
Massachusetts Institute of Technology

courtesy of JPL!

Robust Model-based Execution (1) : "
Coordination and Dynamic Scheduling

Prof Brian Williams, MIT!
ACAI Summer School on "

Automated Planning and Scheduling!
June 7th, 2011!

Brian C. Williams, copyright 2000

2/16/11 1 copyright Brian C. Williams

Contributions:!

Patrick Conrad!

Sahnnon Dong!

Andreas Hofmann!

Robert Morris!

Nicola Muscettola!

Juie Shah!

David Smith !

!

2

Readings

•! Google “MIT OCW 16.412 Cognitive Robotics”

•! mers.csail.mit.edu, click “Publications”

•! Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, 49, pp. 61-95,1991.

•! Muscettola, N., P. Morris and I. Tsamardinos, “Reformulating Temporal Plans for Efficient Execution.” Intl
Conf. on Knowledge Representation and Reasoning (KRR), 1998.

•! Shah, J.; Stedl, J.;Williams, B.; and Robertson, P. 2007. A Fast Incremental Algorithm for Maintaining
Dispatchability of Partially Controllable Plans.

•! P. Morris, N. Muscettola and T Vidal,” Dynamic Control of Plans with Temporal Uncertainty,” in Proc. Int.
Joint Conf. on AI, 2001.

•! . Léauté and B. C. Williams, "Coordinating Agile Systems Through the Model-based Execution of
Temporal Plans," Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05),
Pittsburgh, PA, July 2005, pp. 114-120.

•! A. G. Hofmann and B. C. Williams, "Exploiting Spatial and Temporal Flexiblity for Plan Execution of
Hybrid, Under- Actuated Systems," Proceedings of the 21st National Conference on Artficial Intelligence,
Boston, MA, July 2006, pp. 948-955.

•! Tsamardinos, I.; Pollack, M.; and Ganchev, P. 2001. Flexible dispatch of disjunctive plans. In 6th
European Conference on Planning, 417–422.

•! P. Conrad, J. Shah and B. Williams, “Flexible Execution of Plans with Choice,” Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS 09), Thessaloniki, Greece,
September 2009.

•! Julie Shah, Patrick Conrad, and Brian C. Williams, "Fast Distributed Multi-agent Plan Execution with
Dynamic Task Assignment and Scheduling," Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 09), Thessaloniki, Greece, September 2009.

3

3

Robust, Model-based Execution (1):

Coordination and Dynamic Scheduling

•! Robust, model-based execution of time critical tasks.

–! Case Study: Remote Agent.

–! Case Study: Personal Transport System.

•! Task coordination through dynamic scheduling.

•! Task coordination for under-actuated systems.

•! Task coordination for multi-robot systems.

4

Time Critical Tasks!

5

An effective Scrub Nurse:

•! works hand-to-hand, face-to-face with surgeon,

•! assesses and anticipates needs of surgeon,

•! provides assistance and tools in order of need,

•! responds quickly to changing circumstances,

•! responds quickly to surgeon’s cues and requests.

Time Critical Tasks!

[Shah and Williams]!

6

Model-based Execution

The development of autonomous systems that robustly

perform complex tasks.

•! Goal-directed: Tasks described qualitatively in terms of time-

evolved goals.

•! Real-time Decisions: Tasks executed using real-time decision

making algorithms, based on observations.

•! Model-based: Operates on heterogeneous models of the robot,

user and environment.

7 courtesy of JPL!

Remote Agent Experiment on

Deep Space One

1/16/11 copyright Brian C. Williams

8

Loss of Mars Observer, early 90’s

1/16/11 copyright Brian C. Williams

9

1/16/11 copyright Brian C. Williams

10

Autonomy Demonstration

on Simulated Cassini Probe

1/16/11 copyright Brian C. Williams

11

Remote Agent on Deep Space One

1.! Commanded by giving goals

2.! Reasoned from
commonsense models

3.! Closed loop on goals

Goals!

Diagnosis

& Repair!

Mission

Manager!
Executive!

Planner/!

Scheduler!

Remote Agent!

[Williams & Nayak, AAAI 95; !
 Muscettola et al, AIJ 00]!11!Brian Williams, Fall

10!

12

Goal: Set engine to thrusting for 1hr...

Exec: determines that valves on!
engine B will achieve thrust, "
and plans needed actions.!

Deduces that a valve !
failed - stuck closed!

Plans actions!
to open!
six valves!

Fuel tank!Oxidizer tank!

Deduces that!
thrust is off, and "
the engine is healthy!

Estimates Modes

Estimates Modes Reconfigures Modes

Reconfigures Modes

A new Goal: !
Sets engine B to thrust, !

13

Approach: Model-based Programming and Execution

–!An embedded programming language

elevated to operations on hidden state, and

–!A language executive that achieves robustness by

reasoning over constraint-based models.

Today: Coordination and dynamic scheduling.

Wednesday: Model-based programming with hidden state.

Model-based Execution has been

applied to a diverse set of robotic systems.

Courtesy Boeing

A Robot Air Taxi Driver!

16!

Destination!

Alternatives!

Point of interest!

Joint with Boeing!

X Plane Simulation of Personal

Transportation System (PTS)!

17!Movie M?!

18

18

Robust, Model-based Execution (1):

Coordination and Dynamic Scheduling

•! Robust, model-based execution of time critical tasks.

•! Task coordination through dynamic scheduling.

–! Representing plans and temporal relationships.

–! Scheduling based on decomposability.

–! Dynamic scheduling.

–! Dynamic scheduling with models of uncertainty.

•! Task coordination for under-actuated systems.

•! Task coordination for multi-robot systems.

19

Robust Program and Plan Execution

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2) Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2)
{Parallel

 {Sequence

 [5,10] Rover1.goto(p4);

 [5,10] Rover1.goto(p5);
 [2,5] Rover1.imageTargets();

 [5,10] Rover1.goto(p3);

 },

 {Sequence

 [5,10] Rover2.goto(p1);

 [5,10]Rover2.imageTargets();
 [2,5] Rover2.goto(p2);

 [5,10] Rover2.goto(p3);

 }

}

p1

p2
p3

p4

p5
1

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

Agents adapt to temporal disturbances in a coordinated manner

by scheduling the start of activities on the fly.

in RMPL [williams et al]!

20

To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Schedule Off-line Schedule Online

!

4. Dynamically Schedule Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

21

Outline: To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line Part II: Schedule Online

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

!

!

22

Describe Temporal Plan!
!

!

•! Activities to perform!

•! Relationships among activities!

Egress/ Setup

Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray

Configure Vent Tools Fluid Caps SFU Reconfig Release Loop B Tray

t = tmax

23

Time Lines!
!

Example: Deep Space One Remote Agent Experiment!

Max_Thrust Idle Idle

Poke

Timer

Attitude

Accum thrust

SEP Action

SEP_Segment

Th_Seg

contained_by"

equals" equals"
meets"

meets"

contained_by"

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust Thrust Thrust Thrust Standby Standby Standby

Th_Sega Th_Seg Th_Seg Idle_Seg Idle_Seg

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary

contained_by"

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

contained_by"

Th_Seg

24

Nested Compositions:!

(non-deterministic programs)!

•! Activity!

•! Sequence!

•! Parallel!

•! Choice!

•! With Time!

Temporal Plan Networks!

!"#"$!"
#"
$

!"
#"
$!!"#"$

% &'()('*+ ,!-#.$

!"
#"
$

"#

!"#"$

!"#"$

!"#/$

$%

& '

%&'()('*% ,-0#1$

% &'()('*2 ,!.#1$

() * +

%&'()('*3,!-#.$

, -

!"
#"
$

!"#"$

!"#"$

!"
#"
$

.

!"#/$

p1

p2

p4

p5
1

2

[Kim, Williams, Abramson, IJCAI01]!

25

Qualitative State Plans

Command script

00:00 Go to x1,y1

00:20 Go to x2,y2

00:40 Go to x3,y3

!

04:10 Go to xn,yn

Plant

Commands

Leaute & Williams, AAAI 05

26

Qualitative State Plans

Model-based Executive

Observations Commands

“Remain in mapping region for at least

100s, then remain in bloom region for at

least 50s, then return to pickup region.

Avoid obstacles at all times”
Qualitative State Plan

Plant

Leaute & Williams, AAAI 05

27

Qualitative State Plans

Remain in [safe region]

Remain in
[bloom region]

e1 e5

Remain in
[mapping region] e2 e3 e4

End in
[pickup region]

[50,70] [40,50]

[0,300]

Obstacle 1

Obstacle 2

Mapping

Region

Bloom

Region
Pickup

Region

“Remain in bloom region for between 50

and 70 seconds. Afterwards, remain in

mapping region for between 40s and 50s.

End in the pickup region. Avoid obstacles

at all times. Complete the mission within

300s”

Approach: Frame as Model-Predictive Control!
using Mixed Logic or Integer / Linear Programming.!

Leaute & Williams, AAAI 05

A temporal plan whose activities impose constraints on system state.!

28

Temporal Relationships!
!

Qualitative Temporal Relations [Allen 83]!

!

Y!

X! Y!

X! Y!

X! Y!

Y!X!

Y!X!

Y! X!

X!

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

Y after X

Y met-by X

Y overlapped-by X

Y contains X

Y started-by X

Y finished-by X

Y equals X

X disjoint Y

29

Temporal Relationships!
!

Simplify by reducing interval relations to "
 relations on timepoints.!

Activity A!

Start Activity A!

A-! A+!

End Activity A!

30

Temporal Relationships!
!

Qualitative Temporal Relationships as timepoint inequalities!

!

Y!

X! Y!

X! Y!

X! Y!

Y!X!

Y!X!

Y! X!

X!

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

X+ < Y-

X+ = Y-

Y- < X+ and X- < Y+ !

Y- < X- and X+ < Y+ !

X- = Y- and X+ < Y+ !

X- < Y- and X+ = Y+ !

X- = Y- and X+ = Y+ !

X disjoint Y X+ < Y- or Y+ < X- !

Y-!X+!
[0,inf]!

Y-!
[0,0]!

X+!

31

Metric Temporal Relations!
!

Add Metric Information:!

•! Going to the store takes at least 10 min and at
most 30 min.

•! Bread should be eaten within one day of baking.

Activity: Going to the store!

[10min, 30min]!

Activity: Bake Bread!
[0d, 1d]!

Activity: Eat Bread!

32

Metric Temporal Relations!
!

Add Metric Information: inequalities ! interval constraints!

•! Going to the store takes at least 10 min and at
most 30 min.

•! Bread should be eaten within one day of baking.

Start Going to Store!

G-! G+!

End Going to Store!

[10,30]!
10 < [G+ - G-] < 30!

End Bake Bread!

B+! E-!

Start Eat Bread!

[0,1]!
0 < [E- - B+] < 1!

33

•! Simple Temporal Network!
•! variables X1,…Xn, representing

timepoints with real-valued
domains, !

•! binary constraints of the form:!

–! called links.!

Temporal Relations Described by a STN!

X1! X3!

X2!

[l1, u1]!

[l2, u2]! [l3, u3]!

() [].,
ikikik
baXX !"

Sufficient to represent:!

•! all Allen relations but 1…!

•! simple metric constraints!

Can’t represent:!

•! Disjoint activities!

[Dechter, Meiri, Pearl 91]!

34

•! Temporal Constraint Network
(TCN)!

•! Extends STN by allowing multiple
intervals for each binary constraint
(link): !

Temporal Relations Described by a TCN!

X1! X2!

[l1, u1]V [l2, u2]V…V[ln,un] !

Supports:!

•!Multiple time windows for accomplishing an
activity.!

•!Different methods of accomplishing an activity.!

!

X1! X2!

[5, 7] V [10, 11]!

() []{ }().|,
ikikikikik
babaPXX !"#

[Dechter, Meiri, Pearl 91]!

35

•! Disjunctive Temporal Network (DTN)!
•! Extends TCN by allowing non-binary constraints. !

Temporal Relations Described by a DTN!

MS! D-!

[0, inf]!

D+! S-! S+!

I-! I+!

[5, 10]! [0, inf]! [4, 5]!

[15, 15]!

[1, 1]!

[0, inf]!

Activities of Mars Rover: Drill (D) , Image (I), Send Data (S)!

Drilling causes vibration.!

Image cannot occur !

•! during the last two minutes before drilling, or!

•! during the first minute after drilling ends.!

2 < D+ - I+ < inf!

OR!

1 < I - - D+ < inf!

Send data!Drill!

Image!

36

A Hierarchy of Temporal Relations!

DTN! -!non-binary constraints!

-!multiple intervals in constraints!

TCN!
-! binary constraints!

-!multiple intervals!

STN!
-! binary constraints!

-!simple intervals!

Tsamardinos, Pollack, M. Ganchev, ECP 01]!
[Shah, Conrad, Williams ICAPS 09]!
[Conrad,Shah, Williams ICAPS 09]!

37

Outline: To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line
[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

38

Input:!An STN <X, C> where Cj = <<Xk, Xi><aj,bj>>!

!

!

!

!

!

!

!

Output: True iff there exists an assignment to "
X satisfying C.!

Consistency of an STN!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

39

A B
[l, u]

A B

 u

- l

Map STN to Distance (D-)Graph

•! Upperbound mapped to outgoing, non-negative arc.

•! Lowerbound mapped to incoming, negative arc.

l B – A u! B – A u!

A – B - l!l B – A!

[Dechter, Meiri, Pearl 91]!

40

Check D-Graph Consistency

A B
[2, 1]

A B

1

-2

•! consistent iff d-graph has no negative cycles.

•! Detect by computing shortest path from one node to all other

nodes.

•! Single Source Shortest Path (SSSP).

Example of inconsistent constraint:

41

Outline: To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line
[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

[Dechter, Meiri, Pearl 91]!

42

Scheduling

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

Idea: Expose Implicit Constraints of STN ! Schedule
•! Input: STN

•! Output: “Decomposable” (Implied) STN
•! Algorithm: All-Pairs-Shortest-Path (APSP) of D-graph (Floyd-Warshall).

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

43

Scheduling without Search:

 Solution by Decomposition

Key ideas

•! Incrementally tighten feasible intervals,

 as commitments are made.

•! Perform on demand.

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

44

Scheduling without Search:

 Solution by Decomposition

Key ideas

•! Incrementally tighten feasible intervals,

 as commitments are made.

•! Perform on demand.

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

! !!

t=0

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.

45

Scheduling without Search:

 Solution by Decomposition

Key ideas

•! Incrementally tighten feasible intervals,

 as commitments are made.

•! Perform on demand.

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls,
consistent with X0!

! !!

t=0

[10,20]

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.

46

Scheduling without Search:

 Solution by Decomposition

Key ideas

•! Incrementally tighten feasible intervals,

 as commitments are made.

•! Perform on demand.

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls,
consistent with X0!

•! Select value for Le,
consistent with X0, Ls!

! !!

t=0

t=15

[45,50]

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.

47

Scheduling without Search:

 Solution by Decomposition

Key ideas

•! Incrementally tighten feasible intervals,

 as commitments are made.

•! Perform on demand.

X0! Ls! Le!

S s! S e!

[40,50]!

[10,20]! [30,40]!

[20,30]!

[10,20]!

[60,70]!

[40,50]!

[20,30]!

•! Select value for X0!

•! Select value for Ls,
consistent with X0!

•! Select value for Le,
consistent with X0, Ls!

! !!

t=0

t=15

t=45

Input: Decomposable STN (APSP D-Graph)

Output: Schedule (Assignment to X, consistent with STN)

Property: Can assign variables in any order, without backtracking.

48

To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line

[1,10]!

[0,9]!

[1,1]!

[2,2]!

A!

B!

C!

D!

Detect negative loops!
(SSSP).!

APSP + Decomposition.!

-2!

A!

B!

C!

D!2!
-1!

10! 1!

-1!

9!
0!

STN! D Graph!

49

To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line Problem: delays and fluctuations in task
duration can cause plan failure.!

!

Observation: temporal plans leave
room to adapt.!

!

Flexible Execution adapts through
dynamic scheduling [Muscettola et al]!

–! Assign time to event when
executed.!

–! Guarantee that all constraints will
be satisfied.!

–! Schedule with low latency through
pre-compilation.!

50

To Execute a Temporal Plan!

offline

online

!

3. Schedule Plan!

!

1. Describe Temporal Plan!

!

!

!

2. Test Consistency!

!

4. Execute Plan!

!

Part I : Schedule Off-line Part II: Schedule Online

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

How do we schedule on line?!

51

Multi-Robot Teamwork

•! Off-nominal

•! Partner adapts

in response to

teammate’s

failure.

52

To Execute a Temporal Plan!

offline

online

Part I : Schedule Off-line Part II: Schedule Online

!

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

[0,9]!

[1,1]!

[1,1]!

A!

B!

C!

D!

A!

B!

C!

D!

[0,9]!

[1,1]!

[1,1]!A!

B!

C!

D!

t=0!

t=2!

t=3!

t=4!

How do we schedule on line?!

[Muscettola, Morris, Tsamardinos KR98]!

53

Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C

D

B

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!

54

Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C

D

B

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!

A t = 0

[0, 10]

[0, 10]

[2, 11]

55

Dynamic Scheduling by Decomposition?!

Consider a Simple Example!

C

D

B

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

•! Select executable timepoint and assign!

•! Propagate assignment to neighbors!

A t = 0

t = 3

[2, 2]

[4, 4]

Uh oh! !

C must be
executed at t =2 in
the past! !

56

Dynamic Scheduling by Decomposition?!

•! How can we fix it?

–! Assignments must monotonically increase in value

–! Must respect induced orderings

C

D

B

[2,11]!

A [1,1]!

[0,10]!

[0,10]! [2,2]!

[1,1]!

A t = 0

t = 3

[2, 2]

[4, 4]

57

Dispatching Execution Controller!

•! How can we fix it?!

–! Assignments must monotonically increase in value!

–! Must respect induced orderings!

•! Execute an event when enabled and active!

!

–! A is enabled – Predecessors of A are scheduled.!

!

–! A is active – Current time is within bound of A!

–! A is a predecessor of B if BA has "
negative weight, (A - B < [-]) "
hence A + [+] < B.!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

58

STN Dispatching!

Initially:!

•! E(nabled) =Time points w/o predecessors!

•! S(cheduled) = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors!

5.! Add to E, all immediate neighbors that
become enabled!

•! TPx enabled if all +lb edges
starting at TPv have their
destination in S.!

E = {A}!

S = { }!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

59

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { } !

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges "
starting at TPx have their
destination in S.!

E = { }!

S = {A @ t = 0}!

!

 t=0! A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

60

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges
starting at TPx have their
destination in S.!

E = { }!

S = {A @ t = 0}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

[0,10]!

[2,11]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

61

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges
starting at TPx have their
destination in S.!

E =!

S = {A @ t = 0}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

[0,10]!

[2,11]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

{C} (not B,D)!

62

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges
starting at TPx have their
destination in S.!

E = { }!

S = {A @ t = 0!

 C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

t=1!

[2,11]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

63

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges
starting at TPx have their
destination in S.!

E = { }!

S = {A @ t = 0!

 C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[0,10]!

t=1!

[2,11]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

64

STN Dispatching!

Initially:!

•! E = Time points w/o predecessors!

•! S = { }!

Repeat:!

1.! Wait until current time has advanced
such that some TP in E is active.!

2.! Set TP’s execution time to current time.!

3.! Add TP to S.!

4.! Propagate time of execution to TP’s
immediate neighbors.!

5.! Add to E, all immediate neighbors that
become enabled.!

•! TPx enabled if all +lb edges
starting at TPx have their
destination in S.!

E = { }!

S = {A @ t = 0!

 C @ t = 1}!

!

!

A!

C!

D!

B!
[0,10]!

[2,11]!

[0,10]!

[1,1]!

[2,2]!

[1,1]!

t=0!

[2,2]!

t=1!

[3,3]!

Predecessors:!
 A none!
 B A, C!
 C A!
 D A, B, C!
 !

65

Outline: To Execute a Temporal Plan!

[1,10]!

[0,9]!

[1,1]!

[2,2]!

[0,9]!

[1,1]!

[1,1]!

A!

B!

C!

D!

A!

B!

C!

D!

[0,9]!

[1,1]!

[1,1]!A!

B!

C!

D!

t=0!

t=2!

t=3!

t=4!

Part II: Schedule Online

offline

online !

4. Dynamically Execute Plan!

!

!

3. Reformulate Plan!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

66

Issues in Flexible Execution

•! How do we minimize execution latency?

–! Identify and remove redundant edges.

A

C

D

B

[2,11]

[1,10]

[0,9]

[1,1]

[1,1]

[2,2]

A

C

D

B

[0,9]

[1,1]

[1,1]

•! Two dispatchable forms with equivalent results.

67

Temporal Reasoning with Uncertainty

Loc 1

Loc 2

Loc 3

Loc 4
Loc 5

Rover 2

Rover 1

Simple Temporal Network with Uncertainty (STNU).

Begin
Traverse

Arrive at
Loc. 1

Arrive at Loc. 3
& Begin search

Arrive at
Loc. 2

Arrive at Loc. 4
& Begin search

[1,2]!

[1,2]!

End Search &
Restart Traverse

End Search &
Restart Traverse

Arrive at
Loc. 5

[2,6]!

[4,6]! [1,11]! [2,4]!

[2,17]!

[1,5]!

68

Definition of STNU

STNU is equivalent to a family of STNs (projections), one for
each allowed assignment to uncontrolled durations.

[2, 4]
C D

[1, 2]
B

[3, 6]

D
[2, 2]

C D
[1, 2]

B

[3, 6]

[3, 3]
C D

[1, 2]
B

[3, 6]

[4, 4]
C

[1, 2]
B

[3, 6]

69

To Execute a Temporal Plan with Uncertainty!

!

1. Describe Temporal Plan w Uncertainty!

!

2. Test Consistency & Controllability!

!

3. Reformulate for Execution!

!

!

4. Execute!

!

70

Queries about STNUs

•! Is the STNU consistent?

–! Exists an assignment to executable time points consistent with some

outcomes for uncontrollable durations.

•! Is the STNU controllable?

–! Exists assignments to executable time points

consistent with all outcomes for uncontrollable durations.

–! Strong Controllability

•! Assignment can be generated a priori.

–! Dynamic Controllability

•! Assignment can be generated online,
given observations of past uncontrollable durations.

[Morris, Muscettola, Vidal IJCAI 01]!

71

Dynamic Scheduling through Dispatchable Execution

Reformulate

Dispatcher

Temporal

Plan

Observations of

past events

Generate dynamic

schedule

offline

online

Operating JPL’s

Athlete Lunar Rover

Commanded through time-stamped sequences, "

similar to Spirit and Opportunity.!

 method run ()

 {

 [1s,200s] sequence {

 prepare limb(6) to attach gripper
 human voice commands the limb

 attach gripper to limb

 prepare limp to pick up rock with gripper

 parallel {
 sequence {

 human voice command the limb

 close gripper on rock

 };

 sequence {
 limb5 prepare limb (5) to receive bin

 human voice commands the limb

 };

 };

 position rock over bin with gripper

 ready bin for rock

 load rock in bin

 store bin for transport
 }

 }

Reactive Model-based
Programming Language (RMPL)

Write Common

sense instructions!

Reactive Model-based

Programming Language (RMPL)

Compile to Temporal Plan Network

start
limb6 prepare to

attach gripper
human voice

command limb6
limb6 attach

gripper
limb6 prepare to

pick up rock

limb6 position
rock over bin

limb5 ready bin
for rock

limb6 load rock
in bin

limb5 store bin
for transport

human voice
command limb6

limb6 close
gripper on rock

Limb5 prepare to
receive bin

human voice
command limb5

end [150,200]

 [lb1,ub1] [lb2,ub2] [lb3,ub3] [lb4,ub4]

 [lb9,ub9] [lb10,ub10] [lb11,ub11] [lb12,ub12]

 [lb5,ub5] [lb6,ub6]

 [lb7,ub7] [lb8,ub8]

 method run ()
 {

 [1s,200s] sequence {
 prepare limb(6) to attach gripper
 human voice commands the limb
 attach gripper to limb
 prepare limp to pick up rock with gripper

 parallel {
 sequence {
 human voice command the limb
 close gripper on rock
 };

 sequence {
 limb5 prepare limb (5) to receive bin
 human voice commands the limb
 };
 };

 position rock over bin with gripper
 ready bin for rock
 load rock in bin
 store bin for transport

 }
 }

Demonstrate"

 actions by example!

Learns tubes of valid

trajectories!

Collaborate with

Verbal commands!

Athlete Demonstration – July, 2009!

77

Robust, Model-based Execution (1):

Coordination and Dynamic Scheduling

•! Robust, model-based execution of time critical tasks.

•! Task coordination through dynamic scheduling.

•! Task coordination for under-actuated systems.

•! Task coordination for multi-robot systems.

Dynamic Plan Execution for "
Under-actuated Systems

[Hofmann, Williams AAAI06]!

Example: Describe Walking Tasks with Qualitative Poses

[Muybridge, 1955] Depicted gaits as sequences of distinct qualitative poses

Specify as temporal plan over qualitative states

Supported by NASA

Qualitative State Plan

Left

Foot

[t_lb, t_ub]

CM

Right

Foot

start finish

right

toe-off

right

heel-strike

left

toe-off

left

heel-strike
1llf !

1rrf !

2rrf !
2rrf !

2llf !

1cmcm!

Muybridge

Input:
Qualitative

State Plan

Traditional biped control

tracks a reference trajectory

Executive achieves robustness by utilizing

the flexibility of the Qualitative State Plan

Executive achieves compliance by precomputing

all feasible trajectories, not just one!

Feasible trajectories must

go through goal regions

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

[Hofmann & Williams, AAAI 06; ICAPS 06]

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

Feasible trajectories must

go through goal regions

[Hofmann & Williams, AAAI 06; ICAPS 06]

Compile Time:

•! Construct all feasible

 trajectories (Flow Tubes).

•! Learn tubes from examples.

lat

fwd

t

l1

[0,0.5] [0,0.5] [0,0.5] [0,0.5] [0,0.5]

[0,1.5]

l1
r1

r2

l1

r2

r2

l2
r2

r1

l1

l2

r1Fwd

Lat
l1

r2

l2

Foot placement

!
"
#

$
%
&'=

K

M

dt

CMd
CMCP tot

2

2

Support

polygons

Feasible trajectories must

go through goal regions.

Dynamics couples

through center of mass

[Hofmann & Williams, AAAI 06; ICAPS 06]

Compile Time:

•! Construct all feasible

 trajectories (Flow Tubes).

•! Learn tubes from examples.

•! Construct all feasible

schedules for goals.

Robustness Requires

Temporal Synchronization

Disturbance without

temporal coordination

Disturbance with

temporal coordination

Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

[Hofmann & Williams, AAAI 06; ICAPS 06]

Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

4.! If displaced from tube, adjust control parameters or schedule.!

[Hofmann & Williams, AAAI 06; ICAPS 06]

Disturbance

displaces

trajectory

Disturbance

displaces

trajectory

d1 d2

Execution:!

1.! Select enabled tube.!

2.! Schedule goal arrival.!

3.! Execute control policy until goal achieved.!

4.! If displaced from tube, adjust control parameters or schedule.!

•! May require synchronization with other activities.!

•! If unschedulable, switch plan.! [Hofmann & Williams, AAAI 06; ICAPS 06]

Compliance Results

Lateral CM with push disturbance
-! Blue – 40 N

-! Green – 35 N
-! Black – 25 N

-! Red – Max allowed
 displacement

92

Robust, Model-based Execution (1):

Coordination and Dynamic Scheduling

•! Robust, model-based execution of time critical tasks.

•! Task coordination through dynamic scheduling.

•! Task coordination for under-actuated systems.

•! Task coordination for multi-robot systems.

A Good Human Teammate

[Shah Ph D MIT]!

An effective Scrub Nurse:

•! works hand-to-hand, face-to-face with surgeon,

•! assesses and anticipates needs of surgeon,

–! provides tools and assistance in order needed,

•! responds quickly to changing circumstances,

•! responds quickly to surgeon’s cues and requests.

94

To Execute a Temporal Plan!

Part II: Schedule Online

offline

online !

4. Dynamically Execute!

!

!

3. Reformulate!

!

2. Test Consistency!

!

1. Describe Temporal Plan!

!

!

Exploit:!

•! Handling of Uncertainty"
(STNU, TPNU, TCNU, DTNU).!

•! Handling of Choice"
(TPN, TCN, DTN)!

DTN! -!non-binary constraints!

-!multiple intervals in constraints!

TCN!
-! binary constraints!

-!multiple intervals!

STN!
-! binary constraints!

-!simple intervals!

Tsamardinos, Pollack, M. Ganchev, ECP 01]!
[Shah, Conrad, Williams ICAPS 09]!
[Conrad,Shah, Williams ICAPS 09]!

!"#$%&'(')*+,-./'01**

95!

Remove one ball from red bin!

Remove one ball from blue bin!

Remove one ball from green bin!

Remove one ball from pink bin!

Swap black striped ball!

•! Right Robot picks up and

offers ball.!

•! Robots perform hand-to-hand

swap.!

Swap red striped ball!

•! Left Robot picks up and offers

ball.!

•! Robots perform hand-to-hand

swap.!

 tstart!

 tfinish!

(Someone) Remove one ball from red bin!

Remove one ball from red bin!

L[32,39] V R[42,55]!

OR!

Agents choose and!

schedule activities!

!"#$%&'(')*+,-./'01**

•! 23%4'.54-#*

•! 6-0)4,0*-7-8)9*54*

0,98'49,*)'*

),-..-),:9*

;-5#"0,<**

Leader & Assistant!

Embed video arm4_4x here

Assistant waits to see what Leader will do before acting.

Idea: model leader durations and assignments as uncontrollable (TPNU).!

Leader! Assistant!

Model-based Execution

The development of autonomous systems that robustly

perform complex tasks.

•! Goal-directed: Tasks described qualitatively in terms of time-

evolved goals.

•! Real-time Decisions: Tasks executed using real-time decision

making algorithms, based on observations.

•! Model-based: Operates on heterogeneous models of the robot,

user and environment.

courtesy of JPL

Robust Model-based Execution (1I) : !
Model-based Programming with Hidden State

Prof Brian Williams, MIT!

ACAI Summer School on "
Automated Planning and

Scheduling!
June 8th, 2011!

Brian C. Williams, copyright 2000

2/16/11 1 copyright Brian C. Williams

Contributions:!

Sueng Chung!

Johan de Kleer!

Vineet Gupta!

Mitch Ingham!

Oliver Martin!

Pandu Nayak!

Robert Gagno!

Readings

•! Google “MIT OCW 16.412 Cognitive Robotics”

•! mers.csail.mit.edu, click “Publications”

•! Williams, B. C. et al., “Model-based Programming of Intelligent Embedded Systems and

Robotic Explorers," Proceedings of the IEEE 91, no. 1, Special Issue on Modeling and

Design of Embedded Software, pp. 212-237, 2003.

•! B. C. Williams, M. Ingham, S. Chung, P. Elliott, and M. Hofbaur,"Model-based

Programming of Fault-Aware Systems," AI Magazine, vol. 24, no. 4, pp. 61-75, 2004.

•! B. C. Williams, and R. Ragno, "Conflict-directed A* and its Role in Model-based

Embedded Systems," Special Issue on Theory and Applications of Satisfiability Testing,

Journal of Discrete Applied Math, January 2003.

•! J. de Kleer and B. C. Williams, "Diagnosing Multiple Faults," Artificial Intelligence,

32:100-117, 1987.

•! Martin, O., B. C. Williams and M. Ingham, "Diagnosis as Approximate Belief State

Enumeration for Probabilistic Concurrent Constraint Automata", in Proceedings of the

Twentieth National Conference on Artificial Intelligence, Pittsburgh, PA, July 2005.

•! Brian C. Williams and P. Pandurang Nayak, "A Reactive Planner for a Model-based

Executive," in Proceedings of the International Joint Conference on Artificial

Intelligence, 1997, pp. 1178-85.

•! L. Blackmore, S. Funiak, and B. C. Williams, “A Combined Stochastic and Greedy

Hybrid Estimation Capability for Concurrent Hybrid Models with Autonomous Mode

Transitions,” Journal of Robotic and Autonomous Systems, July, 2007.

Approach: Model-based Programming and Execution

–!An embedded programming language

elevated to operations on hidden state, and

–!A language executive that achieves robustness

by reasoning over constraint-based models.

Today: Coordination and dynamic scheduling.

Wednesday: Model-based programming with hidden state.

4

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

•! Mode reconfiguration and reactive planning.

Mars Polar Lander Failure

Programmers are overwhelmed

by the bookkeeping of reasoning

about unlikely hidden states

 Leading Diagnosis:

•! Legs deployed during descent.

•! Noise spike on leg sensors

latched by software monitors.

•! Laser altimeter registers 50ft.

•! Begins polling leg monitors to

determine touch down.

•! Latched noise spike read as

touchdown.

•! Engine shutdown at ~50ft. Fault Aware Systems:

Systems that reason and

coordinate on the fly from models

Model-based Programming:

Programming of fault-aware systems

engine to standby!

planetary approach!

separate"

lander!

switch to"

inertial nav! rotate to entry-orient"

& hold attitude!

Switch navigation mode:!

“Earth-relative” = Star Tracker + IMU!

Switch navigation mode:!

“Inertial” = IMU only!

Mission Storyboards

Specify Evolving States

engine to standby!

Rotate spacecraft:!

•! command ACS to entry orientation!

planetary approach!

separate"

lander!

switch to"

inertial nav! rotate to entry-orient"

& hold attitude!

Mission Storyboards

Specify Evolving States

Like Storyboards, Model-based Programs

Specify The Evolution of Abstract States

Embedded programs evolve actions

by interacting with plant sensors

and actuators:

•! Read sensors

•! Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs evolve

abstract states through direct

interaction:

•! Read abstract state

•! Write abstract state

Model-based
Embedded Program

S
Plant

Model-based executive maps

between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Programmer maps between state

and sensors/actuators.

Model-based Programming

of a Saturn Orbiter
Turn camera off and !

engine on!

EngineA EngineB

Science Camera

OrbitInsert()::

 do-watching (EngineA = Thrusting OR

 EngineB = Thrusting)

 parallel {

 EngineA = Standby;

 EngineB = Standby;

 Camera = Off;

 do-watching (EngineA = Failed)

 when-donext (EngineA = Standby) AND

 Camera = Off)

 EngineA = Thrusting;

 when-donext (EngineA = Failed AND

 EngineB = Standby AND

 Camera = Off)

 EngineB = Thrusting}

 The program assigns EngineA = Thrusting,

and the model-based executive

Determines that valves!

on the backup engine B"

will achieve thrust, and"

plans needed actions.!

Deduces that a valve !

failed - stuck closed!

Plans actions!

to open!

six valves!

Fuel tank!Oxidizer tank!

Deduces that!

thrust is off, and"

the engine is healthy!

Prog: EngineB = Thrusting

June 5, 2011 11

Plant Model:

Probabilistic Constraint Automata (PCA)

Standby

Engine Model

Off

Failed

Firing

component modes!

(thrust = full) AND

(power_in = nominal)

(thrust = zero) AND

(power_in = zero)

(thrust = zero) AND

(power_in = nominal)

 described by finite domain constraints on variables!

 guarded deterministic and probabilistic transitions

off-

cmd
standby-

cmd

0.01

0.01

standby-

cmd

fire-

cmd

 cost / reward & prior distribution

0 v

0 v

2 kv

2 kv

one per component ! operating concurrently

On

Camera Model

Off

turnoff-

cmd
turnon-

cmd

(power_in = zero) AND

(shutter = closed)

(power_in = nominal) AND

(shutter = open)

0 v

20 v

0.01

0.01

0 v

[Williams & Nayak 95, Williams et al. 01]

June 5, 2011 12

Modeling Reactive Behavior

•! c[s]

•! If c[s] next A

•! Unless c[s] next A

•! A, B

•! Always A

•! [l, u] A

•! Choose with reward

•! Choose with probability

•! state constraints!

•! conditional execution!

•! preemption!

•! full concurrency !

•! Iteration!

•! Flexible time!

•! Reward!

•! Probability!

Design Features! RMPL constructs:!

A generalization of TCC combinators
 [Saraswat, Gupta, et al.]

Control Sequencer

Deductive Controller

System Model!

Commands!Observations!

Control Program

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Generates target goal states!

conditioned on state estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

Tracks!

likely "

plant states!

Tracks least "

cost goal states!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

OrbitInsert()::

do-watching (EngineA = Firing OR

 EngineB = Firing)

 parallel {

 EngineA = Standby;

 EngineB = Standby;

 Camera = Off;

 do-watching (EngineA = Failed)

 when-donext (EngineA = Standby AND

 Camera = Off)

 EngineA = Firing;

 when-donext (EngineA = Failed AND

 EngineB = Standby AND

 Camera = Off)

 EngineB = Firing}

Closed

Valve

Open
Un-
known

Stuck
closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

Control Sequencer

Deductive Controller

System Model!

Commands!
Observations!

Control Program

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Control Sequencer:!
Generates goal states !

conditioned on state estimates!

Mode!

Estimation:!

Tracks likely !

States!

Mode!

Reconfiguration:!

Tracks least-cost!

state goals!

!! Executes concurrently!

!! Preempts!

!! Asserts and queries states!

!! Chooses based on reward!

Fire backup!

engine!

Valve fails!

stuck closed!

S T

X
0

X
1

X
N-1

X
N The image cannot be displayed. Your computer may not have enough memory to open the image, or

the image may have been corrupted. Restart your computer, and then open the file again. If the red
x still appears, you may have to delete the image and then insert it again.

least cost reachable

goal state First Action Mode Estimate (Belief State)

Deductive Controller

Commands!
Observations!

Plant!

State goals!State estimates!

Mode!

Estimation:!

Tracks likely !

States!

Mode!

Reconfiguration:!

Tracks least-cost!

state goals!

Optimal CSP:!

 arg min f(x)!

 s.t. C(x) is satisfiable!

 D(x) is unsatisfiable!

arg min Pt(Y| Obs)!

s.t. #(X,Y) ! O(m’) is consistent!

arg max Rt(Y)!

s.t. #(X,Y) entails G(X,Y)!

s.t. #(X,Y) is consistent!

s.t. Y is reachable!

Mode Reconfiguration:!

Select a least cost set of commandable

component modes that entail the

current goal, and are consistent.!

!

Mode Estimation:!

Select a most likely set of next

component modes that are consistent

with the model and past observations.!

Variants on Probabilistic Constraint Automata

define a Family of RMPL Languages

•! Complex, discrete behaviors !

•! modeled through concurrency, hierarchy and timed transitions.!

•! Anomalies and uncertainty!

•! modeled by probabilistic transitions!

•! Physical interactions!

•! modeled by discrete and continuous constraints!

Standby

Engine Model

Off

Failed

off-
cmd

standby-
cmd

0.01

(thrust = full) AND
(power_in = nominal)

Firing

0.01

standby-
cmd

fire-
cmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

On

Camera Model

Off

turnoff-
cmd

turnon-
cmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.01

0.01

0 v

17

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

•! Mode reconfiguration and reactive planning.

June 5, 2011! 18!

Control Sequencer

Deductive Controller

System Model!

Commands!Observations!

Control Program

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

!! Executes
concurrently!

!! Preempts!

!! Queries (hidden)
states!

!! Asserts (hidden)
state!

OrbitInsert()::

do-watching (EngineA = Firing OR

 EngineB = Firing)

 parallel {

 EngineA = Standby;

 EngineB = Standby;

 Camera = Off;

 do-watching (EngineA = Failed)

 when-donext (EngineA = Standby AND

 Camera = Off)

 EngineA = Firing;

 when-donext (EngineA = Failed AND

 EngineB = Standby AND

 Camera = Off)

 EngineB = Firing}

June 5, 2011 19

Map RMPL to

Hierarchical Constraint Automaton

MAINTAIN (EAR OR EBR)!

EBS!

CO!

MAINTAIN (EAF)!

EAS!

(EAS AND CO)!

EAR!
EAS AND CO!

(EAF AND EBS AND CO)!

EBR!
EAF AND EBS!

AND CO!

OrbitInsert()::

do-watching (EngineA = Firing OR

 EngineB = Firing)

 parallel {

 EngineA = Standby;

 EngineB = Standby;

 Camera = Off;

 do-watching (EngineA = Failed)

 when-donext (EngineA = Standby AND

 Camera = Off)

 EngineA = Firing;

 when-donext (EngineA = Failed AND

 EngineB = Standby AND

 Camera = Off)

 EngineB = Firing}

June 5, 2011! 21!

Executing Deterministic HCA!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

!

!c!
d!

e!

e!

d!d!

June 5, 2011! 22!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!

June 5, 2011! 23!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!

June 5, 2011! 24!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

!

!c!
d!

e!

e!

d!d!" = {c,e}!

Executing Deterministic HCA!

25!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

!

!c!
d!

e!

e!

d!d!" = {c,e}!

d estimated!

Executing Deterministic HCA!

26!

!

!c!
d!

e!

e!

d!d!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!

27!

!

!c!
d!

e!

e!

d!d!

Executing Deterministic HCA!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

28!

!

!c!
d!

e!

e!

d!d!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!

29!

!

!c!
d!

e!

e!

d!d!" = {c,d,e}!

Given marking:!

•! Mark start locations of all newly marked composite
locations.!

•! Achieve goal constraints " of marked locations "
(mode reconfiguration).!

•! Find enabled transitions of marked locations, "
using model and observations (mode estimation).!

•! Take enabled transitions.!

Executing Deterministic HCA!

June 5, 2011! 30!

Control Sequencer

Deductive Controller

System Model!

Commands!Observations!

Control Program

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

!! Executes
concurrently!

!! Preempts!

!! Queries (hidden)
states!

!! Asserts (hidden)
state!

OrbitInsert()::

(do-watching ((EngineA = Firing) OR

 (EngineB = Firing))

 (parallel

 (EngineA = Standby)

 (EngineB = Standby)

 (Camera = Off)

 (do-watching (EngineA = Failed)

 (when-donext ((EngineA = Standby) AND

 (Camera = Off))

 (EngineA = Firing)))

 (when-donext ((EngineA = Failed) AND

 (EngineB = Standby) AND

 (Camera = Off))

 (EngineB = Firing))))

Closed

Valve

Open
Un-

known

Stuck

closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

Optimal CSP:!

 arg min f(x)!

 s.t. C(x) is satisfiable!

 D(x) is unsatisfiable!

31

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

–!Estimates and kernels.

–!By divide and conquer (GDE).

–!Likely estimates (Conflict-directed A*).

–!Estimating probabilistic constraint automata

•! Mode reconfiguration and reactive planning.

1/16/11 copyright Brian C. Williams

Issues:

•! Hidden failures

•! Novel failures

•! Multiple faults

Model-based Diagnosis

Input: Observations of a system with symptomatic behavior,

and a model ! of the system.

Output: Diagnoses that account for the symptoms.

1/16/11 copyright Brian C. Williams

1! Symptom!1!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

1!

A1

A2

A3

X1

X2

A1

X1

How Should Diagnoses

Account for Novel Symptoms?

Consistency-based Diagnosis: Given symptoms,

find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make

no presumption about faulty component behavior.

1/16/11 copyright Brian C. Williams

1!

0!

1! Symptom!A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1

A2

A3

X1

X2

[Davis, 84]

[Geneserth, 84]

[deKleer & Brown, 83]

Multiple Faults: Identify all Combinations

of Consistent “Unknown” Modes

•! Candidate: Assignment of G or U to each component.

And(i):

"! G(i):

 Out(i) = In1(i) AND In2(i)

"! U(i): No Constraint

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1

A2

A3

X1

X2

10/25/10 36 copyright Brian Williams, 2000-10

Multiple Faults: Identify all Combinations

of Consistent “Unknown” Modes

•! Candidate: Assignment of G or U to each component.

•! Diagnosis: Candidate consistent with model and observations.

And(i):

"! G(i):

 Out(i) = In1(i) AND In2(i)

"! U(i): No Constraint

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1

A3

X1

1!

0!

1!

10/25/10 37 copyright Brian Williams, 2000-10

Incorporating (Failure) Modes:

Mode Estimation

Inverter(i):

•! G(i): Out(i) = not(In(i))

•! S1(i): Out(i) = 1

•! S0(i): Out(i) = 0

•! U(i):

X! Y!A! B! C!0! 0!

Nominal, Fault and Unknown Modes!

•! Isolates unknown.!

•! Explains.!

Sherlock
[de Kleer & Williams, IJCAI 89]

10/25/10 38 copyright Brian Williams, 2000-10

Summary: Mode Estimation

And(i):

 G(i):

 Out(i) = In1(i) AND In2(i)

 U(i): No Constraint

•! All component behaviors are associated with

modes.

•! All components have “unknown Mode” U,

whose assignment is never mentioned in any

constraint.

Input:
"! Mode, State, Observation Variables: X, Y, O Y

"! Obs = assignment to O

"! Model: !(X,Y) = components + structure

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1

A3

X1

1!

0!

1!

!

M",obs # {X $ D
X

|%Y $ D
X
st Obs&"(X,Y)}

10/25/10 41 copyright Brian Williams, 2000-10

Output: All mode estimates:

!

"

Partial Diagnosis!

 {A1=U, A2=U, X2=U}!

Compact Encoding: Partial Diagnoses

Partial Diagnosis: !

A partial mode assignment M, !

that “removes all symptoms.”!

•! All full extensions of M are diagnoses.!

•! # ∧ Obs is consistent.!

•! M entails # ∧ Obs. (implicant)!

?!

?!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A3

X1

1!

0!

1!

Extensions (Diagnoses):!

 {A1=U, A2=U, A3=G, X1=G, X2=U}!

 {A1=U, A2=U, A3=G, X1=U, X2=U}!

 {A1=U, A2=U, A3=U, X1=G, X2=U}!

 {A1=U, A2=U, A3=U, X1=U, X2=U}!

!

10/25/10 43 copyright Brian Williams, 2000-10

Kernel Diagnosis!

 {A2=U, X2=U}!

Compact Encoding: Kernel Diagnoses

Partial Diagnosis: !

A partial mode assignment M, that removes all symptoms.!

•! M entails # ∧ Obs. !(implicant)!

Kernel Diagnosis: !

A partial diagnosis K, no subset of which is a partial diagnosis.!

•! K is a prime implicant of # ∧ Obs.!

?!

?!

?!

A!

B!

C!

D!

E!

1!

1!

1!

0!

1!

F!

G!

X!

Y!

Z!

0!

1!

A1

A3

X1

1!

0!

1!

44

46

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

–!Estimates and kernels.

–!By divide and conquer (GDE).

–!Likely estimates (Conflict-directed A*).

–!Estimating probabilistic constraint automata

•! Mode reconfiguration and reactive planning.

Modes Estimation by

Divide and Conquer

Given model ! and observations Obs,

1.!Find all symptoms.

2.!Diagnose each symptom separately
 (each generates a conflict).

3.!Merge diagnoses
 (set covering " kernel diagnoses).

General Diagnostic Engine

[de Kleer & Williams, 87]

Conflict

Recognition

Candidate

Generation

1/16/11 copyright Brian C. Williams

Conflicts Explain How to

Remove Symptoms

10/25/10 copyright Brian Williams, 2000-10 48

A!

B!

C!

D!

E!

1!

1!

1!

0!

F!

G!

X!

Y!

Z!

Symptom: "
 F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.!

Conflict 1: !{A1=G, A2=G, X1=G} is inconsistent.!

Conflict: !An inconsistent partial assignment to mode variables X.!

F! 0!

1!
1!

0!

"!One of A1, A2 or X1 must be broken.

1!

A1

A2

A3

X1

X2

Symptom!

Second Conflict

10/25/10 copyright Brian Williams, 2000-10 49

Symptom: !G is observed 1, but predicted 0.!

Conflict 2: !{A1=G, A3=G, X1=G, X2=G} is inconsistent.!

Symptom!

1!

1!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

0!

A1

A2

A3

X1

X2

Conflicting modes aren’t always

upstream from symptom.!

"!One of A1, A3, X1 or X2 must be broken.

Summary: Conflicts

 Conflict: A partial mode assignment M that is"
 inconsistent with the model and observations.!

Properties:!

•! implies!

•! Every superset of a conflict is a conflict.!

•! Only need conflicts that are minimal under subset.!

1! Symptom!1!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!
1!

1!

A1

A2

A3

X1

X2

!

"#Obs

10/25/10 50 copyright Brian Williams, 2000-10
!

¬M

Conflict Recognition: Propagating Environments

1/16/11 copyright Brian C. Williams

1 {}!
A!

A1

A2

A3

X1

X2

1 {}!
B!

1 {}!
C!

0 {}!D!

1 {}!
A!

0 {}!F!
1 {A1=G,A2=G,X1=G}!

1 {}!
G!

X!
1 {A1=G}!

Z!
1 {A3=G}!

0 {A2=G}!Y!
1 {A1=G,X1=G}!

0 {A1=G,A3=G,X1=G,X2=G}!

Conflict 1

Conflict 2
General Diagnostic Engine
[de Kleer & Williams, 87]

Candidate Generation:

From Conflicts to Constituent Kernels

Constituent Kernel: An assignment a that “resolves” one conflict Ci.!

!Conflict:! ! !{A1=G, A3=G, X1=G, X2=G}. !

!Constituent Kernels: !{A1=U, A3=U, X1=U, X2=U} !

! “resolves” = prevents conflict Ci from being true.!

! ! ! = entails not Ci.!

! ! ! = alternative value of variable mentioned in conflict. !

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1

1

1

A1

A2

A3

X1

X2

A!

B!

C!

D!

E

1

1

1

0

1

F

G!

X!

Y!

Z

0

1

A1

A3

X1

?

?

?

10/25/10 53 copyright Brian Williams, 2000-10

{ , A3=U, X1=U, X2=U} !

Candidate Generation:

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” one conflict Ci.
{X2=U} resolves {A1=G, A3=G, X1=G, X2=G}.

Kernel: Minimal set of assignments A that “resolves” all conflicts C.

!

#!Pick constituent from each conflict using minimal set covering.

!{A2=U, X2=U} resolves {A1=G, A3=G, X1=G, X2=G}, and!

!{A2=U, X2=U} resolves {A1=G, A2=G, X1=G}.

!

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1

1

1

A1

A2

A3

X1

X2

A!

B!

C!

D!

E

1

1

1

0

1

F

G!

X!

Y!

Z

0

1

A1

A3

X1

?

?

?

10/25/10 55 copyright Brian Williams, 2000-10

Kernel Diagnoses =!

Candidate Generation:

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U} !constituents of Conflict 2.!

“Smallest” sets of modes that remove all conflicts.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1/16/11 copyright Brian C. Williams

Kernel Diagnoses = !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U} !constituents of Conflict 2.!

Candidate Generation:

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1.! Compute cross product.

2.! Remove supersets.

•! Old subset New.

•! New subset Old.

1/16/11 copyright Brian C. Williams

Kernel Diagnoses = !{A1=U, A3=U}"

! ! !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

Candidate Generation:

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U} !constituents of Conflict 2.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1.! Compute cross product.

2.! Remove supersets.

•! Old subset New.

•! New subset Old.

1/16/11 copyright Brian C. Williams

Kernel Diagnoses = !{X1=U}"

! ! !{A2=U, X2=U}"

! ! !{A2=U, A3=U}"

! ! !{A1=U}!

“Smallest” sets of modes that remove all conflicts.!

Candidate Generation:

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} ! !constituents of Conflict 1.!

{A1=U, A3=U, X1=U, X2=U} !constituents of Conflict 2.!

{A1=G, A2=G, X1=G} ! ! ! !Conflict 1.!

{A1=G, A3=G, X1=G, X2=G} ! ! !Conflict 2.!

1/16/11 copyright Brian C. Williams

1.! Compute cross product.

2.! Remove supersets.

•! Old subset New.

•! New subset Old.

61

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

–!Estimates and kernels.

–!By divide and conquer (GDE).

–!Likely estimates (Conflict-directed A*).

–!Estimating probabilistic constraint automata

•! Mode reconfiguration and reactive planning.

Due to the unknown mode, there tends to be an

exponential number of mode estimates.

!

!

!

U!
Candidates with!

UNKNOWN failure !

modes!

Candidates with!

KNOWN failure !

modes!

Good! Good!

G! !

"

F1!

Fn!

G!

U!

But most mode estimates represent a small fraction of the

 probability density space.

Most of the density space may be represented by

enumerating the few most likely modes P(X | Obs.)

U!

1/16/11 copyright Brian C. Williams

Fault models alone don’t help.

Simple Probabilistic

Mode Estimation

Input:
•! Mode X, State Y and Observation O variables with finite domains.

•! Model !(X;Y).

•! Observations obs.

•! Prior distribution P(Xi) for each component i.

Output:
•! P(X | obs) Posterior, given observations.

1/16/11 copyright Brian C. Williams

!

P(X) = P(X
i
)

X
i
"X

#
!

P(X |obs) ="P(obs | X)P(X)

!

P(obs | X) =
0 if "#obs# X is inconsistent

1/n else n = obs
i
|"#obs

i
X is consistent{ }

$
%
&

•! Assume modes are a priori independent:

•! Assume consistent observations* are equally likely "

for a given mode assignment:

1/16/11 copyright Brian C. Williams

 * or consistent models

 When you have eliminated the impossible,

whatever remains, however improbable,

must be the truth.

- Sherlock Holmes. The Sign of the Four.

Mode Estimation as !

Conflict-directed Best First Search!

1.! Generate most likely hypothesis.!

2.! Test hypothesis.!

3.! If inconsistent, learn reason for inconsistency"

(a conflict).!

4.! Use conflicts to leap over similarly infeasible options "

to next best hypothesis.!

1/16/11 copyright Brian C. Williams

Compare Most Likely Hypothesis to Observations

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Flow1 = zero!

Pressure1 = nominal!
Pressure2= nominal!

Acceleration = zero!

It is most likely that all components are okay.!
10/26/10 66

Isolate Conflicting Information

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

!

Flow 1= zero!

The red component modes conflict with the model and observations.!
10/26/10 67

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

!

Flow 1= zero!

Leap to the Next Most Likely Hypothesis

that Resolves the Conflict

The next hypothesis must remove the conflict. !
10/26/10 68

New Hypothesis Exposes Additional Conflicts

Pressure1 = nominal! Pressure2= nominal!

Acceleration = zero!

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Another conflict, try removing both.!
10/26/10 69

Final Hypothesis Resolves all Conflicts

Helium tank!

Fuel tank!Oxidizer tank!

Main!

Engines!

Pressure1 = nominal!

Flow1 = zero!

Pressure2= nominal!

Flow2 = positive!

Acceleration = zero!

Implementation: Optimal CSPs and Conflict-directed A*.!
10/26/10 70

2/16/11 71

Constraint Satisfaction Problem

CSP = <Y, DY,C>

–! variables Y, with domain DY.

–! Constraints C: DY # {True, False}.

Problem: Find Y in DY s.t. C(Y) .

R,G,B

 G R, G

Different-color constraint

V1

V2 V3

copyright Brian C. Williams

Optimal CSP

Input: <X, g, CSP>

–! X are decision variables with domain DX.

–! g: DX # $ is a utility function.

–! CSP over variables <X;Y>.

Output: Find leading arg max g(X)
 X % DX

 s.t. & Y % DY . C(X;Y).

$! g() is a multi-attribute utility function that is

preferentially independent.

$! Encode C in propositional state logic.
2/16/11 72 copyright Brian C. Williams

Mode Estimation

Find leading arg max

 X % DX

 s.t. & Y % DY . X∧!(X,Y)∧obs.

!

"P(obs | X) P(X
i
)

X
i
#X

$

2/16/11 73 copyright Brian C. Williams

2/16/11 74

•! Assume independent failures.

•! Assign P such that:

–! PXi=G >> PXi=U

–! Psingle >> Pdouble

–! PA2=U > PA1=U > PA3=U > PX1=U > PX2=U

Probabilities for Boolean Polycell
A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1

A2

A3

X1

X2

copyright Brian C. Williams

2/16/11 75

Mutual Preferential Independence (MPI)

Example: Mode Estimation

Our preference for the assignment of one variable is

independent of the assignments to the other variables.

If A1 = G is more likely than A1 = U,

Then

 {A1 = G, A2 = G, A3 = U, X1 = G, X2 = G}

is preferred to

 {A1 = U, A2 = G, A3 = U, X1 = G, X2 = G}.
copyright Brian C. Williams

2/16/11 76

Increasing

Cost

Feasible

Infeasible

A*

copyright Brian C. Williams

2/16/11 77

Increasing

Cost

Feasible

Infeasible

Conflict-directed A*

copyright Brian C. Williams

2/16/11 78

Increasing

Cost

Feasible

Infeasible

Conflict 1

Conflict-directed A*

copyright Brian C. Williams

2/16/11 79

Increasing

Cost

Feasible

Infeasible

Conflict 1

Conflict-directed A*

copyright Brian C. Williams

2/16/11 80

Increasing

Cost

Feasible

Infeasible
Conflict 2

Conflict 1

Conflict-directed A*

copyright Brian C. Williams

2/16/11 81

Increasing

Cost

Feasible

Infeasible
Conflict 2

Conflict 1

Conflict-directed A*

copyright Brian C. Williams

2/16/11 82

Increasing

Cost

Feasible

Infeasible

C
o
n
flict 3

Conflict 2

Conflict 1

Conflict-directed A*

copyright Brian C. Williams

2/16/11 83

Increasing

Cost

Infeasible

C
o
n
flict 3

Conflict 2

Conflict 1

Conflict-directed A*

Feasible

copyright Brian C. Williams

Increasing

Cost

Infeasible

C
o
n
flict 3

Conflict 2

Conflict 1

•! Each feasible subregion described by a kernel assignment.

#! Approach: Use conflicts to search for kernel assignment

containing the best cost candidate.

Kernel 1

Kernel 2

Kernel 3

Feasible

2/16/11 85 copyright Brian C. Williams

Conflict-directed A*

2/16/11 87

{A2=U}

A1=? ! A2=U ! A3=? ! X1=? ! X2=?

 A1=G ! A2=U ! A3=G ! X1=G ! X2=G

Idea: Select best value for each unassigned variable.

Extracting a Kernel’s Best State

copyright Brian C. Williams

2/16/11 88

•! Conflicts / Constituent Kernels

–! none

•! Best Kernel:

–! {}

•! Best Candidate:

–! A1=G ! A2=G ! A3=G ! X1=G ! X2=G

Example: First Iteration
A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1

A2

A3

X1

X2

copyright Brian C. Williams

2/16/11 89

Test: A1=G ! A2=G ! A3=G ! X1=G ! X2=G

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

A1

A2

A3

X1

X2

0!

1! 1! Symptom!

•! Extract Conflict and Constituent Kernels:

 ¬ [A1=G ! A2=G ! X1=G]

 A1=U ' A2=U ' X1=U

copyright Brian C. Williams

2/16/11 90

•! Conflicts # Constituent Kernels

–! {A1=U, A2=U, X1=U}

•! Best Kernel:

–! {A2=U} (why?)

•! Best Candidate:

–! A1=G ! A2=U ! A3=G ! X1=G ! X2=G

Second Iteration

•! PXi=G >> PXi=U

•! Psingle >> Pdouble

•! PA2=U > PA1=U >

PA3=U > PX1=U > PX2=U

11

0

A!

B!

C

D!

E

F

G

X!

Y!

Z

1

1

1

0

1

0

1

1

1

A1

A2

A3

X1

X2

copyright Brian C. Williams

2/16/11 91

Test: A1=G ! A2=U ! A3=G ! X1=G ! X2=G

1!

1!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

1!

0!

A1

A3

X1

X2

•! Extract Conflict and Constituent Kernels:

 ¬ [A1=G ! A3=G ! X1=G ! X2=G]

 A1=U ' A3=U ' X1=U ' X2=U

copyright Brian C. Williams

2/16/11 92

•! Conflicts # Constituent Kernels

–! {A1=U, A2=U, X1=U}

–! {A1=U, A3=U, X1=U, X2=U}

•! Best Kernel:

–! {A1=U}

•! Best Candidate:

–! A1=U ! A2=G ! A3=G ! X1=G ! X2=G

Third Iteration

Pxi=G >> PXi=U

Psingle >> Pdouble

PA2=U > PA1=U > PA3=U

 > PX1=U > PX2=U

1

1

1

0

1

0

1

1

1

A!

B

C

D!

E

F

G

X!

Y!

Z
1

0

A1

A3

X1

X2

copyright Brian C. Williams

2/16/11 93

Test: A1=U ! A2=G ! A3=G ! X1=G ! X2=G

0!

0!

A!

B!

C!

D!

E!

F!

G!

X!

Y!

Z!

1!

1!

1!

0!

1!

0!

1!

1!

1!

A3

X1

X2

•! Consistent!

A2

copyright Brian C. Williams

{X1=U, X2=U, "

 A1=U, A3=U}!

X1=U! A1=U! A2=U!

X2=U! M1=U!

A3=U!X1=U!

A1=U ! X2=U! A2=U ! A3=U!X1=U! A1=U!

Generating The Best Kernel of The Known Conflicts

{X1=U, A1=U , A2=U}!

Constituent Kernels

•! Minimal set covering is an instance of breadth first search.!

 Insights:

•! Kernels found by minimal set covering.!

2/16/11 94 copyright Brian C. Williams

{X1=U, X2=U, "

 A1=U, A3=U}!

X1=U! A1=U! A2=U!

A1=U!

Generating The Best Kernel of The Known Conflicts

{X1=U, A1=U, A2=U}!

Constituent Kernels

•! Minimal set covering is an instance of breadth first search.!

$! To find the best kernel, expand tree in best first order.!

 Insights:

•! Kernels found by minimal set covering!

2/16/11 95

Best - 1st Iteration

Best - 2nd Iteration

Best – 3rd Iteration
PXi=G >> PXi=U

Psingle >> Pdouble

PA2=U > PA1=U

> PA3=U > PX1=U

> PX2=U

copyright Brian C. Williams

2/16/11 96

Problem

Parameters

Constraint-based

A* (no conflicts)

Conflict-directed A* Mean CD-CB Ratio

Dom

Size

Dec

Vars

Clau
-ses

Clau
-se
lngth

Nodes
Expande
d

Queue
Size

Nodes
Expand

Queue
Size

Conflicts

used
Nodes
Expanded

Queue
Size

5 10 10 5 683 1,230 3.3 6.3 1.2 4.5% 5.6%

5 10 30 5 2,360 3,490 8.1 17.9 3.2 2.4% 3.5%

5 10 50 5 4,270 6,260 12.0 41.3 2.6 0.83% 1.1%

10 10 10 6 3,790 13,400 5.7 16.0 1.6 2.0% 1.0%

10 10 30 6 1,430 5,130 9.7 94.4 4.2 4.6% 5.8%

10 10 50 6 929 4,060 6.0 27.3 2.3 3.5% 3.9%

5 20 10 5 109 149 4.2 7.2 1.6 13.0% 13.0%

5 20 30 5 333 434 6.4 9.2 2.2 6.0% 5.4%

5 20 50 5 149 197 5.4 7.2 2.0 12.0% 11.0%

Performance:

With and Without Conflicts

copyright Brian C. Williams

98

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

–!Estimates and kernels.

–!By divide and conquer (GDE).

–!Likely estimates (Conflict-directed A*).

–!Estimating probabilistic constraint automata

•! Mode reconfiguration and reactive planning.

99

S T

X
0

X
1

X
N-1

X
N

•!Assigns a value to each variable

(e.g.,3,000 vars).

•!Consistent with all state

constraints (e.g., 12,000).

•!A set of concurrent transitions, one per

automata (e.g., 80).

•!Previous & Next states consistent with

source & target of transitions

Mode Estimation as Belief State

Update for Concurrent PCA!

1.! Infer most likely mode trajectories.

2.! Infer distribution on likely mode assignments.

June 5, 2011 100

•! S, #, : Finite States, Actions & Observations

•! T(s,µ,s’): State transition function

•! O(s’,µ,o): Observation function

•! Bt+1(S): Belief state at time t.

 P(st+1 | o<0,t>, µ<0,t>)

!

!

O : S "#$% &()
!

T : S "#$% S()

Hidden Markov Model

6/5/11 101

Propagate Dynamics:

Update Based on Observations:

HMM Belief State Update

T

O

b t t+1

June 5, 2011 102

PCCA as HMMs

•! PCCA encodes HMM compactly

using concurrency and constraints.

•! State abstracted to modes.

Assume:!

•! Transitions only permitted on modes.

•! Transitions are conditionally independent.

•! For each time t,

all consistent assignments are equally likely.

Standby

Engine Model
Off

Failed

off-

cmd
standby-

cmd

0.01

(thrust = full) AND

(power_in = nominal)

Firing

0.01

standby-

cmd

fire-

cmd

(thrust = zero) AND

(power_in = zero)

(thrust = zero) AND

(power_in = nominal)

On

Camera Model
Off

turnoff-

cmd
turnon-

cmd

(power_in = zero)

AND

(shutter = closed)

(power_in = nominal)

AND

(shutter = open)

0 v

2 kv

2

kv

0 v

0

v

20 v

0.01

0.01

0

v

103

Approximating The Belief State

Best-first Trajectory Enumeration (BFTE):
[Williams and Nayak, AAAI-96][Kurien and Nayak, AAAI-00]

[Williams et al., IEEE ’03]

•! Best-first State Enumeration (BFSE):
[Martin, Williams and Ingham, AAAI-05]

–! Improv accuracy through compact encoding.

–! Accuracy improves runtime!

Deep Space One

Earth Observing One

0.4

0.2

0.7

0.3

106

Robust, Model-based Execution (2):

Model-based Programming w Hidden States

•! Model-based programming and execution.

•! Control sequencing.

•! Mode estimation.

•! Mode reconfiguration and reactive planning.

107

System Model!

Control Program

Control Sequencer

Deductive Controller

Commands!Observations!

Plant!

Model-based Executive!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

Tracks!

likely "

plant states!

Tracks least "

cost goal states!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

Closed

Valve

Open
Stuck

open

Stuck

closed

Open Close

0. 01

0. 01

0.01

0.01

inflow = outflow = 0

Probabilistic Constraint Automata

Model-based Program!

Mode!

Estimation!

Mode!

Reconfiguration!

108

DS 1 Attitude Control System

z facing thrusters x facing thrusters

1
5
5
3
 b

u
s

C
o
m

m
a
n

d

s

D
a
ta

N2H4

He

PDE

SRU

PDU

GDE

PASM

DSEU

PEPE

BC

Flight

Computer

Flight

Computer

BC

PDE

1.! Select reachable modes that together achieve goals.

2.! Send commands to reconfigure modes.

•! by turning on device drivers,

•! by repairing bus controllers,

•! by sending commands,

•! by powering down devices . . .

Deep Space One Attitude Control System

109

Mode Reconfiguration

Model-based Programming of Intelligent Embedded Systems and Robotic Explorers

[Williams et al., IEEE’03]

Reactive Planner for a Model-based Executive

[Williams & Nayak, IJCAI 97]

Goal

Interpreter

Reactive

Planner

Configuration

Goal

Command

Goal State

State

Estimate

(Current)

Max likelihood assumption:

 The most likely state

 is the true state.

110

Goal Interpretation

via Conflict Learning

Goal: Achieve Thrust

A conflict is a partial assignment to mode variables that

prevents the goal (entails the negation of the goal).

arg max Rt(Y)

s.t. !(X,Y) entails G(X,Y)

s.t. !(X,Y) is consistent

Y are reachable modes

111

Reactive Planning:

Engineered systems tend not to have loops

Remote

Terminal

Remote

Terminal

Bus

Control
Computer Valve

Valve

Driver

Driver

$! Work conjunctive goals upstream G from outputs to inputs. Wht?

–! Define: Causal Graph G of compiled transition system S

•! vertices are state variables.

•! edge from vi to vj if vj’s transition is conditioned on vi.

dcmdin

Driver

Valve

–! Requirement: The causal graph is acyclic.

[Williams, Nayak IJCAI97]

Compile models to goal-directed policies

Reactive Planning 112
Reactive Planning 112

Goal State

Driver On Off

C
u

rr
e
n

t
S

ta
te

On idle cmd = off

Off cmd = on idle

Reset-
table

cmd = reset cmd = off

Goal State

Valve Open Closed

C
u

rr
e

n
t

S
ta

te

Open idle
driver = on

cmd = close

Closed
driver = on
cmd = open

idle

Stuck failed failed

Off

On
Reset-

table
cmd = off cmd = on

cmd = reset

cmd = off

Closed

Open Stuck

driver = on

cmd = close

driver = on

cmd = open

[Williams, Nayak, IJCAI 97]

113

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

Goal

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

cmd = reset cmd = off

Current: Driver = off, Valve = open

1 2

114

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

Goal

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

cmd = reset cmd = off

Current: Driver = off, Valve = open

1 2

115

Plan by passing sub-goals up causal graph

Valve Driver
Send:

cmd = on

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

Goal

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

cmd = reset cmd = off

Current: Driver = off, Valve = open

1 2

116

1 2

Current: ???

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle

Current

Open

Closed

Stuck

Open Closed

Goal

idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

cmd = reset cmd = off

driver = on

cmd = close

Failed

Resettable

cmd = on

Send:

cmd = on

117

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle

Current

Open

Closed

Stuck

Open Closed

Goal

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

cmd = reset cmd = off

driver = on

cmd = close

Current: Driver = resettable, Valve = open

1 2
Send

cmd = reset

118

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

Goal

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

Send

cmd = close

cmd = reset cmd = off

Current: Driver = on, Valve = open

1 2

119

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

cmd = reset

Goal

cmd = off

cmd = on idle

idle cmd = off

Current

On

Off

Resettable

On Off

Goal: Driver = off, Valve = closed

Send

cmd = off

Current: Driver = on, Valve = closed

1 2

120

Plan by passing sub-goals up causal graph

Valve Driver

fail

Goal

fail

driver = on

cmd = open
idle

idle
driver = on

cmd = close

Current

Open

Closed

Stuck

Open Closed

cmd = reset

Goal

cmd = off

cmd = on idle

idle

Current

On

Off

Resettable

On Off

cmd = off

Goal: Driver = off, Valve = closed
Success

Current: Driver = off, Valve = closed

1 2

Control Sequencer

Deductive Controller

System Model!

Commands!Observations!

Control Program

Plant!

Titan Model-based Executive!RMPL Model-based Program!

State goals!State estimates!

Mode!

Estimation!

Mode!

Reconfiguration!

!! Executes concurrently!

!! Preempts!

!! Queries (hidden) states!

!! Asserts (hidden) state!

Closed

Valve

Open
Un-
known

Stuck
closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

Variants on Probabilistic Constraint Automata

define a Family of RMPL Languages

•! Complex, discrete behaviors !

•! modeled through concurrency, hierarchy and timed transitions.!

•! Anomalies and uncertainty!

•! modeled by probabilistic transitions!

•! Physical interactions!

•! modeled by discrete and continuous constraints!

Standby

Engine Model

Off

Failed

off-
cmd

standby-
cmd

0.01

(thrust = full) AND
(power_in = nominal)

Firing

0.01

standby-
cmd

fire-
cmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

On

Camera Model

Off

turnoff-
cmd

turnon-
cmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.01

0.01

0 v

Approach: Model-based Programming and Execution

–!An embedded programming language

elevated to operations on hidden state and choice

–!A language executive that achieves robustness by

reasoning over constraint-based models.

Tuesday: Coordination and dynamic scheduling.

Wednesday: Model-based programming with hidden state.

