
ICAPS Tutorial, Freiburg, Germany

Problem Solving with
Model Checking Techniques

Jaco van de Pol and Michael Weber

June 12, 2011

 UNIVERSITY OF TWENTE.
formal methods & tools.

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 2 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 3 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking in a Nutshell

I Specification of system: logical formula ϕ

I Implementation of system: Kripke structure

I Question: Does the system meet its specification?

?
ϕ

I Applications: hardware, software, wetware

I Method: (Variations of) Graph Reachability

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 4 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

What is Model Checking?

Model Checking

I Check if a given model satisfies a given property

I Promise: Automatic answer to combinatorial questions

Models:
discrete dynamics

I software / hardware /
embedded systems

I communicating
concurrent components

I biological systems,
intra/inter cell level

Properties:
of transition graphs

I invariants, assertions,
absence of errors

I absence / presence of
event orderings

I complicated fairness
restrictions possible

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 5 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

What is Model Checking?

Model Checking

I Check if a given model satisfies a given property

I Promise: Automatic answer to combinatorial questions

Models:
discrete dynamics

I software / hardware /
embedded systems

I communicating
concurrent components

I biological systems,
intra/inter cell level

Properties:
of transition graphs

I invariants, assertions,
absence of errors

I absence / presence of
event orderings

I complicated fairness
restrictions possible

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 5 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

What is Model Checking?

Model Checking

I Check if a given model satisfies a given property

I Promise: Automatic answer to combinatorial questions

Models:
discrete dynamics

I software / hardware /
embedded systems

I communicating
concurrent components

I biological systems,
intra/inter cell level

Properties:
of transition graphs

I invariants, assertions,
absence of errors

I absence / presence of
event orderings

I complicated fairness
restrictions possible

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 5 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Applications

Impressive ApplicationsTuring Award 2007

I Numerous case studies have been published:
I communication and security protocols
I embedded controllers, e.g. elevators, railways, cars
I concurrent and distributed algorithms
I Biology: signaling pathways, gene regulation, differentiation

I Leading industries rely on model checking for quality control:
I Intel/IBM’s processors go through extensive model checking

(they report that it replaced a considerable amount of testing)
I Microsoft’s Static Device Verifier is part of the WDK

(3rd party device drivers are checked for interface compliance)

But still, model checking is...

I Not built into CASE tools, despite its “push-button” nature

I Not available to the average (SME-type) software engineer

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 6 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Applications

Impressive ApplicationsTuring Award 2007

I Numerous case studies have been published:
I communication and security protocols
I embedded controllers, e.g. elevators, railways, cars
I concurrent and distributed algorithms
I Biology: signaling pathways, gene regulation, differentiation

I Leading industries rely on model checking for quality control:
I Intel/IBM’s processors go through extensive model checking

(they report that it replaced a considerable amount of testing)
I Microsoft’s Static Device Verifier is part of the WDK

(3rd party device drivers are checked for interface compliance)

But still, model checking is...

I Not built into CASE tools, despite its “push-button” nature

I Not available to the average (SME-type) software engineer

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 6 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Applications

Impressive ApplicationsTuring Award 2007

I Numerous case studies have been published:
I communication and security protocols
I embedded controllers, e.g. elevators, railways, cars
I concurrent and distributed algorithms
I Biology: signaling pathways, gene regulation, differentiation

I Leading industries rely on model checking for quality control:
I Intel/IBM’s processors go through extensive model checking

(they report that it replaced a considerable amount of testing)
I Microsoft’s Static Device Verifier is part of the WDK

(3rd party device drivers are checked for interface compliance)

But still, model checking is...

I Not built into CASE tools, despite its “push-button” nature

I Not available to the average (SME-type) software engineer

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 6 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 7 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Sokoban as you know it

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 8 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Modelling Sokoban as a Transition System

States and Transitions

I States:
I View each location on the board as a variable xi,j
I Possible values: xi,j ∈ {wall ,man, block, empty}

I Transitions – distinguish moves and pushes in four directions
I Move right:

if xi,j = man and xi,j+1 = empty
then set xi,j := empty and xi,j+1 := man.

I Push down:
if xi,j = man and xi+1,j = block and xi+2,j = empty
then set: xi,j := empty , xi+1,j := man and xi+2,j := block.

I Initial state: an assignment to all the xi ,j
I Goal state: If for all goal positions (i,j): xi ,j = block

then do special action finish

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 9 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Modelling Sokoban as a Transition System

States and Transitions

I States:
I View each location on the board as a variable xi,j
I Possible values: xi,j ∈ {wall ,man, block, empty}

I Transitions – distinguish moves and pushes in four directions
I Move right:

if xi,j = man and xi,j+1 = empty
then set xi,j := empty and xi,j+1 := man.

I Push down:
if xi,j = man and xi+1,j = block and xi+2,j = empty
then set: xi,j := empty , xi+1,j := man and xi+2,j := block.

I Initial state: an assignment to all the xi ,j
I Goal state: If for all goal positions (i,j): xi ,j = block

then do special action finish

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 9 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Modelling Sokoban as a Transition System

States and Transitions

I States:
I View each location on the board as a variable xi,j
I Possible values: xi,j ∈ {wall ,man, block, empty}

I Transitions – distinguish moves and pushes in four directions
I Move right:

if xi,j = man and xi,j+1 = empty
then set xi,j := empty and xi,j+1 := man.

I Push down:
if xi,j = man and xi+1,j = block and xi+2,j = empty
then set: xi,j := empty , xi+1,j := man and xi+2,j := block.

I Initial state: an assignment to all the xi ,j
I Goal state: If for all goal positions (i,j): xi ,j = block

then do special action finish

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 9 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Next: Solve Sokoban with Brute Force

Reachability

I This is just the reachability problem
I Property: “Finish action is not reachable”
I Counter-example: trace to a finish-action

Brute Force Exploration

I On-the-fly:
I start with the initial state
I expand newly encountered states
I stop when the goal is reached

I Breadth-first strategy guarantees the shortest solution
I Limitations:

I Only feasible for about 109 states
I General: no utilization of specific structure of Sokoban

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 10 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Next: Solve Sokoban with Brute Force

Reachability

I This is just the reachability problem
I Property: “Finish action is not reachable”
I Counter-example: trace to a finish-action

Brute Force Exploration

I On-the-fly:
I start with the initial state
I expand newly encountered states
I stop when the goal is reached

I Breadth-first strategy guarantees the shortest solution
I Limitations:

I Only feasible for about 109 states
I General: no utilization of specific structure of Sokoban

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 10 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Small Problem: Exponential Growth. . .

screen states

107 10,165
1001 127,509

387 1,235,214
372 10,992,856
792 117,434,655
747 1,307,942,326

38 12,197,960,188
754 308,479,382,084

2 4,748,854,893,784

376 1,066,317,080,868,510,000
45 1,195,159,588,147,710,000,000
71 1,238,482,287,687,790,000,000,000

551 1,654,592,279,840,460,000,000,000,000
48 40,215,766,407,984,300,000,000,000,000,000
22 3,531,895,015,833,180,000,000,000,000,000,000
10 12,864,741,234,813,200,000,000,000,000,000,000,000

558 218,612,674,527,952,000,000,000,000,000,000,000,000
778 9,341,745,200,574,070,000,000,000,000,000,000,000,000,000

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 11 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Small Problem: Exponential Growth. . .

screen states

107 10,165
1001 127,509

387 1,235,214
372 10,992,856
792 117,434,655
747 1,307,942,326

38 12,197,960,188
754 308,479,382,084

2 4,748,854,893,784

376 1,066,317,080,868,510,000
45 1,195,159,588,147,710,000,000
71 1,238,482,287,687,790,000,000,000

551 1,654,592,279,840,460,000,000,000,000
48 40,215,766,407,984,300,000,000,000,000,000
22 3,531,895,015,833,180,000,000,000,000,000,000
10 12,864,741,234,813,200,000,000,000,000,000,000,000

558 218,612,674,527,952,000,000,000,000,000,000,000,000
778 9,341,745,200,574,070,000,000,000,000,000,000,000,000,000

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 11 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

A Glimpse of Hope: Transition Locality

Locality

I Transitions may depend on a part of the state vector only
I In Sokoban, every transition depends on 2 or 3 variables;

independent of the size of the Sokoban screen
I In general, if you learn one transition and (statically) know the

dependency matrix, then you can infer many more transitions

Example matrix for a Sokoban instance (fragment)
+++-----

++------

+----+--

-++-----

-+----+-

--+----+

---+++--

---++---

I The dependency matrix is sparse (good)
I The +’s are often close together
I Some +’s are far apart (2D board)
I Heuristic regrouping can help a lot

(cf. BDD variable reordering)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 12 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

A Glimpse of Hope: Transition Locality

Locality

I Transitions may depend on a part of the state vector only
I In Sokoban, every transition depends on 2 or 3 variables;

independent of the size of the Sokoban screen
I In general, if you learn one transition and (statically) know the

dependency matrix, then you can infer many more transitions

Example matrix for a Sokoban instance (fragment)
+++-----

++------

+----+--

-++-----

-+----+-

--+----+

---+++--

---++---

I The dependency matrix is sparse (good)
I The +’s are often close together
I Some +’s are far apart (2D board)
I Heuristic regrouping can help a lot

(cf. BDD variable reordering)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 12 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Exploiting Locality

By locality, successor states are “much alike”:

Locality helps Implementation

I Compression schemes for storing sets of states

I Incremental hashing / storage / compression / etc.

I Communicate diffs only, save bandwidth on clusters

Locality helps Algorithms (orders of magnitude!)

I Cache intermediate results to save computations

I Store sets of states in Binary Decision Diagrams

I Apply transitions to sets of states symbolically

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 13 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Exploiting Locality

By locality, successor states are “much alike”:

Locality helps Implementation

I Compression schemes for storing sets of states

I Incremental hashing / storage / compression / etc.

I Communicate diffs only, save bandwidth on clusters

Locality helps Algorithms (orders of magnitude!)

I Cache intermediate results to save computations

I Store sets of states in Binary Decision Diagrams

I Apply transitions to sets of states symbolically

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 13 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking Techniques I

Mentioned later

I Multi-core and Grid implementations

I State space reduction (e.g. partial-order reduction)

I Symbolic Model Checking using BDDs

I Adapting the search order of reachability
I Effects of changing the search order:

I the peak memory of intermediate BDDs is reduced
I however, a shortest solution is not guaranteed

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 14 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking Techniques II

Alternatives

I Bounded model checking, based on SAT solving
I Runs of increasing, fixed length, are encoded into one big

satisfiability problem
I Huge potential, but Sokoban runs are very long

I Directed Model Checking
I Gives priority to transitions towards a “promising” direction
I Here maybe: number of blocks already in correct position

I Ad Hoc techniques for (classes of) puzzles
I Avoid “deadlock” situations
I Use high-level planning, e.g. recognize rooms

I Here is where model checking might learn from planning!

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 15 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking Techniques II

Alternatives

I Bounded model checking, based on SAT solving
I Runs of increasing, fixed length, are encoded into one big

satisfiability problem
I Huge potential, but Sokoban runs are very long

I Directed Model Checking
I Gives priority to transitions towards a “promising” direction
I Here maybe: number of blocks already in correct position

I Ad Hoc techniques for (classes of) puzzles
I Avoid “deadlock” situations
I Use high-level planning, e.g. recognize rooms

I Here is where model checking might learn from planning!

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 15 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking Techniques II

Alternatives

I Bounded model checking, based on SAT solving
I Runs of increasing, fixed length, are encoded into one big

satisfiability problem
I Huge potential, but Sokoban runs are very long

I Directed Model Checking
I Gives priority to transitions towards a “promising” direction
I Here maybe: number of blocks already in correct position

I Ad Hoc techniques for (classes of) puzzles
I Avoid “deadlock” situations
I Use high-level planning, e.g. recognize rooms

I Here is where model checking might learn from planning!

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 15 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking Techniques II

Alternatives

I Bounded model checking, based on SAT solving
I Runs of increasing, fixed length, are encoded into one big

satisfiability problem
I Huge potential, but Sokoban runs are very long

I Directed Model Checking
I Gives priority to transitions towards a “promising” direction
I Here maybe: number of blocks already in correct position

I Ad Hoc techniques for (classes of) puzzles
I Avoid “deadlock” situations
I Use high-level planning, e.g. recognize rooms

I Here is where model checking might learn from planning!

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 15 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Beyond Reachability

More complicated planning problems

I Avoid unwanted situations (still a reachability problem)
I in LTL logic: FGood becomes (¬Bad) UntilGood
I alternatively: restrict the transition relation

I Associate costs with transitions (e.g.: minimal pushes)
I this requires an adapted search strategy

I Take into account real time
I UPPAAL: real-time model checker; used for HRT scheduling

I Compute (optimal) cyclic schedules (mean pay-off games)
I Liveness in logic: GFGood , reachability infinitely often

I Plan in the presence of uncertainty (two-player games)
I and/or graphs with loop restrictions: parity games, µ-calculus
I can even take into account stochastic environment (MDP)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 16 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Beyond Reachability

More complicated planning problems

I Avoid unwanted situations (still a reachability problem)
I in LTL logic: FGood becomes (¬Bad) UntilGood
I alternatively: restrict the transition relation

I Associate costs with transitions (e.g.: minimal pushes)
I this requires an adapted search strategy

I Take into account real time
I UPPAAL: real-time model checker; used for HRT scheduling

I Compute (optimal) cyclic schedules (mean pay-off games)
I Liveness in logic: GFGood , reachability infinitely often

I Plan in the presence of uncertainty (two-player games)
I and/or graphs with loop restrictions: parity games, µ-calculus
I can even take into account stochastic environment (MDP)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 16 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Beyond Reachability

More complicated planning problems

I Avoid unwanted situations (still a reachability problem)
I in LTL logic: FGood becomes (¬Bad) UntilGood
I alternatively: restrict the transition relation

I Associate costs with transitions (e.g.: minimal pushes)
I this requires an adapted search strategy

I Take into account real time
I UPPAAL: real-time model checker; used for HRT scheduling

I Compute (optimal) cyclic schedules (mean pay-off games)
I Liveness in logic: GFGood , reachability infinitely often

I Plan in the presence of uncertainty (two-player games)
I and/or graphs with loop restrictions: parity games, µ-calculus
I can even take into account stochastic environment (MDP)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 16 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 17 / 71

LTSmin Tool Architecture

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Great Abstractions are Cheap!

I Automatic model translations are not good enough

I Separate languages and tools via a clean interface (API)

I API should be simple: allow many different languages

I API should be rich: expose structure, enable algorithms

PINS

mCRL2
Process algebra SPIN / NIPS−vm (BEEM)

Input Promela DVE
Language

Distributed Symbolic
Reachability

Multi−core
ReachabilityGeneration

Reachability
Tools

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 19 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Great Abstractions are Cheap!

I Automatic model translations are not good enough

I Separate languages and tools via a clean interface (API)

I API should be simple: allow many different languages

I API should be rich: expose structure, enable algorithms

PINS

mCRL2
Process algebra SPIN / NIPS−vm (BEEM)

Input Promela DVE
Language

Distributed Symbolic
Reachability

Multi−core
ReachabilityGeneration

Reachability
Tools

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 19 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

PINS in a Nutshell

Interface based on a Partitioned Next-State function

I State: Fixed-size vector of integers 〈3, 5, 5, 4, 1, 3〉IV

I Partitioned transition relation →=
K⋃
i

→i

I Dependency Matrix [D]N×K :

I Language module guarantees:
if Di,j = −, then transition group
→i is independent of state slot j .

I Matrix: statically known
(currently)

I Language module may
over-approximate dependencies



x1 · · · xj · · · xN
→1 + · · · −

... − · · · +

→K + · · · +



 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 20 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

PINS in a Nutshell

Interface based on a Partitioned Next-State function

I State: Fixed-size vector of integers 〈3, 5, 5, 4, 1, 3〉IV

I Partitioned transition relation →=
K⋃
i

→i

I Dependency Matrix [D]N×K :

I Language module guarantees:
if Di,j = −, then transition group
→i is independent of state slot j .

I Matrix: statically known
(currently)

I Language module may
over-approximate dependencies



x1 · · · xj · · · xN
→1 + · · · −

... − · · · +

→K + · · · +



 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 20 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Example Dependency Matrix

int x=7;

process p1() {

do

::{x>0 => x--;y++}

::{x>0 => x--;z++}

od }

int y=3;

process p2() {

do

::{y>0 => y--;x++}

::{y>0 => y--;z++}

od }

int z=9;

process p3() {

do

::{z>0 => z--;x++}

::{z>0 => z--;y++}

od }

Default
Matrix


x y z

p1 + + +
p2 + + +
p3 + + +



Better Matrix



x y z

p1.1 + + −
p1.2 + − +
p2.1 + + −
p2.2 − + +
p3.1 + − +
p3.2 − + +



state = 〈7, 3, 9〉IV

〈7, 3, 9〉IV
p1.1−→ 〈6, 4, 9〉IV

〈7, 3, ∗〉IV
p1.1−→ 〈6, 4, ∗〉IV

〈7, 3, 9〉IV
p3.2−→ 〈7, 4, 8〉IV

〈∗, 3, 9〉IV
p3.2−→ 〈∗, 4, 8〉IV

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 21 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Example Dependency Matrix

int x=7;

process p1() {

do

::{x>0 => x--;y++}

::{x>0 => x--;z++}

od }

int y=3;

process p2() {

do

::{y>0 => y--;x++}

::{y>0 => y--;z++}

od }

int z=9;

process p3() {

do

::{z>0 => z--;x++}

::{z>0 => z--;y++}

od }

Default
Matrix


x y z

p1 + + +
p2 + + +
p3 + + +



Better Matrix



x y z

p1.1 + + −
p1.2 + − +
p2.1 + + −
p2.2 − + +
p3.1 + − +
p3.2 − + +



state = 〈7, 3, 9〉IV

〈7, 3, 9〉IV
p1.1−→ 〈6, 4, 9〉IV

〈7, 3, ∗〉IV
p1.1−→ 〈6, 4, ∗〉IV

〈7, 3, 9〉IV
p3.2−→ 〈7, 4, 8〉IV

〈∗, 3, 9〉IV
p3.2−→ 〈∗, 4, 8〉IV

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 21 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Example Dependency Matrix

int x=7;

process p1() {

do

::{x>0 => x--;y++}

::{x>0 => x--;z++}

od }

int y=3;

process p2() {

do

::{y>0 => y--;x++}

::{y>0 => y--;z++}

od }

int z=9;

process p3() {

do

::{z>0 => z--;x++}

::{z>0 => z--;y++}

od }

Default
Matrix


x y z

p1 + + +
p2 + + +
p3 + + +



Better Matrix



x y z

p1.1 + + −
p1.2 + − +
p2.1 + + −
p2.2 − + +
p3.1 + − +
p3.2 − + +



state = 〈7, 3, 9〉IV

〈7, 3, 9〉IV
p1.1−→ 〈6, 4, 9〉IV

〈7, 3, ∗〉IV
p1.1−→ 〈6, 4, ∗〉IV

〈7, 3, 9〉IV
p3.2−→ 〈7, 4, 8〉IV

〈∗, 3, 9〉IV
p3.2−→ 〈∗, 4, 8〉IV

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 21 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Example Dependency Matrix

int x=7;

process p1() {

do

::{x>0 => x--;y++}

::{x>0 => x--;z++}

od }

int y=3;

process p2() {

do

::{y>0 => y--;x++}

::{y>0 => y--;z++}

od }

int z=9;

process p3() {

do

::{z>0 => z--;x++}

::{z>0 => z--;y++}

od }

Default
Matrix


x y z

p1 + + +
p2 + + +
p3 + + +



Better Matrix



x y z

p1.1 + + −
p1.2 + − +
p2.1 + + −
p2.2 − + +
p3.1 + − +
p3.2 − + +



state = 〈7, 3, 9〉IV

〈7, 3, 9〉IV
p1.1−→ 〈6, 4, 9〉IV

〈7, 3, ∗〉IV
p1.1−→ 〈6, 4, ∗〉IV

〈7, 3, 9〉IV
p3.2−→ 〈7, 4, 8〉IV

〈∗, 3, 9〉IV
p3.2−→ 〈∗, 4, 8〉IV

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 21 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Example Dependency Matrix

int x=7;

process p1() {

do

::{x>0 => x--;y++}

::{x>0 => x--;z++}

od }

int y=3;

process p2() {

do

::{y>0 => y--;x++}

::{y>0 => y--;z++}

od }

int z=9;

process p3() {

do

::{z>0 => z--;x++}

::{z>0 => z--;y++}

od }

Default
Matrix


x y z

p1 + + +
p2 + + +
p3 + + +



Better Matrix



x y z

p1.1 + + −
p1.2 + − +
p2.1 + + −
p2.2 − + +
p3.1 + − +
p3.2 − + +



state = 〈7, 3, 9〉IV

〈7, 3, 9〉IV
p1.1−→ 〈6, 4, 9〉IV

〈7, 3, ∗〉IV
p1.1−→ 〈6, 4, ∗〉IV

〈7, 3, 9〉IV
p3.2−→ 〈7, 4, 8〉IV

〈∗, 3, 9〉IV
p3.2−→ 〈∗, 4, 8〉IV

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 21 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

PINS / LTSmin

 (P.O. Reduction)

Distributed Symbolic
Reachability

mCRL2
Process algebra

Multi−core
ReachabilityGeneration

SPIN / NIPS−vm (BEEM)

PINS

PINS

Input

Language

Reachability

Pins2pins

Promela

Wrappers

Tools

DVE

 Static ReorderingTransition Caching

Basic functions (algorithms call language modules)

I GetMatrix : returns the dependency matrix [D]N×K
I InitState(): returns the initial state vector

I NextState(i,s): successors of state s in transition group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 22 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

PINS / LTSmin

 (P.O. Reduction)

Distributed Symbolic
Reachability

mCRL2
Process algebra

Multi−core
ReachabilityGeneration

SPIN / NIPS−vm (BEEM)

PINS

PINS

Input

Language

Reachability

Pins2pins

Promela

Wrappers

Tools

DVE

 Static ReorderingTransition Caching

Basic functions (algorithms call language modules)

I GetMatrix : returns the dependency matrix [D]N×K
I InitState(): returns the initial state vector

I NextState(i,s): successors of state s in transition group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 22 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 23 / 71

Local Transition Caching

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Caching Local Transitions (1)

I Recall local transition in specification:

p3.2: atomic { z>0 -> z--; y++ }

I Dependency matrix row:
[x y z

p3.2 0 1 1
]

I Define projection: πp3.2〈x , y , z〉 = 〈y , z〉

I Next, consider two consecutive calls to p3.2:

first call: 〈x , y , z〉
successor: 〈x , y ′, z ′〉
project and 〈y , z〉 →
store in cache: 〈y ′, z ′〉

second call: 〈x ′′, y , z〉
project: 〈y , z〉
cache lookup: → 〈y ′, z ′〉
expand: 〈x ′′, y ′, z ′〉

I Maintain a memoization table cache[i] for each transition
group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 25 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Caching Local Transitions (1)

I Recall local transition in specification:

p3.2: atomic { z>0 -> z--; y++ }

I Dependency matrix row:
[x y z

p3.2 0 1 1
]

I Define projection: πp3.2〈x , y , z〉 = 〈y , z〉

I Next, consider two consecutive calls to p3.2:

first call: 〈x , y , z〉
successor: 〈x , y ′, z ′〉
project and 〈y , z〉 →
store in cache: 〈y ′, z ′〉

second call: 〈x ′′, y , z〉
project: 〈y , z〉
cache lookup: → 〈y ′, z ′〉
expand: 〈x ′′, y ′, z ′〉

I Maintain a memoization table cache[i] for each transition
group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 25 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Caching Local Transitions (1)

I Recall local transition in specification:

p3.2: atomic { z>0 -> z--; y++ }

I Dependency matrix row:
[x y z

p3.2 0 1 1
]

I Define projection: πp3.2〈x , y , z〉 = 〈y , z〉

I Next, consider two consecutive calls to p3.2:

first call: 〈x , y , z〉
successor: 〈x , y ′, z ′〉
project and 〈y , z〉 →
store in cache: 〈y ′, z ′〉

second call: 〈x ′′, y , z〉
project: 〈y , z〉
cache lookup: → 〈y ′, z ′〉
expand: 〈x ′′, y ′, z ′〉

I Maintain a memoization table cache[i] for each transition
group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 25 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Caching Local Transitions (1)

I Recall local transition in specification:

p3.2: atomic { z>0 -> z--; y++ }

I Dependency matrix row:
[x y z

p3.2 0 1 1
]

I Define projection: πp3.2〈x , y , z〉 = 〈y , z〉

I Next, consider two consecutive calls to p3.2:

first call: 〈x , y , z〉
successor: 〈x , y ′, z ′〉
project and 〈y , z〉 →
store in cache: 〈y ′, z ′〉

second call: 〈x ′′, y , z〉
project: 〈y , z〉
cache lookup: → 〈y ′, z ′〉
expand: 〈x ′′, y ′, z ′〉

I Maintain a memoization table cache[i] for each transition
group i

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 25 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Caching Local Transitions (2)

I Caching can save calls to the language module

I Still some work for every concrete state (cache lookup)

I Caching is useful especially:
I For expressive/inefficient languages
I When dependency matrices are sparse

I Always uses a bit more memory (tables)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 26 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Static Matrix Reordering

PINS Optimization

I Regrouping similar transition groups reduces overhead

I Reordering state variables reduces BDD sizes (a.o.)

+--+---------+---

--------------+++

---------------++

-----------+----+

-------------+++-

---------------++

--------------++-

----------+----+-

...(58 rows)....

---+---+---------

--+++------------

--++-------------

--+---+----------

-+---+---+-------

++---------------

-+---+-----------

+---+---+--------

++---------------

+---+------------

Sokoban
before
and after
regrouping

++---------------

+--+---+---------

-++-+------------

--++-------------

--+-++-----------

---+---+--+------

----+++----------

----+--++--------

-----+----++-----

-----+------++---

------+--+--+----

-------++-----+--

-------+-++------

--------+--++----

---------++----+-

----------++-+---

-----------++---+

-------------++--

---------------++

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 27 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Static Matrix Reordering

PINS Optimization

I Regrouping similar transition groups reduces overhead

I Reordering state variables reduces BDD sizes (a.o.)

+--+---------+---

--------------+++

---------------++

-----------+----+

-------------+++-

---------------++

--------------++-

----------+----+-

...(58 rows)....

---+---+---------

--+++------------

--++-------------

--+---+----------

-+---+---+-------

++---------------

-+---+-----------

+---+---+--------

++---------------

+---+------------

Sokoban
before
and after
regrouping

++---------------

+--+---+---------

-++-+------------

--++-------------

--+-++-----------

---+---+--+------

----+++----------

----+--++--------

-----+----++-----

-----+------++---

------+--+--+----

-------++-----+--

-------+-++------

--------+--++----

---------++----+-

----------++-+---

-----------++---+

-------------++--

---------------++

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 27 / 71

Multi-Valued Decision Diagrams

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Valued Decision Diagrams

34

4

5

5 5

31

4 61

4 5

86

1

1

1

1

1

1

6

8

5

6

6

8

5

5

8

4

3

3

4

3

3

4

3

3

5

4

5

5

4

5

5

4

5

4 4

4 4

4 4

4

4

4

5

5

5

6

6

6

3

3

3

3

3

3

I Every path in the MDD represents a concrete state vector

I Potential gain in memory saving: exponential (here: 54→ 15)

I Symbolic Reachability: explore sets of states stored as MDDs

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 29 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Valued Decision Diagrams

34

4

5

5 5

31

4 61

4 5

86

1

1

1

1

1

1

6

8

5

6

6

8

5

5

8

4

3

3

4

3

3

4

3

3

5

4

5

5

4

5

5

4

5

4 4

4 4

4 4

4

4

4

5

5

5

6

6

6

3

3

3

3

3

3

I Every path in the MDD represents a concrete state vector

I Potential gain in memory saving: exponential (here: 54→ 15)

I Symbolic Reachability: explore sets of states stored as MDDs

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 29 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Symbolic Reachability Algorithm
[ICTAC 2008]

I L, V : MDDs for sets of long state vectors (level, visited)

I Ri : MDDs to store transition relation i on short vectors

I Li , Vi : MDDs for sets of short state vectors (level,visited for i)

symbolic-reachability()

(1) L := {InitState()}; V := L; all Ri := ∅; all Vi := ∅
(2) while L 6= ∅ do
(3) for i ∈ groups do /* enumerate short vectors */
(4) Li := πi ([D]N×K , L) \ Vi ; Vi := Vi ∪ Li
(5) Ri := Ri ∪ {(s, s ′) | s ∈ Li ∧ s ′ ∈ NextState(i , s)}
(6) L :=

⋃
i (Ri (L) \ V); V := V ∪ L

(7) return V

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 30 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Symbolic Reachability Algorithm
[ICTAC 2008]

I L, V : MDDs for sets of long state vectors (level, visited)

I Ri : MDDs to store transition relation i on short vectors

I Li , Vi : MDDs for sets of short state vectors (level,visited for i)

symbolic-reachability()

(1) L := {InitState()}; V := L; all Ri := ∅; all Vi := ∅
(2) while L 6= ∅ do
(3) for i ∈ groups do /* enumerate short vectors */
(4) Li := πi ([D]N×K , L) \ Vi ; Vi := Vi ∪ Li
(5) Ri := Ri ∪ {(s, s ′) | s ∈ Li ∧ s ′ ∈ NextState(i , s)}
(6) L :=

⋃
i (Ri (L) \ V); V := V ∪ L

(7) return V

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 30 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Symbolic Reachability

Symbolic Reachability with PINS

I Global set of reachable states is computed as fix point

I Stored as a multi-valued decision diagram (MDD)

I Learn symbolic sub-groups Ri on-the-fly (via NextState)

Extensions
I Multiple exploration strategies:

I Breadth-first: (T1 + T2 + · · ·+ Tn)∗

I Chaining: (T1 ◦ T2 ◦ · · · ◦ Tn)∗

I Saturation-like: (T ∗
1 ◦ T ∗

2 ◦ · · · ◦ T ∗
n)∗

I Full Saturation: ((((T ∗
1 T2)∗T3)∗ · · ·)∗Tn)∗

I Static variable reordering boosts performance

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 31 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Symbolic Reachability

Symbolic Reachability with PINS

I Global set of reachable states is computed as fix point

I Stored as a multi-valued decision diagram (MDD)

I Learn symbolic sub-groups Ri on-the-fly (via NextState)

Extensions
I Multiple exploration strategies:

I Breadth-first: (T1 + T2 + · · ·+ Tn)∗

I Chaining: (T1 ◦ T2 ◦ · · · ◦ Tn)∗

I Saturation-like: (T ∗
1 ◦ T ∗

2 ◦ · · · ◦ T ∗
n)∗

I Full Saturation: ((((T ∗
1 T2)∗T3)∗ · · ·)∗Tn)∗

I Static variable reordering boosts performance

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 31 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Table of Contents

1 Model Checking in a Nutshell

2 Planning Example: Sokoban

3 LTSmin Tool Architecture

4 Symbolic Algorithms

5 Multi-Core Algorithms

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 32 / 71

Multi-Core Algorithms

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Core Reality

Recent standard hardware (x86)

I Multiple cores per processor, multiple processors

I Typical big machine: 48–64 cores, 256 GB shared memory

I Communication via L1, L2 caches: cache-coherence protocols

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 34 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Core “Crisis”

(Source: Smoothspan)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 35 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Moore’s Law: More Cache!

(Source: Anandtech)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 36 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Scalable Multi-Core Reachability
(cf. Holzmann, FMCAD 2006)

I Exploitable parallelism must
double every 2 years
(Corollary of Moore’s Law)

I (Graph) Reachability is basis of
many verification problems

I Multi-Core Model Checking:
state-of-the-art not very
impressive

Having trouble with scaling simple (enumerative) reachability?

I Then what are the chances to parallelize:
Liveness, partial-order reduction, symbolic reachability, . . . ?

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 37 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Scalable Multi-Core Reachability
(cf. Holzmann, FMCAD 2006)

I Exploitable parallelism must
double every 2 years
(Corollary of Moore’s Law)

I (Graph) Reachability is basis of
many verification problems

I Multi-Core Model Checking:
state-of-the-art not very
impressive

Having trouble with scaling simple (enumerative) reachability?

I Then what are the chances to parallelize:
Liveness, partial-order reduction, symbolic reachability, . . . ?

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 37 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-core reachability

Problems for Model Checking: Visited Set

I Parallel access to hash table: correctness and efficiency

I Parallel access requires synchronization lock contention

I Graph traversal: Random memory access cache misses

I Main problem with cache lines:false sharing

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 38 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experiments: SPIN 5.2.4 (NASA/JPL)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 39 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experiments: DiVinE 2.2 (Brno,CZ)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 40 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experiments: LTSmin

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 41 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Core Reachability

Study

I Multi-core reachability: (pseudo) breadth-first, depth-first, . . .

I Load balancing

Where is efficiency lost?

I Lock Contention

I Lock Convoying

I Cache-Line Sharing

I Two-Step Dance

I Stampeding

I . . .

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 42 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Measure, Measure, Measure

I Analyze & distill thousands of measurements

I Guides decisions what to tackle next

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 43 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Reachability Architectures

Worker 1 Worker 2

Worker 3 Worker 4

QueueQueue

QueueQueue

store store

storestore

I DiVinE 2.2:
Static Partitioning

I BFS, high comm. cost,
static load balancing

store

Worker 1 Worker 2

Worker 4 Worker 3

Stack

Stack

Stack

Stack

I SPIN 5.2.4:
Shared Storage & Stack Slicing

I DFS, multiple sync. points,
integrated load balancing

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 44 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Reachability Architectures II

Shared state storage as main sync point

I Flexible reachability algorithms

I Flexible load balancing

Shared Hashtables in Parallel Model
Checking (Barnat, Ročkai 2007)

I “our shared hash tables do not
scale beyond 8 cores”

I “could not investigate lockless hash
table solution”

I “haven’t found the cause of the
scalability issues with pre-sized
tables”

store

Worker 1 Worker 2

Worker 3 Worker 4

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 45 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Lockless Hash Table: Design
[FMCAD 2010]

1 Investigate Requirements on Shared Storage

2 Investigate Hardware Support
fine-grained synchronization, caches, . . .

3 Exploit LTSmin Infrastructure
incremental (Zobrist) hashing

store

Worker 1 Worker 2

Worker 3 Worker 4

Hash Table Designed for Model Checking:

I FindOrPut operation only

I Don’t store pointers, no allocation

I No resizing!

I Fixed-size keys (state vectors)

I Low memory working set improves scalability

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 46 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Lockless Hash Table: Design
[FMCAD 2010]

1 Investigate Requirements on Shared Storage

2 Investigate Hardware Support
fine-grained synchronization, caches, . . .

3 Exploit LTSmin Infrastructure
incremental (Zobrist) hashing

store

Worker 1 Worker 2

Worker 3 Worker 4

Hash Table Designed for Model Checking:

I FindOrPut operation only

I Don’t store pointers, no allocation

I No resizing!

I Fixed-size keys (state vectors)

I Low memory working set improves scalability

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 46 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Lockless Hash Table: Layout
[FMCAD 2010]

I Open Addressing

I Hash Memoization

I Separate Data

I Walking the Line

I Lockless (CAS + write bit)

|state|

data bucket
|c

ac
he

 li
ne

|

See also: Cliff Click (JavaOne 2007 presentation)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 47 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Incremental Hashing

g1-f3

Hx Hy (Hx Z ,g,1) Z ,f,3 =

Albert L. Zobrist, A New Hashing Method with Application for
Game Playing, Tech. Rep. 88, Computer Sciences Department,
University of Wisconsin, 1969.

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 48 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Incremental Hashing For State Vectors

I Zobrist matrix Z :
filled with random integers

I Dependency Matrix:
find modified vector elements

I Difference to Chess:
possible values not statically
known

I Limit size of Z (e.g.,
L = 26),
domain of each vector slot is
usually small

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 49 / 71

Experiments

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experimental Setup

I 16-core AMD Opteron 8356, 64 GB RAM

I Linux 2.6.32+patch

I BEEM model database (250+ models)
I extensive collection of models for enumerative model checkers

I case studies, protocols, games, planning, synthetic models, . . .

I http://anna.fi.muni.cz/models/

I Statically sized hash tables (no resizing)

I Speedups: relative to best sequential(!) tool

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 51 / 71

http://anna.fi.muni.cz/models/

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experiments: Summary

Figure 5: Runtimes of BEEM models with LTSmin and SPIN

(a) (b)

Figure 6: Total runtime and speedups of Spin, Divine 2 and LTSmin-mc

17

Green LTSmin (UTwente)

Red DiVinE 2.2

Blue SPIN 5.2.4

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 52 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Experiments: LTSmin (Detailed)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 53 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Effects of Load Balancing

Static Load Balancing (SLB)

I Feasible for many models

I Threads can run out of work

Synchronous Random Polling
(Sanders ’97)

I Work stealing/hand-off

I Almost no overhead vs. SLB
I Additional Improvements

I Shared-Memory Multi-Core
I Informed Polling
I Scare off stampeding threads

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 54 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Observations

Model Checking Limitations:

I Old Days: Memory

I Availability of large RAM:
Time-Outs (“Patience-Out”)

I Multi-Core Reachability
I Analyzing 10 Million states/sec

on 16-core AMD
I Allocation rate: 1 GB/sec

Memory is again Bottleneck

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 55 / 71

State Vector Compression

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Tree Compression
[PDMC 2007, JLC 2009]

I State vectors highly similar

I Compression via tree of tables,
recursive version of SPIN’s
COLLAPSE

I Multi-Core version:
Lockless hash table as
building block!

I Increases arithmetic intensity :
Super-linear speedups!

I “For Free”! (pays its own way)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 57 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Tree Compression
[PDMC 2007, JLC 2009]

X

0

1

2

0

1

2

0

1

2

0

1

2

0

0

0

1

1

1

2

2

2

0

1

2

X

O

O

O O

O X

X O

O

O X

O O

X

X O O

O O

OO

X

X

X O O

O O

OO

X

X

X O O

O O

OO

X

X

O O X

XO O

X O O

O O X

XO O

X O O

O O X

XO

X O O

O

O

O

I Folded vector 〈2, 1〉FV represents 〈0, 0, 1, 0, 1, 0〉IV resp.
〈O,O,X ,O,X ,O〉SV (with O ↔ 0, X ↔ 1)

I Selected tree fringe of grey boxes corresponds to state vector

I Potential gain (here 54→ 42 entries):
I main table of size N is only two integers wide
I small tables of size O(

√
N) only

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 58 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Tree Compression
[PDMC 2007, JLC 2009]

X

0

1

2

0

1

2

0

1

2

0

1

2

0

0

0

1

1

1

2

2

2

0

1

2

X

O

O

O O

O X

X O

O

O X

O O

X

X O O

O O

OO

X

X

X O O

O O

OO

X

X

X O O

O O

OO

X

X

O O X

XO O

X O O

O O X

XO O

X O O

O O X

XO

X O O

O

O

O

I Folded vector 〈2, 1〉FV represents 〈0, 0, 1, 0, 1, 0〉IV resp.
〈O,O,X ,O,X ,O〉SV (with O ↔ 0, X ↔ 1)

I Selected tree fringe of grey boxes corresponds to state vector
I Potential gain (here 54→ 42 entries):

I main table of size N is only two integers wide
I small tables of size O(

√
N) only

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 58 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Multi-Core Tree Compression
[NASA FM 2011, SPIN 2011]

I State vectors highly similar:
Exploit combinatorial structure

I Extreme example:
Memory/Time usage for
firewire_tree.5:

Uncompressed: 14 GB
Tree Compression: 96 MB

I Near 100 % efficiency!

I Dependency Matrix:
Incremental Tree Compression

!"

#"

$!"

$#"

%!"

%#"

!" #!" $!!" $#!" %!!" %#!" &!!"

!"
#
$%
&'
'(
")

*+,
!-
"%
*./

01
2**

'-,-&*3&)4-5*.67-&2**

'())"*+,-()../+0"
12.3"'245)"
6-7,25"8())"*+,-()../+0"
96::;<=>"+-7,25"
96::;<=>"*+,-()../+0"

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

#cores

LTSmin-mc Table
LTSmin-mc Tree

DiVinE 2.2
SPIN

SPIN Collapse
optimal (linear speedup)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 59 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Observations

I Centralized state storage scales at least as
well as static state space partitioning

I Shared state storage orthogonal to:
search strategy, load balancing, . . .

I Simpler architecture

store

Worker 1 Worker 2

Worker 3 Worker 4

I Arithmetic Intensity (hide memory latency)

I Data layout important (caches), sadly no language support

I Designed from the ground up for Scalability

I Establishing correctness of implementation is a pain . . .

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 60 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Algorithm Engineering

I > 10× improvement over
sequential algorithms

I Beats state-of-the-art tools,
reopens earlier conclusions

I Research questions guided
by experiments

I Engineering approach,
repeatable benchmark results

I Hash table as building block for multi-core xDDs, liveness
checking, . . .

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 61 / 71

Conclusion

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking for Planning?

Adoption obstacles

I Modeling effort
I many languages
I avoid modeling?

I Scalability
I parallel components
I data, buffers, . . .

I Complex tools
I algorithms, heuristics
I low-level details

Algorithmic solutions
(combinatorics, locality)

I on-the-fly model checking

I symbolic model checking

I bounded model checking

I parallel model checking

I partial-order reduction

I symmetry reduction

Problem: Algorithms tied to specification languages

I No particular technique suits all applications / models
I Users need to rewrite model in different languages

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 63 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking for Planning?

Adoption obstacles

I Modeling effort
I many languages
I avoid modeling?

I Scalability
I parallel components
I data, buffers, . . .

I Complex tools
I algorithms, heuristics
I low-level details

Algorithmic solutions
(combinatorics, locality)

I on-the-fly model checking

I symbolic model checking

I bounded model checking

I parallel model checking

I partial-order reduction

I symmetry reduction

Problem: Algorithms tied to specification languages

I No particular technique suits all applications / models
I Users need to rewrite model in different languages

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 63 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking for Planning?

Adoption obstacles

I Modeling effort
I many languages
I avoid modeling?

I Scalability
I parallel components
I data, buffers, . . .

I Complex tools
I algorithms, heuristics
I low-level details

Algorithmic solutions
(combinatorics, locality)

I on-the-fly model checking

I symbolic model checking

I bounded model checking

I parallel model checking

I partial-order reduction

I symmetry reduction

Problem: Algorithms tied to specification languages

I No particular technique suits all applications / models
I Users need to rewrite model in different languages

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 63 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Silver Bullets?

I No clear winner

I BUT: also
depends on
modelling

I PINS matrix can
be used as
predictor

1 5 10 50 100 500 5000

1
5

10
50

10
0

50
0

50
00

at.5

bakery.7
bakery.8

fischer.5 iprotocol.7

lamport_nonatomic.5

lamport.7

lann.6

lann.7

leader_election.5

lifts.8

mcs.5pgm_protocol.8

phils.7

production_cell.6

telephony.4

telephony.7

lifts.7

cyclic_scheduler.15.1

distributed faster
symbolic faster

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 64 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

LTSmin Verification Capabilities

On−the−fly:

Distributed Symbolic
Reachability

mCRL2
Process algebra

Multi−core
ReachabilityGeneration

SPIN / NIPS−vm (BEEM)

PINS

PINS

Input

Language

Reachability

Pins2pins

Promela

Wrappers

Tools

DVE

 (P.O. Reduction) Static ReorderingTransition Caching

Verification

(produces error traces)

− deadlocks

− goal/error actions

− accepting cycle (LTL)

− (mu−calculus)

− (CTL*)

Symbolic:

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 65 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Links to External Tools

Minimization

Model
External

ETF

Distributed Symbolic
Reachability

DVEmCRL2
Process algebra

Multi−core
Reachability

 Static ReorderingTransition Caching

Generation

SPIN / NIPS−vm (BEEM)

PINS

PINS

Kripke sructure

Input

Language

LTS level

Reachability

Pins2pins

DiVinE

Promela

Wrappers

Tools

CADP

pins_open

bcg

(nuSMV)

Distributed

Checkers

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 66 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Portfolio of Language Modules

µCRL process algebra (CWI)

mCRL2 process algebra, INESS (TU/e)

PROMELA SPIN (NASA/JPL) Prototype

PROMELA SpinJa (UTwente)

DVE DiVinE-cluster (MU Brno)

DVE2 DiVinE model checking toolset (MU Brno)

ETF Enumerated Table Format (LTSmin)

GNA Genetic Network Analyzer (INRIA) Prototype

ODE Maple (EC-MOAN) Prototype

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 67 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Portfolio of Tools

〈spec〉2lts-gsea Depth/Breadth-First Enumerative Reachability

〈spec〉-reach MDD-based symbolic reachability

〈spec〉2lts-mpi Distributed state-space generation

〈spec〉2lts-mc Multi-Core Enumerative Reachability

〈spec〉2torx TorX tester RPC interface

pins open Connection to CADP toolset (VASY/INRIA)

ltsmin-mpi Signature-based distributed minimization

ce-mpi Orzan’s distributed cycle elimination

ltsmin-tracepp (Error) trace pretty printer

Next: Partial-Order Reduction (POR),
Linear Temporal Logic (LTL), µ-calculus

Saturation,

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 68 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Who benefits from LTSmin?

Useful for end users: larger case studies

I Model in a suitable (your favourite) specification language

I Decide later what model checking algorithm to use

Useful for tool providers: algorithms for free

I Your Domain Specific Specification Language can get HPMC

I Ideally, LTSmin can be viewed as a library

Useful for researchers: rigorous benchmarking

I LTSmin allows benchmarking algorithms on one model

I LTSmin allows comparing languages on one algorithm

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 69 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Who benefits from LTSmin?

Useful for end users: larger case studies

I Model in a suitable (your favourite) specification language

I Decide later what model checking algorithm to use

Useful for tool providers: algorithms for free

I Your Domain Specific Specification Language can get HPMC

I Ideally, LTSmin can be viewed as a library

Useful for researchers: rigorous benchmarking

I LTSmin allows benchmarking algorithms on one model

I LTSmin allows comparing languages on one algorithm

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 69 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Who benefits from LTSmin?

Useful for end users: larger case studies

I Model in a suitable (your favourite) specification language

I Decide later what model checking algorithm to use

Useful for tool providers: algorithms for free

I Your Domain Specific Specification Language can get HPMC

I Ideally, LTSmin can be viewed as a library

Useful for researchers: rigorous benchmarking

I LTSmin allows benchmarking algorithms on one model

I LTSmin allows comparing languages on one algorithm

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 69 / 71

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Literature

Check out: http://fmt.cs.utwente.nl/tools/ltsmin/

I Alfons Laarman, Jaco van de Pol, Michael Weber,
Parallel Recursive State Compression for Free (SPIN 2011)

I Alfons Laarman, Jaco van de Pol, Michael Weber,
Multi-Core LTSmin: Marrying Modularity and Scalability (NFM2011,tool)

I Stefan Blom, Jaco van de Pol, Michael Weber,
LTSmin: Distributed and Symbolic Reachability (CAV 2010, tool)

I Alfons Laarman, Jaco van de Pol and Michael Weber, . . . (FMCAD 2010)
Boosting Multi-Core Reachability Performance with Shared Hash Tables

I Stefan Blom and Jaco van de Pol, Symbolic Reachability for
Process Algebras with Recursive Data Types (ICTAC’08)

I Stefan Blom, Bert Lisser, Jaco van de Pol and Michael Weber,
A Database Approach to Distributed State-Space Generation (JLC 2009)

I Stefan Blom and Jaco van de Pol, Distributed Branching Bisimulation
Minimization by Inductive Signatures (PDMC’09; EPTCS 14)

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 70 / 71

http://fmt.cs.utwente.nl/tools/ltsmin/

... Model Checking Sokoban PINS/LTSmin Symbolic Multi-Core Conclusion ...

Model Checking (and related) Venues

CAV Computer Aided Verification

TACAS Tools and Algorithms for the Construction and Analysis of
Systems

VMCAI Verification, Model Checking, and Abstract Interpretation

ATVA Automated Technology for Verification and Analysis

FMCAD Formal Methods in Computer Aided Design

SPIN SPIN Workshop on Model Checking Software

PDMC Parallel and Distributed Methods in VerifiCation

MoChArt Model Checking and Artificial Intelligence

QEST Quantitative Evaluation of SysTems

FORMATS Formal Modelling and Analysis of Timed Systems

 UNIVERSITY OF TWENTE. Problem Solving with Model Checking Techniques June 12, 2011 71 / 71

	Model Checking in a Nutshell
	Planning Example: Sokoban
	LTSmin Tool Architecture
	Symbolic Algorithms
	Multi-Core Algorithms

