-! G+!

End Going to Store!

[10,30]!
10 < [G+ - G-] < 30!

End Bake Bread!

B+! E-!

Start Eat Bread!

[0,1]!
0 < [E- - B+] < 1!
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•! Simple Temporal Network!
•! variables X1,…Xn, representing 

timepoints with real-valued 
domains, !

•! binary constraints of the form:!

–! called links.!

Temporal Relations Described by a STN!

X1! X3!

X2!

[l1, u1]!

[l2, u2]! [l3, u3]!

( ) [ ].,
ikikik
baXX !"

Sufficient to represent:!

•! all Allen relations but 1…!

•! simple metric constraints!

Can’t represent:!

•! Disjoint activities!

[Dechter, Meiri, Pearl 91]!
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•! Temporal Constraint Network 
(TCN)!

•! Extends STN by allowing multiple 
intervals for each binary constraint 
(link): !

Temporal Relations Described by a TCN!

X1! X2!

[l1, u1]V [l2, u2]V…V[ln,un] !

Supports:!

•!Multiple time windows for accomplishing an 
activity.!

•!Different methods of accomplishing an activity.!

!

X1! X2!

[5, 7] V [10, 11]!

( ) [ ]{ }( ).|,
ikikikikik
babaPXX !"#

[Dechter, Meiri, Pearl 91]!
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•! Disjunctive Temporal Network (DTN)!
•! Extends TCN by allowing non-binary constraints. !

Temporal Relations Described by a DTN!

MS! D-!

[0, inf]!

D+! S-! S+!

I-! I+!

[5, 10]! [0, inf]! [4, 5]!

[15, 15]!

[1, 1]!

[0, inf]!

Activities of Mars Rover: Drill (D) , Image (I), Send Data (S)!

Drilling causes vibration.!

Image cannot occur !

•! during the last two minutes before drilling, or!

•! during the first minute after drilling ends.!

2 < D+ - I+ < inf!

OR!

1 < I - - D+ < inf!

Send data!Drill!

Image!
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A Hierarchy of Temporal Relations!

DTN! -!non-binary constraints!

-!multiple intervals in constraints!

TCN!
-! binary constraints!

-!multiple intervals!

STN!
-! binary constraints!

-!simple intervals!

Tsamardinos, Pollack, M. Ganchev, ECP 01]!
[Shah, Conrad, Williams ICAPS 09]!
[Conrad,Shah,  Williams ICAPS 09]!
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Outline: To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line    
[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!
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Input:!An STN <X, C> where Cj = <<Xk, Xi><aj,bj>>!

!

!

!

!

!

!

!

Output: True iff there exists an assignment to "
X satisfying C.!

Consistency of an STN!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!
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A B 
[l, u] 

A B 

 u 

- l 

Map STN to Distance (D-)Graph 

•! Upperbound mapped to outgoing, non-negative arc. 

•! Lowerbound mapped to incoming, negative arc. 

l  B – A  u! B – A  u!

A – B  - l!l  B – A!

[Dechter, Meiri, Pearl 91]!
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Check D-Graph Consistency 

A B 
[2, 1] 

A B 

1 

-2 

•! consistent iff d-graph has no negative cycles. 

•! Detect by computing shortest path from one node to all other 

nodes. 

•! Single Source Shortest Path (SSSP). 

 

Example of inconsistent constraint: 



41 

Outline: To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line    
[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

[Dechter, Meiri, Pearl 91]!
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Scheduling 

 

X0 Ls Le 

Ss Se 

[10,20] [30,40] 

[10,20] 

[40,50] 

[60,70] 

Idea: Expose Implicit Constraints of STN ! Schedule 
•! Input:  STN 

•! Output: “Decomposable” (Implied) STN 
•! Algorithm: All-Pairs-Shortest-Path (APSP) of D-graph (Floyd-Warshall). 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!



43 

Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•! Incrementally tighten feasible intervals,  

  as commitments are made. 

•! Perform on demand. 

Input: Decomposable STN (APSP D-Graph) 

Output: Schedule (Assignment to X, consistent with STN) 

Property: Can assign variables in any order, without backtracking. 

 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•! Incrementally tighten feasible intervals,  

  as commitments are made. 

•! Perform on demand. 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

! !!

t=0 

 

 
 

Input: Decomposable STN (APSP D-Graph) 

Output: Schedule (Assignment to X, consistent with STN) 

Property: Can assign variables in any order, without backtracking. 
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•! Incrementally tighten feasible intervals,  

  as commitments are made. 

•! Perform on demand. 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls, 
consistent with X0!

! !!

t=0 

 

 
 

[10,20] 

 

 
 

Input: Decomposable STN (APSP D-Graph) 

Output: Schedule (Assignment to X, consistent with STN) 

Property: Can assign variables in any order, without backtracking. 
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•! Incrementally tighten feasible intervals,  

  as commitments are made. 

•! Perform on demand. 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls, 
consistent with X0!

•! Select value for Le, 
consistent with X0, Ls!

! !!

t=0 

 

 
 

t=15 

 

 
 

[45,50] 

 

 
 

Input: Decomposable STN (APSP D-Graph) 

Output: Schedule (Assignment to X, consistent with STN) 

Property: Can assign variables in any order, without backtracking. 
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Scheduling without Search: 

 Solution by Decomposition 

Key ideas 

•! Incrementally tighten feasible intervals,  

  as commitments are made. 

•! Perform on demand. 

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls, 
consistent with X0!

•! Select value for Le, 
consistent with X0, Ls!

! !!

t=0 

 

 
 

t=15 

 

 
 

t=45 

 

 
 

Input: Decomposable STN (APSP D-Graph) 

Output: Schedule (Assignment to X, consistent with STN) 

Property: Can assign variables in any order, without backtracking. 
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To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line    

[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

Detect negative loops!
(SSSP).!

APSP + Decomposition.!

-2!

A!

B!

C!

D!2!
-1!

10! 1!

-1!

9!
0!

STN! D Graph!
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To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line Problem: delays and fluctuations in task 
duration can cause plan failure.!

!

Observation: temporal plans leave 
room to adapt.!

!

Flexible Execution adapts through 
dynamic scheduling [Muscettola et al]!

–! Assign time to event when 
executed.!

–! Guarantee that all constraints will 
be satisfied.!

–! Schedule with low latency through 
pre-compilation.!
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To Execute a Temporal Plan!

offline 

online 

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line       Part II: Schedule Online 

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

How do we schedule on line?!
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Multi-Robot Teamwork  

•! Off-nominal 

•! Partner adapts 

in response to 

teammate’s 

failure.  
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To Execute a Temporal Plan!

offline 

online 

Part I : Schedule Off-line       Part II: Schedule Online 

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

[0,9]!

[1,1]!

[1,1]!

A!

B!

C!

D!

A!

B!

C!

D!

[0,9]!

[1,1]!

[1,1]!A!

B!

C!

D!

t=0!

t=2!

t=3!

t=4!

How do we schedule on line?!

[Muscettola, Morris, Tsamardinos KR98]!
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Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C 

D 

B 

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!
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Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C 

D 

B 

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!

A t = 0 

[0, 10] 

[0, 10] 

[2, 11] 
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Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C 

D 

B 

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!

A t = 0 

t = 3 

[2, 2] 

[4, 4] 

Uh oh! !

C must be 
executed at t =2 in 
the past! !
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Dynamic Scheduling by Decomposition?!

•! How can we fix it? 

–! Assignments must monotonically increase in value 

–! Must respect induced orderings 

C 

D 

B 

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

A t = 0 

t = 3 

[2, 2] 

[4, 4] 
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Dispatching Execution Controller!

•! How can we fix it?!

–! Assignments must monotonically increase in value!

–! Must respect induced orderings!

•! Execute an event when enabled and active!

!

–! A is enabled –  Predecessors of A are scheduled.!

!

–! A is active – Current time is within bound of A!

–! A is a predecessor of B if BA has "
negative weight, (A - B < [-]) "
hence A + [+] < B.!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!
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STN Dispatching!

Initially:!

•! E(nabled) =Time points w/o predecessors!

•! S(cheduled) = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors!

5.! Add to E, all immediate neighbors that 
become enabled!

•! TPx enabled if all +lb edges 
starting at TPv have their 
destination in S.!

E = {A}!

S = { }!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { } !

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges "
starting at TPx have their 
destination in S.!

E = { }!

S = {A @ t = 0}!

!

    t=0! A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges 
starting at TPx have their 
destination in S.!

E = { }!

S = {A @ t = 0}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

[0,10]!

[2,11]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges 
starting at TPx have their 
destination in S.!

E =!

S = {A @ t = 0}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

[0,10]!

[2,11]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !

{C}  (not B,D)!
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges 
starting at TPx have their 
destination in S.!

E = { }!

S = {A @ t = 0!

       C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

t=1!

[2,11]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges 
starting at TPx have their 
destination in S.!

E = { }!

S = {A @ t = 0!

       C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

t=1!

[2,11]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced 
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s 
immediate neighbors.!

5.! Add to E, all immediate neighbors that 
become enabled.!

•! TPx enabled if all +lb edges 
starting at TPx have their 
destination in S.!

E = { }!

S = {A @ t = 0!

       C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[2,2]!

t=1!

[3,3]!

Predecessors:!
  A   none!
  B   A, C!
  C   A!
  D   A, B, C!
 !
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Outline: To Execute a Temporal Plan!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

[0,9]!

[1,1]!

[1,1]!

A!

B!

C!

D!

A!

B!

C!

D!

[0,9]!

[1,1]!

[1,1]!A!

B!

C!

D!

t=0!

t=2!

t=3!

t=4!

Part II: Schedule Online 

offline 

online !

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!
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Issues in Flexible Execution 

•! How do we minimize execution latency?  

–! Identify and remove redundant edges. 

A 

C 

D 

B 

[2,11] 

[1,10] 

[0,9] 

[1,1] 

[1,1] 

[2,2] 

A 

C 

D 

B 

[0,9] 

[1,1] 

[1,1] 

•! Two dispatchable forms with equivalent results. 
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Temporal Reasoning with Uncertainty 

Loc 1 

Loc 2 

Loc 3 

Loc 4 
Loc 5 

Rover 2 

Rover 1 

Simple Temporal Network with Uncertainty (STNU). 

Begin 
Traverse 

Arrive at 
Loc. 1 

Arrive at Loc. 3    
& Begin search 

Arrive at 
Loc. 2 

Arrive at Loc. 4 
& Begin search 

[1,2]!

[1,2]!

End Search & 
Restart Traverse 

End Search & 
Restart Traverse 

Arrive at 
Loc. 5 

[2,6]!

[4,6]! [1,11]! [2,4]!

[2,17]!

[1,5]!
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Definition of STNU 

STNU is equivalent to a family of STNs (projections), one for 
each allowed assignment to uncontrolled durations. 

[2, 4]  
C D 

[1, 2]  
B 

[3, 6]  

D 
[2, 2]  

C D 
[1, 2]  

B 

[3, 6]  

[3, 3]  
C D 

[1, 2]  
B 

[3, 6]  

[4, 4]  
C 

[1, 2]  
B 

[3, 6]  
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To Execute a Temporal Plan with Uncertainty!

!

1. Describe Temporal Plan w Uncertainty!

!

2. Test Consistency & Controllability!

!

3. Reformulate for Execution!

!

!

4. Execute!

!
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Queries about STNUs 

•! Is the STNU consistent? 

–! Exists an assignment to executable time points consistent with some 

outcomes for uncontrollable durations. 

•! Is the STNU controllable? 

–! Exists assignments to executable time points  

consistent with all outcomes for uncontrollable durations. 

–! Strong Controllability     

•! Assignment can be generated a priori. 

–! Dynamic Controllability    

•! Assignment can be generated online,  
given observations of past uncontrollable durations. 

[Morris, Muscettola, Vidal IJCAI 01]!
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Dynamic Scheduling through Dispatchable Execution 

Reformulate 

Dispatcher 

Temporal 

Plan 

Observations of 

past events 

Generate dynamic 

schedule 

offline 

online 



Operating JPL’s  

Athlete Lunar Rover 

Commanded through time-stamped sequences, "

similar to Spirit and Opportunity.!



 
  

 method run () 

 { 

      [1s,200s] sequence { 

           prepare  limb(6) to attach gripper  
           human voice commands the limb 

           attach gripper to limb 

           prepare limp to pick up rock with gripper 

 

           parallel { 
                sequence { 

                     human voice command the limb 

                     close gripper on rock   

                }; 

                sequence { 
                     limb5 prepare limb (5) to receive bin  

                     human voice commands the limb     

                }; 

           }; 
 

           position rock over bin with gripper  

           ready bin for rock  

           load rock in bin  

           store bin for transport  
      } 

 } 

 

 

Reactive Model-based  
Programming Language (RMPL) 

Write Common 

sense instructions!



Reactive Model-based  

Programming Language (RMPL) 

Compile to Temporal Plan Network 

start 
limb6 prepare to 

attach gripper 
human voice 

command limb6 
limb6 attach 

gripper 
limb6 prepare to 

pick up rock 

limb6 position 
rock over bin 

limb5 ready bin 
for rock 

limb6 load rock 
in bin 

limb5 store bin 
for transport 

human voice 
command limb6 

limb6 close 
gripper on rock 

Limb5 prepare to 
receive bin 

human voice 
command limb5 

end [150,200] 

 [lb1,ub1]   [lb2,ub2]   [lb3,ub3]   [lb4,ub4]  

 [lb9,ub9]   [lb10,ub10]   [lb11,ub11]   [lb12,ub12]  

 [lb5,ub5]   [lb6,ub6]  

 [lb7,ub7]   [lb8,ub8]  

 
  
 method run () 
 { 

      [1s,200s] sequence { 
           prepare  limb(6) to attach gripper  
           human voice commands the limb 
           attach gripper to limb 
           prepare limp to pick up rock with gripper 
 

           parallel { 
                sequence { 
                     human voice command the limb 
                     close gripper on rock   
                }; 

                sequence { 
                     limb5 prepare limb (5) to receive bin  
                     human voice commands the limb     
                }; 
           }; 

 
           position rock over bin with gripper  
           ready bin for rock  
           load rock in bin  
           store bin for transport  

      } 
 } 
 
 



Demonstrate"

 actions by example!

Learns tubes of valid 

trajectories!



Collaborate with 

Verbal commands!

Athlete Demonstration – July, 2009!
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Robust, Model-based Execution (1):  

Coordination and Dynamic Scheduling 

•! Robust, model-based execution of time critical tasks. 

•! Task coordination through dynamic scheduling. 

•! Task coordination for under-actuated systems. 

•! Task coordination for multi-robot systems. 



Dynamic Plan Execution for "
Under-actuated Systems 

[Hofmann, Williams AAAI06]!



Example: Describe Walking Tasks with Qualitative Poses 

[Muybridge, 1955] Depicted gaits as sequences of distinct qualitative poses 

Specify as temporal plan over qualitative states 

Supported by NASA 



Qualitative State Plan 

Left

Foot

[t_lb, t_ub]

CM

Right

Foot

start finish

right

toe-off

right

heel-strike

left

toe-off

left

heel-strike
1llf !

1rrf !

2rrf !
2rrf !

2llf !

1cmcm!

Muybridge 

Input: 
Qualitative  

State Plan 



Traditional biped control  

tracks a reference trajectory 



Executive achieves robustness by utilizing  

the flexibility of the Qualitative State Plan 



Executive achieves compliance by precomputing  

all feasible trajectories, not just one! 



Feasible trajectories must  

go through goal regions 

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

[Hofmann & Williams, AAAI 06; ICAPS 06] 



lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

Feasible trajectories must  

go through goal regions 

[Hofmann & Williams, AAAI 06; ICAPS 06] 

Compile Time: 

•! Construct all feasible  

   trajectories (Flow Tubes). 

•! Learn tubes from examples. 



lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

Feasible trajectories must  

go through goal regions. 

Dynamics couples 

through center of mass 

[Hofmann & Williams, AAAI 06; ICAPS 06] 

 

 
Compile Time: 

•! Construct all feasible  

   trajectories (Flow Tubes). 

•! Learn tubes from examples. 

•! Construct all feasible 

schedules for goals. 



Robustness Requires 

Temporal Synchronization 

Disturbance without 

temporal coordination 

Disturbance with 

temporal coordination 



Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

[Hofmann & Williams, AAAI 06; ICAPS 06] 



Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

4.! If displaced from tube, adjust control parameters or schedule.!

[Hofmann & Williams, AAAI 06; ICAPS 06] 

Disturbance

displaces

trajectory



Disturbance

displaces

trajectory

d1 d2 

Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

4.! If displaced from tube, adjust control parameters or schedule.!

•! May require synchronization with other activities.!

•! If unschedulable, switch plan.! [Hofmann & Williams, AAAI 06; ICAPS 06] 



Compliance Results 

Lateral CM with push disturbance 
-! Blue   – 40 N 

-! Green – 35 N 
-! Black  – 25 N 

-! Red    – Max allowed 
               displacement 
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Robust, Model-based Execution (1):  

Coordination and Dynamic Scheduling 

•! Robust, model-based execution of time critical tasks. 

•! Task coordination through dynamic scheduling. 

•! Task coordination for under-actuated systems. 

•! Task coordination for multi-robot systems. 



A Good Human Teammate 

[Shah Ph D MIT]!

An effective Scrub Nurse: 

•! works hand-to-hand, face-to-face with surgeon, 

•! assesses and anticipates needs of surgeon, 

–! provides tools and assistance in order needed, 

•! responds quickly to changing circumstances, 

•! responds quickly to surgeon’s cues and requests. 
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To Execute a Temporal Plan!

Part II: Schedule Online 

offline 

online !

4. Dynamically Execute!

!

!

3. Reformulate!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

Exploit:!

•! Handling of Uncertainty"
(STNU, TPNU, TCNU, DTNU).!

•! Handling of Choice"
(TPN, TCN, DTN)!

DTN! -!non-binary constraints!

-!multiple intervals in constraints!

TCN!
-! binary constraints!

-!multiple intervals!

STN!
-! binary constraints!

-!simple intervals!

Tsamardinos, Pollack, M. Ganchev, ECP 01]!
[Shah, Conrad, Williams ICAPS 09]!
[Conrad,Shah,  Williams ICAPS 09]!



!"#$%&'(')*+,-./'01**

95!

Remove one ball from red bin!

Remove one ball from blue bin!

Remove one ball from green bin!

Remove one ball from pink bin!

Swap black striped ball!

•! Right Robot picks up and 

offers ball.!

•! Robots perform hand-to-hand 

swap.!

Swap red striped ball!

•! Left Robot picks up and offers 

ball.!

•! Robots perform hand-to-hand 

swap.!

  tstart!

  tfinish!

(Someone) Remove one ball from red bin!

Remove one ball from red bin!

L[32,39] V R[42,55]!

OR!

Agents choose and!

schedule activities!



!"#$%&'(')*+,-./'01**

•! 23%4'.54-#*

•! 6-0)4,0*-7-8)9*54*

0,98'49,*)'*

),-..-),:9*

;-5#"0,<**



Leader    &    Assistant!

Embed video arm4_4x here 

Assistant waits to see what Leader will do before acting. 

Idea: model leader durations and assignments as uncontrollable (TPNU).!

Leader! Assistant!



Model-based Execution 

The development of autonomous systems that robustly 

perform complex tasks.  

•! Goal-directed: Tasks described qualitatively in terms of time-

evolved goals. 

•! Real-time Decisions: Tasks executed using real-time decision 

making algorithms, based on observations.  

•! Model-based: Operates on heterogeneous models of the robot, 

user and environment. 



courtesy of JPL 

Robust Model-based Execution (1I) : !
Model-based Programming with Hidden State 

Prof Brian Williams, MIT!

ACAI Summer School on "
Automated Planning and 

Scheduling!
June 8th, 2011!

Brian C. Williams, copyright 2000 

2/16/11 1 copyright Brian C. Williams 

Contributions:!

Sueng Chung!

Johan de Kleer!

Vineet Gupta!

Mitch Ingham!

Oliver Martin!

Pandu Nayak!

Robert Gagno!



Readings 

•! Google “MIT OCW 16.412 Cognitive Robotics” 

•! mers.csail.mit.edu, click “Publications” 

•! Williams, B. C. et al., “Model-based Programming of Intelligent Embedded Systems and 

Robotic Explorers," Proceedings of the IEEE 91, no. 1, Special Issue on Modeling and 

Design of Embedded Software, pp. 212-237, 2003. 

•! B. C. Williams, M. Ingham, S. Chung, P. Elliott, and M. Hofbaur,"Model-based 

Programming of Fault-Aware Systems," AI Magazine, vol. 24, no. 4, pp. 61-75, 2004.  

•! B. C. Williams, and R. Ragno, "Conflict-directed A* and its Role in Model-based 

Embedded Systems," Special Issue on Theory and Applications of Satisfiability Testing, 

Journal of Discrete Applied Math, January 2003.  

•! J. de Kleer and B. C. Williams, "Diagnosing Multiple Faults," Artificial Intelligence, 

32:100-117, 1987. 

•! Martin, O., B. C. Williams and M. Ingham, "Diagnosis as Approximate Belief State 

Enumeration for Probabilistic Concurrent Constraint Automata", in Proceedings of the 

Twentieth National Conference on Artificial Intelligence, Pittsburgh, PA, July 2005. 

•! Brian C. Williams and P. Pandurang Nayak, "A Reactive Planner for a Model-based 

Executive," in Proceedings of the International Joint Conference on Artificial 

Intelligence, 1997, pp. 1178-85. 

•! L. Blackmore, S. Funiak, and B. C. Williams, “A Combined Stochastic and Greedy 

Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode 

Transitions,” Journal of Robotic and Autonomous Systems, July, 2007. 



Approach: Model-based Programming and Execution 

–!An embedded programming language  

elevated to operations on hidden state, and  

–!A language executive that achieves robustness 

by reasoning over constraint-based models. 
 

Today: Coordination and dynamic scheduling. 

Wednesday: Model-based programming with hidden state. 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

•! Mode reconfiguration and reactive planning. 



Mars Polar Lander Failure 

Programmers are overwhelmed 

by the bookkeeping of reasoning 

about unlikely hidden states 

 Leading Diagnosis: 

•! Legs deployed during descent. 

•! Noise spike on leg sensors 

latched by software monitors. 

•! Laser altimeter registers 50ft. 

•! Begins polling leg monitors to 

determine touch down. 

•! Latched noise spike read as 

touchdown. 

•! Engine shutdown at ~50ft.  Fault Aware Systems: 

Systems that reason and  

coordinate on the fly from models 

Model-based Programming: 

Programming of fault-aware systems 



engine to standby!

planetary approach!

separate"

lander!

switch to"

inertial nav! rotate to entry-orient"

& hold attitude!

Switch navigation mode:!

“Earth-relative” = Star Tracker + IMU!

Switch navigation mode:!

“Inertial” = IMU only!

Mission Storyboards  

Specify Evolving States 



engine to standby!

Rotate spacecraft:!

•! command ACS to entry orientation!

planetary approach!

separate"

lander!

switch to"

inertial nav! rotate to entry-orient"

& hold attitude!

Mission Storyboards  

Specify Evolving States 



Like Storyboards, Model-based Programs 

Specify The Evolution of Abstract States   

Embedded programs evolve actions 

by interacting with plant sensors 

and actuators: 

•! Read sensors  

•! Set actuators 

Embedded Program 

S 
Plant 

Obs Cntrl 

Model-based programs evolve 

abstract states through direct 

interaction: 

•! Read abstract state 

•! Write abstract state 

Model-based 
Embedded Program 

S 
Plant 

Model-based executive maps 

between state and sensors/actuators. 

S’ 
Model-based Executive 

Obs Cntrl 

Programmer maps between state 

and sensors/actuators. 



Model-based Programming  

of a Saturn Orbiter 
Turn camera off and !

engine on!

EngineA EngineB 

Science Camera 

OrbitInsert()::  

 

 do-watching (EngineA = Thrusting OR 

                        EngineB = Thrusting) 

      parallel {  

           EngineA = Standby; 

           EngineB = Standby; 

           Camera = Off; 

           do-watching (EngineA = Failed) 

                 when-donext (EngineA = Standby) AND  

                                          Camera = Off)  

                       EngineA = Thrusting; 

           when-donext (EngineA = Failed AND  

                                   EngineB = Standby AND  

                                   Camera = Off)  

                 EngineB = Thrusting} 

     



      The program assigns EngineA = Thrusting,  

and the model-based executive . . . .       

Determines that valves!

on the backup engine B"

will achieve thrust, and"

plans needed actions.!

Deduces that a valve !

failed - stuck closed!

Plans actions!

to open!

six valves!

Fuel tank!Oxidizer tank!

Deduces that!

thrust is off, and"

the engine is healthy!

Prog: EngineB = Thrusting 
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Plant Model: 

Probabilistic Constraint Automata (PCA) 

Standby 

Engine Model 

Off 

Failed 

Firing 

component modes! 

 

(thrust = full) AND 

(power_in = nominal) 

(thrust = zero) AND 

(power_in = zero) 

(thrust = zero) AND 

(power_in = nominal) 

 

  described by finite domain constraints on variables! 

 

  

          guarded deterministic and probabilistic transitions 

off- 

cmd 
standby- 

cmd 

0.01 

0.01 

standby- 

cmd 

fire- 

cmd 

 

  

           

          cost / reward & prior distribution 

0 v 

0 v 

2 kv 

2 kv 

one per component ! operating concurrently 

On 

Camera Model 

Off 

turnoff- 

cmd 
turnon- 

cmd 

(power_in = zero) AND 

(shutter = closed) 

(power_in = nominal) AND 

(shutter = open) 

0 v 

20 v 

0.01 

0.01 

0 v 

[Williams & Nayak 95, Williams et al. 01] 
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Modeling Reactive Behavior 

•!  c[s] 

•!  If c[s] next A 

•!  Unless c[s] next A 

•!  A, B 

•!  Always A 

•! [l, u] A 

•! Choose with reward 

•! Choose with probability 

•! state constraints!

•! conditional execution!

•! preemption!

•! full concurrency !

•! Iteration!

•! Flexible time!

•! Reward!

•! Probability!

Design Features! RMPL constructs:!

A generalization of TCC combinators 
 [Saraswat, Gupta, et al.] 



Control Sequencer 

Deductive   Controller 

System Model!

Commands!Observations!

Control Program 

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Generates target goal states!

conditioned on state estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

Tracks!

likely "

plant states!

Tracks least "

cost goal states!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

OrbitInsert()::  

do-watching (EngineA = Firing OR 

                         EngineB = Firing) 

      parallel { 

           EngineA = Standby; 

           EngineB = Standby; 

           Camera = Off; 

           do-watching (EngineA = Failed) 

                when-donext ( EngineA = Standby AND  

                                           Camera = Off )  

                       EngineA = Firing; 

           when-donext ( EngineA = Failed AND  

                                     EngineB = Standby AND  

                                     Camera = Off )  

                 EngineB = Firing} 

        

Closed 

Valve 

Open 
Un- 
known 

Stuck 
closed 

Open Close 

0. 01 

0. 01 

0.01 

0.01 

inflow iff outflow 



Control Sequencer 

Deductive   Controller 

System Model!

Commands!
Observations!

Control Program 

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Control Sequencer:!
Generates goal states !

conditioned on state estimates!

Mode!

Estimation:!

Tracks likely !

States!

Mode!

Reconfiguration:!

Tracks least-cost!

state goals!

!! Executes concurrently!

!! Preempts!

!! Asserts and queries states!

!! Chooses based on reward!

Fire backup!

engine!

Valve fails!

stuck closed!

S T

X
0

X
1

X
N-1

X
N The image cannot be displayed. Your computer may not have enough memory to open the image, or 

the image may have been corrupted. Restart your computer, and then open the file again. If the red 
x still appears, you may have to delete the image and then insert it again.

least cost reachable 

goal state First Action Mode Estimate (Belief State)  



Deductive   Controller 

Commands!
Observations!

Plant!

State goals!State estimates!

Mode!

Estimation:!

Tracks likely !

States!

Mode!

Reconfiguration:!

Tracks least-cost!

state goals!

Optimal CSP:!

  arg min f(x)!

  s.t. C(x) is satisfiable!

        D(x) is unsatisfiable!

arg min Pt(Y| Obs)!

s.t. #(X,Y) ! O(m’) is consistent!

arg max Rt(Y)!

s.t. #(X,Y) entails G(X,Y)!

s.t. #(X,Y) is consistent!

s.t. Y is reachable!

Mode Reconfiguration:!

Select a least cost set of commandable 

component modes that entail the 

current goal, and are consistent.!

!

Mode Estimation:!

Select a most likely set of next 

component modes that are consistent 

with the model and past observations.!



Variants on Probabilistic Constraint Automata  

define a Family of RMPL Languages 

•! Complex, discrete behaviors !

•! modeled through concurrency, hierarchy and timed transitions.!

•! Anomalies and uncertainty!

•! modeled by probabilistic transitions!

•! Physical interactions!

•! modeled by discrete and continuous constraints!

Standby 

Engine Model 

Off 

Failed 

off- 
cmd 

standby- 
cmd 

0.01 

(thrust = full) AND 
(power_in = nominal) 

Firing 

0.01 

standby- 
cmd 

fire- 
cmd 

(thrust = zero) AND 
(power_in = zero) 

(thrust = zero) AND 
(power_in = nominal) 

On 

Camera Model 

Off 

turnoff- 
cmd 

turnon- 
cmd 

(power_in = zero) 
AND 

(shutter = closed) 

(power_in = nominal) 
AND 

(shutter = open) 

0 v 

2 kv 

2 kv 

0 v 

0 v 

20 v 

0.01 

0.01 

0 v 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

•! Mode reconfiguration and reactive planning. 
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Control Sequencer 

Deductive   Controller 

System Model!

Commands!Observations!

Control Program 

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

!! Executes 
concurrently!

!! Preempts!

!! Queries (hidden) 
states!

!! Asserts (hidden) 
state!

OrbitInsert()::  

do-watching (EngineA = Firing OR 

                       EngineB = Firing) 

      parallel { 

           EngineA = Standby; 

           EngineB = Standby; 

           Camera = Off; 

           do-watching (EngineA = Failed) 

                 when-donext ( EngineA = Standby AND  

                                            Camera = Off )  

                       EngineA = Firing; 

           when-donext ( EngineA = Failed AND  

                                     EngineB = Standby AND  

                                     Camera = Off )  

                 EngineB = Firing} 
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Map RMPL to  

Hierarchical Constraint Automaton 

MAINTAIN (EAR OR EBR)!

EBS!

CO!

MAINTAIN (EAF)!

EAS!

(EAS AND CO)!

EAR!
EAS AND CO!

(EAF AND EBS AND CO)!

EBR!
EAF AND EBS!

AND CO!

OrbitInsert()::  

do-watching (EngineA = Firing OR 

                       EngineB = Firing) 

      parallel { 

           EngineA = Standby; 

           EngineB = Standby; 

            Camera = Off; 

           do-watching (EngineA = Failed) 

                 when-donext ( EngineA = Standby AND  

                                           Camera = Off )  

                       EngineA = Firing; 

           when-donext (  EngineA = Failed AND  

                                      EngineB = Standby AND  

                                      Camera = Off )  

                 EngineB = Firing} 
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Executing Deterministic HCA!

Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

!

!c!
d!

e!

e!

d!d!
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Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!
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Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!
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Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

!

!c!
d!

e!

e!

d!d!" = {c,e}!

Executing Deterministic HCA!
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Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

!

!c!
d!

e!

e!

d!d!" = {c,e}!

d estimated!

Executing Deterministic HCA!
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!

!c!
d!

e!

e!

d!d!

Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!
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!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!

Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!
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!

!c!
d!

e!

e!

d!d!

Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!
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!

!c!
d!

e!

e!

d!d!" = {c,d,e}!

Given marking:!

•! Mark start locations of all newly marked composite 
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!
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Control Sequencer 

Deductive   Controller 

System Model!

Commands!Observations!

Control Program 

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

!! Executes 
concurrently!

!! Preempts!

!! Queries (hidden) 
states!

!! Asserts (hidden) 
state!

OrbitInsert()::  

(do-watching ((EngineA = Firing) OR 

                         (EngineB = Firing)) 

      (parallel 

           (EngineA = Standby) 

           (EngineB = Standby) 

           (Camera = Off) 

           (do-watching (EngineA = Failed) 

                 (when-donext ( (EngineA = Standby) AND  

                                            (Camera = Off) )  

                       (EngineA = Firing))) 

           (when-donext ( (EngineA = Failed) AND  

                                      (EngineB = Standby) AND  

                                      (Camera = Off) )  

                 (EngineB = Firing)))) 

        

Closed 

Valve 

Open 
Un- 

known 

Stuck 

closed 

Open Close 

0. 01 

0. 01 

0.01 

0.01 

inflow iff outflow 

Optimal CSP:!

  arg min f(x)!

  s.t. C(x) is satisfiable!

        D(x) is unsatisfiable!
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

–!Estimates and kernels. 

–!By divide and conquer (GDE). 

–!Likely estimates (Conflict-directed A*). 

–!Estimating probabilistic constraint automata 

•! Mode reconfiguration and reactive planning. 



1/16/11 copyright Brian C. Williams 

Issues: 

•! Hidden failures 

•! Novel failures 

•! Multiple faults 



Model-based Diagnosis 

Input: Observations of a system with symptomatic behavior, 

and a model ! of the system.  

Output: Diagnoses that account for the symptoms. 

1/16/11 copyright Brian C. Williams 

1! Symptom!1!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

1!

A1 

A2 

A3 

X1 

X2 

A1 

X1 



How Should Diagnoses  

Account for Novel Symptoms? 

Consistency-based Diagnosis: Given symptoms,  

find diagnoses that are consistent with symptoms. 

Suspending Constraints:  For novel faults, make  

no presumption about faulty component behavior. 
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1!

0!

1! Symptom!A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1 

A2 

A3 

X1 

X2 

[Davis, 84] 

[Geneserth, 84] 

[deKleer & Brown, 83] 



Multiple Faults: Identify all Combinations  

of Consistent “Unknown” Modes 

•! Candidate:   Assignment of G or U to each component. 

And(i): 

"! G(i):  

  Out(i) = In1(i) AND In2(i) 

"! U(i): No Constraint 

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1 

A2 

A3 

X1 

X2 
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Multiple Faults: Identify all Combinations  

of Consistent “Unknown” Modes 

•! Candidate:   Assignment of G or U to each component. 

•! Diagnosis:   Candidate consistent with model and observations. 

And(i): 

"! G(i):  

  Out(i) = In1(i) AND In2(i) 

"! U(i): No Constraint 

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1 

A3 

X1 

1!

0!

1!
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Incorporating (Failure) Modes:  

Mode Estimation 

Inverter(i): 

•! G(i):  Out(i) = not(In(i)) 

•! S1(i):  Out(i) = 1 

•! S0(i):  Out(i) = 0 

•! U(i): 

X! Y!A! B! C!0! 0!

Nominal, Fault and Unknown Modes!

•! Isolates unknown.!

•! Explains.!

Sherlock 
[de Kleer & Williams, IJCAI 89] 
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Summary: Mode Estimation 

And(i): 

   G(i):  

  Out(i) = In1(i) AND In2(i) 

   U(i): No Constraint 

•! All component behaviors are associated with 

modes. 

•! All components have “unknown Mode” U, 

whose assignment is never mentioned in any 

constraint. 

Input: 
"! Mode, State, Observation Variables:  X, Y, O   Y 

"! Obs = assignment to O 

"! Model:     !(X,Y) = components + structure 

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1 

A3 

X1 

1!

0!

1!

! 

M",obs # {X $ D
X

|%Y $ D
X
st Obs&"(X,Y )}
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Output: All mode estimates: 

! 

"



Partial Diagnosis!

   {A1=U, A2=U, X2=U}!

Compact Encoding: Partial Diagnoses 

Partial Diagnosis: !

A partial mode assignment M, !

that “removes all symptoms.”!

•! All full extensions of M are diagnoses.!

•!  # ∧ Obs is consistent.!

•!  M entails # ∧ Obs.   (implicant)!

?!

?!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A3 

X1 

1!

0!

1!

Extensions (Diagnoses):!

 {A1=U, A2=U, A3=G, X1=G, X2=U}!

 {A1=U, A2=U, A3=G, X1=U, X2=U}!

 {A1=U, A2=U, A3=U, X1=G, X2=U}!

 {A1=U, A2=U, A3=U, X1=U, X2=U}!

!
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Kernel Diagnosis!

   {A2=U, X2=U}!

Compact Encoding: Kernel Diagnoses 

Partial Diagnosis: !

A partial mode assignment M, that removes all symptoms.!

•! M entails # ∧ Obs. !(implicant)!

Kernel Diagnosis: !

A partial diagnosis K, no subset of which is a partial diagnosis.!

•! K is a prime implicant of # ∧ Obs.!

?!

?!

?!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1 

A3 

X1 

1!

0!

1!

44 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

–!Estimates and kernels. 

–!By divide and conquer (GDE). 

–!Likely estimates (Conflict-directed A*). 

–!Estimating probabilistic constraint automata 

•! Mode reconfiguration and reactive planning. 



Modes Estimation by  

Divide and Conquer 

Given model ! and observations Obs, 

1.!Find all symptoms. 

2.!Diagnose each symptom separately 
    (each generates a conflict). 

3.!Merge diagnoses 
    (set covering " kernel diagnoses). 

General Diagnostic Engine 

[de Kleer & Williams, 87] 

Conflict  

Recognition 

Candidate 

Generation 
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Conflicts Explain How to  

Remove Symptoms 
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A!

B!

C!

D!

E!

1!

1!

1!

0!

F!

G!

X!

Y!

Z!

Symptom: "
    F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.!

Conflict 1: !{A1=G, A2=G, X1=G} is inconsistent.!

Conflict: !An inconsistent partial assignment to mode variables X.!

F! 0!

1!
1!

0!

"!One of A1, A2 or X1 must be broken. 

1!

A1 

A2 

A3 

X1 

X2 

Symptom!



Second Conflict 
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Symptom: !G is observed 1, but predicted 0.!

Conflict 2: !{A1=G, A3=G, X1=G, X2=G} is inconsistent.!

Symptom!

1!

1!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

0!

A1 

A2 

A3 

X1 

X2 

Conflicting modes aren’t always 

upstream from symptom.!

"!One of A1, A3, X1 or X2 must be broken. 



Summary: Conflicts 

 Conflict: A partial mode assignment M that is"
   inconsistent with the model and observations.!

Properties:!

•!                  implies!

•! Every superset of a conflict is a conflict.!

•! Only need conflicts that are minimal under subset.!

1! Symptom!1!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

1!

A1 

A2 

A3 

X1 

X2 

! 

"#Obs
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¬M



Conflict Recognition: Propagating Environments 
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1 {}!
A!

A1 

A2 

A3 

X1 

X2 

1 {}!
B!

1 {}!
C!

0 {}!D!

1 {}!
A!

0 {}!F!
1 {A1=G,A2=G,X1=G}!

1 {}!
G!

X!
1 {A1=G}!

Z!
1 {A3=G}!

0 {A2=G}!Y!
1 {A1=G,X1=G}!

0 {A1=G,A3=G,X1=G,X2=G}!

Conflict 1 

Conflict 2 
General Diagnostic Engine 
[de Kleer & Williams, 87] 

 



Candidate Generation: 

From Conflicts to Constituent Kernels 

Constituent Kernel: An assignment a that “resolves” one conflict Ci.!

!Conflict:! ! !{A1=G, A3=G, X1=G, X2=G}. !

!Constituent Kernels: !{A1=U, A3=U, X1=U, X2=U} !

!           “resolves” = prevents conflict Ci from being true.!

! ! !   = entails not Ci.!

! ! !   = alternative value of variable mentioned in conflict. !

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1

1

1

A1 

A2 

A3 

X1 

X2 

A!

B!

C!

D!

E

1

1

1

0

1

F

G!

X!

Y!

Z

0

1

A1 

A3 

X1 

? 

? 

? 
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{          , A3=U, X1=U, X2=U} !

 



Candidate Generation: 

From Conflicts to Kernels 

Constituent Kernel: An assignment a that “resolves” one conflict Ci.
{X2=U} resolves {A1=G, A3=G, X1=G, X2=G}. 

Kernel: Minimal set of assignments A that “resolves” all conflicts C. 

!

#!Pick constituent from each conflict using minimal set covering. 

!{A2=U, X2=U} resolves {A1=G, A3=G, X1=G, X2=G}, and!

!{A2=U, X2=U} resolves {A1=G, A2=G, X1=G}. 

!

 

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1

1

1

A1 

A2 

A3 

X1 

X2 

A!

B!

C!

D!

E

1

1

1

0

1

F

G!

X!

Y!

Z

0

1

A1 

A3 

X1 

? 

? 

? 
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Kernel Diagnoses =!

Candidate Generation: 

Generate Kernels From Conflicts  

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U}  !constituents of Conflict 2.!

“Smallest” sets of modes that remove all conflicts.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!
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Kernel Diagnoses = !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U}   !constituents of Conflict 2.!

Candidate Generation: 

Generate Kernels From Conflicts  

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1.! Compute cross product. 

2.! Remove supersets. 

•! Old subset New. 

•! New subset Old. 
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Kernel Diagnoses = !{A1=U, A3=U}"

! ! !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

Candidate Generation: 

Generate Kernels From Conflicts  

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U}   !constituents of Conflict 2.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1.! Compute cross product. 

2.! Remove supersets. 

•! Old subset New. 

•! New subset Old. 
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Kernel Diagnoses = !{X1=U}"

! ! !{A2=U, X2=U}"

! ! !{A2=U, A3=U}"

! ! !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

Candidate Generation: 

Generate Kernels From Conflicts  

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U}   !constituents of Conflict 2.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1/16/11 copyright Brian C. Williams 

1.! Compute cross product. 

2.! Remove supersets. 

•! Old subset New. 

•! New subset Old. 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

–!Estimates and kernels. 

–!By divide and conquer (GDE). 

–!Likely estimates (Conflict-directed A*). 

–!Estimating probabilistic constraint automata 

•! Mode reconfiguration and reactive planning. 



Due to the unknown mode, there tends to be an 

exponential number of mode estimates. 

!

!

!

U!
Candidates with!

UNKNOWN failure !

modes!

Candidates with!

KNOWN failure !

modes!

Good! Good!

G! !

"

F1!

Fn!

G!

U!

But most mode estimates represent a small fraction of the 

 probability density space. 

Most of the density space may be represented by  

enumerating the few most likely modes P(X | Obs.) 

U!

1/16/11 copyright Brian C. Williams 

Fault models alone don’t help. 



Simple Probabilistic  

Mode Estimation 

Input: 
•! Mode X, State Y and Observation O variables with finite domains.  

•! Model !(X;Y). 

•! Observations obs. 

•! Prior distribution P(Xi) for each component i.  

Output: 
•! P(X | obs)   Posterior, given observations. 

1/16/11 copyright Brian C. Williams 



! 

P(X) = P(X
i
)

X
i
"X

#
! 

P(X |obs) ="P(obs | X)P(X)

! 

P(obs | X) =
0 if "#obs# X is inconsistent

1/n else n = obs
i
|"#obs

i
# X is consistent{ }

$ 
% 
& 

•! Assume modes are a priori independent: 

•! Assume consistent observations* are equally likely "

for a given mode assignment: 

1/16/11 copyright Brian C. Williams 

 * or consistent models 



   When you have eliminated the impossible, 

whatever remains, however improbable,  

must be the truth.     

- Sherlock Holmes. The Sign of the Four. 

Mode Estimation as !

Conflict-directed Best First Search!

1.! Generate most likely hypothesis.!

2.! Test hypothesis.!

3.! If inconsistent, learn reason for inconsistency"

(a conflict).!

4.! Use conflicts to leap over similarly infeasible options "

to next best hypothesis.!

1/16/11 copyright Brian C. Williams 



Compare Most Likely Hypothesis to Observations 

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Flow1 = zero!

Pressure1 = nominal!
Pressure2= nominal!

Acceleration = zero!

It is most likely that all components are okay.!
10/26/10 66 



Isolate Conflicting Information 

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

!

Flow 1= zero!

The red component modes conflict with the model and observations.!
10/26/10 67 



Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

!

Flow 1= zero!

Leap to the Next Most Likely Hypothesis 

that Resolves the Conflict 

The next hypothesis must remove the conflict. !
10/26/10 68 



New Hypothesis Exposes Additional Conflicts 

Pressure1 = nominal! Pressure2= nominal!

Acceleration = zero!

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Another conflict, try removing both.!
10/26/10 69 



Final Hypothesis Resolves all Conflicts  

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Pressure1 = nominal!

Flow1 = zero!

Pressure2= nominal!

Flow2 = positive!

Acceleration = zero!

Implementation: Optimal CSPs and Conflict-directed A*.!
10/26/10 70 
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Constraint Satisfaction Problem 

CSP = <Y, DY,C> 

–! variables Y, with domain DY. 

–! Constraints C: DY # {True, False}. 

 

Problem: Find Y in DY  s.t. C(Y) . 

R,G,B 

 G R, G 

Different-color constraint 

V1 

V2 V3 

copyright Brian C. Williams 



Optimal CSP 

Input: <X, g, CSP> 

–! X are decision variables with domain DX. 

–! g: DX # $ is a utility function. 

–! CSP over variables <X;Y>. 

Output: Find leading arg max g(X) 
                                X % DX 

 

         s.t. & Y % DY . C(X;Y). 

$! g() is a multi-attribute utility function that is  

preferentially independent. 

$! Encode C in propositional state logic. 
2/16/11 72 copyright Brian C. Williams 



Mode Estimation 

Find leading arg max 

               X % DX 

 

         s.t. & Y % DY . X∧!(X,Y)∧obs. 

! 

"P(obs | X) P(X
i
)

X
i
#X

$

2/16/11 73 copyright Brian C. Williams 
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•! Assume independent failures. 

•! Assign P such that: 

–! PXi=G >> PXi=U 

–! Psingle >> Pdouble 

–! PA2=U > PA1=U > PA3=U > PX1=U > PX2=U 

Probabilities for Boolean Polycell 
A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1 

A2 

A3 

X1 

X2 

copyright Brian C. Williams 
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Mutual Preferential Independence (MPI)  

Example: Mode Estimation 

Our preference for the assignment of one variable is 

independent of the assignments to the other variables. 

 

If A1 = G is more likely than A1 = U, 

Then 

 

        {A1 = G, A2 = G, A3 = U, X1 = G, X2 = G}  

is preferred to 

 

        {A1 = U, A2 = G, A3 = U, X1 = G, X2 = G}. 
copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 

A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 

Conflict-directed A*  

copyright Brian C. Williams 



2/16/11 78 

Increasing 

Cost 

Feasible 

Infeasible 

Conflict 1 

Conflict-directed A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 

Conflict 1 

Conflict-directed A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 
Conflict 2 

Conflict 1 

Conflict-directed A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 
Conflict 2 

Conflict 1 

Conflict-directed A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Feasible 

Infeasible 

C
o
n
flict 3

 

Conflict 2 

Conflict 1 

Conflict-directed A*  

copyright Brian C. Williams 
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Increasing 

Cost 

Infeasible 

C
o
n
flict 3

 

Conflict 2 

Conflict 1 

Conflict-directed A*  

Feasible 

copyright Brian C. Williams 



Increasing 

Cost 

Infeasible 

C
o
n
flict 3

 

Conflict 2 

Conflict 1 

•! Each feasible subregion described by a kernel assignment. 

#! Approach: Use conflicts to search for kernel assignment 

containing the best cost candidate. 

Kernel 1 

Kernel 2 

Kernel 3 

Feasible 

2/16/11 85 copyright Brian C. Williams 

Conflict-directed A*  
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{A2=U} 

A1=? ! A2=U ! A3=? ! X1=? ! X2=? 

           A1=G ! A2=U ! A3=G ! X1=G ! X2=G 

Idea: Select best value for each unassigned variable. 

Extracting a Kernel’s Best State  

copyright Brian C. Williams 
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•! Conflicts / Constituent Kernels 

–! none 

•! Best Kernel:  

–! {} 

•! Best Candidate:  

–! A1=G ! A2=G ! A3=G ! X1=G ! X2=G 

Example: First Iteration 
A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1 

A2 

A3 

X1 

X2 

copyright Brian C. Williams 
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Test: A1=G ! A2=G ! A3=G ! X1=G ! X2=G 

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1 

A2 

A3 

X1 

X2 

0!

1! 1! Symptom!

•! Extract Conflict and Constituent Kernels: 

     ¬ [A1=G ! A2=G ! X1=G]   

 

       A1=U ' A2=U ' X1=U 

copyright Brian C. Williams 
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•! Conflicts # Constituent Kernels 

–! {A1=U, A2=U, X1=U} 

•! Best Kernel:  

–! {A2=U}      (why?) 

•! Best Candidate:  

–! A1=G ! A2=U ! A3=G ! X1=G ! X2=G 

Second Iteration 

•! PXi=G >> PXi=U 

•! Psingle >> Pdouble 

•! PA2=U > PA1=U >  

PA3=U > PX1=U > PX2=U 

11

0

A!

B!

C

D!

E

F

G

X!

Y!

Z

1

1

1

0

1

0

1

1

1

A1 

A2 

A3 

X1 

X2 

copyright Brian C. Williams 
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Test: A1=G ! A2=U ! A3=G ! X1=G ! X2=G 

1!

1!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

1!

0!

A1 

A3 

X1 

X2 

•! Extract Conflict and Constituent Kernels: 

 ¬ [A1=G ! A3=G ! X1=G ! X2=G]  

 

       A1=U ' A3=U ' X1=U ' X2=U 

copyright Brian C. Williams 
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•! Conflicts # Constituent Kernels 

–! {A1=U, A2=U, X1=U} 

–! {A1=U, A3=U, X1=U, X2=U} 

•! Best Kernel:  

–! {A1=U} 

•! Best Candidate:  

–! A1=U ! A2=G ! A3=G ! X1=G ! X2=G 

Third Iteration 

Pxi=G >> PXi=U 

Psingle >> Pdouble 

PA2=U > PA1=U > PA3=U  

     > PX1=U > PX2=U 

1

1

1

0

1

0

1

1

1

A!

B

C

D!

E

F

G

X!

Y!

Z
1

0

A1 

A3 

X1 

X2 

copyright Brian C. Williams 
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Test: A1=U ! A2=G ! A3=G ! X1=G ! X2=G 

0!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

1!

1!

A3 

X1 

X2 

•! Consistent! 

A2 

copyright Brian C. Williams 



{X1=U, X2=U, "

 A1=U, A3=U}!

X1=U! A1=U! A2=U!

X2=U! M1=U!

A3=U!X1=U!

A1=U ! X2=U! A2=U ! A3=U!X1=U! A1=U!

Generating The Best Kernel of The Known Conflicts 

{X1=U,  A1=U , A2=U}!

Constituent Kernels 

•! Minimal set covering is an instance of breadth first search.!

 Insights: 

•! Kernels found by minimal set covering.!

2/16/11 94 copyright Brian C. Williams 



{X1=U, X2=U, "

 A1=U, A3=U}!

X1=U! A1=U! A2=U!

A1=U!

Generating The Best Kernel of The Known Conflicts 

{X1=U, A1=U, A2=U}!

Constituent Kernels 

•! Minimal set covering is an instance of breadth first search.!

$! To find the best kernel, expand tree in best first order.!

 Insights: 

•! Kernels found by minimal set covering!

2/16/11 95 

Best - 1st Iteration 

Best - 2nd Iteration 

Best – 3rd Iteration 
PXi=G >> PXi=U 

Psingle >> Pdouble 

PA2=U > PA1=U  

> PA3=U > PX1=U 

> PX2=U 

copyright Brian C. Williams 
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Problem  

Parameters 

Constraint-based 

A* (no conflicts) 

Conflict-directed A* Mean CD-CB Ratio 

Dom 

Size 

Dec 

Vars 

Clau
-ses 

Clau 
-se  
lngth 

Nodes 
Expande
d 

Queue 
Size 

Nodes 
Expand 

Queue 
Size 

Conflicts 

used 
Nodes 
Expanded 

Queue  
Size 

5 10 10 5 683 1,230 3.3 6.3 1.2   4.5%   5.6% 

5 10 30 5 2,360 3,490 8.1 17.9 3.2   2.4%   3.5% 

5 10 50 5 4,270 6,260 12.0 41.3 2.6   0.83%   1.1% 

10 10 10 6 3,790 13,400 5.7 16.0 1.6   2.0%   1.0% 

10 10 30 6 1,430 5,130 9.7 94.4 4.2   4.6%   5.8% 

10 10 50 6 929 4,060 6.0 27.3 2.3   3.5%   3.9% 

5 20 10 5 109 149 4.2 7.2 1.6 13.0% 13.0% 

5 20 30 5 333 434 6.4 9.2 2.2   6.0%   5.4% 

5 20 50 5 149 197 5.4 7.2 2.0 12.0% 11.0% 

Performance: 

With and Without Conflicts 

copyright Brian C. Williams 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

–!Estimates and kernels. 

–!By divide and conquer (GDE). 

–!Likely estimates (Conflict-directed A*). 

–!Estimating probabilistic constraint automata 

•! Mode reconfiguration and reactive planning. 
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S T

X
0

X
1

X
N-1

X
N

•!Assigns a value to each variable 

(e.g.,3,000 vars). 

•!Consistent with all state 

constraints (e.g., 12,000). 

•!A set of concurrent transitions, one per 

automata (e.g., 80). 

•!Previous & Next states consistent with 

source & target of transitions 

Mode Estimation as Belief State 

Update for Concurrent PCA!

1.!  Infer most likely mode trajectories. 

2.!  Infer distribution on likely mode assignments. 
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•! S, #,      : Finite States, Actions & Observations 

•! T(s,µ,s’): State transition function 

•! O(s’,µ,o): Observation function 

 

•! Bt+1(S): Belief state at time t. 

             P(st+1 | o<0,t>, µ<0,t>) 

!

! 

O : S "#$% &( )
! 

T : S "#$% S( )

Hidden Markov Model 
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Propagate Dynamics: 

Update Based on Observations: 

HMM Belief State Update 

T 

O 

b t t+1 
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PCCA as HMMs 

•! PCCA encodes HMM compactly 

using concurrency and constraints.  

•! State abstracted to modes.  

Assume:!

•! Transitions only permitted on modes. 

•! Transitions are conditionally independent. 

•! For each time t,  

all consistent assignments are equally likely. 

Standby 

Engine Model 
Off 

Failed 

off- 

cmd 
standby- 

cmd 

0.01 

(thrust = full) AND 

(power_in = nominal) 

Firing 

0.01 

standby- 

cmd 

fire- 

cmd 

(thrust = zero) AND 

(power_in = zero) 

(thrust = zero) AND 

(power_in = nominal) 

On 

Camera Model 
Off 

turnoff- 

cmd 
turnon- 

cmd 

(power_in = zero) 

AND 

(shutter = closed) 

(power_in = nominal) 

AND 

(shutter = open) 

0 v 

2 kv 

2 

kv 

0 v 

0 

v 

20 v 

0.01 

0.01 

0 

v 
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Approximating The Belief State 

Best-first Trajectory Enumeration (BFTE): 
[Williams and Nayak, AAAI-96][Kurien and Nayak, AAAI-00]

[Williams et al., IEEE ’03] 

•! Best-first State Enumeration (BFSE): 
[Martin, Williams and Ingham, AAAI-05] 

–! Improv accuracy through compact encoding. 

–! Accuracy improves runtime! 

Deep Space One 

Earth Observing One 

0.4 

0.2 

0.7 

0.3 
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Robust, Model-based Execution (2):  

Model-based Programming w Hidden States 

•! Model-based programming and execution. 

•! Control sequencing. 

•! Mode estimation. 

•! Mode reconfiguration and reactive planning. 
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System Model!

Control Program 

Control Sequencer 

Deductive   Controller 

Commands!Observations!

Plant!

Model-based Executive!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

Tracks!

likely "

plant states!

Tracks least "

cost goal states!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

Closed 

Valve 

Open 
Stuck 

open 

Stuck 

closed 

Open Close 

0. 01 

0. 01 

0.01 

0.01 

inflow = outflow = 0 

Probabilistic Constraint Automata 

Model-based Program!

Mode!

Estimation!

Mode!

Reconfiguration!
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DS 1 Attitude Control System 

z facing thrusters x facing thrusters 

1
5
5
3
 b

u
s 

C
o
m

m
a
n

d

s 

D
a
ta

 

N2H4 

He 

PDE 

SRU 

PDU 

GDE 

PASM 

DSEU 

PEPE 

BC 

Flight 

Computer 

Flight 

Computer 

BC 

PDE 

1.! Select reachable modes that together achieve goals. 

2.! Send commands to reconfigure modes. 

•!  by turning on device drivers, 

•!  by repairing bus controllers, 

•!  by sending commands, 

•!  by powering down devices . . . 

Deep Space One Attitude Control System 
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Mode Reconfiguration 

Model-based Programming of Intelligent Embedded Systems and Robotic Explorers 

[Williams et al., IEEE’03] 

 

Reactive Planner for a Model-based Executive 

[Williams & Nayak, IJCAI 97] 

Goal 

Interpreter 

Reactive 

Planner 

Configuration 

Goal 

Command 

Goal State 

State 

Estimate 

(Current) 

Max likelihood assumption: 

 The most likely state 

 is the true state. 
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Goal Interpretation 

via Conflict Learning 

Goal: Achieve Thrust 

A conflict is a partial assignment to mode variables that 

prevents the goal (entails the negation of the goal). 

arg max Rt(Y) 

s.t. !(X,Y) entails G(X,Y) 

s.t. !(X,Y) is consistent 

Y are reachable modes 
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Reactive Planning:  

Engineered systems tend not to have loops 

Remote 

Terminal 

Remote 

Terminal 

Bus 

Control 
Computer Valve 

Valve 

Driver 

Driver 

$!  Work conjunctive goals upstream G from outputs to inputs.  Wht? 

–! Define: Causal Graph G of compiled transition system S  

•! vertices are state variables.  

•! edge from vi to vj if vj’s transition is conditioned on vi. 

dcmdin 

Driver 

Valve 

–! Requirement: The causal graph is acyclic. 

[Williams, Nayak IJCAI97] 



Compile models to goal-directed policies 

Reactive Planning 112 
Reactive Planning 112 

Goal State 

Driver On Off 

C
u

rr
e
n

t 
S

ta
te

 

On idle cmd = off 

Off cmd = on idle 

Reset- 
table 

cmd = reset cmd = off 

Goal State 

Valve Open Closed 

C
u

rr
e

n
t 

S
ta

te
 

Open idle 
driver = on 

cmd = close 

Closed 
driver = on 
cmd = open 

idle 

Stuck failed failed 

Off 

On 
Reset- 

table 
cmd = off cmd = on 

cmd = reset 

cmd = off 

Closed 

Open Stuck 

driver = on 

cmd = close 

driver = on 

cmd = open 

[Williams, Nayak, IJCAI 97] 
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Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

cmd = reset cmd = off 

Current: Driver = off, Valve = open 

1 2 
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Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

cmd = reset cmd = off 

Current: Driver = off, Valve = open 

1 2 
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Plan by passing sub-goals up causal graph 

Valve Driver 
Send: 

cmd = on 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

cmd = reset cmd = off 

Current: Driver = off, Valve = open 

1 2 
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1 2 

Current:  ??? 

Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

cmd = reset cmd = off 

driver = on 

cmd = close 

Failed 

Resettable 

cmd = on 

Send: 

cmd = on 



117 

Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

cmd = reset cmd = off 

driver = on 

cmd = close 

Current: Driver = resettable, Valve = open 

1 2 
Send 

cmd = reset 
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Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

Goal 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

Send 

cmd = close 

cmd = reset cmd = off 

Current: Driver = on, Valve = open 

1 2 
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Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

cmd = reset 

Goal 

cmd = off 

cmd = on idle 

idle cmd = off 

Current 

On 

Off 

Resettable 

On Off 

Goal: Driver = off, Valve = closed 

Send 

cmd = off 

Current: Driver = on, Valve = closed 

1 2 
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Plan by passing sub-goals up causal graph 

Valve Driver 

fail 

Goal 

fail 

driver = on 

cmd = open 
idle 

idle 
driver = on 

cmd = close 

Current 

Open 

Closed 

Stuck 

Open Closed 

cmd = reset 

Goal 

cmd = off 

cmd = on idle 

idle 

Current 

On 

Off 

Resettable 

On Off 

cmd = off 

Goal: Driver = off, Valve = closed 
Success 

Current: Driver = off, Valve = closed 

1 2 



Control Sequencer 

Deductive   Controller 

System Model!

Commands!Observations!

Control Program 

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

Closed 

Valve 

Open 
Un- 
known 

Stuck 
closed 

Open Close 

0. 01 

0. 01 

0.01 

0.01 

inflow iff outflow 



Variants on Probabilistic Constraint Automata  

define a Family of RMPL Languages 

•! Complex, discrete behaviors !

•! modeled through concurrency, hierarchy and timed transitions.!

•! Anomalies and uncertainty!

•! modeled by probabilistic transitions!

•! Physical interactions!

•! modeled by discrete and continuous constraints!
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Approach: Model-based Programming and Execution 

–!An embedded programming language  

elevated to operations on hidden state and choice  

–!A language executive that achieves robustness by 

reasoning over constraint-based models. 
 

Tuesday: Coordination and dynamic scheduling. 

Wednesday: Model-based programming with hidden state. 


